
REACTIVE CHEMICAL DYNAMICS: 
BORN-OPPENHEIMER AND BEYOND

A Thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

By

T. RAJAGOPALA RAO

SCHOOL OF CHEMISTRY
UNIVERSITY OF HYDERABAD

HYDERABAD 500046
INDIA

NOVEMBER 2012



School of Chemistry
University of Hyderabad

Central University P. O.
Hyderabad 500 046 

India

STATEMENT

I  hereby  declare  that  the  matter  embodied  in  this  thesis  is  the  result  of 

investigations carried out by me in the School of Chemistry, University of Hyderabad, 

Hyderabad, under the supervision of Prof. Susanta Mahapatra.

In keeping with the general  practice of reporting scientific observations, due 

acknowledgement has been made wherever the work described is based on the findings 

of other investigators.

(T. Rajagopala Rao) 

i

 

 



School of Chemistry
University of Hyderabad
Central University P. O.

Hyderabad - 500 046
India

CERTIFICATE

Certified  that  the  work  embodied  in  this  thesis  entitled  “REACTIVE 

CHEMICAL  DYNAMICS:  BORN-OPPENHEIMER  AND  BEYOND” has  been 

carried out by Mr.  Tammineni Rajagopala Rao under my supervision and the same 

has not been submitted elsewhere for a Degree.

           

        (Prof. Susanta Mahapatra)

    Thesis Supervisor

Dean
School of Chemistry

ii

 

 



List of Abbreviations

BF - Body-fixed 
BO - Born-Oppenheimer 
BW - Bian-Werner
CC - Coriolis coupling 
CP - Chebyshev polynomial 
CRP - Cumulative reaction probability 
CS - Centrifugal sudden 
CW - Capecchi Werner
DVR - Discrete variable representation 
FBR - Finite basis representation
FC - Franck-Condon 
FFT - Fast Fourier transform 
FT - Fourier transform 
FT-1 - Inverse Fourier transform 
FWHM - Full-width at half-maximum 
GWP - Gaussian wave packet 
JT - Jahn-Teller
MCTDH - Multi-configuration time-dependent Hatree
MP4 - Fourth order Móller-Plesset perturbation theory 
MRCI - Multireference configuration interaction
IC-MRCI - Internaly-cintracted Multireference 

configuration interaction
NAC - Nonadiabatic coupling
NIP - Negative imaginary potential 
PES(s) - Potential energy surface(s) 
PJT - pseudo-Jahn-Teller
QCT - Quasiclassical trajectory
RT - Renner-Teller
SF              - Space-fixed 
SI - Symplectic integrator
SIL - Short-iterative Lancozs
SO              -    Spin-orbit 
SOD - Second-order differencing
SQM             -    Spectral quantization method 
TDSE            -    Time-dependent Schrödinger equation 
TISE            -    Time-independent Schrödinger equation 
TDWP            -    Time-dependent wave packet 
TS - Transition state 
VTST - Variational-transition-state-theory
WP - Wave packet 

iii



Contents

1 Introduction 5

1.1 Potential energy surfaces . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 DMBE PES for H3 . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2 CW PES for ClH2 . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 PESs of excited electronic states of COH . . . . . . . . . 15

1.2 Current state of research and the aim of the present work . . . . . 18

1.2.1 Nonadiabatic effects in hydrogen exchange reactions and

optical emission spectrum of D3 . . . . . . . . . . . . . . . 18

1.2.2 Photodetachment spectrum of ClH−
2 and ClD−

2 . . . . . . 23

1.2.3 Quantum reaction dynamics of C + OH reaction . . . . . 26

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Theoretical and computational methods 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Adiabatic and diabatic electronic representations . . . . . . . . . 40

2.3 A general scheme to solve the TDSE . . . . . . . . . . . . . . . . 42

2.3.1 Chebyshev polynomial Scheme . . . . . . . . . . . . . . . . 51

2.3.2 Split operator scheme . . . . . . . . . . . . . . . . . . . . . 53

1



Contents 2

2.3.3 Real wave packet scheme . . . . . . . . . . . . . . . . . . . 54

2.3.4 Coupled sate propagation . . . . . . . . . . . . . . . . . . 55

2.4 Preparation of the initial wave packet . . . . . . . . . . . . . . . . 57

2.5 Final analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.1 Flux operator . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.2 Calculation of reaction probability . . . . . . . . . . . . . 60

2.5.3 Calculation of integral reaction cross section and thermal

rate constant . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Calculation of state-to-state reaction probabilities . . . . . . . . . 63

2.6.1 Differential and integral cross sections . . . . . . . . . . . . 65

2.7 Spectral intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Quantum nonadiabatic dynamics of H + D2 (HD) and D + H2

(HD) reactions 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Theoretical and computational details . . . . . . . . . . . . . . . . 72

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Reaction Probability . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 Initial State-Selected Integral Reaction Cross Sections . . . 80

3.3.3 Thermal rate constants . . . . . . . . . . . . . . . . . . . . 86

3.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Nuclear motion on the orbitally degenerate electronic ground

state of D3 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Contents 3

4.2 General considerations . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Theoretical and computational details . . . . . . . . . . . . . . . . 96

4.3.1 The HBO in hyperspherical coordinates . . . . . . . . . . . 97

4.3.2 Initial wavefunction and eigenvalue spectrum . . . . . . . . 99

4.3.3 Inclusion of GP and BH corrections . . . . . . . . . . . . . 102

4.3.4 Coupled surface treatment . . . . . . . . . . . . . . . . . . 103

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Effects of the GP and BH correction . . . . . . . . . . . . 107

4.4.2 Effects of explicit surface(s) coupling . . . . . . . . . . . . 115

4.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Additional information . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7 APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Theoretical study of electron detachment spectroscopy of ClH−
2

and its isotopomer ClD−
2 141

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Theoretical and computational details . . . . . . . . . . . . . . . . 142

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.1 Photodetachment spectrum . . . . . . . . . . . . . . . . . 148

5.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Additional information . . . . . . . . . . . . . . . . . . . . . . . . 159

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Time-dependent quantum wave packet dynamics of C + OH re-

action on the first excited potential energy surface 167



Contents 4

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Theoretical and computational details . . . . . . . . . . . . . . . . 168

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.1 Initial state-selected reaction probabilities . . . . . . . . . 173

6.3.2 Vibrational and rotational state-resolved reaction probabil-

ities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3.3 Product vibrational and rotational distributions . . . . . . 182

6.3.4 Initial state-selected integral reaction cross sections . . . . 185

6.3.5 Initial state-selected rate constants . . . . . . . . . . . . . 188

6.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . 191

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



Chapter 1

Introduction

It is worthwhile to start the thesis with a famous quote of Paul Dirac: “The

underlying physical laws necessary for the mathematical treatment

of a large part of physics and whole of chemistry are thus completely

known, and the difficulty is only that the exact application of these

laws leads to equations much too complicated to be soluble. It there-

fore becomes desirable that approximate practical methods of applying

quantum mechanics should be developed, which can lead to an expla-

nation of the main features of complex atomic systems without too

much computation [1].” Even after a century this quote still looks fresh and

capable of motivating many young aspirants of this field of quantum dynamics.

Most of the theoretical investigations in molecular physics and chemistry start

with the invocation of Born-Oppenheimer (BO) adiabatic approximation [2, 3].

The latter simplifies the theoretical treatment by decoupling the electronic motion

from the nuclear and thus allowing to treat them separately. Hence to study the

5



Chapter 1. Introduction 6

nuclear dynamics of a molecule, the first step involves clamping of the atomic nu-

clei at fixed positions in space and then solving the electronic eigenvalue equation

to obtain the electronic energies (which are also referred as adiabatic potential

energy surface (PES)) and the electronic eigenfunctions. It is to be noted that

the latter can only be determined up to a phase factor which may be an arbi-

trary function of the nuclear coordinates. In 1928, Fock [4] showed that such a

phase can be set to unity. However in 1963, Herzberg and Longuet-Higgins [5]

showed that this usual phase convention leads to geometric phase (GP) effect

(more about this is discussed later in the text below).

Using the calculated electronic eigenfunctions (which parametrically depend

on nuclear coordinates), the total wavefunction of the molecule is expressed as a

linear combination of these electronic eigenfunctions (also referred as adiabatic

electronic basis). The coefficients of this expansion parametrically depend on the

nuclear coordinates and represent the nuclear wavefunctions. Substitution of the

total wavefunction in the molecular Schrödinger equation and integration over

the electronic coordinates gives rise to the coupled channel eigenvalue equation

for the nuclear wavefunction in the adiabatic representation (related equations

are presented in section 2.2). In the latter representation, the coupling between

different electronic states is caused by the derivatives of the electronic wavefunc-

tion with respect to the nuclear coordinates and are called nonadiabatic coupling

(NAC) elements. In a strict BO picture all of these NAC elements are neglected [2]

whereas some of the diagonal NAC elements are retained in the Born-Huang (BH)

approximation [3]. In either case, the coupled states nuclear eigenvalue equation

reduces to a single state nuclear eigenvalue equation and thus confines the motion

of the nuclei on a single adiabatic state. This approximation is justified on the
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basis of the fact that the kinetic energy of the nuclei is in general much smaller

than that of the electrons as the latter are ∼ 1800 times lighter. However, after

studying more and more molecular systems it is realize that this approximation

is valid only in a small regions of entire configurations space.

Now the question is when does the BO approximation break? When the poten-

tial energy of two electronic states is close (i.e. within one quantum of energy of

nuclear vibration) then the magnitude of NAC elements becomes too large to be

neglected. And in the worst case, i.e, when there exists a degeneracy, these NAC

elements become singular. Hence in these situations BO approximation breaks

down and the nuclear motion is no longer confined to a single adiabatic PES.

Earlier it was thought that such situations are rare. For example, in diatomic

molecule, the non-crossing rule [6] prohibits the crossing of electronic states of

same symmetry. But this does not apply to polyatomic molecules which have

more degrees of freedom for the internal atomic motion. Indeed it is now realized

that the crossing of the PESs is very common. For example, consider the simple

case of triatomic molecule H3. It has an equilateral triangular geometry (D3h

symmetry) in its degenerate ground electronic state (2pE ′). But this degeneracy

is split along the degenerate e asymmetric stretching normal mode of vibration

resulting in to two adiabatic sheets meeting at the D3h symmetric configurations.

This splitting of electronic degeneracy due to the vibronic (vibrational + elec-

tronic) interactions is well known as E ⊗ e Jahn-Teller (JT) splitting [7]. The

topography of such type of intersections resemble a double cone (cf. Fig. 1.1) and

are commonly called conical intersections (CIs). Apart from the singular behavior

of NAC elements at CIs, the usual phase convention for the adiabatic electronic

wavefunction causes the topological effects. As discussed above, Herzberg and
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Longuet-Higgins [5] showed that when nuclei move along a closed path encircling

the CIs, the electronic wavefunction changes its sign and therefore the the total

molecular wavefunction becomes multivalued! This effect is purely topological

and well known in the literature as GP effect (more discussion on this is given in

sections 1.2.1 and 4.2). Similar to the JT splitting, an analogous situation arises

in the linear molecules where the PESs do not cross but coincide and result in a

glancing topography leading to Renner-Teller (RT) coupling [8]. Apart from these

couplings, for open shell systems like ClH2, the spin of the unpaired electrons of-

ten leads to the spin-orbit (SO) coupling [9]. The latter is due to the magnetic

interaction of the electronic spin with its orbital motion and resulting in the split-

ting of the spin-degenerate states. Near degenerate electronic states also show

the coupling similar to the JT couplings and are called pseudo-Jahn-Teller (PJT)

couplings [10]. The latter involves coupling of a JT state with a nondegenerate or

another JT state. To sum up, the existence of near degenerate states (resulting

in avoided crossings) and degenerate states (resulting in CIs) in molecules causes

a break down of the BO approximation and results in nonadiabatic transitions

between the coupled adiabatic electronic states.

When BO breaks down, the singular or diverging nature of the NAC elements,

and the occurrence of topological effects limits the use of adiabatic electronic

representation. To circumvent it, a nonunique electronic representation called

diabatic was invented [11]. In the latter representation the total molecular wave-

function is expanded in the diabatic electronic basis which is obtained via a

unitary transformation of the adiabatic ones. The resulting nuclear Schrödinger

equation in the diabatic representation is diagonal in nuclear kinetic energy terms

(related equations are presented in section 2.2). The NAC here is introduced by



Chapter 1. Introduction 9

the off diagonal elements of the diabatic electronic potentials. A proper choice

of the diabatic electronic basis ensures the removal of the singular NAC elements

and also corrects for the GP change.

Finally, the nuclear Schrödinger equation (either in adiabatic or diabatic repre-

sentations) is numerically solved to study a desired molecular process. This can

be done either by a time-independent or a time-dependent quantum mechanical

(TDQM) approach. Both methods have various advantages and disadvantages.

Time-independent methods are best suited for the calculations at low energies

such as energies needed to study cold and ultra cold systems. Because, a low

translation energy results in a large de Broglie wave lengths. Consequently, the

wave packet (WP) in the time-dependent calculations needs a large absorption re-

gion. In contrast, time-independent methods have boundary conditions replacing

these absorbing functions. The other class that suits well for the time-independent

methods is the dynamics involving long-lived resonances. In this case the WP

has to be propagated for a very long time in a time-dependent calculations which

often becomes unfeasible. On the other hand time-dependent methods have the

advantage that they scale better than the time-independent methods and also

one can capture the physical picture of the dynamics by recording the snapshots

of the time-evolved WPs. In the current thesis, the time-dependent methods are

used to investigate the nuclear dynamics. The full theoretical and computational

details of this method is presented in chapter 2. .
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1.1. Potential energy surfaces 11

1.1 Potential energy surfaces

1.1.1 DMBE PES for H3

Varandas et al. reported a global PES for the two lowest electronic states of

H3 [12] which exhibits CIs at its D3h equilibrium geometries. These authors have

applied double many body expansion (DMBE) method to obtain a functional

form which represents the correct analytical properties for a PES at the D3h

equilibrium configurations. The advantage of this method is that the upper sur-

face can be obtained from the functional form of the lower surface except for a

sign change. They have considered 316 ab initio points (299 points they used from

Refs. [13–15] and remaining they have calculated) to fit their chosen functional

form. For ab initio calculations, they employed [4s3p1d] contracted basis set

for complete active space self consistent field (CASSCF) calculations [16] with

three active orbitals, which yields eight configurations alltogether. Then with

all single and double excitations out of this eight configurations reference space,

they performed a multireference configuration interaction (MRCI) calculation. A

cross-section of this global three dimensional PES, well known in the literature as

the DMBE PES is plotted in Fig. 1.1 using hyperspherical coordinates ρ, θ, and

φ [ρ determines the size and (θ, φ) determine the shape of the molecular trian-

gle]. For a better portrayal of the two adiabatic sheets and their CIs, equatorial

views (see section 4.4 for more details) of these surfaces are shown here. In an

equatorial view, the central region corresponds to the D3h configurations where

the hyperangle, θ = 0o. As one moves from the center towards the periphery

θ increases and H3 approaches to the linear geometries. At the periphery θ =

180◦, which defines the collinear geometry of H3 and various dissociation channels

(reactive and nonreactive) appear in this geometry. It can be seen from Fig. 1.1



1.1. Potential energy surfaces 12

Reaction coordinate

0.0

0.1

0.2

0.3

0.4

0.5
E

n
er

g
y 

(e
V

)

HCl (X
1Σ+

) + H (
2
S)

HCl (
3Π) + H (

2
S)

Cl (
2
P3/2) + H2

Cl
*
 (

2
P1/2) + H2

0.109 eV

2Σ1/2

2Π3/2

2Π1/2

Figure 1.2: Schematic potential energy profiles for the Cl + H2 reaction (see text for
the details).

that the lower (red color) and upper (blue color) adiabatic sheets are degenerate

at the D3h configurations. But this degeneracy is split along other geometries,

leading to CIs of these PESs. The hydrogen exchange reaction takes place on

the repulsive lower adiabatic PES. On the latter, there exists a saddle point (∼
0.418 eV above the reactant asymptote) at a symmetric collinear conformation

with H-H distance = 1.757 a0 [12].

1.1.2 CW PES for ClH2

The coupling of orbital and spin angular momenta of Cl atom yields two SO

states viz., 2P 3
2

and 2P 1
2
, energetically separated by about 0.109 eV. Moreover,

the approach of the closed shell H2 molecule to the Cl atom split the three-fold

degeneracy of the 2P state and yields three adiabatic electronic states of 2Σ 1
2

, 2Π 3
2
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Figure 1.3: Contour plots of 2Σ 1
2

(lower panel) and 2Π 3
2

(upper panel) adiabatic
PESs as a function of Jacobi coordinates R and r (γ = 1800). Contours are obtained
at some selected values of energy (-0.01, 0.1, 0.33, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6
eV).
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and 2Π 1
2

symmetry in collinear geometries of Cl...H2 [17, 18]. In non collinear

arrangements these states transform as 1 2A′, 1 2A′′ and 2 2A′ symmetry species,

respectively. In the reagent (Cl + H2) arrangement, the first two states (2Σ 1
2

and 2Π 3
2

) asymptotically correlate to the ground 2P 3
2

SO state while the third

state (2Π 1
2

) correlates to the excited 2P 1
2

SO state of the Cl atom [19] (see the

schematic representation in Fig. 1.2). In the product arrangement (HCl + H),

the 2Σ 1
2

electronic state adiabatically correlates to the electronic ground state

of the products, HCl (X1Σ+) + H (2S), whereas the other two states (2Π 3
2

and

2Π 1
2

) correlate to the energetically higher excited electronic states of products

[19]. The latter states are inaccessible at low and moderate collision energies and

the reaction mainly proceeds on the energetically lowest 2Σ 1
2

electronic state.

Furthermore, at low and moderate collision energy the SO excited 2P 1
2

can form

products in their electronic ground state only via nonadiabatic transition to the

ground 2P 3
2

SO state. Considerable efforts have therefore been made in recent

years to develop PESs and the coupling surfaces of the mentioned SO states of

ClH2 at various levels of sophistication [17, 18, 20]. In the year 2004, Capecchi

and Werner (CW) [18] reported three adiabatic PESs (1 2A′, 1 2A′′ and 2 2A′),

their diabatic counter parts (VΣ , VΠ−A and VΠ+A ), electronic and SO coupling

surfaces. For ab initio calculations, these authors have used a large basis set (aug-

cc-pV5Z[8s7p5d4f3g] for chlorine and aug-cc-pVQZ[5s4p3d2f] for hydrogen) and

internally-contracted multireference configuration-interaction (IC-MRCI) level of

theory to obtain the energies at about 1000 geometries. Then they fit all the six

diabatic PESs to analytical functions. To describe some topological features of

these surfaces, the contour plots obtained for 2Σ 1
2

(lower panel) and 2Π 3
2

(upper

panel) adiabatic PESs are shown in Fig. 1.3 as a function of Jacobi coordinates

(R = distance of Cl atom from center of mass of reagent H2; r = H2 internuclear
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distance; γ = angle between ~R and ~r = 1800 for these plots). As described

above, the Cl + H2 → HCl (X1Σ+) + H reaction takes place on 2Σ 1
2

(1 2A′

for non collinear configurations) adiabatic PES. The latter supports two shallow

potential wells, one at the entrance channel (depth= ∼ 0.022 eV relative to the

reagent asymptote; R=5.78 a0 , r=1.403 a0 , γ = 900) and the other at the exit

channel (depth= ∼ 0.019 eV relative to the product asymptote; R=4.80 a0 ,

r=4.77 a0 , γ = 1800). Location of these wells are indicated in the lower panel of

Fig. 1.3 along with the location of the transition state (∼ 0.33 eV relative to the

reagent asymptote; R=3.63 a0 , r=1.85 a0 , γ = 1800). The 2Π 3
2

(1 2A′′) and 2Π 1
2

(2 2A′) adiabatic PESs also support shallow wells in the collinear configurations

(cf. upper panel of Fig. 1.3). Contour plots for the 2Π 1
2

PES is not shown here as

it looks similar to that of 2Π 3
2

PES except that the energy value of the contours

are shifted to higher energies.

1.1.3 PESs of excited electronic states of COH

The interaction of ground state reactants, OH(X2Π) and C(3P), leads to 2,4Σ+,

2,4Σ−, 2,4Π and 2,4∆ states in linear configurations. Among these, 2Σ+ (=X2A′

in Cs symmetry) and 2,4Π (=2A′,2A′′,4A′ and 4A′′ in Cs symmetry) correlates,

respectively, with the ground state products CO(X1Σ+) + H (2S) (energetically

lying ∼ 6.49 eV below the ground state reactants) and higher energy products,

CO(a3Π) + H (2S) (energetically lying ∼ 0.41 eV below the ground state re-

actants). This is schematically shown in the left panel of Fig. 1.4. Recently,

Zanchet et al. have reported the global PESs of the ground X2A′ states [24] and

2A′′ and 4A′′ excited states [25]. For ab initio calculations, these authors have

used Dunning aug-cc-pVQZ basis set [26] and multireference (MR) internally

contracted single and double configuration interaction (SDCI) method [27] plus
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Figure 1.4: Left: Schematic plot of the energetics of the C + OH reaction. Right:
Schematic plot of the stationary points located on excited 12A′′ PES

Davidson correction (+Q) [28] to obtain the energies at around 1500-3000 geome-

tries. They have analytically fitted the ab initio points, wtih the RKHS [29, 30]

and many body expansion [31] methods. For the calculations in chapter 6, the

2A′′ excited state PES is employed.

1.1.3.1 Topography of 2A′′ excited state PES

A schematic energy diagram of the stationary points on this surface is shown

in Fig. 1.4. It is clear from the figure that, there exists two potential wells

corresponding to the COH (RCO = 2.49 a0 , ROH= 1.82 a0 , ĈOH = 116o )

and HCO (RCO = 2.25 a0 , RCH= 2.01 a0 , ĤCO = 180o ) collision complexes

and a transition state (RCO = 2.37 a0 , RCH= 2.34 a0 , ĤCO = 68o ) between

them. These stationary points are also located on the potential energy contours
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obtained for this surface as a function of Jacobi coordinates r and γ and for fixed

R = 2.28 a0 as shown in Fig. 1.5. As there is no barrier at the entrance channel,

the COH minimum is easily reached. From there, the reaction may proceed via

direct pathway to give the products or it may pass through the isomerisation

barrier to reach the HCO minimum and then proceed to the products.

1.2 Current state of research and the aim of the

present work

In this section, an overview of the theoretical and experimental advances and the

aims of the various works presented in the thesis are discussed.

1.2.1 Nonadiabatic effects in hydrogen exchange reactions

and optical emission spectrum of D3

The H + H2 exchange reaction has been a benchmark prototype for the theoretical

studies, as it allows accurate quantum mechanical calculations to be performed

because of its seemingly simple quantum chemistry. Its dynamical outcomes

however, have been outstandingly difficult to understand [32].

The (E ⊗ e)-JT effect [7] in the orbitally degenerate electronic ground states

of H3 leads to the occurrence of CIs of its PESs at the D3h equilateral triangular

geometry [5, 33]. The H + H2 exchange reaction takes place on the repulsive

lower adiabatic sheet of this JT split electronic ground state of H3. Investigation

of the role of the bound (in absence of the JT coupling) upper adiabatic JT

sheet on this reaction systems has attracted much attention in the research in
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contemporary chemical dynamics [34–36]. The JT coupling has been discovered

to be very strong in H3, which leads to perhaps (known ever!) fastest nonradiative

relaxation of the upper adiabatic sheet of the JT split PESs within a time scale

of ∼ 3-6 fs only [37–39]. On the other hand, the JT coupling apparently does not

have such profound effects on the reactivity of the H + H2 exchange reaction [34].

This surprising result is not clearly understood and remains to be an open issue

till date.

It is well-known that the CIs of PESs are natural consequences of the JT insta-

bility of symmetric nonlinear molecular systems [5]. Electronic nonadiabatic ef-

fects prevail due to these intersections, ensuing a break-down of the adiabatic BO

approximation [2]. Nuclei undergo electronic transitions during their dynamical

evolution. One of the consequences of electronic nonadiabatic effects extensively

exercised in the literature, is to rectify the multi-valuedness of the adiabatic elec-

tronic wavefunction when it encircles the CIs, a topological phenomenon, known

as the GP effects [40]. This topological correction, understandably is a part of

the explicit surface coupling effect (consisting of the singular derivative and the

non-BO coupling terms) of the NAC operator. The effect of CIs on the reactive

scattering dynamics of the H + H2 and its isotopic variants are well studied in

the literature in terms of the GP change of the adiabatic electronic wavefunction

when encircling the CIs in a closed path in the nuclear coordinate space [41]. In

order to account for the phase change and to make the total wavefunction single

valued, a vector potential term is introduced into the nuclear Hamiltonian [42].

Early work on the GP effect in hydrogen exchange reaction was carried out by

Mead [43, 44]. This was followed by the pioneering calculations by Kuppermann

and coworkers by using multivalued basis functions to include the GP [41]. The
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latter authors predicted strong GP effects in both the integral and differential re-

action cross sections (DCSs). These findings stimulated further theoretical work

by Kendrick [45], who performed time-independent calculations including the GP

using the Mead-Truhlar vector potential formulation [42]. The GP effects were

found to be small and appear in the state-to-state reaction probabilities only for

the total energies higher than 1.8 eV above the H3 potential minimum [45]. These

effects which appear in the state-to-state reaction probabilities, cancel on sum-

ming over all partial wave contributions in the state-to-state integral cross sections

(ICSs). Subsequently, Juanes-Marcos et al. confirmed Kendrick’s results [45] and

extended them to higher impact parameters using an entirely different theoretical

approach [46]. Furthermore, these authors were able to explain these observations

using a topological argument [47] by demonstrating that the nuclear wavefunction

splits into two components which interfere to cancel the GP effects in the ICSs

and DCSs. Kuppermann and coworkers have also investigated the GP effects on

the vibrational levels of the upper adiabatic sheet and found that the GP correc-

tion shifts the energy eigenvalue and changes the symmetry properties of these

levels [48]. Varandas and coworkers [49] have also carried out extensive work to

analyze the properties of the transition state resonances of the lower adiabatic

sheet and the bound vibrational levels of the upper adiabatic sheet including the

GP correction. But all the above calculations were carried out within the realm

of the BO approximation, which include the GP effects either through multival-

ued basis functions [41] or through the vector potential method [45, 46]. These

calculations do not take an explicit account of the effects of the upper adiabatic

PES on the dynamics.
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All the studies mentioned above appear to consider (which will be obvious to-

wards the end of this presentation) only a part of the explicit coupling of the two

surfaces into the dynamical treatment. Mahapatra et al. [34, 39, 50], for the first

time, studied the effects of explicit surface coupling on the spectroscopy and re-

active dynamics of this system by devising a diabatic vibronic Hamiltonian based

on the adiabatic electronic energies of the DMBE PES of Varandas and cowork-

ers [12]. It was found in their studies that the surface coupling has only minor

impact on the spectroscopy of the lower adiabatic sheet whereas, this coupling

dramatically changes the spectrum of the upper adiabatic sheet. The reactive

dynamics (the reaction probabilities for the lowest value of the total angular mo-

mentum) on the lower sheet was also found to be quite insensitive to the surface

coupling [34]. Jayachander Rao et al. [51] extended the previous work [34] to

calculate initial state-selected ICSs and thermal rate constants of H + H2 (HD)

reaction within the coupled state (CS) approximation [52,53]. These results also

revealed the minor surface coupling effects in the reaction probabilities. In a

subsequent study, Jayachander Rao et al. reported the effects of reagent rotation

and vibration [54] and Coriolis coupling (CC) terms [55] on the nonadiabatic

quantum WP dynamics of H + H2 reaction. The effects of NAC on the isotopic

variants of the hydrogen exchange reaction were also performed by Ghosal et

al. [56]. Recently, Althorpe and coworkers [35] have reported the effects of the

surface coupling on the state-to-state reaction probabilities and cross sections for

the H + H2 reaction at total energies up to 4.5 eV using the diabatic theoretical

model of Mahapatra et al. [34]. They calculated state-to-state reaction proba-

bilities with the inclusion of (1) BH corrections, (2) GP and BH corrections to

the BO adiabatic Hamiltonian and (3) by considering the complete two-states

coupled Hamiltonian. Their findings revealed that state-to-state reaction proba-
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bilities obtained including complete surface coupling has very minor differences

with that obtained on lower adiabatic sheet with the inclusion of both GP and

BH corrections. But they observed that the state-to-state reaction probabilities

calculated on the lower surface without the inclusion of GP change (where BH

correction is included) significantly differ from that obtained with including all

of the surface coupling effects. These differences are much significant at energies

greater than 3.5 eV and also exist in the state-to-state DCSs at these high en-

ergies. However, the differences cancel out in the observed ICSs. More recently,

Balint-Kurti and coworkers [36] have studied effects of surface coupling on the

the state-to-state probabilities, ICSs and DCSs up to a total energy of 3.0 eV

for product vibrational levels v=0, 1, 2, 3. Their calculations also revealed that

the nonadiabatic adiabatic effects are insignificant in the observed state-to-state

ICSs and DCSs in the considered energy range.

Varandas and coworkers [57], examined the effects of NAC on the transition

state resonances of the H + H2 reaction and H + D2 reaction dynamics [58]

using two coupled diabatic surfaces. They also studied the GP effects on these

resonances [49]. Both these studies revealed insignificant effects due to NAC or

GP on the transition state resonances which occur at the saddle point region

of the PESs occurring at the collinear configurations of the nuclei. In contrary,

Lepetit et al. [48] and Varandas and coworkers [49] have reported considerable

GP effects on the bound vibrational energy levels of the upper adiabatic sheet.

Inspired by these studies, Mahapatra et al. [50] investigated the effects of the

explicit surface coupling on the bound vibrational levels supported by the upper

adiabatic sheet. Their calculations revealed that the coupling of the upper sheet

with the repulsive lower sheet leads to an extremely fast non-radiative decay of
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the vibrational levels of the upper sheet, occurring within 3-6 fs only [39]. The

surface coupling effects in the degenerate 3pE ′ and 3dE ′ Rydberg states of H3

have also been studied [59]. The effects were found to be far minor compared to

those for the upper adiabatic sheet of the 2pE ′ ground electronic manifold of this

system.

The aim of the work presented in chapter 3 is to study the effects of the NAC

on the initial state-selected and energy resolved reaction probabilities, ICSs and

thermal rate constants for the H + D2 (HD) and D + H2 (HD) reactions within

the CS approximation [52, 53]. The reaction probabilities are reported up to the

total energy of ∼ 4.7 eV both with and without the surface coupling. All partial

wave contributions up to the total angular momentum J = 50 are considered

to calculate the converged ICSs. The thermal rate constants calculated from

the ICSs are compared with the available theoretical and experimental results

[60–67]. In chapter 4, the nuclear dynamics of D3 when prepared in the immediate

neighborhood of the seam of CIs of its degenerate electronic ground state is

critically examined. The theoretical framework is designed to mimic the optical

emission experiment of the Rydberg excited D3 [37, 38]. Keeping this reference

experimental emission spectrum in mind the specific details of various terms which

constitute the complete NAC of the two surfaces are obtained. To this effort,

the important GP and diagonal BH corrections are examined and compared the

results with those obtained from complete coupling of the two JT-split surfaces.

1.2.2 Photodetachment spectrum of ClH−
2 and ClD−

2

As described in section 1.1.2, the approaching Cl atom forms a van der Waals

(vdW) complex with H2 at a Cl...H2 distance of ∼ 5.78 a◦ where the PES supports
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a well of depth of ∼ 0.022 eV [17]. The existence of such a well in the reagent

asymptote is probed through experimental electron detachment spectroscopy of

ClH−
2 [68, 69]. It emerged from the latter study that the equilibrium geometry

of ClH−
2 in its electronic ground state occurs at ∼ 6.03 a◦ [70] and is close

to the vdW minimum on the electronic states of the neutral species. Using

a conventional negative ion time-of-flight photoelectron spectrometer of limited

energy resolution of ∼ 8 to 10 meV Neumark and coworkers, for the first time,

recorded the spectrum which revealed two dominant peaks separated in energy by

∼ 0.11 eV [68]. These two peaks are assigned to transitions of the Cl−...H2 anion

complex to the ground and excited SO states of the neutral Cl...H2 complex.

A few years latter, Mahapatra and co-workers [71] calculated the photodetach-

ment spectrum of ClH−
2 using a time-dependent WP method. They reported the

spectrum with and without the inclusion of the electronic and SO couplings. In

this study the initial wavefunction of ClH−
2 was approximated to a Gaussian WP

and also calculated by a relaxation method using the ClH−
2 PES of Ref. [72]. The

CW PESs [18] was used to propagate this WP in the electronic states of neutral

ClH2 . The reduced 3 × 3 coupled states Hamiltonian developed by Alexan-

der and coworkers [73] was used in this study. While the broad band spectral

envelope obtained in this study revealed good agreement with the experimen-

tal recording of Neumark and coworkers [68], the vibronic structures obtained at

finer resolution at extended energies were not observed in the experiment! Nearly

at the same time, Alexander and coworkers [74] reported the photodetachment

spectra of ClH−
2 and ClD−

2 using time-dependent WP method but within the BO

approximation [2]. The uncoupled state calculations of Mahapatra and cowork-

ers [71] differs with this study only in the choice of the initial WP. Alexander
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and coworkers [74] employed an adiabatic bender model [72] to obtain the ini-

tial WP. Even though both were successful in reproducing the low resolution (∼
10 meV) photoelectron spectrum of Neumark and coworkers [68], the high res-

olution spectra ( ∼ 1 meV) obtained by Mahapatra and coworkers [71] differ

considerably with that of Alexander and coworkers [74]. The results of Ref. [71]

contain numerous resolved peaks which extend even to high energies (> 0.5 eV).

At that time of study, high resolution experimental spectra were not available to

check the correctness of these results. Later, Mahapatra and coworkers extended

the work to study the electronic SO coupling effects on the resonances supported

by the vdW well in the entrance valley of coupled electronic manifold of neutral

ClH2 [75] . Also the photodetachment spectrum of ClD−
2 [75], the dissociation

dynamics of Cl...HD vdW complex [76] and Cl + H2 reactive dynamics [77] were

studied by them.

Subsequent to these studies highly resolved (∼ 1 meV resolution) photoelectron

spectra of ClH−
2 and ClD−

2 were recorded by slow electron velocity-map imag-

ing (SEVI) technique by Neumark and coworkers [69]. Unfortunately, the high

resolution photoelectron spectrum of ClH−
2 obtained in the previous work [71]

differs significantly with this recent experiment especially in the high energy re-

gion. More recent coupled states theoretical calculations using time-dependent

WP formalism [78–80] reveal that the experimental and theoretical results agree

well even at a resolution of 1 meV. It is therefore clear that the vibronic structures

obtained in the high energy region (above 0.5 eV) in the previous work presum-

ably arising from a contribution of the dissociative Cl...H2 continuum states. The

mentioned discrepancies motivated us to revisit the previous theoretical study in

order to understand their origin and to make efforts to eliminate them.
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In chapter 5 aims at understanding the possible reasons for the above men-

tioned discrepancies by revisiting the previous theoretical study. To this effort,

the adiabatic bender model of Alexander and coworkers [72] is used to prepare

the initial WP pertinent to the electronic and ro-vibrational ground state of the

ClH−
2 anion and its deuterated analogue. With this modification, present uncou-

pled state results agree well with the high resolution experimental spectra [69,78]

as well as the theoretical results of Alexander and coworkers [74]. For coupled

states calculations, the six-states diabatic Hamiltonian [18] is employed instead of

three states Hamiltonian in Ref. [73] and introduced diabatic-to-adiabatic trans-

formation during the propagation of the WP. With these modifications the pho-

todetachment spectra of ClH−
2 and ClD−

2 are calculated and compared with the

experimental SEVI [69,78] and available theoretical results [78,79]. The electron

population dynamics is examined in addition, to assess the impact of electronic

and SO coupling on the vibronic structure of the photodetachment bands.

1.2.3 Quantum reaction dynamics of C + OH reaction

The C + OH reaction belongs to a class in which both the reactants are neutral

free radicals. Study of such type of reactions is quite challenging for both experi-

mentalists and theoreticians. From an experimental point of view, preparation of

free radicals and investigation of collision dynamics with them is quite difficult.

As a result, till date, there is no experimental report on rate constants, cross

sections or product distributions for the C + OH reaction. Theoretically, the

calculation of global ab initio PESs and investigation of the nuclear dynamics on

these surfaces is quite interesting due to the open-shell nature of both the reac-

tants. The latter results in complex topological features involving multiple deep

wells and barriers on the corresponding PESs. Consequently, accurate quantum
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mechanical study of nuclear dynamics on such PESs becomes computationally

expensive, in particular, for non zero total angular momentum (J > 0).

The C(3P) + OH (X2Π) → CO(X1Σ+) + H (2S) [say R1] and C(3P) + OH

(X2Π) → CO(a3Π) + H (2S) [say R2] reactions take place on the ground X2A′

state and excited 2A′′, 4A′′ electronic states, respectively [24, 25]. Zanchet et al.

have obtained the global ab initio surfaces for all these three electronic states

(X2A′, 2A′′ and 4A′′) [24,25] by employing a multireference internally contracted

singles and doubles configuration interaction (MR-SDCI) method [27]. Their

study revealed that, the reaction R1 on the ground X2A′ electronic state is bar-

rierless and exoergic by ∼ 6.49 eV. This state also supports two deep wells of

depth (relative to reactant asymptote) ∼ 5.5 eV and ∼ 7.3 eV, respectively, cor-

responding to the COH and HCO collision complexes. The dynamics of R1 on

this electronic ground surface was investigated by Honvault and co-workers by

quasi-classical trajectory (QCT) (QCT) [81–84] and TDQM methods [85,86]. In

the latter study, these authors have used a J-shifting approximation [87] to ob-

tain the reaction probabilities for non zero total angular momentum (J > 0) to

calculate state-to-state ICSs and DCSs and rate constants. The results obtained

by these authors suggests that the reaction is dominated by a direct mechanism

via a very short-lived intermediate complex. The total reaction probabilities are

close to ∼ 1 in the whole range of collision energies considered and do not show

any resonance structures in spite of presence of two deep wells on the PES. These

findings are attributed to the high exoergicity of this reaction. The ICSs mono-

tonically decreases from a maximum value of ∼ 160 Å2 in the observed range of

collision energy (0-1 eV). These authors have included the electronic degeneracy

factor for calculating the initial state specific thermal rate constants. The latter
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are observed to increase initially, reach a maximum value at ∼ 7 K, and then de-

crease slowly and reach almost a constant value of ∼ 1.0×10−10 cm3 s−1 molecule

−1. These authors have also found that rotational or vibrational excitation of the

reagent diatom, OH, does not show much effect on the observed cross sections

and rate constants. Generally, they found good agreements between the results

obtained by the QCT and TDQM methods.

Subsequently, Honvault and co-workers [88, 89] reported the total and state-

to-state reaction probabilities, ICSs, DCSs and state specific thermal rate con-

stants for the reaction R2 on the 4A′′ excited PES. To this effort , these authors

have used different methods viz, QCT, time-independent quantum mechanical

(TIQM), TDQM and statistical quantum mechanical. Their studies revealed

that the reaction, R2, proceeds via long-lived intermediate complex supported by

the two wells (COH: ∼ -1.85 eV relative to the reagent asymptote; HCO: ∼ -2.25

eV relative to the reagent asymptote) present on this surface (4A′′). The less

exoergicity of the reaction R2 (0.41 eV) when compared with the R1 (6.5 eV) ex-

plains the reasons for the longevity of the collision intermediate in the former case.

Consequently, sharp resonance structures are observed in total and state-to-state

reaction probabilities [88,89]. The cross sections and rate constants obtained for

this reaction show a similar behavior as observed for the reaction R1 [88, 89].

But the authors have found that the agreement between the results obtained by

different methods for R2 is not as good as observed for the R1 reaction [88,89].

Honvault and co-workers [90] have also calculated the total and state-to-state

reaction probabilities and rate constants for R2 reaction on the excited 2A′′ PES

by QCT and TIQM methods. Though the exoergicity of the reaction R2 is same

on both 4A′′ and 2A′′ surfaces, the latter supports more deeper wells (COH: ∼
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-4.6 eV relative to the reagent asymptote; HCO: ∼ -6.2 eV relative to the reagent

asymptote) and thus further complicates the dynamics. The total and state-

to-state reaction probabilities show sharp resonances for the same reasons as

explained above. As TIQM calculations are computationally very expensive for

this reaction, these authors have used a J-shifting approximation [87] to obtain

the reaction probabilities for J > 0 and calculated the rate constants. The latter

exhibit similar behavior as observed for the reaction R1 on the ground state

and R2 on the 4A′′ excited state. Here also the agreement between the results

obtained using the TIQM and QCT methods is not as good as those observed for

the ground state reaction [90].

The aim of the work presented in chapter 6 is to examine the initial state

selected reaction probabilities, ICSs and thermal rate constants for the reaction

R2 on the excited 2A′′ electronic state employing a time-dependent WP method.

The latter is computationally less expensive than the TIQM and hence reaction

probabilities are also calculated for non-zero total angular momentum using the

centrifugal sudden (CS) approximation [52, 53]. Within the CS approximation

[52, 53], all the partial wave contributions for J = 0-95 are calculated to obtain

the converged reaction cross sections and rate constants. The effect of rotational

and vibrational excitations of the reagent OH on the final dynamical observables

is also examined. Finally, the results obtained in this work are compared with

the TIQM and QCT results of Honvault and coworkers [90].

1.3 Overview of the thesis

In chapter 2, the theoretical methods employed to study the nuclear dynamics on

adiabatic PES and on coupled (nonadiabatic) electronic states of molecular sys-
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tems are presented. In a coupled states situation a diabatic representation of the

electronic basis is employed in the WP propagation in contrast to the adiabatic

electronic basis used in the single surface propagation. A brief discussion on the

adiabatic and diabatic representations is presented followed by a general scheme

to solve the time-dependent Schrödinger equation (TDSE). Finally, the analysis

of the time evolved wavefunction in order to extract the dynamical observables

is presented.

In chapter 3, the NAC effects on the H + D2 (HD) and D + H2 (HD) reactions

is presented and discussed. Initial state-selected total reaction cross sections and

Boltzmann averaged thermal rate constants are calculated with the aid of a time-

dependent WP approach employing the DMBE potential energy surfaces of the

system. The theoretical results are compared with the experimental and other

theoretical data whenever available.

In chapter 4, the nuclear motion of fully deuterated triatomic hydrogen, D3

in the vicinity of CIs of the degenerate electronic ground state is presented and

discussed. Vibronic energy level spectra and the eigenfunctions are examined

by including, for example, (1) GP correction, (2) diagonal BH correction, (3)

both GP and BH corrections to the BO adiabatic Hamiltonian and finally by

considering the NAC between the two electronic surfaces explicitly. The impact

of the GP and BH corrections and derivative (nonadiabatic) coupling terms on

the eigenvalue spectrum and eigenvectors is examined in detail

In chapter 5, electron detachment spectroscopy of ClH−
2 and ClD−

2 is pre-

sented and discussed. Franck-Condon (FC) transition from the ground vibrational

level of the electronic ground state of the anion to the coupled electronic manifold

of the neutral species is investigated by a time-dependent WP approach. Rich

vibronic structures due to Cl...H2 continuum states at higher energies appeared
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in the photodetachment band in the previous study [71] are eliminated by im-

proving the representation of the anionic wavefunction and the WP propagation

algorithm. The theoretical findings are compared with the available experimental

and theoretical results.

In chapter 6, the reaction dynamics of the C(3P) + OH(X2Π) → CO(a3Π)

+ H (2S) reaction on the first excited PES (12A′′) is presented and discussed.

Initial state-selected total reaction probabilities, ICSs and thermal rate constants

are obtained using time-dependent WP method. The effect of rotational and

vibrational excitation on the reaction attributes is also examined. Finally the

results obtained here are compared with the same obtained by Honvault and

coworkers using TIQM method and QCT method.
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Chapter 2

Theoretical and computational

methods

2.1 Introduction

The theoretical methods employed to study the nuclear dynamics on adiabatic

PES and on coupled (nonadiabatic) electronic states of molecular systems are

discussed in this chapter. To solve the dynamical equation of motion numer-

ically, discrete grids using suitable co-ordinates (Jacobi or Hyperspherical) are

constructed in the truncated Hilbert space. Depending on the nature of the

problem a suitable initial wave packet (WP) is prepared on the grid, evolved in

space and time and finally analysed to extract the dynamical observables. In a

coupled states situation a diabatic representation of the electronic basis is em-

ployed in the WP propagation in contrast to the adiabatic electronic basis used

in the single surface propagation. A brief discussion on the adiabatic and dia-

batic representations follows next and then a general scheme to solve the time-

dependent Schrödinger equation (TDSE) is presented. Finally, the analysis of

39
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the time evolved wavefunction in order to extract the dynamical observables is

presented.

2.2 Adiabatic and diabatic electronic represen-

tations

For a coupled states situation, the nuclear Schrödinger equation in an adiabatic

(in the sense that the states are coupled through the nuclear kinetic energy op-

erator) electronic representation can be written in general form as [1]

{HBO − E}χn(Q) =
∑
m

Λnmχm(Q), (2.1)

where, HBO = Tnuc(Q) + V (Q), refers to the Born-Oppenheimer (BO) Hamil-

tonian (Tnuc and V denote the nuclear kinetic energy and electronic potential

energy operator, respectively) for the isolated (uncoupled) electronic state. The

quantity E is the energy eigenvalue and χ represents the nuclear wavefunction

depending on the set of nuclear coordinates {Q}. The nonadiabatic coupling

(NAC) between states is defined by the matrix Λnm, which is given by [2, 3],

Λnm = −
∑

i

~2

Mi

A(i)
nm

∂

∂Qi

−
∑

i

~2

Mi

B(i)
nm, (2.2)

where Mi denotes the nuclear masses and A
(i)
nm = 〈φn(q;Q)|∇i|φm(q;Q)〉,

B
(i)
nm = 〈φn(q;Q)|∇2

i |φm(q;Q)〉. In the above the ∇i operator refers to the nu-

clear coordinates and |φ(q;Q)〉 represents the adiabatic electronic wavefunctions

depending on the set of electronic coordinates {q} and also parametrically on the
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set of nuclear coordinates {Q}. The full molecular wavefunction is expanded as

Ψ(q;Q) =
∑

n

χn(Q)Φn(q;Q). (2.3)

The derivative coupling elements A
(i)
nm of the NAC matrix exhibit singularity at

the crossing of the electronic states n and m [2]. One therefore resorts to a com-

plementary diabatic electronic representation [4,5] (to treat the full nonadiabatic

problem) requiring removal of the singular elements of the derivative coupling

matrix for all nuclear coordinates. In this new representation the states are cou-

pled through the electronic part of the Hamiltonian and the nuclear Schrödinger

equation assumes the general form [6,7]

{H′BO − E}χn(Q) =
∑

(n6=m)

Unm(Q)χm(Q). (2.4)

The operatorH′BO in the above retains the diagonal nuclear kinetic energy TN(Q)

as in Eq.2.1 but the adiabatic potential V(Q) is replaced by the diabatic electronic

potential Unn(Q) and Umm(Q). The electronic coupling elements are represented

by Unm(Q), defined by

Unm(Q) =

∫
drψ∗n(q,Q)[Te(q) + V (q,Q)]ψm(q,Q), (2.5)

where ψ represents the diabatic electronic wavefunction, can be obtained, via a

unitary transformation of the adiabatic ones as

ψ(q;Q) = S Φ(q;Q). (2.6)
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The quantity Te(q) in Eq.2.5 represents the electronic kinetic energy operator and

V (q;Q) is the adiabatic potential energy of the system.

2.3 A general scheme to solve the TDSE

In the present thesis the nuclear motion in a molecular system is investigated by

numerically solving the TDSE. For a general explicitly time-independent Hamil-

tonian operator Ĥ, the solution reads,

|Ψ(t)〉 = exp

[
−iĤt
~

]
|Ψ(t = 0)〉. (2.7)

For the numerical solution of the above equation a discrete grid in a truncated

coordinate space is constructed and the action of various operators (position,

momentum etc.) on the wavefunction |Ψ(t)〉 is evaluated on this grid. Each node

on this discrete grid is characterized by a finite value of interaction potential. The

coordinate space, (x), is divided into a set of N discrete points with a spacing of

∆x between two successive points. The eigenvalue of the position operator x̂ at

each grid point is given by [8]:

xi = (i− 1)∆x, i = 1, ..., N (2.8)

The corresponding eigenvectors |xi〉, are given by the orthogonality and com-

pleteness relations and the wavefunctions for an arbitrary physical state can be

represented as φ(xi) = 〈xi|φ〉. Wavefunctions are normalized on the grid and

the normalization integral becomes
∫ +∞
−∞ φ?(x)φ(x)dx = 1. The maximum length

of the grid (L = N∆x) along the spatial coordinate x, determines the spacing
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between two successive points in the momentum space (k):

∆k =
2π

N∆x
. (2.9)

In the momentum space, the grid is centered at zero and all other points are

distributed symmetrically on either side of it. If the maximum momentum is

represented by pmax (=~kmax) in the k space, then the total momentum ranges

from −pmax to +pmax.

Once the grid is set up, the nuclear motion on the electronic PESs is monitored

by solving the TDSE:

i~
∂Ψ

∂t
= ĤΨ (2.10)

where, Ĥ (=T̂nuc + V̂ ) defines the Hamiltonian operator of the system. T̂nuc is the

nuclear kinetic energy part of the Hamiltonian and V̂ defines the potential energy

part. For a general A+BC atom-diatom reaction, represented in reactant Jacobi

coordinates (R = distance of atom A from center of mass of reagent BC; r =

BC internuclear distance; γ = angle between ~R and ~r ) described in a body-fixed

(BF) reference frame, the nuclear kinetic energy operator is given by

T̂nuc = − ~2

2µR

∂2

∂R2
− ~2

2µr

∂2

∂r2
− ~

2

2I

[
1

sin γ

∂

∂γ
sin γ

∂

∂γ
− j2

z

sin2γ

]

+
1

2µRR2

[
J2 − 2Jzjz

]− 1

2µRR2
[J+j− + J−j+] . (2.11)

Here J and j, respectively, are the operators for the total angular momentum and

rotational angular momentum of reagent diatom (BC). The raising and lowering

operators, J± and j±, are defined in usual way i.e. J± = Jx±iJy and j± = jx±ijy.
The first two terms in the right hand side of the above equation represent the

radial kinetic energy operators (T̂rad) along R and r , respectively. The third and
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fourth terms represent the rotational kinetic energy operator (T̂ang) for reactant

diatom (AB) and the qasi molecule (ABC), respectively. In Eq. 2.11, the last

term (Tcc) represents the Coriolis coupling (CC) between the various angular

momentum states. The quantity, µR = mA(mB +mC)/(mA +mB +mC), is the

A + BC three-body reduced mass, µr = mBmC/(mB +mC), is the BC reduced

mass where mA, mB and mC are the masses of A, B and C nuclei, respectively.

The quantity, I = (µRµrR
2r2)/(µRR

2 + µrr
2), represents the moment of inertia

of the collisional system.

In order to solve Eq. 2.7 numerically, we need to evaluate the action of the

kinetic (T̂nuc) and potential (V̂ ) energy operators on the Hamiltonian separately.

The operators T̂nuc and V̂ do not commute with each other as T̂nuc is a function

of the momentum (p), where as V̂ is a function of position (x). The operator V̂

being local in the coordinate space, its action on Ψ is only a multiplication of its

magnitude with the value of Ψ at each grid point xi:

V̂ (x)Ψ(xi) = V (xi)Ψ(xi) (2.12)

But the kinetic energy operator ( p̂2

2m
= ~2k2

2µ
) is non local in the coordinate space

and the evaluation of the T̂radΨ can not be done by a simple multiplication. This

operation can be done through a suitable collocation technique [9,10] by utilizing

the concept of the discrete Hilbert space.

The basic idea behind the collocation method is to use two different represen-

tations of the function: (i) A grid representation; where the function is known

by its value at the grid points {xi}, e.g. V̂ , and (ii) A basis set representation

{gn(x)}; where the continuous functions are approximated at each point by a

discrete sum in terms of a finite basis set. The basis functions {gn(x)} at various
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grid points xi are connected through appropriate expansion coefficients (an) at

the grid points:

Ψ(xi) ≡ Ψ(xi) =
N−1∑
n=0

angn(xi) (2.13)

where N is the size of the basis set. This method is adapted for the evaluation

of a non local operator, e.g. T̂rad such that

T̂radΨ(x) =
~2k2

2µ
Ψ(k) =

~2k2

2µ
ak, (2.14)

This technique is also known as a pseudospectral approximation.

A special case of the collocation technique is the Fourier method [9–12]. With

the use of Fourier transform one can switch back and forth between the two re-

ciprocal Hilbert spaces (e.g. position and momentum or the time and frequency).

As a result, Fourier transform is generally used to evaluate the action of T̂rad on

Ψ.

In this method, the wavefunction Ψ(x) is expanded in terms of the orthogonal

plane wave basis functions:

Ψ(x) ≈
N/2∑

k=−(N/2−1)

ak exp [i2πkx/L] , (2.15)

where, ak is becomes the Fourier expansion coefficient and it represents the am-

plitude of the wavefunction in momentum space. Using the orthogonality relation

between the Fourier functions, one can obtain these coefficients by inverting the

relation with a set of equidistant sampling points {xi}

ak =
1

N

N∑
i=1

Ψ(xi) exp [−i2πkxi/L] . (2.16)
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These are discrete Fourier transforms.

The use of fast Fourier transform (FFT) method for computing the action of

the kinetic energy part of the Hamiltonian on the wavefunction was first intro-

duced by Feit et al. [13] and Kosloff and Kosloff [11] In this method, the action of

the kinetic energy operator on Ψ(x) involves transforming the coordinate space

wavefunction to momentum space by forward FFT (FT), multiplying by the ki-

netic energy T (k), and then transforming it back to the coordinate space by an

inverse FFT (FT−1). In general, the continuous FFT can be represented as:

FT [Ψ(x)] = Ψ(k) =
1√
2π

∫ ∞

−∞
Ψ(x)e−ikxdx. (2.17)

FT−1[Ψ(k)] = Ψ(x) =
1√
2π

∫ ∞

−∞
Ψ(k)eikxdk (2.18)

This method requires the wavefunction to satisfy periodic boundary conditions

and for band-limited functions this transformation is exact [11]. Functions under

these conditions remain localized in the phase space box where the amplitude

of the function becomes zero at the boundary of the box. Otherwise, as time

progresses the WP gradually reaches the grid edges and undergoes spurious re-

flections resulting interference between the outgoing and reflected components.

But wavefunctions (except the semilocalized wavefunctions) can not be confined

simultaneously both in coordinate and momentum spaces. This boundary condi-

tions for the WPs can be met by multiplying the later with a damping function

like,

f(Xi) = sin

[
π

2

(Xmask + ∆Xmask −Xi)

∆Xmask

]
, Xi ≥ Xmask. (2.19)

In this equation, Xmask is the point at which the damping function is initiated and
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∆Xmask(= Xmax−Xmask) is the width of X over which the function decays from

1 to 0, with Xmax being the maximum value of X in that direction. They provide

a convenient way to damp the WP components to reduce their amplitude to zero

at the grid boundaries and thereby prevent the unphysical reflections. One more

attractive feature of the FFT method [14] is that it scales as O(N logN) with

the number of grid points N . Thus this method becomes especially suitable for

large-scale problems as the computational effort increases slowly with the grid

size.

But this FFT scheme is numerically inefficient to calculate the rotational part

of the kinetic energy operator. This is because the rotational kinetic energy

operator contains a (1/sin2 γ) term which leads to singularity in the discrete

angle space for γ = 0 and π. One can deal with this situation by using a discrete

variable representation (DVR) and finite basis representation (FBR). The DVR-

FBR transformation is an example of another orthogonal collocation method

which uses specific basis functions and points on the grid [15, 16]. This method

uses an orthogonal transformation between the DVR and the FBR and vice versa.

The DVR is a basis consists of N discrete points, whereas the FBR is a basis

consisting of N square-integrable functions appropriate to the DVR coordinates.

In the DVR, the continuous eigenvalues of the coordinate operator is discretized

[17] by diagonalizing the relevant Hamiltonian matrix. The matrix elements

are determined by orthogonal transformation relation between the points and

the basis functions. Both the basis are designed to evaluate the action of the

operators in their respective local representations.

It has been shown by Light and coworkers [18–20], in the framework of DVR

representation, the collocation method is much more efficient when the two rep-

resentations are related through some quadrature scheme. Harris et al. [15],



2.3. A general scheme to solve the TDSE 48

Dickinson and Certain [16] proposed the use of orthogonal polynomial basis func-

tions (e.g. the Hermite polynomials), corresponding to the Gaussian quadrature

to carry out an orthogonal transformation between the Nγ quadrature points and

Nγ basis functions. For our purpose the γk grid points (along the Jacobi angle)

have been taken as the nodes of a Gauss-Legendre quadrature (with ωk as asso-

ciated weight factor), such that the rotational kinetic energy operator is diagonal

in the associated Legendre polynomial basis set {PΩ
l (cos γ)}. If the wavefunction

ψΩ
J (γ) is expanded in this basis, then operator Tang (cf. third and fourth terms

of Eq. 2.11) can be evaluated as [21],

Tangψ
Ω
J (γk) =

Nγ∑

l=1

Llk

(
~2

2I

)
ψΩ

J (γl) where (2.20)

L = U .Λ.U t. (2.21)

Here Λ is the diagonal matrix with elements Λl,l = l(l + 1) + J(J + 1) − 2Ω2

and U is the unitary transformation matrix with elements UΩ
k,l =

√
ωkP̃

Ω
l (cos γk).

Similar procedure can be employed for evaluating CC terms (Tcc in Eq. 2.11) as,

Tccψ
Ω
J (γk) =

Nγ∑

l=1

LΩ−1
lk

(
~2

2µRR2

)
ψΩ−1

J (γl)

+

Nγ∑

l=1

LΩ+1
lk

(
~2

2µRR2

)
ψΩ+1

J (γl) where (2.22)

LΩ−1 = UΩΛ− [
UΩ−1

]t
and (2.23)

LΩ+1 = UΩΛ+
[
UΩ+1

]t
. (2.24)
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Here elements of the diagonal matrices, Λ− and Λ+ are given by

Λ−l,l =
√

[J(J + 1)− Ω(Ω− 1)] [l(l + 1)− Ω(Ω− 1)], and (2.25)

Λ+
l,l =

√
[J(J + 1)− Ω(Ω + 1)] [l(l + 1)− Ω(Ω + 1)]. (2.26)

For evaluation of Tccψ
Ω
J (γk) (cf. Eq. 2.22), the value of wavefunctions correspond-

ing to Ω−1 [ψΩ−1
J (γ)] and Ω+1 [ψΩ+1

J (γ)] are needed. Hence this evaluation can

be done efficiently using a parallel computer code. Goldfield and co-workers [22]

have advocated such an approach in which each processor does calculations cor-

responding to a particular set of (J,Ω) and communicates with its two immedi-

ate neighboring processors to get value of WP corresponding to (J,Ω − 1) and

(J,Ω + 1) [23–25].

In summary, all the operations involving in the ĤΨ are represented schemat-

ically in the following.

If Ψ = {Ψijk = Ψ(Ri, rj, γk)} is the grid representation of the wavefunction, and

χ is the corresponding momentum representation, the total Hamiltonian of Eq.

2.11 will be acted on ψ in the following way:

(i) Kinetic energy ∂2/∂R2 term,

Ψ → FFT (R) → {χ(R)} → × [−k(R)
]
→ {χ′′(R)} → FFT−1(R) → Ψ(1).

(ii) Kinetic energy ∂2/∂r2 term,

Ψ → FFT (r) → {χ(r)} → × [−k(r)
]
→ {χ′′(r)} → FFT−1(r) → Ψ(2).
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(iii) Tang term,

Ψ → U (γ) → {χ(γ)} → ×Λ → {χ′′(γ)} → U t(γ) → Ψ(3).

(iv) Potential energy term V (R, r, θ),

Ψ → V̂ → {V (Ri, rj, θk)ψijk} ≡ Ψ(4).

Finally,

ĤΨ = − ~2

2µR

Ψ(1) − ~2

2µr

Ψ(2) − ~2Ψ(3) + Ψ(4)

So far the propagation of the WP along space variables is discussed. The

propagation of the WP in time is considered next. The exponential operator

in the r.h.s. of Eq. 2.7 forms a continuous dynamical group where time t is a

parameter, and is known as the time-evolution operator denoted by Û(t, t0). For

t0 = 0,

Û(t, t0) = e−iĤt/~. (2.27)

Time t is divided into smaller steps of length ∆t and the time-evolution for the

entire range of time is accomplished through:

Û(t) = ΠNt−1
n=0 Û((n+ 1)∆t, n∆t) (2.28)

where, Nt is the total number of time-evolution steps and ∆t = t/Nt. Û(t, t0) is

a linear operator and is unitary:

Û Û † = Û †Û = 1 (2.29)
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The exponential operator can be approximated in various ways. For example,

by the second order differencing (SOD) scheme [26], the split operator scheme [27],

the Chebyshev polynomial scheme [28] and the short iterative Lanczos (SIL)

scheme [29] and more recent real WP scheme [23–25]. Among these, Chebyshev

polynomial scheme, split operator scheme and real WP scheme have been used

to carry out the work presented in the thesis.

2.3.1 Chebyshev polynomial Scheme

Chebyshev polynomials are found to be superior to many other polynomials and

are optimal for a scalar function F (x) bounded in the interval [-1,1]. So, a scalar

function like eax can be expressed in terms of these polynomials in the interval

-1≤ x ≤ 1 as

eax =
∞∑

n=0

(2− δn0)Jn(α)Tn(x), (2.30)

where δn0 is the Kroenecker delta and α = ∆E ∆t/2~. Jn(α) are the modified

Bessel functions of order n. Tn(x) are the Chebyshev polynomials of order n,

calculated using the recursion relation [30]

Tn+1(x) = 2xTn(x)− Tn−1(x) (2.31)

with T0(x) = 1 and T1(x) = x.

The evolution operator is a function of an operator. It can be shown that a

function of an operator can be expressed as a function of a scalar in the complete

basis of the operator. So, the function of the operator can be approximated in the

Chebyshev series, provided the domain of the operator is confined to the interval

[-1,1] in which the Chebyshev polynomials are optimal. In case of a Hamiltonian

which is self-adjoint, the eigenvalues lie on a real axis, and they can be positioned
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from -1 to 1 by renormalizing the Hamiltonian as follows:

Ĥnorm = 2(Ĥ −H)/∆E, (2.32)

where H = (Emax + Emin)/2, and, ∆E = Emax − Emin. In terms of this

renormalized Hamiltonian, Hnorm, the evolution operator can be written as:

e−iĤ∆t/~ = e−iH∆t/~e−iα ˆHnorm . (2.33)

The first term in the above equation is the phase shift due to the shift of the energy

scale. The second term is approximated by the chebyshev series [28,31,32] as

e−iαHnorm =
∞∑

n=0

(2− δn0)Jn(α)Φn(−iĤnorm), (2.34)

where Φn(−iĤnorm) are the complex Chebyshev polynomials of order n satisfying

the recursion relation:

Φn+1 = −2iĤnormΦn + Φn−1, (2.35)

where Φ0 = 1 and Φ1 = -iĤnorm. Therefore, the evolution of Ψ(t) in this scheme

on a discrete grid is given by:

Φ(t+ ∆t) = e−iĤ∆t/~
N∑

n=0

(2− δn0)Jn(α)Φn(−iĤnorm)Φ(t). (2.36)

The number of terms to be used in the above expansion is estimated from the time-

energy phase space volume α. In practice the number of terms used is slightly

larger than this estimate for a good convergence. Since the evolution operator
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is expanded in a series of polynomials in the Chebyshev method by definition

the scheme is not unitary. The deviation from the unitary corresponds to the

remainder term in the expansion. This deviation is used as an accuracy check of

the scheme. The errors are uniformly distributed in the bounded interval [31,33].

Since Bessel functions show exponential convergence for n > α, the error is usually

very small.

2.3.2 Split operator scheme

In this method, the exponential containing the kinetic energy operator of Eq. 2.7

is symmetrically split as,

e−iĤ∆t/~ = e−iT̂∆t/2~e−iV̂ ∆t/~e−iT̂∆t/2~ +O(∆t3). (2.37)

Because of this symmetrical splitting, the error due to the non commutability of

the kinetic (T̂ ) and potential (V̂ ) operators is reduced to an order of ∆t3 [27].

Now the time-evolution of the WP is done by

Ψ(t+ ∆t) = e−iT̂∆t/2~e−iV̂ ∆t/~e−iT̂∆t/2~Ψ(t). (2.38)

Each of the exponential operation in Eq. 2.38 is carried out in a local represen-

tation as explained in section 2.3. Clearly the operator in this scheme (Eq. 2.37)

is linear and unitary and hence norm is strictly conserved. To obtain compara-

tively accurate results, an optimum time step is selected based on the maximum

potential energy on the grid [13,34].

∆t <
π

3∆Vmax

, ∆Vmax = Vmax − Vmin. (2.39)
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It is noted that, similar to Eq. 2.37, the potential-energy operator can be split

symmetrically with kinetic-energy operator sandwiched in between. That makes

the kinetic-referenced split-operator scheme and gives the same results as that of

Eq. 2.37 (called potential-referenced split-operator scheme).

2.3.3 Real wave packet scheme

In this method only the real part of the initial WP (t=0) is evolved but still all

the dynamical observables for a reactive scattering process are obtained [23–25].

If, q(t) and p(t), respectively, represents the real and imaginary parts of the

complex WP to be propagated, then the evolution of the real part is carried out

by a recursive relation

q(t+ ∆t) = A[−Aq(t−∆t) + 2Hnormq(t)]. (2.40)

Here Hnorm is the re normalized Hamiltonian as given in Eq. 2.32 and A is the

absorption function (like sine damping function in Eq. 2.19) which is necessary

to avoid the spurious reflections at the grid boundaries. It is clear from Eq.

2.40, that the propagation step here is independent of ∆t and hence its value is

considered to be one unit (∼ 0.0241 fs if all equations are in atomic units). For

the propagation to start, the values of real wavefunction at times t= 0 [q(t−∆t)]

and t = 1 unit [q(t)] in the recursive relation Eq. 2.40 are to be evaluated first.

The former is just the real part of the initial wavefunction [q(t = 0)] and the

latter is obtained by the relation

q(t) = Hnormq(t = 0)−
√

1−H2
norm p(t = 0). (2.41)



2.3. A general scheme to solve the TDSE 55

In the Eq. 2.41, the square root of the operator,
√

1−H2
norm is evaluated by

expanding it in terms of Chebyshev polynomials as

√
1−H2

norm =
∞∑

n=0

βnTn(Hnorm). (2.42)

Here, Tn(Hnorm) are the Chebyshev polynomials of order n (cf. Eq. 2.31) and

βn are the expansion coefficients. Using the orthonormal relation of Chebyshev

polynomials, it can easily be shown that only the even terms in the expansion

Eq. 2.42 survive with coefficients β2n = 2
π
{ −2

(2n)2−1
} and β0 = 2

π
.

2.3.4 Coupled sate propagation

In a coupled states propagation, a diabatic representation of the electronic basis

is employed and the solution for TDSE ( cf. Eq. 2.10) is now expressed as,

|Ψdia(t)〉 = exp

[−iHdiat

~

]
|Ψdia(t = 0)〉, where (2.43)

|Ψdia(t = 0)〉 =




|Ψdia
1 (t = 0)〉

|Ψdia
2 (t = 0)〉

...

|Ψdia
n (t = 0)〉




(2.44)

Here |Ψdia
i (t = 0)〉 is the component WP corresponding to the ith diabatic elec-

tronic state of the coupled electronic manifold. In Eq. 2.43 Hdia is the Hamilto-
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nian matrix in diabatic electronic representation and is expanded as

Hdia = TnucIn + U dia, where (2.45)

U dia =




u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n

...
...

. . .
...

un,1 un,2 · · · un,n



. (2.46)

Here Tnuc is the nuclear Hamiltonian (cf. Eq. 2.11 ) and n is the number of

coupled diabatic electronic states of the system under consideration. As discussed

in section 2.2, the nuclear Hamiltonian in a diabatic representation is diagonal

(represented by In in Eq. 2.45) and the coupling between the surfaces is caused

by the off-diagonal elements of the electronic part of the Hamiltonian U dia. As

the electronic potential matrix is nondiagonal in this representation, the split

operator scheme for the coupled state situation is modified as

Ψdia(t+ ∆t) = e

h−iHdia∆t

~

i
Ψdia(t)

= e

h−iUdia∆t

2~

i
e[
−iTnuIn∆t

~ ]e

h−iUdia∆t

2~

i
Ψdia(t)

= e

»
−iSV adiaS†∆t

2~

–

e[
−iTnuIn∆t

~ ]e

»
−iSV adiaS†∆t

2~

–

Ψdia(t)

= Se

h−iVadia∆t

2~

i
S†e[

−iTnuIn∆t
~ ]Se

h−iVadia∆t

2~

i
S†Ψdia(t) (2.47)

In the Eq. 2.47, Vadia is the diagonal adiabatic potential energy matrix and it is

obtained by diagonalizing U dia i.e Vadia = S†U diaS. This S matrix is referred

as diabatic to adiabatic transformation matrix and is useful in switching between

adiabatic and diabatic electronic representations. It is noted that the coupled

state propagation in Chebyshev scheme follows from the above discussion in a
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straight forward manner and hence not discussed here.

2.4 Preparation of the initial wave packet

In a reactive scattering study the initial wavefunction is prepared in the asymp-

totic reagent channel (A...∞....BC) where the interaction potential almost van-

ishes. In this situation the initial wavefunction pertinent to the reagent asymptote

is well expressed in reagent Jacobi coordinates (R, r, γ as described in section 2.3)

as,

|ΨJ
Ω(R, r, γ, t = 0)〉 =

√
ωF (R)φvj(r)P̃

Ω
j (cos γ). (2.48)

The quantity Ω is the quantum number for the projection of j ( and also J)

on the BF z axis. In Eq. 2.48, F (R) is the translational wavefunction that

describes motion along R, φvj(r) is the ro-vibrational wavefunction that describes

reagent diatom BC in its jth rotational and vth vibrational state and P̃Ω
j (cos γ) is

associated Legendre polynomial. A minimum uncertainty Gaussian wave packet

(GWP) is chosen for F (R):

F (R)Gaussian =

(
1

2πδ2

) 1
4

exp

[
−(R−R0)

2

4δ2
− ik0(R−R0)

]
. (2.49)

The quantity δ is the width parameter of the GWP, and R0 and k0 correspond to

the location of its maximum in the coordinate and momentum space, respectively.

In recent years, Balint-Kurti and coworkers [35] advocated the use of sinc WPs

for F (R) and used the same in their famous real WP code. The translational
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wavefunction F (R) in terms of sinc functions can be expressed as,

F (R)sinc =
1√
απ

sin(α(R−R0))

R−R0

e−ik0(R−R0)e−βs(R−R0)2 . (2.50)

Here the parameters α and βs, respectively, gives the range of momentum (or

energy) distribution and smoothness of the wavefunction in momentum space.

The functions Φvj(r) (cf. Eq. 2.48) along with P̃Ω
j (cos γ) represents the ro-

vibrational eigenfunction corresponding to a (v, j) state of the reagent diatom

(BC). The function Φvj(r) are obtained by solving the eigenvalue equation of the

free BC (reagent diatom):

[
− ~

2

2µr

d2

dr2
+ V (r) +

j(j + 1)~2

2µrr2

]
Φvj(r) = εvjΦvj(r). (2.51)

Here µr is the reduced mass, εvj the energy eigenvalue of the reagent diatom BC.

The sine-DVR approach of Colbert and Miller [36] is utilized here to solve the

above eigenvalue equation. The L2-normalized associated Legendre polynomials

(cf. Eq. 2.48) are given by

P̃Ω
j (cos γ) =

√
2j + 1

2

(j − Ω)!

(j + Ω)!
PΩ

j (cos γ) (2.52)

which are the eigenfunctions of the ĵ2 operator.

For calculation of state-to-state probabilities or cross sections, the WP must

be transformed from reagent (A + BC) to product (AB + C, or AC + B) Ja-

cobi coordinates. In real WP method [23–25], the initial WP is prepared in the

reagent Jacobi coordinates (R, r, γ described in section 2.3) and is immediately
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transformed to the product Jacobi coordinates (Rp = distance between product

atom C (B) to the centre of mass of the product diatom AB (AC); rp = internu-

clear distance of the product diatom AB (AC); γp = angle between ~Rp and ~rp).

This transformation is done by

|ΨJ
Ω′(Rp, rp, γp, t = 0)〉 = |ΨJ

Ω(R, r, γ, t = 0)〉Rprp

Rr
DJ

ΩΩ′(0, β, 0), (2.53)

where DJ
ΩΩ′(0, β, 0) is a reduced Wigner rotation matrix [37] and β is the angle

between ~R and ~Rp.

2.5 Final analysis

The calculation of initial state-selected total reaction probabilities ( i.e. summed

over all open v′, j′ levels of the product diatom at given energy), cross sections

and rate constants is done by computing the energy resolved flux of the WP

across a dividing line in the product channel. This is referenced as flux operator

approach initially developed by Neuhauser and coworkers [38]. This approach

permits the entire calculations to be done using reagent Jacobi coordinates.

2.5.1 Flux operator

The flux operator F̂ is most generally defined in terms of a dividing surface Θ,

which is a function of a suitable coordinate (r in this case) that separates the

products from the reactants [39]

F̂ =
i

~
[
Hdia,Θ

]
. (2.54)
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In the present case the obvious choice for Θ is given by Θ = h(r− rd), where h is

the Heaviside step function which equals to unity for positive argument and zero

otherwise. rd is the dividing surface which is to be chosen far out in the product

channel to ensure the asymptotic motion for all r ≥ rd. Since Θ depends only

on coordinates it commutes with the electronic part of the Hamiltonian and Eq.

(2.54) becomes

F̂ =
i

~
[Tnuc,Θ] . (2.55)

The quantity Tnuc (cf. Eq. 2.11) represents the nuclear kinetic energy part of

the Hamiltonian. In a coupled state situation, quantum flux operator F̂ [cf. Eq.

(2.55)] is diagonal in the diabatic electronic basis (note that nuclear Hamiltonian

is diagonal in diabatic electronic basic cf. Eq. 2.45) and the non-zero diagonal

elements take the form [39,40]

f̂ii =
−i~
2µ

[
∂

∂r
δ(r − rd) + δ(r − rd)

∂

∂r

]
. (2.56)

The reaction probability is the expectation value of the above flux operator in the

basis of the energy normalized time-independent reactive scattering wavefunction

evaluated at r = rd.

2.5.2 Calculation of reaction probability

The reaction probability is defined as the expectation value of this flux operator in

the basis of energy normalized time-independent reactive scattering wavefunction

at the dividing surface. The initial state i (corresponding to a specific vibrational

ν and rotational j state of the reagent diatom AB) selected and energy resolved

reaction probability [summed over final states f(v′, j′) of the product (BC or AC)]
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is given by

PR
i (E) =

∑

f

|SR
fi|2 =

〈
Φ(R, rd, γ, E)|F̂ |Φ(R, rd, γ, E)

〉
,

=
~
µr

Im

[
〈φ(R, rd, γ, E)|∂φ(R, rd, γ, E)

∂r
〉
]
|r=rd

. (2.57)

where SR
fi is the reactive scattering matrix from an initial state (i) of the reactant

to a final state (f) of the product. The quantity in the right-hand side of Eq.

2.57 is integrated over the entire range of R and γ. The energy normalized

time-independent reactive scattering wavefunction |φ(R, rd, γ, E)〉 in Eq. 2.57 is

calculated along the dividing surface at, r = rd by

|φ(R, rd, γ, E)〉 = |ψ(R, rd, γ, E)〉/κE. (2.58)

The function ψ(R, rd, γ, E)〉 is obtained by Fourier transforming the time-evolved

WP ψ(R, rd, γ, t)〉 along the dividing surface

|ψ(R, rd, γ, E)〉 =
1√
2π

∫ +∞

−∞
eiEt/~|ψ(R, r, γ, t)〉dt|r=rd

. (2.59)

The quantity κE in Eq. 2.58 is the weight of the translational component F (R)

(cf. Eq. 2.49) contained in the initial WP for a given total energy E and expressed

as

κE = (
µR

2π~k
)1/2

∫ +∞

−∞
F (R)eikRdR, (2.60)

where k =
√

2µR(E − εvj)/~, with εvj being the initial ro-vibrational energy of

the reagent molecule. In a coupled states situation, we resort to diabatic repre-

sentation in which quantum flux operator F̂ is diagonal. Therefore, the reaction

probability here is just a summation over the same (cf. Eq. 2.57) obtained for
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each component of diabatic WP (cf. Eq. 2.44), i.e.

PR
i (E) =

~
µr

n∑

k=1

Im

[〈
φdia

k (R, rd, γ, E)|∂φ
dia
k (R, rd, γ, E)

∂r

〉]
|r=rd

. (2.61)

2.5.3 Calculation of integral reaction cross section and

thermal rate constant

The reaction probabilities depending upon J and Ω values (cf. Eq. 2.57 or 2.61 )

are summed up to calculate the integral reaction cross section (ICS) for a specified

initial (v, j) state of reagent diatom.

σvj(E) =
π

k2
vj

j∑
Ω=0

1

(2j + 1)

Jmax∑
J≥Ω

(2J + 1)P JΩ
vj (E). (2.62)

The initial state-selected thermal rate constant is calculated from the total ICS

[41],

Kvj(T ) =

√
8kBT

πµR

1

(kBT )2

∫ ∞

0

Eσvj(E)e−E/kBTdE, (2.63)

where kB is the Boltzmann constant. Finally, the rotationally averaged thermal

rate constants can be obtained by averaging over a Boltzmann distribution of

rotational states

Kv(T ) =
∑

j

Kvj(E)

Qrot

(2j + 1)e−Bj(j+1)hc/kBT , (2.64)

where B is the rotational constant of the reagent and

Qrot (=
∑

j(2j + 1)e−Bj(j+1)hc/kBT ) is the rotational partition function.
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2.6 Calculation of state-to-state reaction prob-

abilities

The real WP method of Refs. [23–25] is employed here to obtain the state-to-state

reaction probabilities and cross sections. In this method the initial WP pertinent

to the reagent asymptote is prepared in the reagent Jacobi coordinates (R, r, γ)

and immediately transformed to the product Jacobi coordinates (Rp, rp, γp). Only

the real part of the initial WP (cf. Eq. 2.53), let us say, qJΩ′(Rp, rp, γp, t), is

evolved in space and time as described in section 2.3.3. At the end of each time

step, the time-dependent expansion coefficients are obtained by [23–25],

CJ
v,j,Ω→v′,j′,Ω′(t) =

∫
ϕv′,j′(rp, γp)q

JΩ′(Rp = Rd
p, rp, γp, t)drpsinγpdγp. (2.65)

Here ϕv′,j′(rp, γp) is the product ro-vibrational eigenfunction andRd
p is the analysis

line which is located far in the product asymptotic region. The coefficients in

Eq. 2.65 are then half Fourier transformed to give energy-dependent coefficients

AJ
v,j,Ω→v′,j′,Ω′(E) [23–25],

AJ
v,j,Ω→v′,j′,Ω′(E) =

1

2π

∫ ∞

0

eiEt/~CJ
v,j,Ω→v′,j′,Ω′(t)dt. (2.66)

For accurate calculation of differential cross sections (DCSs), S matrix elements

should be evaluated in space-fixed (SF) reference frame [42]. To this effort,

energy-dependent coefficients (cf. Eq. 2.66) are transformed from BF frame
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to SF frame by,

ASF = TABF Tp

⇒ AJ
v,j,l→v′,j′,l′(E) =

min(j′,J)∑

ΩΩ′
T J

lΩA
J
v,j,Ω→v′,j′,Ω′(E)T J

l′Ω′ (2.67)

Here T and Tp are respectively, the transformation matrix for the reactants and

products. Tp is the matrix that diabatizes the tri-diagonal Coriolis coupling

matrix CC (expressed in product Jacobi coordinates) whose elements are defined

as,

ccΩ′,Ω′ =
~2

2µRpR
2
p

[J(J + 1) + j′(j′ + 1)− 2Ω′2] and

ccΩ′,Ω′+1 = ccΩ′+1,Ω′

=
−~2

2µRpR
2
p

√
[J(J + 1)− Ω′(Ω′ + 1][j′(j′ + 1)− Ω′(Ω′ + 1].(2.68)

For initial choice of j = 0, T in Eq. 2.67 may be omitted. Now, the S matrix in

the SF frame is obtained as [23–25],

SJ
v,j,l→v′,j′,l′(E) =

−~2as√
1− (asE + bs)2

√
kv′j′kvj

µRµRp

(
2AJ

v,j,l→v′,j′,l′(E)

ḡkvj

)

× exp[−i(kv′j′R
d
p + δηv′j′l′ + δηvjl)]. (2.69)

Here as = 2/(Emax − Emin) and b = −1 − asEmin are the parameters which

scales the Hamiltonian. In Eq. 2.69, kvj(=
√

2µR(E − εvj)/~) and kv′j′(=√
2µRp(E − εv′j′)/~), respectively, are the wavevector components associated with

the reactant and product channels and gkvj
is the Fourier transform of initial sinc

wavefunction (cf. Eq. 2.50) in to momentum space. The phase of S matrix

is adjusted to correct value by the phase corrections δηvjl and δηv′j′l′ expressed
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as [23–25]

δηvjl =
√
J(J + 1)sin−1

(
−

√
J(J + 1)

2µR(E − εvj)R2
0

)

−
√

2µR(E − εvj)R2
0 − J(J + 1) +

√
2µR(E − εvj)R0, (2.70)

δηv′j′l′ =
√
l′(l′ + 1)sin−1

(
−

√
l′(l′ + 1)

2µRp(E − εv′j′)Rd
p
2

)

−
√

2µRp(E − εv′j′)Rd
p
2 − l′(l′ + 1) +

√
2µRp(E − εv′j′)R

d
p (2.71)

where l′ = |J − j′|+ 2(Ω′ − 1). Having calculated the S matrix in the SF basis,

we now transform back to the BF basis using

SBF = T T SSF T T
p

⇒ SJ
v,j,Ω→v′,j′,Ω′(E) =

∑

ll′
T J

ΩlS
J
v,j,l→v′,j′,l′(E)T J

Ω′l′ . (2.72)

The state-to-state reaction probability is given by |SJ
v,j,Ω→v′,j′,Ω′(E)|2.

2.6.1 Differential and integral cross sections

After calculating the S matrix, the state-to-state DCSs are obtained by [43],

σ(E, θ, v, j → v′j′) =
1

2j + 1

∑

ΩΩ′

1

4kvj
2

×
∣∣∣∣∣
∑

J

(2J + 1)SJ
v,j,Ω→v′,j′,Ω′D

J
ΩΩ′(0, θ, 0)

∣∣∣∣∣

2

, (2.73)

whereDJ
ΩΩ′(0, θ, 0) is a reduced Wigner rotation matrix [37] and θ is the scattering

angle. The state-to-state ICSs are obtained by integrating Eq. 2.73 over all
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scattering angles,

σ(E, v, j → v′j′) =
π

k2
vj(2j + 1)

∑

ΩΩ′

∑
J

(2J + 1)
∣∣SJ

v,j,Ω→v′,j′,Ω′
∣∣2 . (2.74)

2.7 Spectral intensity

If ψ(t = 0) is the WP pertinent to a molecule in its, X electronic state, and ψ(t),

is the WP at time, t, when evolving on a A electronic PES, then the spectral

intensity for the X → A Franck-Condon (FC) transition is given by the time-

dependent version of the golden rule expression [2, 44],

I(E) ≈
∫
| eiEt/~C(t)dt |2 . (2.75)

Here c(t) is the time autocorrelation function of the evolving WP. For time-

independent Hamiltonian operator and real initial WPs, the autocorrelation func-

tion for time 2t is obtained by the useful expression [45,46],

C(2t) = 〈ψ∗(t)|ψ(t)〉. (2.76)

The locations of the peak maximum in the spectral intensity give the energy

eigenvalues and the corresponding stationary state eigenfunctions can be obtained

by projecting the time evolved WP onto the desired eigenstate ψn of energy

En [13] as

ψn(E) =

∫ ∞

0

eiEnt/~ψ(t). (2.77)
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Chapter 3

Quantum nonadiabatic dynamics

of H + D2 (HD) and D + H2

(HD) reactions

3.1 Introduction

In this chapter the initial state-selected and energy resolved reaction probabili-

ties, integral reaction cross sections (ICSs) and thermal rate constants obtained

for the H + D2 (HD) and D + H2 (HD) reactions using the formalism outlined in

chapter 2 are presented and discussed. To this effort, the double many body ex-

pansion (DMBE) potential energy surfaces [1] of the system is employed and the

reaction probabilities up to the total energy of ∼ 4.7 eV both with and without

the surface coupling are calculated. Within the centrifugal sudden (CS) approx-

imation [2], all partial wave contributions up to the total angular momentum

J = 50 are considered to calculate the converged ICSs. Analysis of the reac-

tion probabilities, ICSs show that the nonadiabatic effects are insignificant. The

71
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thermal rate constants calculated from the ICSs compare well with the available

theoretical and experimental results [3–10].

3.2 Theoretical and computational details

The detailed theoretical framework and computational methodology to treat the

reaction dynamics by the time-dependent quantum mechanical approach is out-

lined in chapter 2. A few essential points are described below. The interaction

Hamiltonian of the ground electronic manifold of the collisional system in a dia-

batic electronic basis can be written as (cf. Eq. 2.45)

Hdia = Tnuc


1 0

0 1


 +


U11 U12

U21 U22


 , (3.1)

where Tnuc (cf. Eq. 2.11 ) represents the nuclear kinetic energy operator, which

is diagonal in this basis. The diabatic electronic matrix of Eq. 3.1 is obtained as


U11 U12

U21 U22


 = S


V− 0

0 V+


S†

=
V− + V+

2
1 +

V+ − V−
2


− cosχ sinχ

sinχ cosχ


 , (3.2)

with

S =


 cosφ sinφ

− sinφ cosφ


 . (3.3)
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In Eq. 3.2 V− and V+ represents the two adiabatic PESs and, χ = 2φ, represents

the pseudorotation angle related to the adiabatic-to-diabatic mixing angle φ in

a linear coupling approximation [11]. The two adiabatic sheets of the DMBE

PES [1] are used for V− and V+. It is to be noted that this diabatization scheme is

based on the idea of removing the leading (divergent) derivative coupling elements

of the adiabatic basis (as discussed in Sec. 2.2). This has been successfully tested

[11] and employed for a practical application [12]. In a later study this idea is

extended and generalized to less symmetric systems and a consistent comparison

of the diabatic model with the computed ab initio data has been made [13]. The

explicit coupling between V− and V+ considered above includes all diagonal and

off-diagonal coupling terms in addition to the GP change.

Having obtained the Hamiltonian in a diabatic electronic basis, the initial wave

packet (WP) is first prepared in the adiabatic basis

Ψadia(R, r, γ, t = 0) = ψ(R, r, γ, t = 0)


1

0


 + ψ(R, r, γ, t = 0)


0

1


 ,(3.4)

and then transformed it to diabatic basis using,

Ψdia = SΨadia. (3.5)

The first and second term in the right hand side of Eq. 3.4 represents the initiation

of the reaction on the lower and upper adiabatic sheets, respectively. In Eq. 3.4,

ψ(R, r, γ, t = 0) is the initial wavefunction pertinent to the reactant asymptote is

given by Eq. 2.48. The diabatic WP in Eq. 3.5 is then propagated in space and

time using the Chebyshev polyn scheme described in section 2.3.1. Finally the
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Table 3.1: Numerical grid parameters and properties of the initial wavefunction used
in the present study

Parameter Value Description
NR/Nr/Nγ 128/64/48 Number of grid points
Rmin/Rmax (a0 ) 0.1/15.34 Extension of the grid along R
rmin/rmax (a0 ) 0.5/8.06 Extension of the grid along r
∆R/∆r (a0 ) 0.12/0.12 Grid spacings along R and r
rd (a0 ) 4.10 Location of the dividing surface

in the product channel
Rmask/rmask (a0 ) 11.74 /4.70 Starting point of the masking function
R0 (a0 ) 10.5 Initial location of the center of the GWP

in the coordinate space
Etrans (eV) 2.0 Initial translational kinetic energy
δ (a0 ) 0.16 Initial width parameter of the GWP
∆t (fs) 0.135 Length of the time step
T (fs) 413.76 Total propagation time

initial state-selected reaction probabilities (cf. Eq. 2.57), cross sections (cf. Eq.

2.62) and rate constants (cf. Eq. 2.64) are obtained by flux operator approach (see

section 2.5 for details). Various grid parameters used in this work are presented

in table 3.1. It is to be noted to be that the convergence of each calculation is

checked with respect to the choice of these parameters.

3.3 Results and Discussion

3.3.1 Reaction Probability

The H + D2 (v = 0, j = 0) → HD (
∑
v′,

∑
j′) + D reaction probability values

as a function of the total energy E are plotted in Fig. 3.1 for a few selected

values of the total angular momentum, J = 0, 10, 20, 30, 40 and 50 (indicated

in the panel) and for Ω = 0. It is to be noted that the pattern of variation
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of reaction probabilities remains similar for Ω 6= 0. The coupled and uncoupled

surface results are shown by the solid and dashed lines, respectively. It can be seen

from Fig. 3.1 that the threshold for the reaction shifts to the higher energy with

increasing J value. The difference between the coupled and uncoupled surface

results disappears below the energetic minimum (∼ 2.74 eV) of CIs. But above

this minimum, the difference becomes noticeable. As J increases the difference

between the coupled and uncoupled surface results becomes negligible. It can

be seen that above J = 20, the coupled and uncoupled surface results merge

together. Oscillations in the probability curves reveal that at low energies the

reaction proceeds via resonance formation which becomes more direct at higher

energies.

The D + H2 (v = 0, j = 0) → HD (
∑
v′,

∑
j′) + H reaction probability values

as a function of the total energy E (D, H2 translational + H2 rovibrational) are

plotted in Fig. 3.2 for a few selected values of the total angular momentum, J

= 5, 15, 25, 35 and 45 (indicated in the panel) and for Ω = 0. The coupled and

uncoupled surface results are shown by the solid and dashed lines, respectively. As

in the case of H + D2 reaction, the reaction threshold shifts to the higher energy

values with increasing J due to an increase in the centrifugal barrier height. The

resonance structures and their energetic locations remain same in both coupled

and uncoupled surface results for a given value of J . The difference between

the coupled and uncoupled surface reaction probabilities for a fixed value of J

is negligible at low energies. At higher energies near and above the minimum

of CIs, this difference becomes noticeable which becomes insignificant for higher

J values. In this case also the dynamical event is dominated by the resonance

formation at low energies and smaller J values.
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Figure 3.1: Total reaction probabilities as a function of the total energy E (H, D2

translational + D2 rovibrational) for the H + D2 (v = 0, j = 0) → HD (
∑

v′,
∑

j′)
+ D exchange reaction on the DBME PES for the total angular momentum, J = 0,
10, 20, 30, 40 and 50 (indicated in the panel) and Ω = 0. The coupled and uncoupled
surface results are shown by the solid and dashed lines, respectively. The zero of the
energy scale corresponds to infinitely separated reagents. The arrow in the abscissa
indicates the location of the energetic minimum of the seam of CIs.
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Figure 3.2: Same as in Fig. 3.1 for D + H2 (v = 0, j = 0) → HD (
∑

v′,
∑

j′) + H
exchange reaction for the total angular momentum, J = 5, 15, 25, 35 and 45 (indicated
in the panel) and Ω = 0.
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The above dynamical quantities calculated for the isotopic H + HD and D +

HD reactions are discussed here. The former gives either H2 + D (channel R1a)

or HD + H (channel R2a) products and the latter gives either DH + D (channel

R1b) and D2 + H (channel R2b) products, respectively. In the following both the

channel specific as well as total reaction probabilities are presented and discussed.

In our earlier work on the H + HD system [14], a technical scaling error occurred.

The H and D masses were erroneously interchanged. It is corrected the in this

work. The reaction probability values for the H + HD (v = 0, j = 0) reaction as a

function of the total energy E are plotted in Figs. 3.3(a-c) for five selected values

of the total angular momentum, J = 0, 10, 20, 30 and 40 and for Ω = 0. The

reaction probabilities obtained in the uncoupled and coupled surface situations

are shown by the dashed and solid lines, respectively. The reaction probabilities

for channels R1a and R2a are given in panels (a) and (b), respectively, and the

overall reaction probabilities (sum total of the two channel specific probabilities)

are given in the panel (c). The effect of the nonadiabatic coupling (NAC) on

the channel specific reaction probabilities of panel (a) and (b) appears to be

similar to the other isotopic variants. The opposite behavior observed between

the uncoupled and coupled surface results for the channel specific probabilities

shown in Fig. 5 of Ref. [14] is absent in Figs. 3.3(a-b). Rather, the reaction

probabilities for the two channels show such behavior in the latter figures for J

< 20.

The reaction probability values for the D + HD (v = 0, j = 0) reaction as a

function of the total energy E are plotted in Figs. 3.3(d - f) for the J = 0, 10, 20,

30 and 40 and for Ω = 0. The reaction probabilities for channels R1b and R2b

are shown in panels (d) and (e), respectively. The overall reaction probabilities
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are given in panel (f). The coupled and uncoupled surface reaction probabilities

are shown by the full and dashed lines, respectively. It can be seen that both the

channel specific and the total reaction probabilities in this case exhibit similar

behavior as those in case of the H + HD reactions. It emerges from the above

discussion that the NAC have almost similar effects in the dynamics of H + H2

reaction and its isotopic variants.

3.3.2 Initial State-Selected Integral Reaction Cross Sec-

tions

The initial state-selected ICSs as a function of collision energies for the H + D2 (v

= 0, j) reaction are plotted in Figs. 3.4(a-b) for the reagent rotational states, j

= 0 and 1, respectively. The coupled and uncoupled surface results are shown by

the full and dashed lines, respectively. The cross section values for a particular

j value increases reaching a maximum and then decreases. A similar trend of

variation of cross sections is observed for further higher j values. The maximum

cross section (∼ 1.41 Å2) for j = 0 occurs for the collision energy of ∼ 1.9 - 2.2 eV.

The ICSs obtained from experimental [15] and other theoretical studies [16–19]

are shown in Figs. 3.4(a-b). It can be seen from these figures that the present

theoretical results are in good accord with the experiment. The difference between

the cross section values calculated in the coupled and uncoupled surface situation

is practically negligible. Similar conclusions have been made in a state-to-state

time-dependent WP study of the H + D2 reaction by Lu et al. employing a

diabatic DMBE PES of H3 [19] until a collision energy of 2 eV. It is to be noted

that, the cross section values reported by the latter authors compare very well

with ours (cf., Fig. 3.4(a)). Therefore, it appears that the “diabatic H3 DMBE”

is as “accurate” as our diabatic model for a reliable description of the reaction
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dynamics of H + H2 and its isotopic variants. Using a line-integral approach, Xu

et al. [20] apparently constructed a diabatic model similar to ours and pointed

out that it may yield erroneous dynamical outcomes as compared to the diabatic

H3 DMBE. This proposition is however not validated by dynamical studies and

considering the present developments, it remains to be established.

The initial state-selected ICSs for the D + H2 (v = 0, j) reaction are plotted

in Figs. 3.4(c-d) for j = 0 and 1, respectively. The ICS increases to reach a

maximum value (∼ 2.78 Å2) and then decreases with increasing energy. The D

+ H2 reaction cross sections are larger than those of H + D2 reaction for a given

energy. This observation is consistent with the available experimental [15] and

theoretical [21] data. The larger cross section of D + H2 reaction is interpreted

to be due to efficient transfer of the collision energy of the heavier D atom to the

vibrational degree of freedom of the lighter H2 molecule. The difference between

the uncoupled and coupled surface results is negligible in case of the D + H2

reaction also. Similar variation of cross sections are obtained for further higher

values of j.

The initial state-selected ICSs for the H + HD (v = 0, j) reaction are plotted

in Figs. 3.5(a-l) as a function of the collision energy. The cross section values

for the R1a and R2a channels are shown in panels (a-d) and (e-h) for j = 0 - 3,

respectively. The cross section values calculated in the coupled and uncoupled

surface situation are shown by the full and dashed lines, respectively. The total

cross section (sum of the two channel specific cross sections) values are shown in

panels (i-l) for j = 0 - 3, respectively. For any given value of j, the cross section

values of the R1a channel are larger than those of the R2a channel. The skew

angle (the angle between mass scaled reagent Jacobi coordinate Ra and mass
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Figure 3.6: Same as in Fig. 3.5 for D + HD reaction.
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scaled product Jacobi coordinate Rc) of the R2a channel is much larger than the

R1a channel (70.530 vs 54.740). This qualitatively explains the greater reactivity

of the R2a channel. The experimental data available [15] for the R1a channel for

j = 0 are also given in panel a. It can be seen that the present theoretical results

are fairly in good accord with the experiment. Minor difference between the cross

section values calculated in the coupled and uncoupled surface situations are seen

only above the minimum of the seam of CIs particularly, for the R2a channel.

This difference becomes negligible in the total reaction cross sections shown in

panels (i-l). It is to be noted that the above figures replace Figs. (8-10) of

Ref. [14], in which a mass scaling error occurred as mentioned above. The initial

state-selected ICS values for the D + HD (v = 0, j = 0 - 1) reaction are plotted

in Figs. 3.6(a-f) as a function of the collision energy. The cross section values

for the R1b and R2b channels are shown in panels (a-b) and (c-d), respectively.

The cross section values for the overall reaction are shown in panels (e-f) for j =

0 and 1, respectively. The coupled and uncoupled surface results are shown by

full and dashed lines, respectively. Analogous to the H + HD reaction, the cross

section values increase with energy reaching a maximum and then decrease for

particular value of j. It can be seen that both the channel specific as well as the

total reactivity is more in this case compared to that for the H + HD reaction.

This observation is in accord with the apparent rule that the heavier D atom

efficiently transfers the collision energy to the HD vibration. The reactivity of

the D2 + H channel is more than that of DH + D channel for any given energy.

In this case the skew angle of the D2 + H channel is 65.910 and much larger than

that of the DH + D channel of 48.190. The effect of NAC is minimal and some

minor effects are seen above the minimum of the CIs.
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3.3.3 Thermal rate constants

The thermal rate constants obtained by statistically averaging over the rotational

states, j = 0 - 3, of the D2 molecule are shown in Fig. 3.7 for the H + D2 (v =

0) reaction. The coupled and uncoupled surface results are shown by the full and

dashed lines, respectively. The rate constant values available in the literature

are shown by the circles (Ref. [4]), squares (Ref. [7]), triangles (Ref. [9]) and

asterisks (Ref. [5]) on the diagram. The present rate constants reveal the expected

Arrhenius behavior in agreement with the experimental and other theoretical

data [4, 5, 7, 9]. The observed discrepancy with the literature data mainly arises

from insufficient number of j values used in the Boltzmann averaging in the

present case. Furthermore, other contributing factors to this discrepancy are

use of CS approximation [2] (although it is a very good approximation for the

hydrogen exchange reaction) and possible inaccuracies of the underlying PESs.

It is to be noted that, the main purpose of this article is to examine the effect

of surface coupling on the reaction dynamics of the isotopic variants of the H +

H2 reaction and therefore, the calculations are limited up to j = 3 only. Now

most importantly, Fig. 3.7 reveals that the difference between the coupled and

uncoupled surface results is insignificant (within the drawing accuracy) in the

reported temperature range of 300 - 1200 K.

The thermal rate constants obtained for the D + H2 (v = 0) reaction by sta-

tistically averaging over the rotational states, j = 0 - 3, are shown in Fig. 3.8.

The coupled and uncoupled surface results are shown by the solid and dashed

lines, respectively. The rate constant values available in the literature are shown

by different symbols [4,6,8,9] on the diagram. The rate constant data reveal the

expected Arrhenius behavior. It can also be seen from Fig. 3.8 that the differ-
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Figure 3.7: Arrhenius plot of the Boltzmann averaged (over j = 0 - 3 of the reagent
diatom) thermal rate constants for the H + D2 (v = 0) reaction. The coupled and
uncoupled surface results are shown by the solid and dashed lines, respectively. The
points on the diagram represents the results from the literature [4, 5, 7, 9].

ence between the coupled and uncoupled results are insignificant in the reported

temperature range of 300 - 1200 K.

In Figs. 3.9(a-b), the thermal rate constants obtained by statistically averaging

over the rotational states j = 0 - 3 for the R1a and R2a channels of the H +

HD reaction, respectively, are shown. The coupled and uncoupled surface results

are shown by the circles and dashed lines, respectively. The rate constant values

available in the literature are shown by the asterisks (Ref. [3]) and triangles

(Ref. [10]) on the diagram. Also in Figs. 3.9(a-b) the thermal rate constants

obtained by statistically averaging over the rotational states, j= 0 - 10, of the

HD molecule for the R1a and R2a channels of the H + HD reaction in the

uncoupled surface situation are shown by the dots. The latter results reveal better

agreement with the literature data [3,10] when contributions from higher j values
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Figure 3.8: Same as in Fig. 3.7 for the D + H2 (v = 0) reaction.

are included in the Boltzmann averaging. The difference between the thermal

rate constants calculated in both coupled and uncoupled surface situations are

again insignificant in this case. Finally we show the thermal rate constant values

obtained by statistically averaging over the rotational states j = 0 - 3 for the R1b

and R2b channels of the D + HD reaction in Figs. 3.9(c-d), respectively. The

rate constant data do not reveal any effects of NAC in this case also.

3.4 Summary and outlook

A theoretical account of the electronic NAC effects on the dynamics of H + D2

(HD) and D + H2 (HD) reactions is presented in this article. The hydrogen

exchange reaction occurs on the repulsive lower adiabatic sheet of the JT-split

degenerate ground electronic manifold of H3. Quantum dynamical calculations

are carried out employing diabatic electronic states and a time-dependent WP
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method within the CS approximation and dynamical quantities viz., the initial

state-selected energy resolved total reaction probabilities, ICSs sections and ther-

mal rate constants are reported. The effect of electronic NAC on these observables

is explicitly examined. A study of the nonadiabatic effects on the state-to-state

dynamical attributes of H + D2 (HD) and D + H2 (HD) reactions is currently

being taken up.

Like in the case of the H + H2 reaction, the impact of NAC on the above

deuterated variants is found to be minor. Mild effect of surface coupling shows

up only beyond the energetic minimum of the seam of conical intersections (CIs).

ICSs are reported over a wide energy range starting from the onset of the reaction

to the three-body dissociation limit. The calculated cross sections compare well

with the available experimental data. The Boltzmann averaged thermal rate

constants are found to be essentially same in the uncoupled and coupled surface

situations for these reactions. The findings presented in this chapter are in general

agreement with the recent literature data obtained by including the GP effect

only. Although not clearly understood, It is reiterated that the seam of CIs

in H3 occurs at the D3h configuration whereas, the minimum energy path for

the reactive scattering occurs at the collinear geometry. This is perhaps one

of the reasons that the surface coupling effects are minor on the dynamics of

this prototypical reaction despite the minimum energy path is expected to be

less relevant for the higher collision energies considered here. The exact reason,

however, remains to be uncovered.
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[12] S. Mahapatra, H. Köppel, Phys. Rev. Lett. 81 (1998) 3116; S. Mahapatra,
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Chapter 4

Nuclear motion on the orbitally

degenerate electronic ground

state of D3

4.1 Introduction

The nuclear dynamics of D3, when prepared in the immediate neighborhood of

the seam of CIs of its degenerate electronic ground state, is presented and dis-

cussed in this chapter. The theoretical framework is designed to mimic the optical

emission experiment of the Rydberg excited D3 [1,2] (more details are presented

in section 1.2.1). The observed experimental band is reproduced in Fig. 4.1 from

Ref. [1]. The two humps in this bimodal emission profile have been established to

originate from the lower and upper adiabatic sheets of the Jahn-Teller (JT)-split

degenerate ground electronic manifold of D3. Keeping this reference experimental

emission spectrum in mind the specific details of various terms which constitute

the complete nonadiabatic coupling (NAC) of the two surfaces are examined here.

93
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Figure 4.1: Experimentally recorded optical emission spectrum of Rydberg-excited
D3 reproduced from Fig. 1(a) of Ref. [1].

To this effort, the important GP and diagonal BH corrections are incorporated

in the single surface BO Hamiltonian and the results are compared with those

obtained from coupled JT-split surfaces. It is finally established in relation with

the experimental findings that the broadening mechanisms of the observed bands

due to the lower and upper adiabatic sheet are different. While the highly re-

pulsive nature of the lower adiabatic sheet quickly drags the wave packet (WP)

to the collinear minimum energy path that leads to dissociation, occurrence of

the energetic minimum of the seam of CIs at the equilibrium minimum of the

upper adiabatic sheet compels the WP to undergo extremely fast nonradiative

relaxation to the lower sheet. The findings on the details of the broadening of

the band due to the upper adiabatic sheet enable us to conclude that the GP

and BH corrections to the adiabatic BO Hamiltonian are certainly minor when

compared to the effects due to the rest of the complete NAC term. The GP

and BH corrections only contribute to the shift of the maximum of the spectral
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envelope in the energy axis (also the former alters the symmetry designation of

energy levels), however, the detailed fine structure of the observed band can only

be explained when the coupling due to the two surfaces is explicitly taken into

account, which includes the GP, BH and the other off-diagonal terms of the NAC

operator in a coherent fashion.

4.2 General considerations

The electronic ground state of D3 remains degenerate along the coordinate of the

symmetric stretching (breathing) vibrational mode in the D3h symmetry configu-

rations. This electronic degeneracy is split upon distortion along the coordinates

of the asymmetric stretching and the bending vibrational modes. In a general cou-

pled state situation, the representation of nuclear Schrödinger equation in an adi-

abatic and diabatic basis is discussed in section 2.2. Now, for the present coupled

two-states problem, there are issues extensively addressed and discussed in the lit-

erature. One of the early one is concerned with the phase change of the adiabatic

electronic wavefunction on encircling odd number of times around an intersection

of two electronic states [the configurations where A
(i)
nm = 〈φn(q;Q)|∇i|φm(q;Q)〉

(cf. Eq. 2.2 exhibit a singularity)]. It follows from the work of Herzberg and

Longuet-Higgins [3] that the adiabatic electronic wavefunctions assume the form

(in a suitable polar coordinate φ encircling the intersections)


Φ1

Φ2


 =


 cos(φ/2) sin(φ/2)

− sin(φ/2) (cosφ/2)





Φ0

1

Φ0
2


 , (4.1)

where Φ0
1 and Φ0

2 are the basis set components of the two adiabatic electronic

states.



4.3. Theoretical and computational details 96

Now, it is clear (repeatedly addressed in the literature) that both the adia-

batic electronic wavefunctions would change sign and become multivalued when

φ goes from 0 → 2π [3–5]. To retain the single-valued property of the total wave-

function Mead and Truhlar proposed the introduction of an additional phase

factor eil φ
2 (l being an odd integer number), which effectively introduces a vec-

tor potential term, − l
2
∇φ, into the nuclear Hamiltonian [5]. Effect of inclu-

sion of this phase correction into the single surface (excluding the coupling be-

tween surfaces) BO Hamiltonian HBO (= Tnuc(Q) + V (Q); cf. Eq. 2.1) has been

studied in the literature extensively [6–15]. When the diagonal terms B
(i)
mm (=

〈φm(q;Q)|∇2
i |φm(q;Q)〉; cf. Eq. 2.2) are incorporated in HBO, this is referred to

as BH Hamiltonian [16]. When the full Hamiltonian of Eq. 2.1 or equivalently of

Eq. 2.4 is considered, it intrinsically includes both the above corrections and the

derivative NAC between the states in a consistent fashion. In the following, the

nuclear dynamics is examined in five different situations viz., (1) considering only

HBO, (2) including the GP corrections in HBO, (3) including the BH correction

in HBO, (4) including both the GP and BH corrections in HBO and finally (5)

employing the full Hamiltonian of Eq. 2.4.

4.3 Theoretical and computational details

The theoretical formalism and computational approach to describe the nuclear

motion around the D3h equilibrium configurations of D3 in its degenerate 2pE ′

electronic ground state is described in this section. The theoretical scheme is for-

mulated in accordance with the optical emission experiment of Rydberg excited

D3, which directly probed the CIs of its degenerate electronic ground state [1,2].

In particular, the time evolution of the WP is monitored in both fully adiabatic
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(also including GP and BH corrections) and nonadiabatic (two coupled states)

situations. The impact of the GP and BH corrections and derivative (nonadia-

batic) coupling terms on the eigenvalue spectrum and eigenvectors is examined

in detail. The adiabatic electronic energies of the double many body expansion

(DMBE) potential energy surface (PES) of Varandas and coworkers [17] are uti-

lized in this study.

4.3.1 The HBO in hyperspherical coordinates

The three-dimensional (3D) adiabatic BO Hamiltonian for the D3 system in

slightly modified version of Johnson’s hyperspherical coordinates [18] as adapted

by Varandas et al. [7] is given by

HBO = − ~
2

2µ

1

ρ5

∂

∂ρ
ρ5 ∂

∂ρ
− 8~2

µρ2

1

sinθ

∂

∂θ
sinθ

∂

∂θ
− 2~2

µρ2

1

sin2(θ/2)

∂2

∂φ2

+
1

µρ2

[ Ĵ2 − Ĵ2
z + sin(θ/2)[1

2
(Ĵ2

+ + Ĵ2
−)]

cos2(θ/2)
+

Ĵ2
z

2sin2(θ/2)

]

+
4i~Ĵzcos(θ/2)(∂/∂φ

2µρ2sin2(θ/2))
+ V (ρ, θ, φ). (4.2)

In the above, θ and φ are related to the Smith-Whitten’s (Θ, Φ ) version [19]

by the relations, θ = π − 4Θ and φ = 2π − 2Φ, rather than by the Johnson’s

relations, π/2−2Θ and π/2−2Φ [18]. These conventions simplify the calculations

as explained by Varandas and coworkers [7] and Billing and coworkers [20]. It

should be recalled that the coordinates ρ, θ, φ determine the size (ρ) and shape

(θ, φ) of the molecular triangle. The Euler angles α, β, γ determine the absolute

orientation of the triangle in a space-fixed (SF) system. The operators Ĵx, Ĵy and

Ĵz describe the components of total angular momentum in the body-fixed (BF)

frame and Ĵ± are the raising and lowering operators defined in the usual way,
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i.e., Ĵx± iĴy. The quantity V (ρ, θ, φ) is the adiabatic potential energy of a given

electronic state. In the above Hamiltonian, the differential term in the variable

ρ can be simplified further by defining a transformed nuclear wavefunction χ =

ρ5/2χ′ [21]. This transformation yields the time dependent Schrödinger equation

(TDSE) for χ as

i~
∂χ

∂t
=

[
− ~

2

2µ

∂2

∂ρ2
− 8~2

µρ2

1

sinθ

∂

∂θ
sinθ

∂

∂θ
− 2~2

µρ2

1

sin2(θ/2)

∂2

∂φ2

+
1

µρ2

[ Ĵ2 − Ĵ2
z + sin(θ/2)[1

2
(Ĵ2

+ + Ĵ2
−)]

cos2(θ/2)
+

Ĵ2
z

2sin2(θ/2)

]

+
4i~Ĵzcos(θ/2)(∂/∂φ

2µρ2sin2(θ/2))
+ V (ρ, θ, φ) +

15~2

8µρ2

]
χ. (4.3)

Following the earlier prescription, the physical wavefunction of the system can

be expressed as [22,23]

χJ
K,M(ρ, θ, φ, α, β, γ) =

∑
J,M

J∑
K=−J

√
2J + 1

8π2
χJ

K,M(ρ, θ, φ)DJ∗
MK(α, β, γ),(4.4)

where J , M , K represent the total angular momentum, its projection on a SF Z−
axis and BF Z−axis, respectively, and DJ

MK is the Wigner rotation matrix [24].

By substituting the wavefunction of Eq. 4.4 in Eq. 4.3, the effective Hamiltonian
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operating on the wavefunction is obtained as [7],

HBO =
{
− ~

2

2µ

∂2

∂ρ2
− 8~2

µρ2

1

sinθ

∂

∂θ
sinθ

∂

∂θ
− 2~2

µρ2sin2(θ/2)

∂2

∂φ2

+
~2[J(J + 1)−K2]

µρ2cos2(θ/2)
+

~2

2µρ2sin2(θ/2)

[
K2 + 4Kicos(θ/2)

∂

∂φ

]

+ V (ρ, θ, φ) +
15~2

8µρ2

}
δK,K′ +

{ ~2sin(θ/2)

2µρ2cos2(θ/2)

×
√

(J ±K)(J ±K + 1)(J ±K − 1)(J ±K + 2)
}
δK,K′

±2
. (4.5)

4.3.2 Initial wavefunction and eigenvalue spectrum

The initial wavefunction (at time t=0) pertinent to the n=3 Rydberg electronic

state of D3 in the mass-weighted normal coordinates can be written as [25]

χ(q0, r, t = 0) = Ne−
µωAq2

0
2~ e−

µωEr2

2~ , (4.6)

where N is the normalization constant, ωA = 2301.2 cm−1, and, ωE = 1833.3

cm−1 are the frequencies of the symmetric stretching (breathing) and degenerate

(asymmetric stretching and bending) vibrational modes, respectively [26]. Here

q0 and r (=
√
q2
1 + q2

2) represent the mass-weighted normal coordinates for the

breathing and degenerate vibrational modes, respectively. These normal coordi-

nates in terms of the three internuclear distances (r1, r2, r3) are obtained by the

FG-matrix method of Wilson et al as [27]
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q0 =
1

3
[(r1 − r0

1) + (r2 − r0
2) + (r3 − r0

3)],

q1 =
1

3
[2(r3 − r0

3)− (r1 − r0
1)− (r2 − r0

2)],

q2 =
1√
3
[(r2 − r0

2)− (r1 − r0
1)], (4.7)

where r0
1 = r0

2 = r0
3 (=1.642 bohr [28]) is the distance representing the D3h

configuration of D3 at the minimum of the seam of the CIs. While q1 and q2

represent the Cartesian components of the degenerate vibration, r defines the

magnitude of this vibration in polar coordinate frame, defined as, q1 = rsinϕ

and q2 = rcosϕ. The angle ϕ defines the direction of the degenerate vibration.

This is the pseudorotation angle that encircles the CIs at the D3h symmetry

configuration of D3 and can be equated with the hyperangle introduced above,

0≤ φ ≤2π. The following set of equations [7, 18] establish the transformation

between the internal coordinates and the hyperspherical coordinates in order to

determine q0, q1 and q2.

r2
1 =

1

2
d2

2ρ
2[1 + sin(θ/2)cos(φ)],

r2
2 =

1

2
d2

3ρ
2[1 + sin(θ/2)cos(φ− δ3)],

r2
3 =

1

2
d2

1ρ
2[1 + sin(θ/2)cos(φ+ δ2)], (4.8)

where d2
k = mk

µ
(1− mk

m1+m2+m3
), µ2 = m1m2m3

m1+m2+m3
, δ2 = 2tan−1(m2

µ
), δ3 = 2tan−1(m3

µ
)

and mk is the mass of the atom k.

The above initial wavefunction (cf., Eq. 4.6) is subjected to a Franck-Condon

transition to the degenerate electronic ground state of D3. To monitor the nuclear
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Table 4.1: Numerical grid parameters and properties of the initial wavefunction used
in the present study.

Parameter Value Description

Nρ/Nθ/Nφ 128/31/128 Number of grid points
ρmin/ρmax (a0 ) 0.5/14.0 Extension of the grid along ρ
φmin/φmax (rad) 0/2π Extension of the grid along φ
ρmask (a0 ) 12.43 Starting point of the masking function
∆t (fs) 0.1348 Length of the time step used in the WP prop-

agation
T (fs) 1104.0/276.0 Total propagation time for uncoupled and

coupled state calculations

motion on the latter state the TDSE is numerically solved on a grid constructed

in the (ρ, θ, φ) coordinate space. The time-dependent version of the golden rule

expression is used to calculate the spectral intensity, I(E). This can be equated

with the Fourier transform of the time autocorrelation function, C(t), of the WP

evolving on the final electronic state using Eq. 2.75. For time-independent Hamil-

tonian operator and real initial WPs, the autocorrelation function for time 2t,

C(2t) is obtained by the useful Eq. 2.76 [31,32]. The locations of the peak max-

imum in the spectral intensity give the energy eigenvalues and the corresponding

stationary state eigenfunctions can be obtained by projecting the time evolved

WP onto the desired eigenstate of energy, En, using Eq. 2.77 [33].

The action of the time-evolution operator, exp
[
−iĤt
~

]
, in Eq. 2.7 is carried

out by dividing the total propagation time t into N steps of length 4t. The

exponential operator at each time step is then approximated by a second-order

split-operator method [33]. The first derivative and second derivative terms in ρ

and φ in Eq. 4.5 are evaluated using the fast Fourier transform (FFT) method

[34] and the kinetic energy operator in θ is evaluated using a Gauss-Legendre

quadrature based discrete variable representation (DVR) [35] method. To avoid
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unphysical reflections of WP at the grid boundaries, it is multiplied by a damping

function [36] f(ρi) = sin
[

π
2

(ρmask+∆ρmask−ρi)
∆ρmask

]
for ρi ≥ ρmask, at each time step.

Here ρmask is the point at which the damping function is initiated and ∆ρmask(=

ρmax − ρmask) is the width of ρ over which the function decays from 1 to 0. All

calculations are performed within the centrifugal sudden approximation [37, 38]

neglecting the Coriolis coupling (CC) term (the last term in Eq. 4.5) of the

Hamiltonian. The convergence of each calculation is checked with respect to the

choice of the numerical grid parameters given in table 4.1.

4.3.3 Inclusion of GP and BH corrections

Mead and Truhlar [5] proposed that the multiplication of the adiabatic electronic

wavefunction by a complex phase factor eiαη corrects for the GP change where α

= 1
2
, 3

2
, . . . and η is any parameter such that wavefunction encircles CIs when

it goes from 0 to 2π. In hyperspherical coordinates η is independent of ρ but is a

function of θ and φ. For a system of three equal masses like the one considered

here η is equivalent/equal to the hyperangle φ (see Appendix-A). Introduction

of this phase factor therefore, changes the derivative terms, ∂
∂φ
→ ∂

∂φ
+ iα, and,

∂2

∂φ2 → ∂2

∂φ2 + 2iα ∂
∂φ

- α2, in the nuclear kinetic energy operator of the effective

Hamiltonian of Eq. 4.5. A choice of, α=3
2
, is more convenient to retain the

permutation symmetry of a system involving three identical nuclei like D3 [5].

Numerical implementation of these changes can be easily achieved by the revised

FFT method outlined by Billing and Marković [22]. In this method, a simple

modification in evolution of the kinetic operator in φ corrects the GP change. In

contrast to the normal procedure, the wavefunction is first multiplied with e−iαφ

and then Fourier transformed to obtain the wavefunction in the momentum space.

The transformed wavefunction is then multiplied by i(−k + α) and −(−k + α)2,
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respectively, (these momentum eigenvalues differ from that in ref. [22] as a slightly

different convention in the discrete FFT equations as given in Appendix-B) is used

here, to obtain the first and second derivative terms in φ. In the normal procedure

they are, respectively, multiplied by momentum eigenvalues ik and −k2. Finally

the wavefunction is back transformed and multiplied with eiαφ to ensure the phase

correction [22].

The BH diagonal correction can easily be obtained using the mass-weighted

coordinate r (within a linear coupling approximation) as [39,40]

Λ◦ =
~2

8mDr2
, (4.9)

where mD is the mass of the atom D. As this term does not contain any differen-

tial operator, inclusion of BH involves just addition of this term to the adiabatic

potential energy.

4.3.4 Coupled surface treatment

As stated in section 2.2, to avoid the singular behavior of the derivative coupling

elements at the intersections of the electronic states The diabatic ansatz of Eq.

2.4 is used here, for the coupled states treatment of the nuclear dynamics. In this

case, however, the initial WP is prepared on the realistic adiabatic representation

and the diabatic ansatz is utilized for its propagation on the grid only. The final

analysis can be carried out in both the representations and they yield the same

results [41]. In the diabatic representation the Hamiltonian can be expressed in

the form

Hd = TN


1 0

0 1


 +


U11 U12

U21 U22


 , (4.10)
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where the nuclear kinetic energy operator in hyperspherical coordinates is given

by the terms in the right hand side of Eq. 4.5 except the potential energy term

V (ρ, θ, φ).

The elements of the diabatic electronic matrix of Eq. 4.10 can be obtained by

utilizing the S matrix of Eq. 2.6 as [40, 41]


U11 U12

U21 U22


 = S


V− 0

0 V+


S†

=
V− + V+

2
1 +

V+ − V−
2


− cosφ sinφ

sinφ cosφ


 , with (4.11)

S =


 cos ζ sin ζ

− sin ζ cos ζ


 . (4.12)

Here φ = 2ζ (within a linear coupling approximation [39]) is the pseudorotation

angle which is also equivalent to the angle φ in hyperspherical coordinates (cf.,

Appendix-A) and V− and V+ represents the two adiabatic PESs. It is important

to note that in contrast to the adiabatic electronic states the diabatic states are

not unique. This is primarily due to the non-uniqueness of the NAC terms for

different choice of electron coordinates (see Ref. [42]). It is gratifying to state that

the diabatization method employed above has been well tested [39] and found to

eliminate the leading singular derivative coupling terms of the NAC operator.



4.4. Results and discussion 105

4.4 Results and discussion

) The dynamical outcomes of the nuclear wavefunction, pertinent to the n=3

Rydberg electronic state of D3, upon a Franck - Condon transition to its 2pE
′

electronic ground state are presented and discussed here. Dynamical calcula-

tions considering both the sheets of this degenerate electronic PES explicitly are

designated as coupled surface calculations whereas, calculations considering the

lower adiabatic sheet of this PES are termed as uncoupled surface calculations.

The latter are repeated by including (1) geometric phase (GP) correction, (2)

diagonal Born-Huang (BH) correction, (3) both GP and BH corrections to the

Born-Oppenheimer (BO) adiabatic Hamiltonian.

In order to clearly reveal the nuclear motion around the CIs, a movie show-

ing the time-evolution of the WP probability density, 1
32

∫ |χ(t)|2dρsinθdθdφ, is

prepared. At each time step the value of ρ at the maximum of WP probability

density is calculated and at this value of ρ equally spaced contours of WP proba-

bility density and potential energy are plotted in the (X = ρ θ
2
sinφ, Y = ρ θ

2
cosφ)

plane. Such a representation of the PESs proposed by Kuppermann and co-

workers [43] and later revised by Varandas and coworkers [44] and also by Kup-

permann and co-workers [45] provides an elegant way to portray the nuclear

motion around CIs.The coordinates used above correspond to the modified John-

son’s hyperspherical coordinates [18] as adapted by Varandas and coworkers [7]

introduced in section 4.3.1. The entire set of these WP probability density evolu-

tion movies can be downloaded from the web (http://chemistry.uohyd.ernet.in/

∼sm/SMGID/animation.html). A few important snapshots are presented later

in order to facilitate the discussion on the dynamical observables.
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Figure 4.2: The emission profile of D3 from the n=3 Rydberg electronic state to its
lower adiabatic electronic states of the 2pE′ ground electronic manifold. Here, emission
profiles calculated without the inclusion of GP and BH corrections are plotted in the
inverted Y-axis and in black color whereas, the profiles with inclusion of GP or BH or
both GP and BH corrections are plotted in the normal Y-axis and shown in red color.
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4.4.1 Effects of the GP and BH correction

The Rydberg (n=3) emission spectrum of D3 for a transition to the lower adi-

abatic electronic sheet of its 2pE ′ ground electronic manifold obtained from the

present theoretical study is plotted in Figs. 4.2 (a-c). In all the panels, emission

profile calculated without the inclusion of GP and BH corrections and using the

BO adiabatic Hamiltonian are plotted in the inverted Y-axis and shown in black

color. The emission profiles including either GP or BH corrections or both GP

plus BH corrections are plotted in the normal Y-axis and shown in red color.

Throughout the paper intensity of the emission profiles are scaled to unity for a

better comparison of various results and are given in arbitrary units. It can be

seen from the Figs. 4.2(a-c) that the inclusion of GP or BH corrections or both

GP plus BH corrections has no significant effect on the broadening of the spec-

tral envelope and hence the lifetime of the eigenstates participating in it. The

position of the maximum of the envelope, however, is shifted slightly towards the

higher energy side. The spectra in Figs. 4.2(a-c) are very broad and diffuse and

can be related to the highly repulsive nature of the lower adiabatic sheet which

drives the WP quickly to the reactive and nonreactive channels.

Further, to shed light on the nuclear dynamics on the lower adiabatic sheet of

the 2pE ′ ground electronic manifold, a few snapshots of the WP evolution movie

(mentioned above) recorded at time 0.944 fs, 7.824 fs and 10.792 fs only are shown

in Fig. 4.3. In this figure the panels (a-c) and (d-f), respectively, correspond to

the evolution of the WP without and with the inclusion of GP correction. In

these plots the center of the circle corresponds to the D3h configuration of D3

(i.e., CIs geometry) where θ = 0◦. As one moves along the radius of the circle

θ increases and D3 approaches to the linear geometries. At the periphery θ =
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Figure 4.3: Snapshots of the WP probability density (equatorial view) during its evo-
lution on the lower adiabatic sheet of the 2pE′ electronic ground manifold of D3 at times
mentioned above. Contour lines in orange and blue colors, respectively, correspond to
the PES and WP probability density. Panels a-c and d-f, receptively, correspond to the
uncoupled state calculations without and with GP corrections.
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Table 4.2: Energy values (in eV) at peak maximum of the spectrum in Figs. 4.4(a-c).

Peak No. Without GP With GP With BH With GP (2)-(1) (4)-(1)
& BH (1) (2) (3) & BH (4)

1 3.512 3.676 3.678 3.794 0.164 0.282
2 3.663 3.821 3.822 3.935 0.158 0.272
3 3.807 3.959 3.961 4.068 0.152 0.261
4 3.942 4.088 4.090 4.191 0.146 0.249
5 4.071 4.210 4.212 4.309 0.139 0.238
6 4.193 4.324 4.326 4.416 0.131 0.223

180◦, which defines the collinear geometry of D3 and various dissociation channels

(reactive and nonreactive) appear in this geometry. Note that the ’broken’ line

in the ABC combinations refer to the bond that ruptures while the solid line

indicates the bond that forms during the unimolecular evolution of ABC on the

lower adiabatic surface. It can be seen from the plots that the WP enters these

fragmentation channels in about ∼ 10 fs in both (with and without GP) the cases.

This is because the lower adiabatic sheet is highly repulsive and quickly drives

the WP to these channels as the minimum energy path occurs at the collinear

arrangements of the three nuclei. As expected, the inclusion of GP correction

introduces a nodal line (clearly seen in panel d) along the intersection seam,

which prevents the WP to encircle the CIs and changes its phase, as a result the

total (electronic times nuclear) wavefunction retains its single-valued property.

The emission profile of Rydberg-excited D3 for a transition to the upper adia-

batic sheet of its 2pE ′ ground electronic manifold is shown in Figs. 4.4(a-c). As

in case of Fig. 4.2, the spectrum calculated without the GP and BH corrections

is shown in the inverted Y- axis (in black color), whereas, the spectrum obtained

with these corrections is shown in red color in the normal Y- axis. The upper
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Figure 4.4: Same as in FIG. 4.2 but for a transition to the upper adiabatic sheet of
the 2pE′ electronic manifold of D3.
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adiabatic cone of D3 is bound in nature in the absence of explicit coupling with

its lower repulsive sheet. The emission spectrum in Fig. 4.4 therefore portrays

the discrete vibrational level structure in this case. It can be seen from these

figures that the sharp vibrational structures remain unaltered when the GP and

BH corrections are included. The maximum of each peak, however, shifts signif-

icantly to the higher energy. This is in contrast to the results of Fig. 4.2, where

the energy shift is not very significant. To make a better comparison, the energy

eigenvalues of the first six peaks of the emission profiles of Figs. 4.4(a-c) are

tabulated and shown in Table. 4.2. It can be seen from the table that inclusion

of GP and BH corrections shifts the peaks towards higher energy side by almost

the same magnitude (∼ 0.15 eV). When both corrections are included the mag-

nitude of the shift nearly doubles (∼ 0.26 eV). Moreover, the magnitude of this

shift decreases as one moves from peak 1 to peak 6 (as shown in column 6 and

7 of Table 4.2). This reveals that the lower vibrational levels supported by the

upper adiabatic electronic sheet are severely affected by the GP or BH corrections

when compared to the energetically higher ones. This is because the energetic

minimum of the upper adiabatic sheet coincides with the minimum of the seam

of CIs at ∼ 2.74 eV and the lower vibrational levels are closer to this minimum.

As discussed in Chapter 2 that the inclusion of the GP correction introduces an

additional angular momentum term in the effective Hamiltonian. Contribution

of this term causes a shift of the energy eigenvalue. The BH term, on the other

hand, is like any other centrifugal term causes an effective decrease of the depth

of the well (see additional information at end of this chapter for more details) of

the upper adiabatic sheet by ∼0.32 eV. This results into a shift of the vibrational

energy eigenvalues.
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Figure 4.5: Six lowest eigenstates supported by the upper adiabatic sheet of D3

without the inclusion of GP and BH corrections. The contours of the eigenfunctions
are superimposed on the potential energy contours for φ= 0 corresponding to the c2v

geometry of D3. The energy eigenvalue of these functions is given in corresponding
panel. Contour lines in orange and blue colors, respectively, corresponds to the PES
and WP probability density.
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The eigenfunctions corresponding to the first six peaks of Fig. 4.4(a-c) are

shown in Figs. 4.5(a-f). Equally spaced probability density contours of the eigen-

functions superimposed on equally spaced contours of the upper adiabatic PES

for the c2v geometry (for φ = 0) are shown in Figs. 4.5(a-f). The energy eigen-

value of each eigenfunction is indicated in the respective panel. In the above, the

coordinates (Y=ρsin(θ/2), Z=ρcos(θ/2)) are obtained by mapping hyperspher-

ical coordinates to Cartesian coordinates for φ = 0 [18, 43]. The eigenfunctions

shown above are obtained without including the GP and BH corrections. Clearly,

the number of nodes along ρ in the eigenfunctions increase from 0 to 5 as one

moves from panel (a) to (f) as expected for the first six peaks of the emission

spectrum of Fig. 4.4. The inclusion of GP or BH corrections or both has no no-

ticeable effect on this eigenfunction pattern in the coordinate frame used above

(see additional information at the end of the chapter for more details).

In Figs. 4.6(a-f), the eigenfunctions of the panel a and f, Fig. 4.5 are viewed

in an equatorial plane, X=
ρθ

2
sinφ and Y=

ρθ

2
cosφ, as defined by Kuppermann

[43, 45]. In Fig. 4.6, the two panels at the top, middle and bottom represent

the eigenfunctions obtained in the purely adiabatic BO situation (as in Fig. 4.5),

by including the GP correction and by including the BH correction, respectively.

As can be seen that the BH correction does not add any additional features

to these eigenfunctions. As stated above, this correction shifts the energetic

minimum of the PES uphill and therefore the eigenfunctions merely located at

energetically higher potential energy contours. These eigenfunctions are single-

valued and encircles the CIs in a close loop as is obvious from the plots. The

total wavefunction is double-valued in this case owing to the double-valued nature

of the adiabatic electronic wavefunction. The inclusion of the GP correction
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Figure 4.6: Equatorial view of the eigenfunctions of panels a and f of FIG. 4.5.
Contours in black, blue and red color, respectively, correspond to the results obtained
in the purely adiabatic BO situation, by including the GP correction and by including
the BH correction. The energy eigenvalue of the eigenstate is given in each panel..
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however, reveals dramatic changes in the overall features of these eigenfunctions

as can be seen from plots given in the middle panels of Fig. 4.6. In this case

the plane-wave components arising from vector potential term in the ∇2 operator

introduce interesting interference effects. The wavefunction components to the

left and right of CIs experience opposite interference effects resulting into an

overall destructive interference. This introduces the observed node along φ in the

eigenfunction. Such effects on a bound JT system [46] as well as on a scattering

problem [47] in two-dimensions have been discussed in the literature. Appearance

of this additional node in the eigenfunction (which confirms the restoration of the

single-valued nature of the total wavefunction) shifts its energy eigenvalue when

compared to the purely BO case.

4.4.2 Effects of explicit surface(s) coupling

After analyzing the effects due to the “important” correction terms (viz., the

GP and BH) to HBO, it is worthwhile to examine how the results presented

above are modified when the two electronic surfaces are coupled explicitly! This

exercise considers the complete Hamiltonian of Eq. 2.1 or equivalently Eq. 2.4.

For the numerical computation, the adiabatic initial Rydberg WP (cf., Eq. 4.6)

is subjected to a Franck-Condon transition to the adiabatic electronic sheets of

the degenerate ground electronic manifold and then transformed to the diabatic

electronic basis (as stated in chapter 2) and propagated thereafter in both space

and time. Finally, the evolved WP is transformed back to the adiabatic electronic

basis to analyze the final outcome. This follows naturally from the fact that an

adiabatic basis is a realistic representation of the electronic state(s), while a

diabatic electronic basis provides an interim solution to propagate the WP by

avoiding the singularity of the interstate derivative coupling terms (cf., Eq. 2.2 )
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of the adiabatic electronic basis.

In Figs. 4.7(a-c) it is shown how the spectral features changes upon inclusion

of the surface coupling, when the WP is launched on the lower adiabatic sheet

of the ground electronic manifold of D3. The results shown in previous figures

including the GP and BH corrections are also presented again for clarity. In these

figures the results obtained by including GP, BH and GP plus BH corrections

are plotted in normal Y-axis, respectively, whereas, the result of coupled (CP)

surface calculation is plotted in the inverted Y-axis. It can be seen that, there

is no significant visible effects of the surface coupling (when compared with the

results obtained with the GP and BH corrections) on the WP evolving on the

lower adiabatic sheet of the ground electronic manifold of D3. As mentioned

above, this sheet is highly repulsive and quickly (within ∼ 10 fs ) drags the

WP into the dissociative channels. This time scale seems to be far shorter than

that required for a single pseudo-rotation of the evolving WP around the conical

intersections (CIs) at the D3h symmetry configuration on the lower adiabatic

sheet. Furthermore, the minimum energy path on this sheet for the D + D2

reaction occurs at the collinear configurations of D3. This outcome is on par with

the earlier extensive research on the H + H2 reactive dynamics [8–10,40,41,48–51].

It appears that the highly repulsive nature of the lower adiabatic sheet does

not allow the WP for a pseudo-rotation around the CIs to have any observable

consequence on its dynamical evolution on this sheet.

Contrary to the above, dramatic effects of the surface coupling can be seen

when the WP is initially launched on the upper adiabatic sheet as depicted in

Figs. 4.8(a-c). In these figures the broad envelope represents the vibronic energy

level structure of the upper adiabatic sheet when its coupling to the lower sheet
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Figure 4.7: Same as in FIG. 4.2 and including also the complete surface coupling in
the dynamics.
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Figure 4.8: Same as in FIG. 4.4 and including also the complete surface coupling in
the dynamics.
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is explicitly included in the dynamics (cf., Eq. 2.4). The sharp line structures

on the other hand represent uncoupled surface results including the GP and BH

corrections as given in Figs. 4.4(a-c). It can be immediately seen that neither the

GP nor the BH correction contributes to the huge broadening of the spectrum of

this adiabatic sheet! Therefore, it is clear that this broadening solely originates

from the off-diagonal derivative coupling terms of the nonadiabatic coupling op-

erator of Eq. 2.2. Furthermore, it is important to note that neither the GP nor

the BH correction alone could place the maximum (center-of-gravity) of the exact

spectral envelope at the right energy eigenvalue. It can be seen from panel c that

a combined contribution from the GP plus BH correction is required to obtain

this maximum at the right place. This concludes that, with inclusion of both the

GP and BH corrections, the shape of the spectral peaks remains unaffected how-

ever, their energy eigenvalue is altered. Additionally, the symmetry properties of

the eigenstates also change upon inclusion of GP corrections as already discussed

in the literature [6,52,53]. It is worthwhile to add that, Alijah and Varandas [53]

have extended Watson’s formalism [54] to describe the symmetry properties and

designation of the rovibrational levels of the upper adiabatic cone by taking the

GP effects into account. It is shown that the levels are described by a half-integer

quantum number when the GP effects are considered.

The effect of complete surface coupling and the GP on the dynamics of the

upper adiabatic sheet is demonstrated in Fig. 4.9. Wherein, the time evolution

of the nuclei is presented in terms of the probability density plot of the WP in

the equatorial plane as defined above. The panels in the left (a-c) and right (d-

f) column of the figure represent the evolution of the WP including the surface

coupling and the GP correction, respectively. It can be seen that in both the cases
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evolution of the WP at various times (indicated in the figure) in the coupled (panels
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the nodal line along φ is restored confirming the expected single-valued nature

of the total wavefunction. Additionally, in the coupled surface situation the WP

can be seen to access CIs (see panel b) to relax (nonradiatively) to the repulsive

lower adiabatic sheet of the ground electronic state where it finally dissociates.

It is therefore confirmed from the above demonstration (both mathematically

and also visually) that the consideration of the complete two-states Hamiltonian

(cf., Eq. 2.4) includes the GP and BH corrections and most importantly the

interstate coupling effects that triggers an internal conversion of the nuclear WP.

This internal conversion process allows a mixing of levels of both the adiabatic

sheets of the degenerate state and causes a huge increase of the vibronic line

density. The latter in turn causes the broad and diffuse nature of the spectral

envelope as seen in Fig. 4.8, which is in very good accord with the upper hump

of the bimodal experimental emission profile [1, 2] shown in Fig. 4.1.

To this end, the experimental optical emission spectrum [1, 2] of D3 shown in

Fig. 4.1 is referred again. Both the humps in this bimodal emission profile are

extremely broad and diffuse. According to the theoretical results presented and

discussed above, it should be recognized that the broadening mechanism of the

band corresponding to the lower and upper adiabatic sheet is different. While in

the former case it originates from a fast dissociation of the nuclear WP, in the

later case, it is due its fast relaxation through the CIs. The energetic minimum

of the upper adiabatic sheet coincides with the minimum of the seam of CIs and

therefore strong nonadiabatic surface coupling effect is immediately encountered

by the WP evolving on this sheet. In an earlier study it was estimated that the

WP evolving on this sheet relaxes to the lower adiabatic sheet within ∼3 - 6 fs

only [55]. It therefore emerges from the above discussion that the nonadiabatic
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Figure 4.11: Optical emission spectrum of Rydberg-excited D3, (a) experimental
results reproduced from Fig. 1(a) of Ref. [1], (b) coupled states theoretical results for
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surface coupling does not play any significant role in the nuclear dynamics on

the repulsive lower adiabatic sheet. Therefore, no noticeable differences can be

derived from the GP plus BH corrections and complete surface(s) coupling results.

The GP and BH corrections on the other hand constitute a minor part of the

complete surface coupling effects on the dynamics of the upper adiabatic sheet.

The overall spectral feature in this case is mostly governed by the off-diagonal

derivative coupling elements of the nonadiabatic matrix.

Finally, the effect of total angular momentum J on the emission profiles of

Rydberg-excited D3 from its n=3 electronic state to the upper adiabatic elec-

tronic state of the 2pE ′ ground electronic manifold is examined and shown in

Fig. 4.10(a-f). The value of the total angular momentum J and its projection

on the BF axis Ω for which the emission profiles are obtained are shown in each

panel. Here, for a better comparison, the emission profile obtained in the uncou-

pled state calculation without the inclusion of GP and BH corrections is plotted in

the inverted Y-axis and in black color (panels a-c) whereas, the emission profiles

obtained with the inclusion of these corrections are plotted in red color (panels

a-f) in the positive Y-axis. Also the emission profile obtained in the coupled state

calculation is plotted in panels d-f (black color). It is observed that for a fixed

value of Ω the energy eigenvalue of the peaks increases with increase in value of J

(panels d-f) whereas, the reverse effect is observed i.e., the eigenvalue of the peaks

decreases with increase in the value of Ω and for a fixed value of J (panels a-c).

These shifts are due to either decrease or increase of the centrifugal contributions

to the overall adiabatic potential energy. In coupled state calculations along with

the shift of the entire diffuse broad band towards higher energy, more structure

at the right wing is observed with increasing J . The emission profiles to the lower
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adiabatic electronic state also showed similar effects due to the change in total

angular momentum i.e., shifts in the maximum of the envelope of the spectra in

accord with the magnitude of the centrifugal term.

A direct comparison of experimental and theoretical spectra was made in an

earlier publication [55,56]. Such a comparison is presented here also including the

J 6= 0 results. The spectral intensities for various J and K values are averaged

as

Iavg(E) =
5∑

J=0

(2J + 1)
J∑

K=0

gKI
JK(E), (4.13)

where the quantity gK is the degeneracy factor; gK = 1 for K = 0, and gK =2 for

K 6= 0. The results are shown in Figs. 4.11(a-c). The experimental spectrum in

Fig. 4.11(a) is reproduced from Ref. [1]. The emission spectrum obtained for J =

0 is shown in Fig. 4.11(b). The spectrum derived from J 6= 0 (J = 0-5) results

with the aid of Eq. 4.13 is shown in Fig. 4.11(c). It can be seen that the J 6=
0 results are much closer to the experiment interms of the detail fine structure.

The sharp structures seen in the J = 0 results average out with contributions

from different partial waves. The structures in the experimental spectrum are

due to Cs background [1].

4.5 Summary and outlook

The effects of GP, BH corrections to the adiabatic BO Hamiltonian and of explicit

surface coupling on the nuclear dynamics in the degenerate electronic ground state

of D3 are theoretically investigated. The theoretical tools are designed in accor-

dance with the optical emission experiment of Rydberg excited D3 which directly

probed the CIs of its electronic ground state. The time-dependent Schrödinger
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equation is numerically solved in hyperspherical coordinates and the nuclear dy-

namics in both the adiabatic sheets is critically examined. The emission profile

for a transition to the uncoupled lower adiabatic sheet is a very broad and dif-

fuse band. This is due to a highly repulsive nature of this surface which quickly

(within ∼ 10 fs) drags the WP to various reactive and nonreactive channels. On

the other hand, emission to the uncoupled upper adiabatic sheet yields discrete

peaks of the vibrational states supported by this sheet. Inclusion of GP and

BH corrections to the BO Hamiltonian causes a shift of the energy eigenvalues

of these emission profiles. The extent of this shift is far greater for the discrete

peaks of the upper sheet when compared to the same for the broad and diffuse

envelope of the lower sheet. Furthermore, it is found that energy shift of nearly

same magnitude is caused by either GP or BH correction to the eigenvalues of

the discrete peaks of the upper sheet. The magnitude of this shift decreases with

an increase in the peak energy. The vector and centrifugal potential terms that

appear in the Hamiltonian on inclusion of GP and BH corrections, respectively,

cause such shifts in the energy eigenvalue.

Apart from this energy shift, the overall spectral features remain unaltered

with GP and BH corrections. The BH correction merely modifies the adiabatic

potentials and WP encircles the CIs in this case also like in the uncoupled state

situation and therefore the total wavefunction remains multi-valued. Inclusion of

GP on the other hand introduces an overall destructive interference, which results

into a phase change of the nuclear wavefunction and a nodal line at the CIs. The

WP therefore does not encircle the CIs in this case and total wavefunction retains

its single-valued property.
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The effect of explicit surface coupling on the dynamics of the lower adiabatic

sheet has been found to be minor. Despite the overall energy shift (which is ob-

tained already as a combined GP and BH effects) the fine structure of the spectral

envelope remains unaltered. It is reiterated, that the observed broad and diffuse

structure of this band primarily arises from an extremely fast dissociation of the

nuclear WP to the reactive / nonreactive channels. On the other hand, extremely

strong effect of surface coupling has been found on the dynamics of the upper

adiabatic sheet. In this case the off-diagonal derivative coupling terms of the

nonadiabatic operator play major role in the evolution of the WP. In this case

the WP does not encircle the CIs (like the effect of GP correction) and in addition

it undergoes internal conversion to the lower adiabatic sheet. This nonradiative

relaxation process mediated by the off-diagonal derivative coupling terms causes

a complete blurring of the discrete vibrational structure of the upper sheet. When

compared with the effects due to GP and BH corrections (also keeping the ex-

perimental findings of Fig. 4.11(a) in mind), it can be unambiguously concluded

that these corrections constitute a minor part of the entire surface coupling in a

situation where the seam of CIs is readily accessible to the evolving WP. The huge

broadening of the spectral envelope of the upper adiabatic sheet (also observed in

the experiment) is therefore an effect arising from the off-diagonal derivative cou-

pling terms of the nonadiabatic operator. The latter when considered explicitly

can be seen to include the GP and BH corrections also in an consistent fashion

into the overall dynamics of the system. A similar study of the nuclear motion on

the orbitally degenerate electronic ground state of H+
3 and D+

3 is currently being

taken up.
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4.6 Additional information

For brevity, some of the obvious results are omitted in the discussion above. Some

of those findings are presented here for completeness.

As discussed in section 4.4.1 the BH term is like any other centrifugal term and

causes an effective decrease of the depth of the well of the upper adiabatic sheet.

This is pictorially shown here in Fig. 4.12. These represent the equatorial view

of upper adiabatic sheet at ρ = 2.58 bohr with and with out the BH corrections,

respectively, shown in right and left panels. It is clear from Fig. 4.12 that the

well depth decreases with the inclusion of BH correction and thus shifting the

eigenvalue spectrum to the right.

In section 4.4.1, the probability density contours of the first six eigenstates

states supported by the upper adiabatic sheet of D3 and with out the inclusion

of GP or BH corrections are presented. Here the similar plots but with the

inclusion of GP corrections, BH corrections and both GP and BH corrections

are, respectively, shown in Fig. 4.13, Fig. 4.14 and Fig. 4.15. These represent

the contours of the eigenfunctions superimposed on the potential energy contours

for φ= 0 corresponding to the c2v geometry of D3. The energy eigenvalue of

these functions is given in corresponding panel. Contour lines in orange and blue

colors, respectively, corresponds to the PES and WP probability density. It is

seen from these figures (and also discussed in section 4.4.1) that the inclusion

of GP or BH corrections or both has no noticeable effect on this eigenfunction

pattern in the coordinate frame used, only the value of the contours are shifted

to higher energies.



4.6. Additional information 130

0.0

2.0

4.0

6.0

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0
y = ρsin( θ/2) 

0.0

2.0

4.0

6.0

z 
= 

ρc
os

(θ
/2

)

0.0 2.0 4.0 6.0

a

b

c

d

e

f

0°

180°

θ°

60°

120°

3.676 eV 4.088 eV

3.821 eV 4.210 eV

3.959 eV 4.324 eV

Figure 4.13: Same as in Fig. 4.5 but with inclusion of GP corrections.



4.6. Additional information 131

0.0

2.0

4.0

6.0

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0
y = ρsin( θ/2) 

0.0

2.0

4.0

6.0

z 
= 

ρc
os

(θ
/2

)

0.0 2.0 4.0 6.0

a

b

c

d

e

f

0°

180°

θ°

60°

120°

3.678 eV 4.090 eV

3.822 eV 4.212 eV

3.961 eV 4.326 eV

Figure 4.14: Same as in Fig. 4.5 but with inclusion of BH corrections.



4.6. Additional information 132

0.0

2.0

4.0

6.0

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0
y = ρsin( θ/2) 

0.0

2.0

4.0

6.0

z 
= 

ρc
os

(θ
/2

)

0.0 2.0 4.0 6.0

a

b

c

d

e

f

0°

180°

θ°

60°

120°

3.794 eV 4.191 eV

3.935 eV 4.309 eV

4.068 eV 4.416 eV

Figure 4.15: Same as in Fig. 4.5 but with inclusion of both GP and BH corrections.



4.7. APPENDIX A 133

X

y

(0,0)

(x1,y1)

(x3,y3)(x2,y2)
a

1

2 3

Figure 4.16: Schematic diagram illustrating the pseudorotation of nuclei in D3.

4.7 APPENDIX A

For the case of equal masses of three nuclei, it is obtained from Eq. 4.8,

r2
1 + r2

2 + r2
3 =

√
3ρ2, (4.14)

r2
2 − r2

3 = ρ2sin(θ/2)sin(φ), (4.15)
√

3r2
1 − ρ2 = ρ2sin(θ/2)cos(φ), (4.16)

and therefore,

tan(φ) =
r2
2 − r2

3√
3r2

1 − ρ2
. (4.17)

Now let the molecule is placed in the z = 0 plane and the origin is taken as the
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centroid of the equilateral triangular configuration of D3 with length of each side

is taken as a as shown in Fig. 4.16. The coordinates of the nuclei labeled 1, 2 and

3, respectively, in their equilibrium geometry are obtained in the Cartesian (x,y)

frame as (0, a√
3
), (−a

2
, −a

2
√

3
), and (a

2
, −a

2
√

3
). When the nuclei make a pseudorotation

around these equilibrium geometry then the coordinates of the nuclei change to

(x1, y1) = (rcosϕ,
a√
3

+ rsinϕ)

(x2, y2) = (
−a
2

+ rcos(ϕ+
4π

3
),
−a
2
√

3
+ rsin(ϕ+

4π

3
))

(x3, y3) = (
a

2
+ rcos(ϕ+

2π

3
),
−a
2
√

3
+ rsin(ϕ+

2π

3
)). (4.18)

Here r and ϕ represent the polar coordinates as introduced in section 4.3.2. Con-

sidering these transformations the internuclear distances of D3 can be expressed

as

r2
1 = a2 + 3r2 − 2

√
3arsinϕ, (4.19)

r2
2 = a2 + 3r2 − 3arcosϕ+

√
3arsinϕ, (4.20)

r2
3 = a2 + 3r2 + 3arcosϕ+

√
3arsinϕ. (4.21)

From Eqs. 4.20 to 4.21 we obtain

r2
1 + r2

2 + r2
3 = 3(a2 + 3r2), (4.22)

r2
2 − r2

3 = −6arcosϕ. (4.23)

Now, considering Eqs. 4.15, 4.20 and 4.23 we obtain

√
3r2

1 − ρ2 = −6arsinϕ. (4.24)
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This leads to

cotϕ =
r2
2 − r2

3√
3r2

1 − ρ2
. (4.25)

A comparison of Eqs. 4.17 and 4.25 yields, φ = ϕ − π
2
. This confirms the

equivalence of φ↔ ϕ.

When considering an angle equivalent to ϕ as defined as θ in Eqs. 12-15 of

Ref. [57] which is also adapted later by Varandas and coworkers [17], we get

tanϕ =

√
3(r2

2 − r2
3)

2r2
1 − (r2

2 + r2
3)

=

√
3(r2

2 − r2
3)

2r2
1 − (

√
3ρ2 − r2

1)
from Eq. 4.15)

=
r2
2 − r2

3√
3r2

1 − ρ2
, (4.26)

which yields φ = ϕ.

4.8 APPENDIX B

Discrete fast Fourier transformation algorithm as in Numerical Recipes [58] is

used here, hence the Eq. 51 of the ref. [22] takes the form

e−iαφf(φ) =
∑

k

gke
−ikφ, (4.27)

where the coefficients gk are obtained by Fourier transformation of e−iαφf(φ).

The derivatives of f(φ) are obtained as,
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∂f

∂φ
=

∂

∂φ
eiαφ

∑

k

gke
−ikφ

=
∑

k

gk
∂

∂φ
eiφ(α−k)

=
∑

k

i(α− k)gke
iφ(α−k)

= eiαφ
∑

k

i(α− k)gke
−ikφ. (4.28)

Similarly, we get

∂2f

∂φ2
= eiαφ

∑

k

−(α− k)2gke
−ikφ (4.29)
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[22] G.D. Billing, Nikola Marković, J. Chem. Phys. 99 (1993) 2674.
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[41] S. Mahapatra, H. Köppel, J. Chem. Phys. 109 (1998) 1721.

[42] A.J.C. Varandas, J. Chem. Phys. 131 (2009) 124128 and references therein.

[43] A. Kuppermann, Chem. Phys. Lett. 32 (1975) 374.

[44] A.J.C. Varandas, Chem. Phys. Lett. 138 (1987) 455.

[45] S. Rogers, D. Wang, S. Walch, A. Kuppermann, J. Phys. Chem. A 104 (2000)

2308.



References 140
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Chapter 5

Theoretical study of electron

detachment spectroscopy of

ClH−
2 and its isotopomer ClD−

2

5.1 Introduction

The electron detachment spectroscopy of ClH−
2 and ClD−

2 is examined and the

results are presented, compared with recent high-resolution measurements and

discussed in this chapter. Franck-Condon (FC) transition from the electronic and

vibrational ground state of the anion (ClH−
2 or ClD−

2 ) to the coupled electronic

manifold of the neutral species (ClH2 or ClD2) is investigated by a time-dependent

wave packet (WP) propagation method as described in chapter 2. Rich vibronic

structures extending to higher energies appeared due to Cl...H2 continuum states

in the photodetachment band in the previous study [1] are not observed in the

recent experiment [2] (see section 1.2.2 for more details). This discrepancy moti-

vated us to revisit the previous theoretical study in order to understand the origin

141



5.2. Theoretical and computational details 142

of the discrepancies and to make efforts to eliminate them. For this purpose, the

following modifications are introduced in the present study as compared to the

earlier theoretical [1].

1. The initial anionic wavefunction is prepared using the adiabatic bender

model of Alexander and co-workers [3] including an ortho / para selection.

This is in contrast to the anionic WP prepared in Ref. [1] where it is approx-

imated by a Gaussian WP and also generated using the anionic potential

energy surface (PES) of Alexander et al. [3].

2. The 6 × 6 coupled states Hamiltonian of the spin states ClH2 / ClD2 in-

troduced by Alexander and co-workers [4] is employed in contrast to a 3 ×
3 spin-orbit (SO) Hamiltonian employed in Ref. [1].

3. An adiabatic-to-diabatic transformation of the electronic basis is carried

out in the present study in contrast to a diabatic electronic basis used

throughout the entire calculations in Ref. [1].

The results obtained with the above modification of the theoretical treatment are

in good accord with the recent experimental and theoretical studies [2, 5, 6].

5.2 Theoretical and computational details

The Σ and Π states of ClH2 (ClD2) are coupled through electronic nonadiabatic

interactions. In addition, SO coupling causes a splitting of these states into 2Σ 1
2

, 2Π 3
2

, and 2Π 1
2

(in linear configurations). Therefore, the Hamiltonian for these

energetically lowest SO states of neutral ClH2 and its deuterated isotopomer in
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Table 5.1: Angular momentum terms used in the Hamiltonian [cf. Eqs. 5.3].

Description Symbol Quantum No. z-component
Electronic orbitalangular mo-
mentum of Cl

l l = 1 λ = -1, 0, +1

Electronic spin angular mo-
mentum of Cl

s s = 1
2

σ = 1
2
, -1

2

Nuclear orbital angular mo-
mentum of H2

j j = 0, 1, 2,... k= -j to j

Nuclear orbital angular mo-
mentum of Cl relative to H2

L L = 0, 1, 2,...

Total electronic and nuclear
angular momentum

J=L+l+s+j J = 1/2, 3/2,... K = -J to J

a diabatic electronic basis can be symbolically expressed as (cf. 2.45)

Hdia = TnucI6 + Hel+so. (5.1)

In the above equation Tnuc is the Hamiltonian matrix corresponding to the nuclear

kinetic energy operator. In a diabatic electronic basis this is a 6 × 6 diagonal

matrix (including the spin degeneracy) indicated by the symbol I6 for a 6 × 6

unit matrix. The quantity Hel+so = (Hel+Hso) represents the diabatic potential

matrix including the electronic and SO coupling. The nuclear Hamiltonian Tnuc,

in reagent Jacobi coordinates is given by

Tnuc = − ~2

2µR

∂2

∂R2
− ~2

2µr

∂2

∂r2
− ~

2

2I

1

sin γ

∂

∂γ

(
sin γ

∂

∂γ

)
+

(J − l − s − j)2

2µR2
, (5.2)
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where I = (µRµrR
2r2)/(µRR

2 +µrr
2). Following the work of Rebentrost et al. [7]

and Schatz and co-workers [8], the angular momentum operators (cf. last term of

Eq. 5.2) and their projection on the body-fixed (BF) z-axis are defined and listed

in Table 5.1 for completeness. The elements of the angular momentum operator

(J − l − s − j)2 (neglecting Coriolis coupling) can be expressed as [4],

(J − l − s − j)2|Kkλσ〉 = [J(J + 1) + j(j + 1) + 2.75−
2K2 + 2kλ+ 2kσ + 2σλ]|Kkλσ〉. (5.3)

The electronic (including SO interactions) Hamiltonian in a diabatic signed-λσ

basis [4] is given by

Hel+so =




λ σ | 0 + 1
2 〉 | 0− 1

2 〉 |+ 1 + 1
2 〉 |+ 1− 1

2 〉 | − 1 + 1
2 〉 | − 1− 1

2 〉
〈 0 + 1

2 | VΣ 0 −V1 −√2B V1 0

〈 0− 1
2 | 0 VΣ 0 −V1 −√2B V1

〈+1 + 1
2 | −V1 0 VΠ −A 0 V2 0

〈+1− 1
2 | −√2B −V1 0 VΠ + A 0 V2

〈−1 + 1
2 | V1 −√2B V2 0 VΠ + A 0

〈−1− 1
2 | 0 V1 0 V2 0 VΠ −A




. (5.4)

In Eq. (5.4) the matrix elements VΣ, VΠ, V1, V2, A, and B are defined as

〈Σ|Hel|Σ〉, 1/2 {〈Πx|Hel|Πx〉+〈Πy|Hel|Πy〉}, 1/
√

2〈Σ|Hel|Πx〉, 1/2 {〈Πx|Hel|Πx〉−
〈Πy|Hel|Πy〉}, i{〈Πy|Hso|Πx〉 and {〈Πx|Hso|Σ〉, respectively, where, Σ, Πx, Πy

states correlate to the asymptotic Pz, Px, Py orbitals of Cl-atom, respectively.

These matrix elements are obtained using Capecchi and Werner (CW) [9] PES

and the matrix is numerically diagonalized to obtain the adiabatic potentials of
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the 2Σ 1
2

, 2Π 1
2

, and 2Π 3
2

SO states and the adiabatic-to-diabatic transformation

matrix S. It is to be noted that the |0 + 1
2
〉, |0 − 1

2
〉 form the doubly degenerate

spin components of the VΣ (2Σ 1
2

) diabatic state. Similarly, |+1+ 1
2
〉 and |−1− 1

2
〉

and |+1− 1
2
〉, |−1+ 1

2
〉 form the doubly degenerate spin components of the VΠ−A

(2Π 3
2

) and VΠ+A (2Π 1
2

) SO states, respectively.

Having obtained the diabatic electronic Hamiltonian, the initial wavefunction

pertinent to the electronic and ro-vibrational ground state of the ClH−
2 (ClD−

2 )

is expanded using the adiabatic bender model of Alexander et al. [10] as

Ψ(R, r, γ, t = 0) = ψ(R)φ(r)
∑

j

Tj(R)P̃j(cosγ). (5.5)

In Eq. (5.5), ψ(R) is approximated with the ground Morse vibrational wave-

function for the Cl− ... H2 (D2) anion complex. Similarly, φ(r) is also taken as

the ground Morse vibrational wavefunction of the diatom H2 (D2). The quantity

Tj(R) represents the eigenvector matrix corresponding to the lowest adiabatic

bender state of ClH−
2 (ClD−

2 ) which is expanded as [3]

Tj(R) = exp(−c0j − c1j

R
− c2j

R2
− c3j

R3
− c4j

R4
). (5.6)

The parameters required for obtaining the ground Morse vibrational wavefunc-

tions in Eq. (5.5) and Tj(R) in Eq. (5.6) are available in the Appendix of Ref. [3].

It is to be noted that, the sum in Eq. (5.5) is restricted to the lowest three ro-

tational levels, viz., j=0, 2, 4 for para, p−H2 (ortho, o−D2) and j=1, 3, 5 for

o−H2 (p−D2) isomeric configurations.
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The anionic wavefunction prepared above is subjected to a FC transition to

the three spin states of the neutral species separately. Condon approximation

of constant transition dipole moment applicable in a diabatic electronic basis is

utilized. The initial WP prepared on the final electronic states of the neutral

species for these three transitions can be expressed in a matrix vector notation

as

|Ψdia(R, r, γ, t = 0)〉 =


Ψ(R, r, γ)|0 + 1

2
〉

Ψ(R, r, γ)|0− 1
2
〉







1√
2

1√
2

0

0

0

0




+


Ψ(R, r, γ)|+ 1 + 1

2
〉

Ψ(R, r, γ)|+ 1− 1
2
〉







0

0

1√
2

0

0

1√
2




+


Ψ(R, r, γ)| − 1 + 1

2
〉

Ψ(R, r, γ)| − 1− 1
2
〉







0

0

0

1√
2

1√
2

0




(5.7)
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where




1√
2

1√
2

0

0

0

0




,




0

0

1√
2

0

0

1√
2




and




0

0

0

1√
2

1√
2

0




denote the two components of the VΣ, VΠ−A

and VΠ+A spin states of Eq. (5.4), respectively. It is clear from Eq. (5.7) that both

the degenerate spin components (±1
2
) of a given state are simultaneously popu-

lated at t=0. The spatial part of the initial wavefunction in the above equation,

Ψ(R, r, γ), is taken as the function given in Eq. (5.5). The transformation from

the diabatic to the adiabatic representation is carried out by, |Ψadia〉 = S†|Ψdia〉.
As stated above the transformation matrix, S, represents the eigenvector ma-

trix obtained by numerically diagonalizing the diabatic Hamiltonian given in Eq.

(5.4). The initial WP [of Eq. (5.7)] is propagated in time by dividing the total

time T into N steps. The time-evolution operator of Eq. (2.7) at each step of

length, ∆t, is approximated by a second-order split-operator method [11] (see

sections 2.3.2 and 2.3.4 for full details). At each time step the autocorrelation

function of the time evolved WP is calculated by (cf. Eq. 2.76)

C(2t) =
∑

i∈VΣ,VΠ−A,VΠ+A

〈Ψi(∆t)∗|Ψi(∆t)〉. (5.8)

This autocorrelation function is finally Fourier transformed [cf. Eq. (2.75)] to

calculate the photodetachment spectrum. The numerical grid parameters used in

the present calculations are given in table 5.2. It is to be noted that the spectra

reported here are for the two lowest values of total angular momentum, J = 1/2

and 3/2.
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Table 5.2: Numerical grid parameters used to propagate WPs in the present study

Parameter Value Description
NR/Nr/Nγ 128/64/49 Number of grid points
Rmin/Rmax (a0 ) 0.1/14.0 Extension of the grid along R
rmin/rmax (a0 ) 0.1/8.0 Extension of the grid along r
∆R/∆r (a0 ) 0.109/0.125 Grid spacings along R and r
Rmask/rmask (a0 ) 11.81/5.49 Starting point of the masking function
T (fs) 2208.0 Total propagation time

5.3 Results and Discussion

5.3.1 Photodetachment spectrum

Photodetachment spectra of ClH−
2 and ClD−

2 for a transition to the coupled elec-

tronic states of the corresponding neutral species are presented and discussed in

this section. To reveal the impact of the electronic and SO coupling on the vi-

bronic structure of the photodetachment bands, comparison calculations are also

carried out considering the uncoupled adiabatic SO states.

5.3.1.1 ClH−
2

The photodetachment spectra of Cl−...o−H2 and Cl−...p−H2 are shown in panels

a-c and d-f of Fig. 5.1, respectively. While the coupled states results are plotted

along the normal ordinate, the corresponding uncoupled state results are plot-

ted along the inverted ordinate for comparison. These represent partial spectra

corresponding to transition to the spin states (VΣ , VΠ−A and VΠ+A as indicated

in each panel) of neutral ClH2. In each case both the spin states of a given

| Ω(= λ + σ) | are initially populated and then the WP is propagated in the

uncoupled or coupled electronic state(s) with the aid of Eq. (2.7). The WP is

propagated up to ∼ 2.2 ps in order to generate each spectrum presented in Fig.



5.3. Results and Discussion 149

0.2 0.3 0.4 0.2 0.3 0.4

Energy (eV)

R
el

at
iv

e 
In

te
n

si
ty

 (
ar

b
it

ar
y 

u
n

it
s 

)
Cl

-
...o-H2

Cl
-
...p-H2

VΠ−Α

VΠ+Α

VΣ

Coupd

Uncoupd

Coupd

Coupd

Coupd

Uncoupd

Uncoupd

Uncoupd

Uncoupd

Coupd

Coupd

Uncoupd

(a) (d)

*

*

*

*

*

*

*
*

(b)

(c) (f)

(e)

Figure 5.1: Photodetachment spectra of Cl−...o−H2 (panel a-c) and Cl−...p−H2

(panel d-f) for a transition to the VΣ (2Σ 1
2

), VΠ−A (2Π 3
2

) and VΠ+A (2Π 1
2

) SO states
of neutral ClH2. The uncoupled state and coupled states spectra are shown along
the normal and inverted ordinate, respectively. Relative intensity in arbitrary unit is
plotted as a function of the energy of the final vibronic states. The zero of energy
corresponds to the asymptotically separated Cl and H2 on the VΣ SO sate.
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5.1. The zero of the energy scale in the figure corresponds to the asymptotically

separated Cl + H2 fragments on the VΣ spin state of ClH2. A careful comparison

of the uncoupled and coupled states results of each panel immediately reveals the

impact of coupling among the electronic states on the individual vibronic bands

of Fig. 5.1. This impact is relatively stronger on the vibronic structure of the VΣ

and VΠ+A SO states in contrast to that on the VΠ−A SO state both for the o−
and p− isomers. It can be seen that the coupling among the states only mildly

increases the density of vibronic lines in the spectrum. The two dominant peaks

in the coupled state spectrum of VΣ state in panel a of Fig. 5.1 are ∼ 0.11 eV

spaced. This spacing corresponds to the asymptotic SO splitting of VΣ and VΠ+A

electronic states. The second set of peaks in the coupled state spectrum of VΣ

state arises from its coupling with the VΠ+A diabatic state (which is also evident

from the observed time-dependence of diabatic electronic populations discussed

below). The origin peak of VΠ+A state occurs ∼ 0.11 eV above that of VΠ−A state

(cf. the inverted spectra of these states in panels b and c ) which corresponds to

the asymptotic SO splitting of the VΠ−A and VΠ+A SO states of ClH2.

It can be seen that the uncoupled and coupled states spectra of VΠ−A state

are mostly identical (cf. panel b or e). This implies very minor role of electronic

coupling on this state. The VΠ−A state is quasidegenerate with the VΣ state

along the approach coordinate of Cl to H2 and relatively more repulsive. The

latter accounts for relatively more broadening of this spectrum when compared

to the same of the VΣ state. In contrast to the coupled state spectrum of VΣ and

VΠ+A SO states, no signature of coupling can be discerned from that of VΠ−A SO

state (cf. panel b or e) . The weak peak structure on the left of the main peak of

the coupled states spectrum of VΠ+A SO state (cf. panel c) bears the signature of
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the VΣ state (cf. panel a) . In addition to the signature of VΣ and VΠ+A coupling in

the coupled state spectrum of the p− isomer shown in panels d-f some additional

structures (absent in the o− isomer) marked with asterisk are found in this case.

These structures arise from an excitation of Cl + H2 (j=2) on the corresponding

state. It is to be noted that the spectra presented above are calculated without

multiplying the time autocorrelation function with any damping function. It can

be seen that the present theoretical results are in excellent agreement with those

published in Ref. [10]. It is worthwhile to add that, unlike the similar spectra

presented in Ref. [1], the present ones do not extend to higher energies. As regard

to the uncoupled state results the only change made in the present contribution

is the representation of the initial wavefunction. It is therefore clear that the

initial wavefunction used in Ref. [1] was contaminated by many continuum states

of Cl...H2.

In order to assess the electronic and SO coupling effects on the vibronic spec-

trum of the individual states, the time-dependence of diabatic electronic popula-

tions is shown in Fig. 5.2. While the electronic population dynamics of the o−
isotopomer is shown in Fig. 5.2, a similar trend of time variation of populations

is found for the p− isotopomer (see additional information at end of the chapter).

Now the curves presented in panel a, b and c of Fig. 5.2 corresponds, respectively,

to an excitation to the VΣ (2Σ 1
2

), VΠ−A (2Π 3
2

) and VΠ+A (2Π 1
2

) electronic states

of ClH2. The electronic populations are extracted from the calculations with the

6 × 6 diabatic Hamiltonian [4] and the sum total of the population of the de-

generate spin components of each state is presented in Fig. 5.2. It can be seen

from the latter that the electronic population oscillates back and forth between

the VΣ (2Σ 1
2

) and VΠ+A (2Π 1
2

) electronic states (panels a and c) and the VΠ−A
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Figure 5.2: The sum total of the population of the degenerate spin components of
VΣ (solid line), VΠ−A (dashed line) and VΠ+A (dot-dashed line) as a function of time in
the coupled states dynamics of Cl−...o−H2. Panels a, b and c, respectively, show the
populations for the initial excitation of WP on the VΣ , VΠ−A and VΠ+A SO states of
ClH2.
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(2Π 3
2

) electronic state has insignificant participation in the overall dynamics.

Quantitatively, a maximum of ∼ 79 % population flows to the VΠ+A state for an

initial excitation to the VΣ electronic state. A similar population flow to the VΣ

state can be observed when the VΠ+A state is initially populated (cf. panel c). At

longer times, population of both these states fluctuates around a mean value of ∼
40 % . It can be seen from Fig. 5.2(b) that when the WP is initially excited to the

VΠ−A electronic state, hardly any population flows to the remaining two states.

Rather the population of this state is quickly (after ∼ 150 fs; cf. panel b) reaches

to the absorbing boundary. This reveals more repulsive nature of this state and

supports the observed broadening of its vibronic spectrum. It is therefore clear

that the VΠ−A (2Π 3
2

) state is very weakly coupled to the remaining two states

and since it is asymptotically quasidegenerate with the VΣ (2Σ 1
2

) SO state the

minimal contribution of it to the overall vibronic spectrum ought to be buried

within the energy range of the VΣ SO state.

The findings presented in Fig. 5.2 above are utilized to combine the partial

photodetachment spectra of Cl−...o−H2 and Cl−...p−H2 shown in Fig. 5.1 to

obtain the full composite spectrum. As discussed above the contribution of the

VΠ−A state is ∼ 50 times less compared to that of VΣ and VΠ+A SO states.

This is considered in the combination in addition to a 3:1 contribution of the

ortho : para isomers. The resulting composite spectrum is plotted in the upper

part of Fig. 5.3 (panel a) showing the results in the energy range of VΣ and

VΠ+A separately. The results obtained from the uncoupled and coupled states

spectra of Fig. 5.1 are shown by dotted lines and as shaded area in Fig. 5.3(a),

respectively. In order to compare, the experimental and theoretical results of

Ref. [5] are reproduced in the lower part of Figs. 3 (panel b). It is to be noted
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that the present theoretical spectra of panel a are shifted slightly to correct for

the zero point energy contribution in order to obtain the experimental adiabatic

ionization energy at ∼ 29521 cm−1. It can be seen that the present theoretical

results are in excellent agreement with the experimental and theoretical results

of Ref. [5]. The peaks in the spectrum are assigned to the bend-stretch states

of the Cl...H2 van der Waals (vdW) complex. The separation between the two

intense peaks of panel a is ∼ 885 cm−1, compares well with its experimental value

of 887 cm−1 [5]. This separation corresponds to the SO splitting of the VΣ and

VΠ+A states of ClH2. This separation is slightly larger (by ∼ 20 cm−1) in the

uncoupled state results of Fig. 5.3. The nonadiabatic coupling (NAC) of the

electronic states causes a reduction of this value.

5.3.1.2 ClD−
2

The uncoupled and coupled state photodetachment spectra of Cl−...o−D2 and

Cl−...p−D2 are also calculated and examined in detail. These spectra are anal-

ogous to those presented in Fig. 5.1 for ClH−
2 , except a change in the o−, p−

definition in case of ClD−
2 . In contrast to ClH−

2 many more lines are observed

in the ClD−
2 spectra (see additional information at end of the chapter for more

details). Understandably the additional lines in the latter arise from the heavier

mass of D2 and as a result its vibrational levels are closely spaced in energy. Apart

from these the spectra of Cl−...o−H2 (Cl−...p−D2) and Cl−...p−H2 (Cl−...o−D2)

closely resemble each other. The excitation to the higher j level as found in

Cl−...p−H2 is found in the Cl−...o−D2 isotopomer. It is also noted that the elec-

tron population dynamics of ClD−
2 is also analogous to that of ClH−

2 shown in

Fig. 5.2. In this case ∼ 2 % contribution of the VΠ−A SO state has been found

in the vibronic dynamics (see additional information at end of the chapter).



5.3. Results and Discussion 156

29
50

0
29

60
0

29
70

0
29

80
0

29
90

0
30

00
0

30
50

0
30

60
0

30
70

0
30

80
0

30
90

0

eB
E

 (
cm

-1
)

eB
E

 (
cm

-1
)

Relative Intensity (arbitary units)

 E
. G

ar
an

d
 e

t 
al

.

C
lD

2-

E
xp

t

C
o

u
p

le
d

(a
)

(b
)

E
xp

t
C

o
u

p
le

d

U
n

 c
o

u
p

le
d

1

2

~~ ~~

F
ig

u
re

5.
4:

Sa
m

e
as

in
F
ig

.
5.

3
fo

r
th

e
ph

ot
od

et
ac

hm
en

t
of

C
lD
− 2
.



5.3. Results and Discussion 157

Analogous to that in Fig. 5.3, the partial spectra of ClD−
2 are combined in the

o−, p− ratio of 2:1 also considering the relative contribution of each SO state to

the overall composite spectrum. The latter are presented in Fig. 5.4 in the energy

range of the VΣ and VΠ+A (panel a) SO states. The experimental and theoretical

results available in the literature are reproduced from Ref. [5] and plotted in panel

b of Fig. 5.4. The origin peak of the present theoretical spectrum is placed at its

experimental value of 29631 cm−1. It can be seen from Fig. 5.4 that the present

theoretical results are in very good accord with the experimental and theoretical

results of Ref. [5]. The two main peaks marked 1 and 2 in panel a are ∼ 887

cm−1 spaced in the coupled states results (shaded area). This spacing is again,

as found in Fig. 5.3, ∼ 20 cm−1 less in the uncoupled state results (dashed lines).

In contrast to Fig. 5.3 for ClH−
2 the ClD−

2 spectrum of Fig. 5.4 reveals more

structures. As stated above, these are arising from the closely spaced vibronic

levels of the deuterated isotopomer.

To this end the effect of three body rotation (J > 1
2
) on the composite pho-

todetachment spectrum of ClH−
2 and ClD−

2 is briefly discussed here. In Fig. 5.5

the spectra for J =1
2
, K = 1

2
; J = 3

2
, K = 1

2
; J = 3

2
, K = 3

2
are plotted in panels

a-c and d-f, respectively, for ClH−
2 and ClD−

2 . It can be seen from these plots that

there is no dramatic effect arising from higher J and K values. The origin peak

shifts to the higher energy for higher J and K. Understandably, this shift arises

from the appearance of centrifugal barrier on the PESs with the increasing J and

K values. The intensity of the peaks (which is in arbitrary units in the present

work) also alters however, the overall vibronic structures of the composite bands

remain almost similar for all J and K values considered in this chapter.
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5.4 Summary and outlook

A theoretical study of the electron detachment spectroscopy of ClH−
2 and ClD−

2 is

presented in this chapter employing a time-dependent WP propagation approach.

The present results are found to be in very good accord with the highly resolved

experimental [2, 5] as well as recent theoretical results [5, 6, 12]. In contrast to

the earlier work on this subject [1], it is found that that an improvement on the

representation of the initial anionic wavefunction, transformation of electronic

basis (diabatic-to-adiabatic) and the use of a complete Hamiltonian eliminates the

contribution of continuum states of Cl...H2 (D2) vdW complexes and simplifies

the vibronic structures of the photodetachment bands in agreement with the

recent experimental and theoretical results. A study of the effects of electronic

and SO coupling on the state-to-state reaction dynamics of Cl + H2 (D2) reaction

is currently being taken up.

5.5 Additional information

For brevity, some of the obvious results are omitted in the discussion above.

Those findings are presented here in brief.

As discussed in section 5.3.1.2 the uncoupled and coupled state photodetach-

ment spectra of Cl−...o−D2 and Cl−...p−D2 are analogous to those presented in

Fig. 5.1 for ClH−
2 and are shown here in Fig. 5.6. These represent the pho-

todetachment spectra of Cl−...o−D2 (panel a-c) and Cl−...p−D2 (panel d-f) for

a transition to the VΣ (2Σ 1
2

), VΠ−A (2Π 3
2

) and VΠ+A (2Π 1
2

) SO states of neu-

tral ClD2. The uncoupled state and coupled states spectra are shown along the

normal and inverted ordinate, respectively. Relative intensity in arbitrary unit
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Figure 5.6: Same as in Fig. 5.1 but for ClD−2 .
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is plotted as a function of the energy of the final vibronic states. It can be seen

from these figures that, more lines are observed in the ClD−
2 spectra when com-

pared with the same obtained for ClH−
2 . Understandably the additional lines

in the former arise from the heavier mass of D2 and as a result its vibrational

levels are closely spaced in energy. Apart from these the spectra of Cl−...o−H2

(Cl−...p−D2) and Cl−...p−H2 (Cl−...o−D2) closely resemble each other. The ex-

citation to the higher j level as found in Cl−...p−H2 is found in the Cl−...o−D2

isotopomer and are marked with asterisk in panels a-c.

In section 5.3.1.1 the time-dependence of diabatic electronic populations during

the excitation of Cl−...o−H2 to the VΣ (2Σ 1
2

), VΠ−A (2Π 3
2

) and VΠ+A (2Π 1
2

)

electronic states of ClH2 is shown in Fig. 5.2. Similar plots for the excitations

of Cl−...p−H2, Cl−...o−D2 and Cl−...p−D2 are, respectively, shown in Fig. 5.7,

Fig. 5.8 and Fig. 5.9. It is clear from these figures that the behavior of the

electronic populations is similar in all the cases, i.e., the latter oscillates back and

forth between the VΣ (2Σ 1
2

) and VΠ+A (2Π 1
2

) electronic states (panels a and c)

and the VΠ−A (2Π 3
2

) electronic state has insignificant participation in the overall

dynamics. It is therefore clear that the VΠ−A (2Π 3
2

) state is very weakly coupled

to the remaining two states and since it is asymptotically quasidegenerate with

the VΣ (2Σ 1
2

) SO state the minimal contribution of it to the overall vibronic

spectrum ought to be buried within the energy range of the VΣ SO state.
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Chapter 6

Time-dependent quantum wave

packet dynamics of C + OH

reaction on the first excited

potential energy surface

6.1 Introduction

Initial state-selected dynamical attributes of the C(3P) + OH (X2Π) → CO(a3Π)

+ H (2S) reaction on the first excited electronic potential energy surface (PES)

(12A′′) are calculated by the time-dependent wave packet (WP) method described

in chapter 2. The findings on the reaction probability, integral reaction cross sec-

tion (ICS) and thermal rate constant are presented and discussed here. Reaction

probabilities are calculated as a function of collision energies up to 1 eV and for

different values of the total angular momentum J . Within the centrifugal sud-

den (CS) approximation [1], all the partial wave contributions for J =0-95 are

167
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included to obtain the converged cross sections and rate constants. The effect of

reagent rotational and vibrational excitation on these dynamical attributes is also

discussed here. It is to be noted that the other product channel, O (3P ) + CH

(X2Π) for this reaction is endothermic by about 1 eV and hence, is asymptotically

closed in the present conditions of investigation. In addition, the state-to-state

reaction probabilities of the reaction obtained for total angular momentum, J =0

are also presented and discussed in this chapter.

6.2 Theoretical and computational details

The theoretical formalism and computational methods employed to calculate the

initial state-selected and energy resolved reaction probabilities, ICSs and thermal

rate constants for the C + OH reaction are outlined in chapter 2. A few essential

points are described below. The initial wavefunction,|Ψ(t = 0)〉 (cf. Eq. 2.48),

pertinent to the reagent asymptote is prepared and propagated on the first excited

electronic 2A′′ PES with the aid of the time-dependent Schrödinger equation

(TDSE). In order to calculate the wavefunction at time t, |ΨJ
Ω(R, r, γ, t)〉, the

time axis is divided into N segments of length ∆t and the exponential time

evolution operator of Eq. 2.7 is approximated by a split-operator method [2]

at each time step ∆t. The fast Fourier transformation method (FFT) [3] is used

to evaluate the action of the radial kinetic energy operators on the wavefunction,

whereas, the action of the angular kinetic energy operator is evaluated by a

discrete variable representation (DVR) [4] method. For the latter purpose a

γ grid is constructed by diagonalizing the cos(γ) operator in the basis of the

associated Legendre polynomials. Finally, the unphysical reflections at the grid

boundaries are controlled by multiplying with a damping function [5] (cf. Eq.
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Table 6.1: Numerical definition of the coordinate grid, initial wavefunction and the
damping function used to obtain converged dynamical results of the C + OH collisional
system.

Parameter Value Description
NR/Nr/Nγ 1024/128/31 Number of grid points
Rmin/Rmax (a0 ) 0.1/36.0 Extension of the grid along R
rmin/rmax (a0 ) 0.1/9.0 Extension of the grid along r
∆R/∆r (a0 ) 0.035/0.07 Grid spacings along R and r
rd (a0 ) 5.92 Location of the dividing surface

in the product channel
Rmask/rmask (a0 ) 25.51 /7.04 Starting point of the damping function
R0 (a0 ) 14.0 Initial location of the center of the GWP

in the coordinate space
Etrans (eV) 0.5 Initial translational kinetic energy
δ (a0 ) 0.08 Initial width parameter of the GWP
∆t (fs) 0.135 Length of the time step used in the WP prop-

agation
T (fs) 4049.0 Total propagation time

2.19) to the WP at each time step. The properties of the initial WP and the grid

parameters used for the numerical calculations are listed in Table 6.1.

The reaction probability is obtained from the expectation value of the quan-

tum flux operator, F̂ , in the basis of energy normalized time-independent reactive

scattering wavefunction recorded at a dividing surface located along the product

channel (see section 2.5 for more details). The initial state i (corresponding to a

specific vibrational v and rotational j state of the reagent diatom OH) selected

and energy resolved total reaction probability [summed over final states f(v′, j′)

of the product CO] is given by Eq. 2.57. The reaction probabilities depending

upon J and Ω values (cf. Eq. 2.57 ) for a given collision energy are summed up

to calculate the ICS for a specified initial (v, j) state of reagent diatom (cf. Eq.

2.62). The initial state-selected thermal rate constant is calculated from the total
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ICS [6] (cf. Eq. 2.63). Finally, the thermal rate constants obtained using Eq.

2.63 are multiplied with the electronic partition function, fe(T ), given by [7, 8]

fe(T ) = 2exp

(−∆E1

T

)
1

[gC
0 + gC

1 exp (−∆E1/T ) + gC
2 exp (−∆E2/T )]

× 1[
gOH
1/2 + gOH

3/2 exp (−∆E13/T )
] . (6.1)

Here gC
0 (=1), gC

1 (=3) and gC
2 (=5) are, respectively, the electronic degeneracies

of 3P0,
3P1 and 3P2 fine structure sublevels of carbon atom in its ground electronic

state (3P ). In Eq. 6.1, ∆E1 (=3P1−3 P0 = 23.6 K) and ∆E2 (=3P2−3 P1 = 62.6

K) are the energy separations of these fine structure sublevels of carbon atom

expressed in Kelvin units. Similarly, ∆E13 (=205 K) is the energy splitting of

doubly degenerate 2Π1/2 and 2Π3/2 electronic states of OH molecule. As 2Π1/2

and 2Π3/2 states are doubly degenerate, gOH
1/2 = gOH

3/2 = 2.

To obtain the state-to-state reaction attributes, the initial wave packet (WP)

pertinent to the reagent asymptote is prepared in the reagent Jacobi coordi-

nates (R, r, γ) and immediately transformed to the product Jacobi coordinates

(Rp, rp, γp). Only the real part of the initial WP (cf. Eq. 2.53) is evolved in

space and time as described in section 2.3.3. At the end of each time step, the

time-dependent expansion coefficients are obtained using Eq. 2.65. These coef-

ficients are then half Fourier transformed to give energy-dependent coefficients,

AJ
v,j,Ω→v′,j′,Ω′(E) using Eq. 2.66. The latter are then transformed from body-fixed

(BF) frame to space-fixed (SF) frame (cf. Eq. 2.67) and the S matrix in the SF

frame is obtained using Eq. 2.69. Finally, the state-to-state reaction probabil-

ity is given by |SJ
v,j,Ω→v′,j′,Ω′(E)|2. The state-to-state differential cross sections

(DCSs) and ICSs are then obtained from the S matrix, respectively, using Eq.
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Table 6.2: Numerical definition of the coordinate grid, initial wavefunction used to
obtain state-to-state reaction attributes for the C + OH collisional system.

Parameter Value Description
NRp/Nrp/Nγp 199/299/100 Number of grid points in product Jacobi

coordinates
min/max of Rp (a0 ) 0.1/17.0 Extension of the grid along Rp

min/max of rp (a0 ) 0.1/18.0 Extension of the grid along rp

Rd
p (a0 ) 12.0 Location of the dividing surface

in the product channel
R0 (a0 ) 10.0 Initial location of the center of the sinc

WP in the reagent Jacobi coordinates
Etrans (eV) 0.1 Initial translational kinetic energy
α/βs 10/0.5 Width and smoothness of the initial sinc

WP
v′, j′ 0-4, 0-50 Product rotational and vibrational levels

considered for the final analysis
Ntime 80000 Number of time steps

2.73 and Eq. 2.74. The properties of the initial WP and the grid parameters used

for obtaining the state-to-state reaction probabilities are listed in Table 6.2. It is

to be noted that the initial parameters presented in this table are not perfectly

optimized. As a result, the state-resolved reaction probabilities presented in this

chapter should be considered as the preliminary results. Finding of the optimized

parameters and the state-to-state reaction attributes are still going on at the time

of writing this thesis.

6.3 Results and discussion
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Figure 6.1: Total reaction probabilities as a function of the collision energy for the
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6.3.1 Initial state-selected reaction probabilities

Initial state-selected probabilities for the reaction C(3P) + OH (X2Π, v=0, j=0)

→ CO(a3Π,
∑
v′,

∑
j′) + H (2S) on the first excited PES (12A′′) are plotted as a

function of collision energy in Fig. 6.1. These represent the energy resolved (∆E

∼ 0.001 eV) total reaction probabilities (summed over all open v′ and j′ levels

of the product CO at the given energy) and for the total angular momentum

J = 0. It can be seen from the probability curve of Fig. 6.1 that the reaction

does not have a threshold as expected for a barrierless reaction. The maximum

probability is found at low collision energy (maximum value of ∼0.7 is at ∼ 0.002

eV). The reaction probability starting from a maximum value generally decreases

with increasing collision energies. This behavior, as expected, is typical of an

exothermic reaction. In the present case, as can be seen from Fig. 6.1(a), the

probability curve supports numerous sharp oscillations. It is therefore clear that

the underlying PES supports many long-lived quasibound ( resonance ) states

and the reaction proceeds via quasibound complex formation. Starting from the

onset, it can be seen that the probability reduces till the collision energy reach

a value ∼ 0.088 eV (see the inset in panel a). Immediately after this drop in

probabilities, a sharp and intense resonance peak is observed at around ∼ 0.09

eV collision energy (this is more clearly visualized in the inset of Fig. 6.1(a) by

magnifying a part of the probability curve). From there onward a slow and steady

increase in the probabilities is observed with the increase in collision energy till

∼ 0.45 eV, with regular appearance of sharp and intense resonance peaks. Above

0.5 eV collision energy, probabilities are found to decrease again and reach a

constant value of ∼ 0.13 at energies greater than ∼ 0.8 eV. It is observed that at

these high collision energies ( > 0.5 eV) the resonance peaks are not sharp and

intense.
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The total reaction probabilities of this reaction on the first excited PES were

also obtained by Honvault and co-workers using time-independent quantum me-

chanical (TIQM) as well as quasi-classical trajectory (QCT) methods [9]. In order

to compare, these results are reproduced in panel b of Fig. 6.1. It can be seen

from panels a and b that the present reaction probabilities are in good accord

with the TIQM and the QCT results of Ref. [9], despite the obvious fact that the

signature of the resonance structures does not appear in the QCT results.

Honvault and co-workers also studied this reaction on the adiabatic ground elec-

tronic PES (X2A′) [10–16] and its second excited electronic state (14A′′) [7,17,18].

The total reaction probabilities obtained by them on the first (12A′′) and second

(14A′′) excited PESs show similar behavior i.e., sharp and intense resonance peaks

at low collision energies (< 0.45 eV) and low (∼ 0.1) and almost constant proba-

bilities at high collision energies (> 0.7 eV). The sharp resonance peaks originate

from the two deep wells of depth (relative to the reagent asymptote) ∼ 4.6 eV

(corresponding to the COH configuration) and ∼ 6.2 eV ( corresponding to the

HCO configuration) supported by the first excited electronic (12A′′) PES [7]. Sim-

ilar well depths of ∼ 1.85 eV and ∼ 2.25 eV are supported by the second excited

electronic (14A′′) PES in that order [7]. The low probabilities (∼ 0.1) observed

at high collision energies (> 0.7 eV) for the reaction on first and second excited

states are due to the dominant back dissociation at these energies [19]. In contrast

to these results, the reaction probabilities obtained on the ground PES (X2A′)

do not show any resonances and are close to ∼ 1 in the whole range of collision

energies considered (see Fig. 1 of Ref. [15]). Here the absence of the resonance

peaks is explained on the basis of high exoergicity (6.5 eV) of the reaction on

the ground (X2A′) PES. Though the latter is characterized by two deep wells of
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depth (relative to the reactant asymptote) 5.5 eV (corresponds to COH configu-

ration) and 7.3 eV (corresponds to HCO configuration) [10], the high exoergicity

makes the product channel accessible more readily and hence results in the faster

decay of the resonances. In contrast, the reaction on the first (12A′′) and second

(14A′′) excited PESs have relatively low exoergicity (∼ 0.41 eV) [7] and hence

the resonances seem to have longer lifetimes and therefore show up in the total

reaction probabilities.

The initial state-selected reaction probability values of the C + OH reaction on

the first excited (12A′′) PES are also obtained for the total angular momentum

values J > 0. These are plotted in Fig. 6.2 for selected values of J and Ω = 0 as

indicated in each panel. It can be seen form Fig. 6.2 that with an increase in the

value of J , there is a clear increase in the threshold (∼ 0.0 eV for J = 5; ∼ 0.013

eV for J = 45; ∼ 0.082 eV for J = 75; ∼ 0.125 eV for J =85 ) and a clear decrease

in the magnitude of total reaction probability. This energy shift of the onset of

the reaction is far less than the similar reactions involving lighter atoms [20–22].

This is expected as the height of the centrifugal barrier slowly increases with

increasing J for this reaction involving relatively heavy atoms. It can also be

seen from panels e-h that the reaction probabilities at higher J (> 65) behave

differently form that obtained at lower J (cf. panels a-d). In the former case, the

total probabilities are relatively larger at an intermediate collision energies and

remain almost constant thereafter (cf. panels e-h). In contrast, the probabilities

obtained for J < 65 (cf. panels a-d), show relatively higher magnitudes at low

collision energies (< 0.45 eV) with sharp and intense resonance structures. It is

to be noted that the probabilities obtained for J > 65 show much dense resonance

(less intense) oscillations at higher collisional energies (> 0.7 eV) when compared
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with that obtained for J < 65.

6.3.1.1 Rotational excitation of the reagent [OH (v=0, j=1)]

The effect of rotational excitation of reagent [OH (v=0, j=1)] on the C + OH

reaction probability on the first excited 12A′′ PES is shown in Fig. 6.3. Panels

a-f show the probabilities obtained for different values of J and for Ω (BF z-

component of J) as indicated in the figure. It can be seen from Figs. 6.2 and 6.3

in comparison, that the overall behavior of the probability curves (with varying

J) is similar in both the situations where the initial reagent is either in the ground

rotational state [OH (v=0, j=0)] or first excited rotational state [OH (v=0, j=1)].

But in the latter case and for Ω = 0, it is observed that the probabilities are

relatively larger (by 5-10%) in magnitude (cf. panels a-d of Fig. 6.3 and panels

a,c,e,g of Fig. 6.2). In contrast, the probabilities obtained for Ω = 1 (panels e-h

of Fig. 6.3) are ∼ 10 times smaller when compared with the same obtained for Ω

= 0 (cf. panels a-d of Fig. 6.3). It therefore concludes that the reagent rotational

excitation has only slightly increased the reaction probabilities for Ω = 0 but it

drastically reduces the probabilities for Ω = 1.

6.3.1.2 Vibrational excitation of the reagent [OH (X2Π, v=1-2, j=0)]

The effect of vibrationally hot reagent [OH (X2Π, v=1-2, j=0)] on the reaction

probability is shown in Fig. 6.4. In panels a-c, the initial state-selected reaction

probabilities for the reagent in its first excited vibrational state [OH (X2Π, v=1,

j=0)] and for selected values of J and Ω = 0 are plotted as a function of collision

energy. The same for the reagent OH (X2Π, v=2, j=0) are plotted in panels

d-f. These figures reveal that the probability curves (cf. Fig. 6.4 ) obtained

with vibrationally excited reagent and for J < 65 look similar both in shape
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and magnitude when compared with the same obtained for reagent in its ground

vibrational level (cf. panels a and c of Fig. 6.2). But for higher values of J (cf.

panels c and f of Fig. 6.4 ) the probabilities obtained for OH (v=1-2, j=0), are

relatively larger at low collision energies which then slightly decrease but remain

almost constant thereafter. This behavior is in contrast to that obtained for OH

(v=0, j=0) at higher J (cf. panel e of Fig. 6.2). In the latter case, relatively

smaller probability values are observed at low collision energies and relatively

larger and almost constant probabilities at high collision energies. It therefore

appears that the reagent vibrational excitation has minor effects on the overall

shape and magnitude of the probabilities obtained for J < 60. But for higher J

values, significant differences, viz., relatively larger probabilities at low collision

energies and a slightly lower but almost constant probabilities at high collision

energies are observed.

6.3.2 Vibrational and rotational state-resolved reaction

probabilities

The vibrational state-resolved reaction probabilities obtained for the ground (v′

= 0), first (v′ = 1) and third excited (v′ = 3) vibrational states of the product

CO (a3Π) are shown, respectively, in panels a, b and c of Fig. 6.5. These are

the sum total of the probabilities obtained for all open product rotational states

and for total angular momentum J = 0. The overall behavior of the vibrational

state-resolved probabilities resembles very close to the total reaction probabilities

presented in Fig. 6.1 except for the v′ = 3 vibrational state of the product CO

(a3Π). For the latter product vibrational state, the reaction probabilities show a

threshold of ∼ 0.08 eV. This is due to the inaccessibility of the CO (a3Π, v′ = 3)

+ H (2S) product channel at energies below this threshold. Panels d, e and f of
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Fig. 6.5, respectively, show the rotational state-resolved reaction probabilities for

the product CO (a3Π, v′ = 0) in j′ = 0, 10 and 20 rotational states and for total

angular momentum J = 0. It can be seen from panels d-f, that the rotational

state-resolved reaction probabilities show sharp and dense resonance structures

similar to the total reaction probabilities obtained at low collision energies and

for total angular momentum J > 65 (cf. panels e-h of Fig. 6.2). In addition,

it is clear from panels d-f, that the rotational state-resolved reaction probabili-

ties do not depend strongly on the final rotational state j′ of the product CO.

Jorfi and Honvault obtained the vibrational and rotational state-resolved reaction

probabilities for this reaction using TIQM method (cf. Figs. 2 and 3 of Ref. [9].

Qualitatively, the results presented here are matching well with that obtained by

Jorfi and Honvault [9]. But at low collision energies, the reaction probabilities

obtained by the latter authors showed relatively larger magnitude. As stated

above, the present state-to-state results are not well optimized especially at low

collision energies. Efforts are being made to remove these discrepancies.

6.3.3 Product vibrational and rotational distributions

The product vibrational distributions, i.e, the vibrational state-resolved reaction

probabilities as a function of the product vibrational quantum number v′, for

the C(3P) + OH (X2Π, v=0, j=0) → CO(a3Π, Σj′) + H (2S) reaction on its

first excited electronic PES (12A′′) are shown in Fig. 6.6. These vibrational

distributions obtained at some selected values of collision energies 0.01, 0.05 0.1

and 0.3 eV are, respectively, shown by circles, squares, diamonds and triangles in

Fig. 6.6. It can be seen form the figure, that the product vibrational distributions

behave differently at different collision energies. At low collision energies (0.01

and 0.05 eV), the vibrational distributions are almost statistical, i.e, decreasing
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Figure 6.6: The product vibrational distributions for the C(3P) + OH (X2Π, v=0,
j=0) → CO(a3Π, Σv′) + H (2S) reaction on its first excited electronic PES (12A′′)
obtained at selected values of collision energies 0.01 eV (circles), 0.05 eV (squares), 0.1
eV (diamonds) and 0.3 eV (triangles).
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Figure 6.7: The product rotational distributions for the C(3P) + OH (X2Π, v=0,
j=0) → CO(a3Π, v′ = 0) + H (2S) reaction on its first excited electronic PES (12A′′)
obtained at selected values of collision energies as indicated in each panel.
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with increasing v′ except for v′ = 1, at which the reaction probability is slightly

larger when compare with that at v′ = 0. In contrast, at 0.3 eV, the product

vibrational distributions are almost constant for v′ = 0-3 and then decreases.

These observations infer that the reaction involves both direct (COH complex)

and indirect (HCO) complex mechanisms.

The product rotational distributions for the C(3P) + OH (X2Π, v=0, j=0)

→ CO(a3Π, v′ = 0) + H (2S) reaction on its first excited electronic PES (12A′′)

are obtained at some selected collision energies. These are shown in panels a-

c of Fig. 6.7 and the collision energy at which the distributions are obtained

is indicated in each panel. It can be seen from the figure, that the product

rotational distributions are oscillatory in the entire span of product rotational

states (j′ =0-50) considered here. This oscillatory behavior is observed at all

collision energies. In addition, at some values of j′, the probabilities are observed

to be zero. As stated above, the results obtained here are qualitatively in good

accord with those obtained by Jorfi and Honvault (cf. Figs. 4-5 of Ref. [9]) using

TIQM method. Once the initial parameters for these calculations are optimized,

a good quantitative agreement can also be attained. Hence the efforts are being

made in that direction.

6.3.4 Initial state-selected integral reaction cross sections

The initial state-selected and energy resolved ICSs for the C(3P) + OH (X2Π,

v=0-2, j=0-1) → CO(a3Π) + H (2S) reaction on its first excited PES (12A′′)

are plotted in Fig. 6.8. The cross sections obtained for rotationally ground

OH (v=0, j=0) and excited reagent OH (v=0, j=1) are shown in black and

red colors, respectively, in panel a. Similarly, the cross sections obtained for
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Figure 6.8: Initial state-selected ICSs as a function of the collision energy for the
C(3P) + OH (X2Π, v=0-2, j=0-1) → CO(a3Π) + H (2S) reaction on its first excited
electronic PES (12A′′). Panel a shows cross sections for the reagent in its ground (black)
and first excited (red) rotational state. Similarly, panel b shows cross sections for the
reagent in ground (black), first (red) and second (blue) excited vibrational state.
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vibrationally ground OH (v=0, j=0) and excited OH (v=1-2, j=0) are shown in

black (v=1), red (v=2) and blue (v=3) colors, respectively, in panel b. Within the

CS approximation, all partial wave contributions of the total angular momentum

up to J = 95 [and 120 for OH (v=1, j=0) and OH (v=2, j=0) reagent ] are

included to obtain the converged cross sections up to 1.0 eV collision energy. In

case of rotationally excited reagents [OH (j > 0)], partial wave contributions,

0 ≤ Ω ≤ min(j, J), are also included in the calculations. It can be seen from

panel a of Fig. 6.8 that, for a given value of j, the magnitude of reaction cross

section is maximum at the onset (∼ 181 Å2 for j=0; ∼ 75 Å2 for j = 1) and

then decreases steeply at low collision energies (< 0.2 eV) reaches a value around

∼ 4 Å2 (∼ 1.5 Å2 for j =1). Thereafter, the cross section decreases slowly with

increasing collision energy. This trend of variation of cross section is typical of

a barrierless reaction proceeding on a steep downhill reaction path. In regard

to the effect of rotational excitation, it can be seen from panel a that reaction

cross sections obtained for rotationally hot reagent [OH (v=0, j=1)] are relatively

lower in magnitude when compared with the same obtained for OH (v=0, j=0).

It is to be noted that the signature of the resonances due to the two deep wells

present in the (12A′′) PES are observed in the reaction cross sections. This is

shown clearly in the inset of panel a. Vibrational excitation of the reagent also

shows similar effects on the observed reaction cross sections. But in this case, two

different trends are observed. At low collision energies (< 0.05 eV), the reaction

cross sections decrease with the increasing vibrational quantum number of the

reagent (see inset of panel b). In contrast, at collision energies greater than ∼ 0.1

eV, the reaction cross sections increase with increasing vibrational excitation of

the reagent OH. But in either case, the rise or fall in the magnitude of the cross

sections with the vibrational excitations is not as prominent as observed during



6.3. Results and discussion 188

rotational excitation (cf. panel a and panel b).

Honvault and co-workers also obtained the ICSs for this reaction on the adia-

batic ground electronic state (X2A′) [11–13,15] and second excited electronic state

(14A′′) [18]. Their calculations reveal that the overall behavior of the reaction

cross sections obtained on the ground X2A′ PES and second excited 14A′′ PES is

very similar to the same obtained in present calculations on the first excited 12A′′

PES (cf. Fig. 6 of Ref. [15], Fig. 7 of Ref. [18] and Fig. 6.8 of present study).

But in terms of magnitude, the reaction cross sections obtained on the electronic

ground PES are relatively larger. This is expected because the exoergicity of the

reaction on the ground PES is relatively higher (∼ 6.5 eV ) compared to the same

(∼ 0.41 eV) on the first and second excited electronic states. It is to be noted

that the clear signature of the resonances is observed in the ICSs obtained here

on the first excited 12A′′ PES (cf. inset of Fig. 6.8)). But such signatures are

not observed in the reaction cross sections calculated on the ground and second

excited electronic states.

6.3.5 Initial state-selected rate constants

The initial state-selected and temperature dependent rate constants for the

C(3P) + OH (X2Π, v=0-2, j=0-1) → CO(a3Π) + H (2S) reaction on the first

excited PES (12A′′) are plotted in Fig. 6.9(a). The rate constants obtained for

the reagent in its ground [OH (j = 0, v = 0)] and first excited [OH (j = 1, v = 0)]

rotational state are shown by the solid and dashed lines, respectively. It can be

seen from Fig. 6.9(a) that for a given value of j, the magnitude of rate constant

increases sharply at the onset and reaches a maximum value ( ∼ 4.65 × 10−11 cm3

sec−1 molecule−1 at∼ 34 K for j = 0; ∼ 2.14× 10−11 cm3 sec−1 molecule−1 at∼ 38
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Figure 6.9: Initial state-selected rate constants as a function of temperature for the
C(3P) + OH (X2Π, v=0, j=0-1) → CO(a3Π) + H (2S) reaction on its first excited PES
(12A′′). Panel a shows rate constants obtained in the present TDQM calculations and
for the reagent j = 0 (solid line) and j = 1 (dashed line) rotational states. Similarly
panel b shows rate constants obtained for vibrationally ground (solid line), first (dashed
line) and second (dot-dashed line) excited levels of the reagent OH. Panel c compares
the rate constants obtained in the present work (solid line) with those obtained by Jorfi
and Honvault [9] by a TIQM method (dashed line) and the QCT method (dot-dashed
line).
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K for j = 1) and then slowly decreases with increasing temperature. Analogous

to the cross section results of Fig. 6.8(a), the reaction rates also decrease (by

about a factor of two) with rotational excitation of the reagent OH molecule.

The effects of vibrational excitation of the reagent on reaction rates are shown

in panel b. Here the rate constants obtained for the reagent in its ground, first

and second excited vibrational states are, respectively, shown by the solid, dashed

and dot-dashed lines. It can be seen from panel b that reaction rates decrease

with increasing vibrational excitation of the reagent OH. However, the extent of

decrease is far lower than the same found with the rotationally hot reagent (cf.

panel a and b). As stated above the cross sections also showed similar behavior at

collision energies less than ∼ 0.05 eV (where the magnitude of the cross sections

is dominant). Now it is clear from panels a and b that both rotational and

vibrational excitations in general demotes the reaction and the effect is stronger

in the former case. As many factors govern the reactivity of the system, it is hard

to find the precise cause for this demotion. One possible factor could be the degree

of alignment and orientation of the reagent species. This reaction which proceeds

via complex formation mechanisms, the orientation and alignment is expected to

play a vital role. In general, the rotationally excited reagent has less degree of

alignment or orientation which could interrupt the formation of the intermediate

complex (COH or HCO). As a result, a lower reactivity is observed for the reagent

in rotationally excited state. On the other hand, vibrational excitation does not

lower the degree of orientation as much as observed for the rotational excitation.

Hence in this case the decrement in the rates is less prominent.

In order to compare, the results obtained by Jorfi and Honvault [9] using the

TIQM method (dashed line) and QCT method (dot-dashed line) are reproduced
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in panel c of Fig. 6.9 along with the same obtained in the present study (solid

line). It can be seen from panel c that the rates obtained here using the time-

dependent quantum mechanical (TDQM) method are of the same order of mag-

nitude when compared with the rates obtained using TIQM and QCT meth-

ods [9]. The rates obtained by latter methods are overestimated in the broad

temperature range 60-500 K but in the low temperature range (0-60 K) they are

underestimated. It is to be noted that Jorfi and Honvault used a J-shifting ap-

proximation [23] in their TIQM study [9] to calculate the reaction probabilities

for non-zero total angular momentum J . As discussed earlier that the exact prob-

abilities for J > 0 are significantly different from those for J = 0, the J-shifting

approximation obviously is not a good approximation here and thus leading to

the observed discrepancies. It is to be noted that, Honvault and co-workers

also obtained the rate constants for this reaction on the electronic ground X2A′

PES [11–13, 15, 16] and second excited 14A′′ PES [17]. As expected the rates for

the reaction on the ground X2A′ PES are higher because of its high exoergicity.

6.4 Summary and outlook

A theoretical account of the C(3P) + OH (X2Π, v=0, j=0-1)→ CO(a3Π) + H (2S)

reaction on the first electronic excited state (12A′′), employing a time-dependent

WP method is presented in this chapter. The initial state-selected dynamical

attributes, viz, reaction probabilities, ICSs and rate constants are reported. The

dense resonance structures are observed in the reaction probabilities and finally

in the ICSs. These resonance structures stem from the two deep wells present

on the surface and also because of the low exoergicity of the reaction on this

surface. In addition, the effect of rotational and vibrational excitation on the
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reaction attributes are examined. Reagent rotational and vibrational excitation

demotes the reactivity and the effect is more prominent in the former case. The

results presented here are in good accord with those obtained by Honvault and

co-workers using TIQM and QCT methods. A study of the C + OH reaction

dynamics by considering the nonadiabatic coupling (NAC) between the excited

PESs are currently being taken up.
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