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Chapter 1

Introduction

1.1 A brief overview of the vibronic coupling

The Jahn-Teller (JT) effect [1–8] - that a nonlinear molecule in an orbitally

degenerate state spontaneously distorts to a configuration of reduced symmetry

- is one of the most fascinating phenomena in chemistry. Since the classical

work of Longuet-Higgins et al. [9–11] on the JT effect in a doubly degenerate

(E) electronic state caused by the degenerate (e) vibrational modes (the so-

called E×e-JT effect), much effort has been devoted to elucidate its nature and

importance in a wide variety of systems including, transition metal complexes [12],

solid-state physics and chemistry [13–15], organic hydrocarbons, radicals and

ions [2,6,16–20], and fullerenes [21]. The advent of high-resolution spectroscopic

measurement techniques [22,23] have further motivated to invention of benchmark

theoretical models [24–28] to better understand the static and dynamical aspects

of multimode JT interactions in many other polyatomic molecular systems (see,

for example, the review articles on the subject in Refs. [7] and [17] and the

references therein).

The study of the splitting of degenerate electronic state of a nonlinear molecule

was indeed the first treatment of conical intersections (CIs) [17,29–38], published

1
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in 1937 [1]. An overview of this interesting topic has been presented in the next

section. This configurational instability of the molecules cause an intricate mixing

of electronic and nuclear motions. Such a mixing, referred to as vibronic coupling

(VC) [2–6,39], leads to a breakdown of the well-known Born-Oppenheimer (BO)

approximation [40, 41], and opens up new mechanistic pathways for the decay

of excited molecular electronic states [17, 38, 39]. In this situation, the nuclear

motion ceases to be confined to a single potential energy surface (PES), and

electronic transitions take place during nuclear vibration [42, 43]. In order to

deal with this nonadiabatic situation, it is useful to resort to a diabatic electronic

basis [44] in order to avoid the singular nature of the associated nonadiabatic

coupling elements in an adiabatic electronic basis.

In 1957, Öpik and Pryce first noted that effects similar to the JT effect may

be inherent in systems with near (quasi-degenerate or pseudo-degenerate) elec-

tronic states [10]. This is known as pseudo-Jahn-Teller (PJT) effect in the liter-

ature [7,17,38,45–47]. In the following year in 1958, Longuet-Higgins along with

Öpik, Pryce and Sack worked on the dynamic aspects of the JT effect, that is

to say, the interaction between the motions of the nuclei and the electrons [9].

In general, the dynamical coupling between the electronic and nuclear motions

presents a complex problem to which the solution can only be obtained by lengthy

numerical methods. However, there is one relatively simple case which can be

studied algebraically, namely that of a doubly degenerate electronic state (E)

whose degeneracy is removed in the first order by a doubly degenerate vibration

(e). This situation occurs rather widely in physics and chemistry [2, 6, 9]. Other

interesting cases in which non-degenerate vibrational modes involved in the JT

activity are also found in the literature [2, 6, 13, 17, 24, 25, 48]. This can only be

encountered in molecules possessing two- or four- fold axes of symmetry, for ex-

ample, C4, C4v, C4h, D4, D2d, D4h, S4, and D4d point groups. This is known as

(E× b)-JT effect since the degeneracy is lifted by vibrational modes of b symme-

tries. Usually the vibrational modes of e symmetries participate in PJT activity
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in this case. The other complicated cases are discussed elsewhere in the literature

(see, for example, the Refs. [2] and [6] and the references therein).

Typically, the (E × e)-JT CI exhibits a “Mexican hat” type of topography in

the linear coupling limit - the lower potential surface comprising three equivalent

minima and three equivalent saddle points linking pairs of minima and the upper

one resembles a conical shape with its vertex touching the lower one at the point

of 3-fold-symmetry [49]. Especially near CIs, the nonadiabatic coupling terms are

of singular strength. In case of multimode CIs this often leads to a highly diffuse

spectral envelope - the vibrational levels of the upper surface are completely

mixed with the quasi-continuum of vibrational levels of the lower surface [17]. In

a time-dependent picture this generally yields a femtosecond non-radiative decay

of the upper electronic state [17, 25, 27, 28, 50].

Although linear molecules look like exceptions from the JT theorem, they too

experience similar instabilities in their degenerate or pseudo-degenerate states

when quadratic terms of VC are considered. This is known in the literature as

the Renner-Teller (RT) coupling or glancing intersection, following the original

paper of Renner in 1934 [51] that describes the vibronic interactions in degenerate

Π electronic states of linear triatomic molecules. The JT effect as well as the PJT

effect have been studied extensively over the past few decades (see, for example,

the Refs. [2–8, 17, 19, 38] and the references therein). The JT effect has played

a pivotal role in one of most important discoveries of modern physics - high

temperature superconductivity (Nobel Prize in 1987) [52].

The concept of VC and the associated JT and PJT effects is of a much wider

relevance, however, and applies to essentially all symmetric polyatomic molec-

ular systems. The applications of VC theory cover the full range of molecular

spectroscopy, including, in particular, optical and photoelectron spectroscopy.

Typical spectroscopic phenomena associated with vibronic interactions are the

appearance of nominally forbidden electronic bands, the excitation of nontotally

symmetric modes, or unusual and complex vibronic fine structures of electronic
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spectra [17, 38, 39]. In this thesis, our aim is to solve the complex vibronic spec-

tra and study the nonradiative decay dynamics of multimode JT and related

systems with the help of ab initio electronic structure calculations and quantum

dynamical simulations.

The electronic states displaying the JT and PJT interactions are probed

through photoelectron spectroscopic experiment. The photoelectron bands are

calculated by solving the time-independent or time-dependent Schrödinger equa-

tion. The nonradiative decay dynamics of excited states is studied by recording

the electronic population in time. Here, we again note that in order to deal with

the PES crossings and to avoid the singular nature of the associated nonadiabatic

coupling in an adiabatic electronic basis, we resort to a diabatic electronic ba-

sis. Model Hamiltonians are constructed on this basis and the relevant electronic

coupling parameters of the Hamiltonians are calculated by ab initio methods.

Multidimensional multiple CIs are established in the studied systems. The spe-

cific examples studied in this thesis are: the JT and PJT interactions in (i) the

X̃2A′
1-C̃

2E ′ electronic manifold of tri-atomic boron cluster (B3), (ii) the X̃2Eg-

Ã2A1g electronic manifold of ethane radical cation (ET+), and (iii) the X̃2E ′-

Ã2E ′′ electronic manifold of cyclopropane radical cation (CP+). A full dimen-

sional study including the most relevant vibrational degrees of freedom in case

of (iii) is also carried out by the wave packet (WP) propagation approach within

the multi-configuration time-dependent Hartree (MCTDH) scheme [53–55].

The three molecular systems noted above are susceptible to JT instabilities

in their orbitally degenerate electronic states via suitable symmetry reducing

nuclear displacements. They also undergo symmetry allowed PJT type of in-

teractions with the neighboring electronic states via suitable vibrational modes.

While electronic states of the CP+ and ET+ are probed by photoionizing the

corresponding neutral species, anion photoelectron spectroscopy of B−
3 was used

to probe the electronic states of B3. The experimental photoelectron spectra

of these systems reveal signatures of VC effects, and therefore, construction of
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VC model using the elementary symmetry selection rules becomes a necessity

in order to study the excited electronic states of these molecular systems. Here

we note that we have used the concept of linear vibronic coupling (LVC) model

of Köppel, Domcke, and Cederbaum [17] and extended it wherever necessary in

terms of the dimensionless normal coordinates of the molecular system in order

to deal with small-amplitude vibrations on the multi-sheeted coupled electronic

states. Moreover, the motivation behind all these studies stems from the fact that

dynamical calculations on these systems are not available in the literature. The

time-independent quantum dynamical simulations are done by developing soft-

wares in-house with the help of the Lanczos algorithm [56] (cf. Appendix A). On

the other hand, the time-dependent quantum dynamical studies are done using

the Heidelberg MCTDH package [53–55].

1.2 The importance of CIs and their ramifica-

tions in chemical dynamics

The well-known Wigner-von Neumann “non-crossing rule” guarantees for di-

atomic molecules that electronic states of the same symmetry cannot cross but

must avoid each other [57]. This is due to the fact that the inter-atomic distance

is the only available coordinate. But this rule fails when applied to polyatomic

molecules, for which electronic states of the same symmetry are allowed to cross,

due to the existence of three or more nuclear degrees of freedom. When elec-

tronic states do cross, they can form a CI, which is a (3N-6-2)-dimensional seam

(or hyperline) of the electronic energy for an N-atom molecule. Historically, the

crossing of electronic PESs was discovered in the early 1930s [1, 29, 51]. Approx-

imately about two decades latter an intense theoretical research activity started

in this area attempting to identify and characterize different kinds of curve cross-

ings in molecules. Research papers by Teller [29] and by Herzberg and Longuet-
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Higgins [30] are particularly notable in this context. They provide deep insights

into the subject predicting a variety of physical phenomena that emerge from PES

crossings. The field has undergone a monumental growth thereafter following the

outstanding contributions of several research groups [2–4, 6, 13, 17, 31, 58–60].

A typical dynamical outcome that bears the signature of CIs of PESs is the

femtosecond decay of excited molecular electronic states [17, 38, 39]. The cor-

responding electronic transition reveals seemingly diffuse and overlapping bands

that exhibit highly complex and dense line structure under high resolution. On

the lower electronic state (adiabatic) the phenomena of the geometric phase

[61–63], bifurcation of the wave packet [64] and dissipative vibrational motions

[65] are observed. We note that, at such intersections, the non-adiabatic cou-

pling elements exhibit a singularity, causing a complete breakdown of the BO

approximation [17].

It is now fairly accepted that CIs serve as the “bottleneck” in photophysical

and photochemical transitions [33–35] and also referred to as photochemical fun-

nels in the literature [66]. The book edited by Domcke, Yarkony and Köppel rep-

resents an excellent collection of articles in this emerging area of chemical dynam-

ics [38]. Strictly speaking, with respect to the mainstream computational chem-

istry which considers electronic structure calculations of polyatomic molecules

with fixed nuclei and the nuclear dynamics along the adiabatic PES, the CIs

and the associated JT and PJT vibronic coupling effects are important exten-

sions which take into account the coupling between the electronic and nuclear

motions [7].
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1.3 Current state of the research and organiza-

tion of the thesis

As mentioned in section 1.1, dynamical calculations are not available on B3, ET+,

and CP+. Therefore, in the following paragraphs, we will give a brief account of

the available experimental and electronic structure results of the representative

examples cited above.

The photodetachment spectrum of B−
3 is recorded at three different photon

energies: 355 (3.496 eV), 266 (4.661 eV), and 193 nm (6.424 eV) by Zhai et

al. [67]. The overall spectrum indicated four bands; three of them are attributed

to the ground X̃2A′
1 and the excited Ã2A′′

2 and C̃2E ′ electronic states of B3

and one the appearing in the 4.0-5.0 eV electron binding energy range is due to

a two-electron transition, highlighting strong electron correlation in the boron

trimer [67]. Despite a poor energy resolution, the experimental band indicated

an unidentified sharp splitting of ∼ 1100 cm−1 in the C̃2E ′ band which is found

to be due to a progression along the JT active vibrational mode ν2 [68].

Electronic structure calculations elucidating various stationary points of the

PESs and the vertical ionization energies of boron clusters and their anions are

carried out in the literature at various levels of theory [67]. However, a dynamical

study to unravel the vibrational structure of the photoelectron band is missing

till date. This motivated us to devise a theoretical model to treat the nuclear

dynamics of B3 cluster with the aid of an ab initio based quantum dynamical

approach [68]. In this approach, we construct a model vibronic Hamiltonian of the

final X̃2A′
1 -C̃2E ′ coupled electronic manifold of B3 in terms of the dimensionless

normal coordinates of the electronic ground state of B−
3 in a diabatic electronic

representation [44] and simulate the nuclear dynamics in this manifold to calculate

the photodetachment spectrum.

The photoelectron spectrum of ethane (ET) in a wide range of electron binding

energy has been recorded by different experimental groups using Ne I, He I, He
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II and synchrotron radiations as ionization sources [69–71]. Among these, the

He I (21.22 eV) recording of Turner et al. [69] seems to be better resolved. The

photoelectron band observed in the 11.5-40.0 eV electron binding energy range

revealed ionization from three outer valence and two inner valence orbitals of ET.

The spectrum has been subdivided into three ionization regions: 11.5-14.5 eV,

14.5-16.5 eV, and 20.0-40.0 eV. The first ionization region has three band maxima

occurring at ∼ 12.00 eV, ∼ 12.72 eV, and ∼ 13.50 eV [69]. The ionization bands

expected in this region are due to 2Eg and 2A1g electronic states of the ET+.

The vibrational progression with irregular spacings begins at ∼ 11.57 eV [69].

The bands at 12.00 and 12.75 eV are attributed to the components of the JT

split 2Eg electronic manifold and one at 13.50 eV is due to the 2A1g electronic

state of ET+ [69]. These bands are highly overlapping and bear signatures of

PJT interactions between the X̃2Eg and Ã2A1g electronic states of the radical

cation. The second band is attributed to the 2Eu electronic state of ET+ and the

features in the 20-26 eV energy region are associated with the ionizations from

the inner 2a2u and 2a1g molecular orbitals of ET. Above 25 eV, the structures are

featureless [71].

Theoretical studies were carried out in the past in order to elucidate various

stationary points on the PESs of ET+ [72, 73]. These earlier electronic struc-

ture calculations reported an ambiguity on the characterization of the ground

electronic state of ET+. Despite these electronic structure studies, a rigorous

dynamical study to unravel the vibrational structures of the photoelectron band

is still missing in the literature. In our present work, we aim to reconsider the

electronic structure calculations with increased sophistication and examine the

vibronic structure of the photoelectron band for the first time with the aid of

a model vibronic coupling approach [17]. Here, we consider the first photoelec-

tron band observed in the 11.5-14.5 eV ionization energy range pertinent to the

vibronic structure of the X̃2Eg -Ã2A1g electronic manifold of ET+.

The photoelectron spectrum of cyclopropane (CP) has been recorded by vari-
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ous experimental groups [69,74–81]. Among these, the recent 21.22 eV recording

of Holland et al. [75] using synchrotron and He I radiation as ionization sources

seems to be better resolved. The photoelectron band recorded by these authors in

the 9-20 eV electron binding energy range exhibits a twin band centered around

∼ 11 eV, a broad band at ∼ 13.2 eV, and two strongly overlapping bands at ∼
15.7 and ∼ 16.5 eV (cf. Fig. 5.1). These bands emerge from the ionization of an

electron from the 3e′, 1e′′, 3a′1, and 1a′′2 molecular orbitals of CP, respectively.

Among them, the first two bands are of special interest and are considered here.

They represent the vibronic structures of the JT split X̃2E ′ and Ã2E ′′ electronic

states of CP+. The first photoelectron band exhibits a strong first-order splitting

indicated by the large separation between the maxima of the twin band. The

observed energy difference of ∼ 0.78 eV [75] between the maxima is explained as

being due to JT distortion from the equilibrium geometry of CP. This is further

confirmed by recording the optical Rydberg emission spectrum of CP which ex-

hibits a similar splitting of ∼ 6400 cm−1 [77]. The second band exhibits a highly

diffuse pattern and is structureless. This indicates that the underlying nuclear

motion in the Ã2E ′′ electronic manifold is strongly perturbed by complex vi-

bronic interactions. We have unraveled these issues and the details are presented

in chapter 5.

In the past, theoretical studies were carried out to understand the structural

changes of CP resulting from the photoionization process [82–86]. These results

agree that the first vertical ionization of CP occurs from a degenerate pair of

in-plane e′ orbitals. Moreover, the photoelectron spectrum was compared with

the vertical ionization energies calculated using Koopman’s theorem [87] and

also by considering electron reorganization and correlation effects using a many-

body Green’s function method [84, 88]. The theoretical value of the vertical

ionization potential of ∼ 10.7 eV obtained by von Niessen, Cederbaum, and

Kraemer [88] using the Green’s function method is in very good agreement with

the experimental value of ∼ 10.6 eV. Bouma et al. [86] reported a value of ∼ 10.3
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eV for the same quantity. Energy minimization studies have revealed that the

photoionization from the e′ orbital of CP leads to species of C2v symmetry; one

is characterized by two long C-C bonds and one short C-C bond and the another

one by two short and one long C-C bonds. The former corresponds to the 2B2

and the latter to the 2A1 component. With the use of a MINDO/2 method, the

JT stabilization energies of these two structures relative to a hypothetical D3h

cationic species were reported to be ∼ 9.5 and ∼ 9.2 kcal mol−1, respectively [82].

JT splittings of ∼ 1.55 and ∼ 1.63 eV have been calculated for these two structures

applying Koopman’s theorem, which are twice as large as the experimentally

observed splitting of ∼ 0.80 eV [77].

Although there were some activities on the theoretical side [82–86,88] to elu-

cidate various stationary points on the PESs of CP+ and the vertical ionization

energies as stated above, a rigorous dynamical study to unravel the vibrational

structure of the photoelectron band is still missing. In our present work, we set

out to study the static and dynamic aspects of the JT and PJT vibronic coupling

effects in the two low-lying degenerate electronic states of CP+.

The rest of the thesis is organized as follows. In chapter 2, we present the the-

oretical framework of multimode VC. In particular, we have provided an outline

of the concept of adiabatic approximation and the necessity of a diabatic elec-

tronic basis to investigate the JT and PJT interactions in multimode molecular

systems. In this regard, a simple and heuristic model, the so-called LVC scheme is

discussed. The VC involving degenerate vibrational modes and degenerate elec-

tronic states has also been introduced in this chapter. We have also discussed the

role of totally and nontotally symmetric vibrational modes in establishing a VC

model and the calculation of vibronic eigenvalue spectrum by a numerically exact

solution of the time-independent Schrödinger equation with the help of Lanczos

algorithm [56]. Finally, the calculation of complex vibronic spectra of molecules

with a large electronic and vibrational degrees of freedom by a time-dependent

WP propagation approach within the MCTDH scheme [53–55] is illustrated.
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Chapter 3 provides a theoretical study of the photodetachment spectroscopy

of B−
3 anion with the aid of a quantum dynamical approach. The theoretical re-

sults [68] are compared with the available experimental photoelectron spectra of

B−
3 [67]. Both B−

3 and B3 possess D3h symmetry at the equilibrium configuration

of their electronic ground state. Distortion of B3 along its degenerate vibrational

mode ν2 splits the degeneracy of its excited C̃2E ′ electronic manifold and exhibits

(E⊗ e)-JT activity. The components of the JT split PES form CIs, and they can

also undergo PJT crossings with the X̃2A′
1 electronic ground state of B3 via the

degenerate ν2 vibrational mode. The impact of the JT and PJT interactions on

the nuclear dynamics of B3 in its X̃2A′
1-C̃

2E ′ electronic states is examined here

by establishing a diabatic model Hamiltonian. The parameters of the electronic

part of this Hamiltonian are calculated by performing electronic structure calcu-

lations and the nuclear dynamics on it is simulated by solving quantum eigenvalue

equation.

In chapter 4, we report a theoretical account on the static and dynamic as-

pects of the JT and PJT interactions in the ground (X̃2Eg) and first excited

(Ã2A1g) electronic states of ET+ [89]. The findings are compared with the exper-

imental photoionization spectrum of ET [69]. The present theoretical approach is

based on a model diabatic Hamiltonian and with the parameters derived from ab

initio calculations. The optimized geometry of ET in its electronic ground state

(X̃1A1g) revealed an equilibrium staggered conformation belonging to the D3d

point group. At the vertical configuration, ET+ belongs to this point group. The

ground and low-lying electronic states of this radical cation are of X̃2Eg, Ã
2A1g,

B̃2Eu, and C̃2A2u symmetry. Elementary symmetry selection rule (cf. Eq. 4.2)

suggests that the degenerate electronic states of the radical cation are prone to the

JT distortion when perturbed along the degenerate vibrational modes of eg sym-

metry. The Ã2A1g state is estimated to be ∼ 0.345 eV above the X̃2Eg state and

∼ 2.405 eV below the B̃2Eu state at the vertical configuration. The symmetry

selection rule (cf. Eq. 4.3a) also suggests that PJT crossings of the Ã2A1g and
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the X̃2Eg electronic states of the radical cation along the vibrational modes of

eg symmetry and such crossings appear to be energetically favorable also. The

irregular vibrational progressions, with numerous shoulders and small peaks, ob-

served below 12.55 eV in the experimental recording are manifestations of the

dynamic (E × e)-JT effect. Our findings revealed that the PJT activity of the

degenerate vibrational modes is particularly strong in the X̃2Eg-Ã
2A1g electronic

manifold which leads to a broad and diffuse structure of the observed photoelec-

tron band [89].

In chapter 5, the static and dynamic aspects of the JT and PJT interactions in

the ground (X̃2E ′) and first excited (Ã2E ′′) electronic of the CP+ are investigated

with the aid of an ab initio based quantum dynamical approach. Nuclear dynam-

ical simulations on the resulting four coupled electronic states including fourteen

relevant vibrational modes are carried out by a WP propagation approach em-

ploying the MCTDH algorithm [53–55]. The theoretical results are compared

with the most recent experimental recording of Holland et al. using He I and

synchrotron radiation as excitation sources [75]. A model diabatic Hamiltonian

up to a quadratic vibronic coupling (QVC) scheme including intermode coupling

terms and ab initio calculated coupling parameters are employed in the quantum

dynamical simulations. For the X̃2E ′ electronic manifold, the observed splitting

of the maxima of ∼ 0.78 eV in the bimodal profile compares well with the time-

independent and time-dependent results of ∼ 0.80 eV and ∼ 0.81 eV, respectively,

within the LVC approach [90, 91]. Two Condon active (a′1) and three JT active

(e′) vibrational modes are found to contribute mostly to the nuclear dynamics in

this electronic manifold. The low-energy progression in the photoelectron band

is found to have mainly been caused by the degenerate CH2 wagging (ν4) and

ring deformation (ν5) modes. While the LVC scheme overestimates the observed

spacing in the low-energy progressions, it leads to a very good agreement with

the overall shape of the observed band. The effect of quadratic coupling terms of

the Hamiltonian on this low-energy progression is also discussed.
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The highly diffuse nature and the absence of a bimodal intensity distribution

of the second photoelectron band indicates that the JT effect in the Ã2E ′′ elec-

tronic manifold is not as strong as that in the X̃2E ′ ground electronic manifold.

Although the QVC results improve the agreement between theory and experi-

ment when compared to the LVC results, still, the theoretical envelope does not

reveal the observed structureless and diffuse nature of the band. The discussed

discrepancies between the theoretical and experimental results motivated us to

further examine the possible role of PJT interactions between the X̃2E ′ and

Ã2E ′′ electronic states of CP+ and the intermode bilinear JT coupling terms. We

have found that only the a′′1 and one of the three e′′ vibrational modes (both of

CH2 twisting type) are PJT active. Moreover, we have also discovered low-lying

crossings of the X̃-Ã states occurring in the energy range of the photoelectron

bands [91]. Therefore, we now here develop an extended diabatic vibronic Hamil-

tonian considering the intermode coupling terms, apart from the possible PJT

interactions between the X̃2E ′ and Ã2E ′′ electronic states of CP+. The theoreti-

cal findings establish the importance of both the bilinear and the PJT couplings

in the nuclear dynamics [91, 92]. The simulation of the nuclear dynamics in the

coupled X̃2E ′-Ã2E ′′ electronic states is highly involved since it requires consider-

ation of four interacting electronic states of CP+ and fourteen relevant vibrational

degrees of freedom. Such a task is computationally impossible with the matrix

diagonalization approach and is therefore carried out by a WP propagation ap-

proach using the MCTDH scheme [53–55].



Chapter 2

Theoretical Methodology

2.1 Theory of Vibronic-Coupling Effects

2.1.1 Adiabatic approximation and diabatic basis

We consider a molecule described by the Hamiltonian

H = Te + TN + U(r,R) (2.1)

where Te and TN are the operators for the kinetic energy of the electrons and

nuclei, respectively, and U(r,R) is the total potential energy of the electrons

and nuclei. The vector r denotes the set of electronic coordinates describing the

displacements from a reference configuration. For fixed nuclei, i.e., TN = 0, the

orthonormal electronic wave functions Φn(r, R) and energies Vn(R) defined by


Te + U(r,R)︸ ︷︷ ︸

He

−Vn(R)


Φn(r,R) = 0 (2.2)

depend parametrically on the nuclear geometry. They are known as the BO

electronic states and PESs [93], respectively. The exact eigenstates of the system

14



2.1. Theory of Vibronic-Coupling Effects 15

can be expanded in the BO electronic states

Ψ(r,R) =
∑

n

χn(R)Φn(r,R). (2.3)

Inserting this ansatz into the Schrödinger equation

(H − E)Ψ(r,R) = 0 (2.4)

one readily obtains [93] the following set of coupled equations for the expansion

coefficients in Eq. (2.3)

[TN + Vn(R) − E]χn(R) =
∑

m

Λ̂nmχm(R). (2.5)

The operators Λnm are known as the nonadiabatic operators, given by [41]

Λ̂nm = −
∫
drΦ?

n(r,R)[TN ,Φm(r,R)]. (2.6)

If we rewrite the fundamental set of equations given in Eq. (2.5) as a matrix

Schrödinger equation, we have


TN1 + V(R) − Λ̂︸ ︷︷ ︸

H

−E1


χ = 0. (2.7)

The matrix Hamiltonian H describes the nuclear motion in the manifold of elec-

tronic states. χ is the column vector with elements χn; 1 is the unit matrix, and

V(R) = Vn(R)δnm is the diagonal matrix of electronic energies.

The adiabatic approximation is obtained by neglecting the nonadiabatic op-

erator Λ̂ in Eq. (2.7). This approximation is based on the assumption that the

kinetic-energy operator of the nuclei can be considered as a small perturbation of

the electronic Hamiltonian. In the adiabatic approximation the matrix Hamilto-

nian H becomes diagonal and the total wave function (Eq. 2.3) becomes a product
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of a nuclear and electronic wave function

Ψ(r,R) = χn(R)Φn(r,R). (2.8)

The nuclear motion can be thought of as proceeding on the PES Vn(R) of a given

electronic state characterized by the index n.

Although the adiabatic approximation is often a very useful approach, it may

fail in cases where the PESs of different electronic states are energetically close.

In these cases the nonadiabatic operators Λ̂ cannot be neglected in the Hamil-

tonian H for those electronic indices n and m which belong to the manifold of

closely lying electronic states. These electronic states are now vibronically cou-

pled via Λ̂nm. In terms of the first- and second-order derivative couplings, Λ̂nm

in Cartesian coordinates can be written as [17, 94, 95]

Λ̂nm = −
∑

k

~
2

Mk

Fnm
∂

∂Rk

−
∑

k

~
2

2Mk

Gnm, (2.9)

where Mk are nuclear masses and

Fnm = 〈Φn(r)|∆k|Φm(r)〉, (2.10)

Gnm = 〈Φn(r)|∆2
k|Φm(r)〉, (2.11)

in which ∆k ≡ ∂/∂Rk. The matrix elements Fnm can be written according to the

Hellmann-Feynmann type of relation as [17, 43]

Fnm =
〈Φn(r)|∆kHel(r,R)|Φm(r)〉

Vn(R) − Vm(R)
, (2.12)

where Hel defines the electronic Hamiltonian for fixed nuclear coordinates. When
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the two surfaces are degenerate, Vn(R) = Vm(R) and the Fnm exhibit singular

behavior [17]. As a result, both the electronic wave function and energy become

discontinuous at the seam of CIs which makes the adiabatic electronic represen-

tation unsuitable for dynamical studies.

To overcome this problem the adiabatic wave functions Φn(r,R) are replaced

by smooth and slowly varying functions φn(r,R) of the nuclear coordinates and

correspond to PESs that may cross at the CIs of the adiabatic PESs. These slow-

varying functions represent the diabatic basis [44]. The latter can be obtained

through a suitable unitary transformation of the adiabatic Hamiltonian

Hd = SHadS† = Tn1 + W. (2.13)

Here S defines the orthogonal transformation matrix. For a 2 × 2 Hamiltonian,

S is given by

S =


 cos θ sin θ

−sin θ cos θ


 , (2.14)

where θ represents the adiabatic-to-diabatic transformation angle and Ψd = SΨad.

With this transformation, the diverging kinetic couplings of Eq. (2.12) are trans-

formed into the smooth potential coupling [off-diagonal elements of W in Eq. (2.13)]

and thereby the discontinuity of the adiabatic representation is avoided. The con-

cept of diabatic electronic basis was introduced quite early in the literature in

the context of describing the electron-nuclear coupling in atomic collision pro-

cesses [44] as well as in molecular spectroscopy [11,96]. However, construction of

the latter for polyatomic molecular systems is a tedious and difficult problem since

it is a matter of multi-coordinate problem rather than a single nuclear coordinate.

Therefore, various approximate mathematical schemes have been proposed in the

literature [97–106] to accomplish this task.
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2.1.2 Normal Coordinates

Following the traditional approach [4–6, 11], we introduce normal coordinates

[107] to describe small vibrations around the equilibrium geometry of the elec-

tronic ground state. We assume here that we are dealing with a closed-shell

molecular system. The normal coordinates are defined by

q = L−1δR (2.15)

where δR is the 3N − 6 (3N − 5 for linear molecules) dimensional vector of

internal displacement coordinates (changes of bond lengths and bond angles) for

anN atomic molecule, and L is the L-matrix of the well-known Wilson FG-matrix

method [107]. It is convenient to introduce dimensionless normal coordinates via

Qi = (ωi/~)1/2qi (2.16)

where ωi is the harmonic vibrational frequency of the ith normal mode. In the

harmonic approximation, the kinetic-energy and potential-energy operators of the

electronic ground state take the simple form (let us consider that ~ = 1)

TN = −1

2

∑

i

ωi
∂2

∂Q2
i

(2.17)

V0 =
1

2

∑

i

ωiQ
2
i (2.18)

In the following sections, we proceed by expanding the diabatic excited-state

potential-energy functions and coupling elements in terms of normal mode dis-

placement coordinate Qi.
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2.1.3 Linear Vibronic Coupling Scheme

Let us assume that a diabatic basis has been obtained for a given set of vibroni-

cally interacting electronic states. In this basis the matrix Hamiltonian is given

by [17]

H = TN1 + W(Q). (2.19)

The matrix elements of the potential matrix W(Q) read

Wnm(Q) =

∫
drφ?

n(r,Q)Heφm(r,Q). (2.20)

The φn(r,Q) are the diabatic wave functions for an electronic state of index n. For

a polyatomic molecule, the accurate solution of the matrix Hamiltonian (Eq. 2.19)

is very tedious and often impracticable. Therefore, an approximate form of the

matrix Hamiltonian is often considered for which the Schrödinger equation can

be accurately solved. The simplest, yet elegant approximation is to expand the

potential-energy matrix W(Q) about a reference nuclear configuration Q0 and

retaining the terms linear in Q for the off-diagonal terms. This method is known

as the LVC scheme [17, 94]. The linear approximation is often sufficient since

the elements of the W(Q) matrix are, by definition, slowly varying functions of

Q. Without any loss of generality it is assumed that the diabatic and adiabatic

states are identical at the reference geometry Q0.

For the interacting electronic states n and m, the elements of the matrix

Hamiltonian in the linear approximation are

Hnn = TN + V0(Q) + En +
∑

s

κ(n)
s Qs (2.21)

Hnm =
∑

s

λ(n,m)
s Qs. (2.22)

The energies En which appear in the diagonal of H are constants given by
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Wnn(Q0). The quantities κ
(n)
s and λ

(n,m)
s are known as intrastate and interstate

electron-vibrational coupling constants, respectively, given by [17]

κ(n)
s =

(
∂Vn(Q)

∂Qs

)

Q0

, (2.23)

λ(n,m)
s =

(
∂Vnm(Q)

∂Qs

)

Q0

. (2.24)

The non-vanishing interstate coupling constants λ
(n,m)
s are those for which the

product of the irreducible representations of electronic states φn and φm, and

of the nuclear coordinate Qs contains the totally symmetric representation ΓA,

i.e. [17],

Γn × ΓQs
× Γm ⊃ ΓA. (2.25)

The analogous condition for the intrastate coupling constants κ
(n)
s is

Γn × ΓQs
× Γn ⊃ ΓA. (2.26)

Certainly all totally symmetric modes can couple to the electronic motion which

emphasize the important role of these modes in the VC problem. From the above

symmetry selection rules (Eqs. 2.25 and 2.26), we can say that, only the totally

symmetric modes give rise to nonzero intrastate coupling constants and only

nontotally symmetric modes to nonzero interstate coupling constants.

2.1.4 Vibronic coupling involving degenerate vibrational

modes and degenerate electronic states

The degenerate electronic states are well-known for the failure of the adiabatic

or BO approximation. In the case of linear molecules the VC problem is known
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as the RT effect [51]; otherwise, it is known as the JT effect [1]. Starting with

the JT effect, which is the essential ingredient of this thesis, nearly all (nonlin-

ear) molecules with degenerate electronic states possess several degenerate modes

which can vibronically couple the components of these states. It is thus clear that

we have to solve the multimode JT problem in order to arrive at an understanding

of the interactions that occur in actual molecules.

2.1.4.1 The Jahn-Teller Effect

All non-linear molecules which fall under the non-Abelian point groups (the

Abelian point groups are Cn, Sn, C2v, D2, and D2h) possess degenerate elec-

tronic states and degenerate vibrational modes. For degenerate electronic states

in non-linear molecules, Jahn and Teller have shown that there always exists a

nontotally symmetric vibrational mode that can lift the orbital degeneracy in first

order [1,108]. Considering a two-fold degenerate (E) electronic state, the symme-

try of the desired vibrational mode for VC should be such that it is contained in

the decomposition of the symmetrized product (E)2. It is then found that in all

but seven molecular-point groups (with two-fold and four-fold principal rotational

axes of symmetry, e.g., D2d, D4h, C4v, etc., where non-degenerate vibrational

modes participate in the JT activity, the so-called (E × b)-JT effect) degenerate

vibrations can be JT active, leading to the (E × e)-JT effect [2, 5, 6, 13, 17].

Let us consider a system with a doubly degenerate electronic state and three-

fold principal rotational axis of symmetry C3. The doubly degenerate JT active

vibrational mode in Cartesian coordinates be represented as (Qx, Qy). In polar

coordinates (ρ, φ), the x and y components of the degenerate vibrational mode

can be written as

Qx = ρ cosφ Qy = ρ sinφ. (2.27)
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Let us define

Q± = Qx ± iQy = ρe±iφ. (2.28)

The transformation properties of Q± under C3 are

C3Q± = exp

(
±2πi

3

)
Q±. (2.29)

The doubly degenerate electronic states can be expressed by the diabatic wave

functions in the Cartesian coordinate as (ψx, ψy). The linear combinations

ψ± =
1√
2

(ψx ± iψy) , (2.30)

have the following transformation properties under C3 operation

C3ψ± = exp

(
±2πi

3

)
ψ±. (2.31)

By expanding the electronic part of the Hamiltonian (Eq. 2.19) in a Taylor series

up to first order in Q± and evaluating matrix elements with the diabatic basis

states (Eq. 2.30), taking into account the symmetry properties of Eqs. (2.29) and

(2.31), one obtains [2, 5, 11]

HJT = (TN + V0)12 +



 0 λρeiφ

λρeiφ 0



 , (2.32)

where V0 = ω
2
ρ2 and

TN = −ω
2

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2∂φ2

)
. (2.33)

ω is the vibrational frequency associated with the degenerate mode and λ is known

as linear JT coupling constant. The corresponding adiabatic potential functions
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obtained by diagonalizing the JT Hamiltonian at a fixed-nuclear geometry, i.e.,

TN = 0,

V± =
ω

2
ρ2 ± λρ, (2.34)

are the well-known “Mexican hat” potentials [2, 5, 11, 17].

It is to be noted that most molecules have at least two vibrational modes of

the same e-type symmetry (the exception are triatomic systems, such as H3, Li3,

B3, etc.), giving rise to the E × (e + e + ...)-JT effect. The nonseparability of

the JT active modes makes it necessary to sum over all contributions Hj of the

individual modes

H =
M∑

j

Hj (2.35)

and treat the total matrix Hamiltonian H as a whole rather than the individ-

ual terms separately. As a consequence, the vibronic symmetries are reduced

considerably. The individual vibronic angular momenta

Jj =
1

i

∂

∂φj

12 +
1

2


1 0

0 −1


 (2.36)

are no longer constants of the motion. It is only the total vibronic angular

momentum

J =

M∑

j

1

i

∂

∂φj
12 +

1

2



1 0

0 −1



 (2.37)

that commutes with H [17]. In the adiabatic PESs this manifests itself in a depen-

dence of V± on the azimuthal angles φj of the individual modes. The potentials

are invariant only under a common change of the angles of all vibrational modes

otherwise of a very complicated shape. In addition, the locus of intersection is
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no longer a single point in coordinate space, but rather a subspace of dimension

2M - 2. It must be evident from these remarks that the multimode JT problem

leads to much more complicated nuclear dynamics than the single-mode problem.

We note that it is important to take these multimode effects into consideration

in order to arrive at a realistic treatment of actual molecules [17].

2.1.5 Inclusion of totally symmetric vibrational modes

From Eq. (2.21) it is clear that displacements along totally symmetric modes tune

the energy gap (|E2 − E1|) between two electronic states and generally lead to

intersections of the potential-energy functions, which are allowed by symmetry.

These vibrational modes have therefore been termed tuning modes [17]. On the

other hand, the nontotally symmetric modes satisfying Eq. (2.25) describe the

coupling between two electronic states. Therefore, they are termed as coupling

modes [17]. Within the LVC approach, the tuning modes contribute only to the

diagonal elements of the electronic Hamiltonian matrix, see Eq. (2.21). There-

fore, the inclusion of these modes to the VC models described earlier becomes

straightforward.

In the (E × e)-JT case the Nt tuning modes are represented by

H t
JT =

Nt∑

i=1




(
∂2

∂Q2
i

+Q2
i

)
12 +



κ
E
i 0

0 κE
i



Qi



 , (2.38)

where the normal coordinates Qi, i = 1...Nt, are the totally symmetric modes

and the κE
i are the gradients of the adiabatic potential-energy functions of the E

state with respect to the ith tuning mode.

From Eqs. (2.32) and (2.38), we have

[
HJT , H

t
JT

]
= 0 (2.39)
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2.2 Calculation of Spectra

The photoelectron spectrum for a transition to the coupled manifold of electronic

states is described by the Fermi’s Golden rule. According to this rule, the pho-

toelectron intensity is given by

P (E) =
∑

v

∣∣∣〈Ψv|T̂ |Ψ0〉
∣∣∣
2

δ(E − Ev + E0), (2.40)

where |Ψ0〉 is the initial electronic and vibrational ground state of the molecule

with energy E0. |Ψv〉 is the final vibronic state in the coupled electronic manifold

and Ev is the vibronic energy. The quantity T̂ is the transition operator that

describes the interaction of the electron with the external radiation of energy E.

The initial and final states are given by

|Ψ0〉 = |Φ0〉|χ0
0〉, (2.41)

|Ψv〉 = |Φ1〉|χ1
v〉 + |Φ2〉|χ2

v〉, (2.42)

where |Ψ〉 and |χ〉 represent the diabatic electronic and vibrational part of the

wave function, respectively. The superscripts 0, 1, and 2 refer to the ground

and the two interacting diabatic electronic states, respectively. With the use of

Eqs. (2.41-2.42), the excitation function of Eq. 2.40 can be rewritten as [17]

P (E) =
∑

v

∣∣τ1〈χ1
v|χ0

0〉 + τ2〈χ2
v|χ0

0〉
∣∣2δ(E − Ev + E0), (2.43)

where

τm = 〈Φm|T̂ |Φ0〉, (2.44)

represent the matrix elements of the transition dipole operator of the final elec-

tronic state m. Upon rewriting Eq. (2.43), the matrix elements of the transition

dipole operator are treated to be independent of nuclear coordinates. These el-
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ements are not calculated and are treated as constants, in accordance with the

applicability of the generalized Condon approximation in a diabatic electronic

basis [109].

2.2.1 Time-Independent Approach

In a time-independent quantum mechanical approach the photoelectron spectrum

is calculated by solving the eigenvalue equation

H|Ψv〉 = Ev|Ψv〉 (2.45)

numerically, by representing the vibronic Hamiltonian H in a direct product basis

of harmonic oscillator eigenstates of H0. In this basis, |χm
v 〉 takes the following

form [17]:

|χm
v 〉 =

∑

n1,n2,...,nk

am
v,n1,n2,...,nk

|n1〉|n2〉...|nk〉. (2.46)

Here m is the electronic state index, nl is the quantum number associated with

the lth vibrational mode, and k is the total number of such modes. The summa-

tion runs over all possible combinations of quantum numbers associated with each

mode. For each vibrational mode, the oscillator basis is suitably truncated in the

numerical calculations. The maximum level of excitation for each mode is ap-

proximately estimated from the corresponding Poisson parameter [ 1
2

(κorλ
ω

)2]. The

Hamiltonian matrix written in such a direct product basis is usually highly sparse,

and is tridiagonalized using the Lanczos algorithm prior to diagonalization [56].

The diagonal elements of the resulting eigenvalue matrix give the eigenenergies

of the vibronic energy levels and the relative intensities of the vibronic lines are

obtained from the squared first components of the Lanczos eigenvectors [39, 56].

A brief overview of the Lanczos algorithm is given in Appendix A.

Finally, the spectral envelope is calculated by convoluting the line spectrum



2.2. Calculation of Spectra 27

with a suitable Lorentzian line-shape function of appropriate width of the follow-

ing:

L(E) =
1

π

Γ/2

E2 + (Γ/2)2
. (2.47)

The quantity Γ represents the full width at the half maximum (fwhm) of the

Lorentzian.

2.2.2 Time-Dependent Approach

First of all we note that the time-dependent calculations in this thesis are done

only for the CP+. In a time-dependent picture, the Fourier transform representa-

tion of the delta function is used in the above Golden rule formula. The resulting

expression for the spectral intensity then rearranges to the Fourier transform of

the time autocorrelation function of the wave packet [27]

P (E) ∼ 2Re

∫ ∞

0

eiEt/~〈0|τ †e−iHt/~
τ |0〉dt, (2.48)

∼ 2Re

∫ ∞

0

eiEt/~Cm(t)dt. (2.49)

The quantity, Cm(t) = 〈Ψm(0)|Ψm(t)〉, is the time autocorrelation function of the

wave packet initially prepared on mth electronic state. τ refers to the transition

dipole matrix; τ
† =

(
τE′

x , τE′

y , τE′′

x , τE′′

y

)
with τm given by Eq. (2.44) and,

Ψm(t) = e−iHt/~τm|0〉. Note that Ψ possesses components on each of the vibron-

ically coupled four diabatic electronic states (E ′
x, E

′
y, E

′′
x and E ′′

y ), and therefore

the composite photoelectron spectrum is written as a sum of the resulting four

partial spectra, calculated by propagating wave packets for four different initial

conditions. Finally, only terms |τm|2 contribute to the spectrum, after using a

vibronic symmetry in Eq. (2.49), while the mixed terms τmτn?

, still present in
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Eq. (2.43) of the following form of CP+,

P (E) =
∑

v

∣∣∣τE′

x〈χE′

x
v |χ0

0〉 + τE′

y〈χE′

y
v |χ0

0〉 + τE′′

x 〈χE′′

x
v |χ0

0〉 + τE′′

y 〈χE′′

y
v |χ0

0〉
∣∣∣
2

δ(E − Ev + E0) (2.50)

will vanish [17].

In time-dependent approach, the eigenvalue spectrum of the four-state (or 4

× 4) matrix Hamiltonian H of Eq. (5.4) are calculated by numerically solving the

time-dependent Schrödinger (TDSE) equation

i~
∂|Ψ〉
∂t

= H|Ψ〉 (2.51)

using the MCTDH scheme. The latter provides an efficient algorithm in propagat-

ing the wave packets rather effectively with much less computational overheads.

Since the details of this method have been extensively discussed in the litera-

ture [54, 55, 110], we highlight only the essentials here. The basis of the method

is to use a multiconfigurational ansatz for the wave function, with each configu-

ration being expressed as a Hartree product of time-dependent basis functions,

known as Single Particle Functions (SPFs). For the nonadiabatic problem exam-

ined here, a multiset formulation is much more appropriate and the corresponding

wave function can be expanded as:

Ψ(Q1, Q2, ..., Qf , t) = Ψ(q1, q2, ..., qp, t)

=

4∑

α=1

n
(α)
1∑

j1=1

...

n
(α)
p∑

jp=1

A
(α)
j1...jp

(t)

×
p∏

k=1

φ
(α,k)
jk

(qk, t)|α〉 (2.52)

=
∑

α

∑

J

A
(α)
J Φ

(α)
J |α〉, (2.53)

where, f and p represent the number of vibrational degrees of freedom, and
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MCTDH particles (also called combined modes), respectively. A
(α)
j1...jp

denote the

MCTDH expansion coefficients and the φ
(α,k)
jk

are the one-dimensional expansion

functions, known as SPFs. The labels {α} are indices denoting the discrete

set of electronic states considered in the calculation. Thus, the WP, Ψ(α) ( =
∑

J A
(α)
J Φ

(α)
J ) associated with each electronic state is described using a different

set of SPFs, {φ(α,k)
jk

}. Here the multiindex, J = j1 ... jp depends implicitly on

the state α as the maximum number of SPFs may differ for different states. The

summation
∑

J is a shorthand notation for summation over all possible index

combinations for the relevant electronic state. The variables for the p sets of

SPFs are defined in terms of one or multidimensional coordinates of a particle.

The equations of motion for the expansion coefficients, A
(α)
J and SPFs, φ

(α,k)
jk

have been derived using the Dirac-Frankel variational principle [111, 112]. The

resulting equations of motion are coupled differential equations for the coefficients

and the SPFs. For k degrees of freedom there are nk SPFs, and these SPFs are

represented by Nk primitive basis functions or grid points. The efficiency of the

MCTDH algorithm grows with increasing Nk/nk [110]. The use of the variational

principle ensures that the SPFs evolve so as to optimally describe the true WP;

i.e., the time-dependent basis moves with the WP. This provides the efficiency of

the method by keeping the basis optimally small.

In general, for the present type of nonadiabatic problems, MCTDH is quite

capable of handling 20-30 vibrational degrees of freedom. CP has 21 vibrational

degrees of freedom (seven nondegenerate and seven doubly degenerate) and we

find that only 14 of them are relevant and need to be considered in the nuclear

dynamics treated here. So, the physical system is described by a set of f = 14 co-

ordinates, Q1,...,Qf . For large systems, let say, for f ≥ 6, it is important to com-

bine degrees of freedom in order to make the calculation computationally feasible.

The collection of combined degrees of freedom is called a “ particle ” [110]. Thus,

a particle coordinate is chosen to be a set of coordinates: i.e., qk = [Q1, Q2,...].

The SPFs are then multidimensional functions of the set of system coordinates
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and the number of particles p < f . By doing so, the computational resources can

be significantly reduced and high-dimensional systems can be treated without

affecting the variational nature of the method. However, the multimode prob-

lems remain an open challenge since the exponential growth in the computational

resources restricts a calculation up to 6-8 particles.

To set up an MCTDH calculation one needs to choose a set of primitive basis

functions in the first step. The SPFs, their time derivatives and the Hamiltonian

are then represented in this basis at each point in time. A combination scheme

for the degrees of freedom is then selected to reduce the computational require-

ments and finally, a set of SPFs is specified in order to accurately represent the

evolving WP. The primitive basis chosen is a harmonic oscillator discrete vari-

able representation (DVR). The initial SPFs used are sets of ortho-normalized

harmonic oscillator functions in the mass-frequency scaled coordinates used. In

the multiset formalism, one set is required for each particle for each electronic

state. The initial wave function is the vibrational wave function of CP in its

ground electronic state, which is simply expressed as a product of the first SPFs

in each set, and assumes the form of a Gaussian wave packet. The various mode

combination schemes, the sizes of the primitive and SPF bases used in the present

calculations are given in Tables 5.6 and 5.7.



Chapter 3

The JT and PJT effects in the

anion photoelectron spectroscopy

of B3 cluster

3.1 Introduction

This chapter deals with the fate of the B3 cluster in its orbitally degenerate

C̃2E ′ electronic manifold which is probed in a photodetachment experiment from

its anion B−
3 [67]. Both B−

3 and its neutral counterpart B3 possess D3h equilibrium

geometry in their electronic ground state. Within theD3h point group, the ground

state (X̃1A′
1) molecular orbital sequence of B−

3 can be written as [67, 113]

(1a′1)
2(1e′)4(1a′′2)

2(2a′1)
2.

Electron detachment from the 1e′ orbital of B−
3 produces B3 in its final degen-

erate C̃2E ′ electronic state, which is prone to the JT distortion. The vibrational

modes of B−
3 belong to the following symmetry species of the D3h point group:

Γvib = a′1 + e′. (3.1)

31
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The symmetric direct product of the E ′ representation in the D3h point group

yields,

(E ′)2 = a′1 + e′. (3.2)

Similarly, the direct product of E ′ and A′
1 representations in the same point

group yields,

E ′ × A′
1 = e′. (3.3)

The totally symmetric vibrational mode ν1 of a′1 symmetry is Condon active and

cannot lift the electronic degeneracy [17]. The degenerate vibrational mode ν2

of e′ symmetry on the other hand, can lift the degeneracy of the C̃2E ′ electronic

manifold and can participate in the (E⊗e)-JT activity. Moreover, the symmetry

selection rule of Eq. (3.3) permit a PJT coupling of the X̃2A′
1 and the C̃2E ′ elec-

tronic states of B3 via the e′ vibrational mode. The existence of different types of

coupling lead to the formation of multiple CIs of electronic states and the nuclear

dynamics proceeds via highly complex nonadiabatic paths. As noted in chapter

2, this represent the (E × e)-JT system which possesses only one JT active e′

vibrational mode.

The details of the experimental photodetachment of spectrum of B−
3 and the

available electronic structure results are already given in section 1.3. In this

chapter, we construct a model vibronic Hamiltonian of the final X̃2A′
1 -C̃2E ′ cou-

pled electronic manifold of B3 in terms of the dimensionless normal coordinates

of the electronic ground state of B−
3 in a diabatic electronic representation and

simulate the nuclear dynamics in this manifold to calculate the photodetachment

spectrum [17, 44]. The theoretical results are in good accord with the experi-

mental data [67]. We find that the higher order JT and PJT interactions, in

particular, have no impact on the vibronic structure of the photoelectron bands.
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The observed sharp and discernible splitting of ∼ 1100 cm−1 in the experimental

C̃2E ′ band is found to be due to a progression along the JT active vibrational

mode ν2 [68].

3.2 The Vibronic Hamiltonian

The photodetachment process is delineated as a FC transition from the elec-

tronic ground state of B−
3 (X̃1A′

1) to the coupled X̃2A′
1-C̃

2E ′ electronic manifold

of B3. Ionization of electrons from the valence 2a′1 and 1e′ molecular orbitals

of B−
3 produces B3 in its ground X̃2A′

1 and excited C̃2E ′ electronic states, re-

spectively. The latter is prone to the JT instability when distorted along the

degenerate vibrational mode ν2. The JT split components of the C̃2E ′ electronic

manifold are allowed (by symmetry selection rule) to undergo crossings with the

X̃2A′
1 electronic state, and therefore, can exhibit PJT activity. These multiple

crossings of electronic states lead to intricate mixing of electronic and nuclear

motions [17, 43, 114].

A model diabatic vibronic Hamiltonian [17] is constructed in terms of the

dimensionless normal coordinates of the ground electronic state of B−
3 in order to

simulate the nuclear dynamics in the coupled X̃2A′
1-C̃

2E ′ electronic manifold of

B3. In what follows, we define Qi as the dimensionless normal coordinate of B−
3

associated with the vibrational mode νi. The vibrational mode ν1 of a′1 symmetry

is Condon active and ν2 of e′ symmetry is JT and PJT active. In this description

the Hamiltonian assumes the form [17]

H = H013 +




U11 U12 U13

U22 U23

h.c. U33


 . (3.4)

Where H0 = TN + V0, with
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TN = −1

2
ω1

∂2

∂Q2
1

− 1

2
ω2

(
∂2

∂Q2
x2

+
∂2

∂Q2
y2

)
, (3.5)

V0 =
1

2
ω1Q

2
1 +

1

2
ω2

(
Q2

x2 +Q2
y2

)
, (3.6)

is the Hamiltonian matrix associated with the electronic ground state of B−
3 , and

is defined in terms of unperturbed harmonic oscillators with frequencies ωi. The

elements of the electronic Hamiltonian matrix (Uij) are expanded in a second-

order Taylor series around the equilibrium geometry of the electronic ground

state of B−
3 occurring at Q=0, as follows

U11 = E0
E′ + κ1Q1 + λ2Qx2 +

1

2
[γ1Q

2
1

+γ2(Q
2
x2 +Q2

y2) + η2(Q
2
x2 −Q2

y2) + γ12Q1Qx2], (3.7a)

U22 = E0
A′

1
+ κ′1Q1 +

1

2
γ′1Q

2
1 +

1

2
γ′2(Q

2
x2 +Q2

y2), (3.7b)

U33 = E0
E′ + κ1Q1 − λ2Qx2 +

1

2
[γ1Q

2
1

+γ2(Q
2
x2 +Q2

y2) − η2(Q
2
x2 −Q2

y2) − γ12Q1Qx2], (3.7c)

U12 = λ′2Qx2, (3.7d)

U13 = λ2Qy2 − η2Qx2Qy2 +
1

2
γ12Q1Qy2, (3.7e)

U23 = −λ′2Qy2. (3.7f)
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The parameters in the above equations have the following identities. The ver-

tical ionization energies of the C̃2E ′ and X̃2A′
1 electronic states of B3 are defined

as E0
E′ and E0

A′

1
, respectively. The linear intrastate coupling constant [17] for the

totally symmetric vibrational mode ν1 is given by κ1 and κ′1 in the C̃2E ′ and

X̃2A′
1 electronic states, respectively. The linear and quadratic JT coupling pa-

rameters for the degenerate vibrational mode ν2 within the C̃2E ′ electronic man-

ifold are denoted by λ2 and η2, respectively. The quantities γi and γ′i describe

the diagonal second-order coupling parameters for the C̃2E ′ and X̃2A′
1 electronic

states, respectively. The bilinear JT (a′1-e
′) coupling parameter is given by γ12.

The normal coordinates of the x and y components of the degenerate vibrational

mode ν2 is denoted by Qx2 and Qy2, respectively. The quantity λ′
2 describes the

linear PJT coupling parameter between the X̃2A′
1-C̃

2E ′ electronic states. All

these parameters are determined by performing extensive ab initio calculations

which are discussed in detail in section 3.3.

3.3 Electronic Structure Calculations

3.3.1 Optimized geometry, harmonic vibrational frequen-

cies, and normal coordinates of B−
3 in the ground

electronic state

The geometry optimization and the calculation of harmonic vibrational frequen-

cies of B−
3 in its ground electronic state (X̃1A′

1) are carried out at the Møller-

Plesset perturbation theory (MP2) level employing the correlation-consistent po-

larized valence triple-ζ (cc-pVTZ) Gaussian basis set of Dunning [115]. The

electronic structure calculations were performed using the Gaussian03 program

package [116]. The ab initio force constant matrix for the ground electronic state

of B−
3 is obtained with the cc-pVTZ basis set at the MP2 level. On diagonal-

ization of this force constant matrix, the harmonic vibrational frequencies (ωi)



3.3. Electronic Structure Calculations 36

Table 3.1: Equilibrium geometry parameters and harmonic vibrational frequen-
cies of B−

3 in its X̃1A′
1 electronic state along with experimental and other theoret-

ical results. We note that the experiment describes the fundamental vibrational
frequencies.

Level Reference R(B-B) ∠ B1-B2-B3 ω1(a
′
1) ω2(e

′)
Å deg cm−1 cm−1

MP2/cc-pVTZ This work 1.555 60 1298 952
B3LYP/6-311+G? [67] 1.542 - 1239 959
RCCSD(T)/6-311+G? [67] 1.576 - 1190 897
CAS-MRCI/6-311+G? [67] 1.552 - a a
Experimental [67] - - 1230 ± 40 1100 ± 80
Description Symmetric Asymmetric

stretch stretch
(breathing) (bending)

a Properties were not reported at this level of the theory.

are obtained. Along with the latter, the transformation matrix from the sym-

metry coordinates to the mass-weighted normal coordinates is obtained. The

dimensionless normal coordinates (Qi) are then obtained by multiplying the lat-

ter with
√
ωi (in atomic units) [107]. The equilibrium geometry parameters and

harmonic vibrational frequencies of B−
3 in its electronic ground state along with

the available theoretical and experimental results [67] are given in Table 3.1.

3.3.2 Coupling Parameters of the Hamiltonian

The coupling parameters of the Hamiltonian in Eqs. (3.7a-3.7f) represent the

derivatives of the adiabatic potential energy of B3 of appropriate order with re-

spect to the dimensionless normal coordinates (Qi), calculated at the equilibrium

geometry of B−
3 (Q=0) [94]. The linear coupling parameters κ1, κ

′
1, λ2, and the

second-order coupling parameters γ1, γ2, γ
′
1, and η2 are obtained by fitting the

adiabatic form of the diabatic electronic Hamiltonian of Eqs. (3.7a-3.7f). The

bilinear γ12 and the linear λ′
2 PJT coupling parameters are obtained by suitable

numerical finite difference schemes. These are defined as
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γ12 =

(
∂2VE′

∂Q1∂Q2

) ∣∣∣∣∣
Q=0

, (3.8)

λ′2 =
1

2

√(
∂2∆E

∂Q2
2

)∣∣∣∣∣
Q=0

, (3.9)

where ∆E is the difference of squares of the adiabatic potential energy difference

between the C̃2E ′ and X̃2A′
1 ionic states for normal coordinate displacement Q2

and the same for the equilibrium configuration, Q=0.

To estimate these coupling parameters, direct calculations of vertical ioniza-

tion energies of B−
3 were performed by the OVGF method [117, 118] employing

the cc-pVTZ basis set. The electronic structure calculations were carried out as

a function of the dimensionless normal mode displacement (from Q=0) coordi-

nates, Qi (i = 1-2) = -1.5 (0.25) 1.5, using the Gaussian-03 program package [116].

The adiabatic PESs of the X̃2A′
1 and C̃2E ′ electronic states of B3 along Q1 and

Q2 are obtained from the calculated vertical ionization energies. These energies

are then fitted to the adiabatic form of the diabatic Hamiltonian described in

Eqs. (3.7a-3.7f) by a least-square fit and thereby the coupling parameters are

derived. We note that, the coupling parameters are also estimated by numerical

finite difference scheme and the identity of the results is confirmed. However, the

bilinear (γ12) and the linear PJT (λ′
2) coupling parameters are estimated only by

a suitable finite difference method.

In Fig. 3.1, the adiabatic potential energy values of the X̃2A′
1 (panel a) and

C̃2E ′ (panel b) electronic states of B3 measured relative to the X̃1A′
1 ground

electronic state of B−
3 (these are the vertical ionization energy values obtained

from the OVGF calculations), along the dimensionless normal coordinate Q1 of

the symmetric (ν1) vibrational mode is plotted. The asterisks in each panel
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represent the computed ab initio data and a quadratic fit to these data is shown by

the solid lines. The vibrational mode ν1 represents the breathing vibration of B3.

The linear κ′1, κ1, and quadratic γ′1, γ1 coupling parameters of the Hamiltonian

[Eqs. (3.7a-3.7c)] for ν1 derived from the above fits are given in Table 3.2.

The degenerate vibrational mode ν2 consists of asymmetric stretch and bend-

ing vibrations. It represents the ring deformation of B3. The linear and quadratic

JT coupling parameters for this mode is estimated by fitting the (signed) differ-

ence of the JT split PESs along this mode. In Fig. 3.2(a), this energy difference

is plotted along the dimensionless normal coordinate of the x component, Q2x of

this mode. The asterisks in the panel denote the computed ab initio energies and

the solid line superimposed on them represents the quadratic fit. The value of the

linear (λ2) and the quadratic (η2) JT parameters of the Hamiltonian [Eqs. (3.7a,

3.7c-3.7f)] obtained from the above fit are included in Table 3.2. The value of

the diagonal second-order coupling parameter γ2 for ν2 is extracted from a fit of

the mean of the JT split PESs. This fit along with the ab initio data is shown in

Fig. 3.2(b), and the value of γ2 is included in Table 3.2.
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Figure 3.1: Vertical ionization energy of B−
3 pertinent to the first (X̃2A′

1) and third

(C̃2E ′) photoelectron bands, plotted along the dimensionless normal coordinate
of the symmetric vibrational mode ν1 are shown in panel (a) and (b), respectively.
The ab initio OVGF energy values are shown by the asterisks, and a quadratic fit
to these points is shown by the solid line. The linear (κ1 and κ′1) and the diagonal
(γ1 and γ′1) quadratic coupling parameters listed in Table 3.2 are obtained from
the above fits.
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Figure 3.2: (a) The potential energy difference and (b) the mean of the JT

split adiabatic sheets of the C̃2E ′ electronic manifold of B3 plotted along the
dimensionless normal coordinate of the degenerate vibrational mode ν2. The ab
initio OVGF data are shown by the asterisks; a quadratic and a parabolic fit to
these data are shown by the solid lines, in both panel (a) and (b). The linear
(λ2), quadratic (η2) JT and diagonal quadratic (γ2) coupling parameters for this
mode derived from the above fits are listed in Table 3.2.
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Table 3.2: Coupling parameters of the Hamiltonian [Eqs. (3.7a-3.7f)] of the X̃2A′
1 and C̃2E ′ electronic states of B3 derived

from the computed OVGF data. All quantities are in eV if not otherwise stated. The dimensionless excitation strengths
(κ2orλ2/2ω2) are included in the parentheses.

Modes κ or λ κ′ λ′ γ γ′ η γ12

(Sym.) C̃2E ′ X̃2A′
1 X̃2A′

1 ⊗ C̃2E ′ C̃2E ′ X̃2A′
1 C̃2E ′ C̃2E ′

ν1(a
′
1) 0.013 (0.003) -4.147 ×10−2 (0.033) - -3.717 ×10−4 4.347 ×10−4 - -

ν2(e
′
1) 0.169 (1.019) - 3.974 ×10−2 (0.057) -4.496 ×10−3 -6.044 ×10−3 1.253 ×10−3 a

a = 6.34 ×10−3.
E0

E′ 5.13 - MP2/cc-pVTZ; 5.31 - bROVGF/6-311+G(2df); 5.43 - cADC(3)/6-311+G(2df).
E0

A′

1
2.57 - MP2/cc-pVTZ; 2.72 - bROVGF/6-311+G(2df);2.68 - cADC(3)/6-311+G(2df);

E0
A′

1
2.88 - cRCCSD(T)/6-311+G(2df).

b Data from Ref. [113].
c Data from Ref. [67].
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3.4 Results and Discussion

3.4.1 Adiabatic Potential Energy Surfaces

The adiabatic PESs of the C̃2E ′ electronic manifold of B3 are given by the eigen-

values of the diabatic electronic Hamiltonian matrix of Eq. (3.4) [17]. Setting the

linear PJT coupling parameter λ2 to zero one obtains the following eigenvalues:

VA′

1(Q) = V0(Q) + E0
A′

1
+ κ′1Q1 +

1

2
γ′1Q

2
1 +

1

2
γ′2(Q

2
x2 +Q2

y2), (3.10)

V∓(Q) = V0(Q) + E0
E′ + κ1Q1 +

1

2
γ1Q

2
1 +

1

2
γ2(Q

2
x2 + Q2

y2) ∓
√

[λ2Qx2 +
1

2
η2(Q

2
x2 − Q2

y2) +
1

2
γ12Q1Qx2]2 + [λ2Qy2 − η2Qx2Qy2 +

1

2
γ12Q1Qy2]2, (3.11)

where, VA′

1(Q) represents the adiabatic PES of the X̃2A′
1 electronic state and V−

and V+ denote the lower and upper adiabatic sheets of the JT split C̃2E ′ electronic

manifold of B3, respectively. The quantity V0(Q) is given by Eq. (3.6). The

analytic form of the argument of the square root in Eq. (3.11) refers to a cusp in

the vicinity of the JT undistorted configuration at Q=0.

The cuts of the adiabatic PESs described by Eq. (3.11) (without the bilinear

γ12 JT coupling term) along the normal coordinates of the vibrational modes

ν1 and ν2 are shown by the solid lines in Figs. 3.3(a) and 3.3(b), respectively.

The dashed lines in panel a and b refer to the cut of the X̃2A′
1 electronic state

along ν1 and ν2, respectively (Eq. 3.10). The totally symmetric mode ν1 cannot

lift the degeneracy of the C̃2E ′ electronic state of B3. However, depending on its

excitation strength (cf. Table 3.2) it can shift the potential energy minimum of the

C̃2E ′ state away from the equilibrium geometry of the anion (Q=0) and display

Condon activity in the photoelectron band. The computed ab initio energies are

superimposed on the model PESs, and are shown by the filled triangles in the
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Figure 3.3: Adiabatic potential energy cuts of the X̃2A′
1 (dashed lines) and

C̃2E ′ (solid lines) electronic states of B3 as a function of the dimensionless normal
coordinates of the symmetric vibrational mode ν1 (panel a) and the x compo-
nent of the degenerate vibrational mode ν2 (panel b). The PESs obtained from
Eqs. (3.10-3.11) without the bilinear JT contributions are shown by the dashed
and solid lines, respectively, whereas, the computed ab initio points are shown by
the filled triangles/circles in the two panels. The equilibrium geometry of B−

3 in

its electronic ground state (X̃1A′
1) corresponds to Q=0.
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figure. It can be seen that the computed ab initio energies are well reproduced

by the model. Because of its very small excitation strength, the minimum of the

C̃2E ′ state shifts only slightly relative to the equilibrium geometry of the anion

at Q=0. However, the minimum of the X̃2A′
1 state shifts to a somewhat larger

distance in the opposite direction.

The adiabatic PESs along the normal coordinate of the x component of the

degenerate vibrational mode ν2 obtained from Eqs. 3.10 and 3.11 are shown in

Fig. 3.3(b). The solid lines in the figure refer to the potential energies of the

C̃2E ′ electronic states, whereas, the dashed lines refer to those of the X̃2A′
1 elec-

tronic state of B3. The computed ab initio energies (filled triangles and circles)

are also superimposed on the figure. It can be seen that the ab initio data are

very well reproduced by the model. The degeneracy of the C̃2E ′ electronic man-

ifold is split upon displacements from the D3h equilibrium geometry along this

vibrational mode. It can be seen from Table 3.2 that the excitation strength of

this mode is much larger than that of ν1 and therefore, a considerable splitting of

the degeneracy can be observed from Fig. 3.3(b). As a result, the two sheets of

the JT split PESs form CIs at the D3h equilibrium configuration. Upon distortion

along Q2x the D3h symmetry of the system breaks and the system moves to the

new energetic minima (here C2v) of lower symmetry [17]. In three dimensions,

three nearly equivalent minima separated by three saddle points appear on the

lower adiabatic sheet and along with the cusp at the D3h configuration it exhibits

a “Mexican hat” type of topography of the PESs and such an image is shown in

Fig. 3.4 plotted as a function of the dimensionless normal coordinates of the x

and y components of the degenerate vibrational mode ν2.

We now proceed to discuss the various stationary points of these PESs [cf. Eq. (3.11)].

The minimum of the seam of CIs of the two JT split PESs occur for Q0
1 = -

κ1/(ω1 + γ1), along the symmetric vibrational mode ν1 and the energy at this
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Figure 3.4: The (E × e)-JT conical intersection of the C̃2E ′ electronic manifold
of B3. This resembles the shape of the “Mexican hat” type of topography with
the lower PES comprising three equivalent minima and three equivalent saddle
points linking pairs of minima and the upper one resembles a conical shape with
its vertex touching the lower one at the point of 3-fold-symmetry.
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minimum is given by [17]

V(c)
min = E0

E′ − 1

2

κ2
1

(ω1 + γ1)
. (3.12)

Along the degenerate mode ν2, two solutions, Qx2 = ±λ2/(ω2 + γ2 ∓ η2), are

obtained with energies [17]

V0
− = E0

E′ − 1

2

κ2
1

(ω1 + γ1)
− 1

2

λ2
2

(ω2 + γ2 − η2)
(3.13)

and

Vsp
− = E0

E′ − 1

2

κ2
1

(ω1 + γ1)
− 1

2

λ2
2

(ω2 + γ2 + η2)
, (3.14)

where, V0
− and Vsp

− refer to the energy of the minimum and the saddle point,

respectively, on the lower adiabatic sheet for the signs of the coupling constants

as given in Table 3.2. With the data listed in the table, one obtains V (c)
min = 5.125

eV at Q0
1 = -0.081. The new minima on V− for the JT distorted geometry occur

at Q0
2x = 1.501, with energy V0

− = 5.0005 eV. The saddle point occurs at Qsp
2x =

-1.468, with energy Vsp
− = 5.0017 eV. The JT stabilization energy amounts to ∼

0.125 eV.

3.4.2 Photodetachment Spectrum

In this section we show the results obtained using the above theoretical formalism

along with the parameters of Table 3.2 and discuss and compare them with the

available experimental results [67].

The final theoretical results are shown in Figs. 3.5(b) and 3.5(d) along with

the experimental results in Figs. 3.5(a) and 3.5(c) reproduced from Ref. [67]. The

intensity in arbitrary units is plotted as a function of the energy of the final vi-

bronic state. The experimental bands in Figs. 3.5(a) and 3.5(c) correspond to the
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355 nm and 193 nm recordings, respectively, of Ref. [67]. It is to be noted that

the C̃2E ′ electronic manifold of B3 could be probed only at a very high photon

energy (6.424 eV). Therefore, the energy resolution in the experimental band in

Fig. 3.5(c) is quite poor. The theoretical stick eigenvalue spectra (in Figs. 3.5(b)

and 3.5(d)) are convoluted with a Lorentzian line-shape function of 40 meV fwhm

to generate the spectral envelopes. It can be seen that the theoretical envelopes

agree reasonably well with the experimental band shapes. While the theoretical

results show clear vibrational progressions for the C̃2E ′ band, they are blurred in

the experimental recording due to poor energy resolution.

The experimental results are reported at three different photon energies. At

355 nm (3.496 eV) only the X̃2A′
1 electronic state of B3 could be probed and

the vibronic structures of the C̃2E ′ electronic manifold is observed only at 193

nm (6.424 eV). The hot band contribution is not revealed in the theoretical

results which correspond to zero temperature calculations. We mention that

we have examined the theoretical spectra shown in Figs. 3.5(b) and 3.5(d) under

various situations viz., (1) within the LVC scheme, with and without the PJT

coupling; (2) within the quadratic JT coupling scheme, excluding the bilinear

contribution and with the full second-order Hamiltonian [Eqs. (3.4-3.7f)]. Our

observations revealed insignificant contribution from the PJT, quadratic JT, and

the bilinear JT couplings in the photodetachment spectrum [this is also revealed

by the substantially low magnitude of their coupling parameters (cf. Table 3.2)].

The photoelectron band of the X̃2A′
1 electronic state of B3 (cf. Fig. 3.5(b))

appears at ∼ 2.56 eV energy. Also, the adiabatic and the vertical ionization

energies are nearly same in this case. This band reveals a progression along the

ν1 vibrational mode, an energy spacing of ∼ 1299 cm−1 can be observed from

the theoretical stick spectrum. We note that the intensities of the second and

the third peaks are drastically lower than that of the origin 0-0 peak. They are,

respectively, ∼ 10−2 and ∼ 10−4 times lower than that of the 0-0 peak. As a
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Figure 3.5: The final theoretical photoelectron band of the X̃2A′
1 (panel b) and

C̃2E ′ (panel d) electronic states of B3 computed with the full second-order Hamil-
tonian [Eqs. (3.4-3.7f)] are shown along with the available experimental results
in panels (a) and (c), respectively. The theoretical spectra are shifted by 0.26 eV
and 0.62 eV, respectively to the higher energy along the abscissa to reproduce the
adiabatic ionization positions of the bands at their experimental values. Both the
theoretical spectra are convoluted with a Lorentzian function of 40 meV fwhm to
calculate the spectral envelope.
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result, the third peak is not at all visible in Fig. 3.5(b). An energy spacing of ∼
1020 ± 50 cm−1 is reported for the experimental band. However, we observe a

spacing of ∼ 1299 cm−1 in the theoretical spectrum which is also consistent with

the frequency of the ν1 vibrational mode in the X̃2A′
1 state of B3 [67].

The theoretical band of the C̃2E ′ electronic manifold of B3 in Fig. 3.5(d) shows

nicely resolved structures. This band originates at ∼ 4.96 eV and exhibits a dom-

inant progression along the JT active vibrational mode ν2. The lines are ∼ 1103

cm−1 spaced in energy, and is in excellent agreement with the observed splitting of

1100 ± 80 cm−1 in the experimental band [67]. This also confirms that the split-

ting observed in the experimental band indeed represents a vibrational structure.

The symmetric vibrational mode ν1 is very weakly excited in this band, which

is also revealed by the extremely small coupling strength of this mode (cf. Table

3.2). We note here that, essentially the same result (cf. Fig. 3.5(d)) is obtained by

ignoring the quadratic JT coupling and also with and without the PJT coupling.

This shows that a linear JT model is good enough to reproduce the observed

features of the experiment in this case. The X̃2A′
1 and the C̃2E ′ electronic states

are vertically separated by ∼ 2.561 eV in energy. The PJT interactions between

these electronic states is very weak, and therefore do not have any impact on

the vibronic structures of the photoelectron bands. The JT coupling within the

C̃2E ′ electronic manifold is also weak compared to similar strong (E ⊗ e)-JT

coupling cases treated in the literature [26, 90, 119].

To conclude, we mention that photodetachment experiments for the smallest

boron clusters are reported to be quite delicate because of weak cluster intensities

and low photodetachment cross sections [67]. The resolution of the apparatus was

∼ 30 meV for 1 eV electrons [67]. The highest binding energy feature in the 193

nm (6.424 eV) recording (reproduced in Fig. 3.5(c)) is reported at 5.58 eV [67].

Beyond this energy, the experimental resolution and detection are expected to be

very poor because of a loss of electrons with low kinetic energy, and also keeping in

mind the low photodetachment cross sections of B−
3 . Furthermore, the vibronic
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structures beyond 6 eV are not expected to be resolved by the 6.424 eV laser

photon. These are some of the possible reasons for the observed disagreement

between the experiment and theory in Figs. 3.5(c) and 3.5(d), respectively.

3.5 Summary and Outlook

In this chapter, we have presented a theoretical account on the anion photoelec-

tron spectroscopy of triatomic boron cluster. The impact of static and dynamic

aspects of the JT and PJT interactions in the X̃2A′
1-C̃

2E ′ electronic states of

B3 on the vibronic structure of the photodetachment spectrum is examined. A

diabatic electronic Hamiltonian is constructed, and the nuclear dynamics is simu-

lated by a Lanczos based quantum mechanical approach. The theoretical findings

are compared with the experimental recordings of Zhai et al. [67].

The elements of the model diabatic Hamiltonian are expanded in a second-

order Taylor series in terms of the dimensionless normal coordinates of the elec-

tronic ground state of B−
3 . The equilibrium geometry of B−

3 in its ground elec-

tronic state is optimized at the MP2 level of theory, and the harmonic force field

and dimensionless normal coordinates are calculated. The vertical detachment

energies of B−
3 are calculated as a function of the normal mode displacements from

the equilibrium geometry by the OVGF method. These energies are equated with

the adiabatic potential energies of the X̃2A′
1-C̃

2E ′ electronic manifold of B3 and

the parameters of the Hamiltonian are derived.

The theoretical results reproduced the observed shape of the photodetachment

bands very well. For the X̃2A′
1 band of B3, a progression along the symmetric ν1

vibrational mode is found. The successive lines are 1299 cm−1 apart in energy,

which compares well with the vibrational frequency of ν1 in the X̃2A′
1 electronic

state of B3. However, an energy spacing of ∼ 1020 ± 50 cm−1 of this progression

is reported in the experiment. The vibronic structure of the C̃2E ′ band, on the

other hand, showed a dominant and extended progression along the degenerate
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ν2 vibrational mode. The spacing between the successive lines is ∼ 1103 cm−1,

this is in very good agreement with the observed sharp splitting of ∼ 1100 ±
80 cm−1; in the experimental recording. This provides an unambiguous evidence

that the observed splitting of the band recorded in the experiment is due to the

vibrational progression along the JT active mode ν2. Our explicit theoretical

analysis indicates that the linear PJT, quadratic, and bilinear JT couplings have

practically no impact on the vibronic structure of the X̃2A′
1-C̃

2E ′ photoelectron

band of B3. The JT effect in the C̃2E ′ electronic manifold is also quite weak when

compared to the similar other examples treated in the literature [26, 90, 119].



Chapter 4

The JT and PJT interactions in

the ethane radical cation

4.1 Introduction

The present chapter deals with the static and dynamic aspects of the JT and PJT

interactions in the photoionization spectrum of ET. The equilibrium geometry

of neutral ET corresponds to a staggered conformation belonging to the D3d

point group in its electronic ground state (X̃1A1g). Using the D3d symmetry, the

ground-state molecular orbital sequence of ET can be written as [69]

(1a1g)
2(1a2u)

2(2a1g)
2(2a2u)

2(1eu)
4(3a1g)

2(1eg)
4

Ionizations from the last three outer valence molecular orbitals of neutral ET

produce ET+ in the 2Eg,
2A1g, and 2Eu electronic states, respectively. Ethane is

a prototypical saturated hydrocarbon and its 18 vibrational degrees of freedom

belong to the following irreducible representations of the D3d point group:

Γvib = 3a1g + 3eg + a1u + 2a2u + 3eu. (4.1)

52
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The symmetrized direct product of two Eg or Eu representation in the D3d point

group yields [107],

(Eg)
2 = (Eu)

2 = a1g + eg (4.2)

The symmetry selection rule stated above implies that the degenerate eg vibra-

tional modes (the symmetry species of normal modes are designated by the lower

case symbols) can split the degeneracy of the X̃2Eg and B̃2Eu electronic states

and therefore may exhibit (E ⊗ eg)-JT activity. The a1g vibrational modes, on

the other hand, cannot lift the degeneracy of these two electronic states but they

can exhibit tuning activity [17] by shifting their energetic minimum relative to

the ground electronic state of ET. Similarly, the direct products of Eg, A1g, and

Eu states in the D3d point group yield

Eg × A1g = eg (4.3a)

Eu × A1g = eu (4.3b)

Eg × Eu = eu (4.3c)

From Eq. (4.3a), it can be seen that the same eg vibrational mode can also cause

PJT coupling between the Eg and A1g electronic states. This pattern generally

holds true for molecules possessing a three-fold principal rotational axis of sym-

metry [7, 17, 45–47]. The degenerate eu vibrational modes, on the other hand,

involved in the PJT coupling of B̃2Eu electronic manifold with the neighboring

X̃2Eg and Ã2A1g electronic states [cf. Eqs. (4.3b-4.3c)].

For a brief account of the photoelectron spectrum of ET and the available

electronic structure results we refer to section 1.3. In this chapter, we consider
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the first photoelectron band observed in the 11.5-14.5 eV ionization energy range

pertinent to the vibronic structure of the gerade (g), X̃2Eg -Ã2A1g electronic

manifold of ET+. The Ã2A1g state is estimated to be ∼ 0.345 eV above the

X̃2Eg state and ∼ 2.405 eV below the B̃2Eu state at the vertical configuration.

The JT and PJT interactions in the excited Ã2A1g -B̃2Eu interacting electronic

manifold of the ET+ have been studied by Kumar et al. and those results are

not included in this thesis [120]. A model diabatic Hamiltonian is constructed

where the effect of the Condon active tuning vibrational modes (a1g symmetry)

is considered up to the second order, whereas only linear terms are considered for

the JT and PJT active degenerate (eg symmetry) coupling modes. The various

coupling parameters of the Hamiltonian are calculated by ab initio methods at the

MP2 level of theory using the cc-pVTZ basis set [115]. The photoelectron band

is computed by solving the eigenvalue equation using Lanczos algorithm [56].

Our findings reveal that the CH3 deformation modes of a1g and eg symmetries,

particularly, play crucial roles in the nuclear dynamics in the 2Eg - 2A1g electronic

manifold of ET+. They form the dominant progressions in the photoelectron

band at low energies and the more diffuse structure at high energies results from

the PJT interactions of the 2Eg and 2A1g electronic states mainly through the

degenerate bending and CH3 deformation modes.

4.2 The Vibronic Hamiltonian

The photoionization process is described as a FC transition from the electronic

ground state (X̃1A1g) of ET to the interacting X̃2Eg -Ã2A1g electronic mani-

fold of ET+. The nuclear motion in the latter electronic manifold is monitored

with the aid of a model Hamiltonian constructed in a diabatic electronic repre-

sentation [17, 38] in terms of the dimensionless normal coordinates pertinent to

the equilibrium configuration of the ground electronic state of ET. The nuclear

vibrations in this initial electronic state is treated as harmonic. The use of a
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diabatic electronic basis is facilitated by the weak dependence of the elements

of the vibronic Hamiltonian with the nuclear coordinates. This justifies the use

of the Condon approximation in the photoionization process [109]. Moreover,

in this electronic basis the states are coupled through the electronic part of the

Hamiltonian, rather than the nuclear part as in an adiabatic electronic basis [44].

In the latter case, the elements of the nonadiabatic coupling matrix exhibit a

singularity at the seam of intersections of the electronic states.

Within a LVC scheme, the nuclear dynamics in the X̃2Eg -Ã2A1g electronic

manifold is governed by the vibrational modes of g symmetry only [cf. Eqs. (4.2-

4.3a)]. These vibrational modes νj of ET are sketched in Fig. 4.1. In this section

we define Qj as the displacement from the ground state equilibrium geometry

of ET along the dimensionless normal coordinates of the vibrational mode νj.

These coordinates are more clearly defined in section 4.3 below. The three to-

tally symmetric a1g vibrational modes, j = 1-3, act as the tuning modes (Condon

active) in both the X̃2Eg and Ã2A1g ionic states. The three degenerate eg vibra-

tional modes, j = 4-6, on the other hand, act as the JT coupling modes within

the X̃2Eg electronic manifold and as the PJT coupling modes in the coupled

X̃2Eg-Ã
2A1g electronic states.

Our goal here is to examine the vibronic structures of the first photoelectron

band of ET using a (Eg +A1g)⊗ e coupling scheme [17,45–47]. The interactions

with the Eu electronic state of the radical cation is not considered, primarily

because it is energetically well separated by ∼ 2.750 eV from the Eg state and ∼
2.405 eV from the A1g state. Throughout this study, a LVC scheme is assumed

for the degenerate vibrational modes. However, the second-order coupling effects

due to the totally symmetric vibrational modes are also discussed. The full

second-order treatment of the coupling modes is more involved and, in addition,

the vibrational modes of eu symmetry are also to be considered. Such a study

is computationally not viable with the matrix diagonalization approach due to

the huge increase in the size of the secular matrix by considering additional
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vibrational degrees of freedom. Alternatively, it can be carried out by a WP

propagation approach using the MCTDH scheme.

The Hamiltonian described below represents the (E ⊗ eg)-JT interactions in

the X̃2Eg electronic manifold and (E + A) ⊗ eg-PJT interactions in the X̃2Eg-

Ã2A1g electronic states in addition to the Condon activity of the totally symmetric

a1g vibrational modes. The diabatic Hamiltonian for this interacting electronic

manifold can be expressed as [17],

H = H013 + ∆H (4.4)

Here H0 = TN + V0, with

TN = −1

2

3∑

j=1

ωj
∂2

∂Q2
j

− 1

2

6∑

j=4

ωj

(
∂2

∂Q2
jx

+
∂2

∂Q2
jy

)
, (4.5)

V0 =
1

2

3∑

j=1

ωjQ
2
j +

1

2

6∑

j=4

ωj

(
Q2

jx +Q2
jy

)
, (4.6)

and

∆H =




H11 H12 H13

H22 H23

h.c. H33


 . (4.7)

H0 is the Hamiltonian matrix associated with the electronic ground state of

ET and is defined in terms of unperturbed harmonic oscillators with frequencies

ωj. 13 is a 3×3 unit matrix. The quantity ∆H describes the change in electronic

energy upon ionization from the electronic ground state of ET. This is a non-

diagonal (3×3) matrix, the elements of which represent the diabatic potential

energies of the X̃2Eg -Ã2A1g interacting electronic states of the ET+. These

elements are expanded in a Taylor series around the D3d equilibrium geometry
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of ET (Q=0) along each of the normal mode displacement coordinates and in

conjunction with the symmetry selection rules given in the introduction. Within

the coupling scheme stated above the matrix Hamiltonian ∆H can be expressed

as [17, 45–47]

H11 = E0
Eg

+

3∑

j=1

κjQj +

6∑

j=4

λjQjx +
1

2

3∑

j=1

γjQ
2
j , (4.8a)

H22 = E0
A1g

+
3∑

j=1

κ′jQj +
1

2

3∑

j=1

γ′jQ
2
j , (4.8b)

H33 = E0
Eg

+

3∑

j=1

κjQj −
6∑

j=4

λjQjx +
1

2

3∑

j=1

γjQ
2
j , (4.8c)

H12 =

6∑

j=4

λ′jQjx, (4.8d)

H13 =
6∑

j=4

λjQjy, (4.8e)

H23 = −
6∑

j=4

λ′jQjy. (4.8f)

The parameters of the Hamiltonian stated above have the following physical

meaning. The quantities E0
Eg

and E0
A1g

are the vertical ionization energies of the

X̃2Eg and Ã2A1g electronic states of ET+, respectively. The intrastate linear

coupling constants for the totally symmetric vibrational modes are given by κj
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and κ′j in the Eg and A1g electronic states, respectively. The linear JT coupling

constants for the degenerate vibrational modes in the Eg electronic manifold are

denoted by λj. The quantities λ′
j define the linear PJT coupling constants for

the degenerate vibrational modes. The second-order coupling parameters for the

totally symmetric modes are denoted by γj and γ′j in the Eg and A1g electronic

states, respectively. A similar vibronic Hamiltonian has been used in the literature

[28, 47, 121] in order to describe the interaction of nondegenerate and two-fold

degenerate electronic states. In the present application as stated above, the

Hamiltonian describes the JT interaction in the X̃2Eg state and PJT interactions

between the X̃2Eg -Ã2A1g states of ET+.

4.3 Electronic Structure Calculations

The geometry optimization, calculations of harmonic vibrational frequencies, and

normal coordinates of ET in its X̃1A1g ground electronic state are carried out at

the MP2 level of theory employing the cc-pVTZ Gaussian basis set. The ab

initio calculations were performed using the Gaussian03 program package [116].

The optimized geometry parameters for the ground-state equilibrium geometry of

ET are presented in Table 4.1 along with the available experimental results [122].

It can be seen from Table 4.1 that the MP2 equilibrium geometry parameters

correspond well with the available experimental data. The dimensionless normal

coordinates are obtained as we discussed in section 3.3.1.

The normal vibrational modes of g symmetry of ET are schematically rep-

resented in Fig. 4.1. The nature of these vibrational modes, their symmetry

properties, and harmonic vibrational frequencies are reported in Table 4.2, along

with the available experimental results [70] for comparison. Despite a relatively

large discrepancy for the C-H stretching frequencies (ν3 and ν6), the theoretical

data are in good accord with the experimental results [70]. Furthermore, the

apparent deviation between the two can be attributed to the fundamental nature
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Table 4.1: Equilibrium geometry of ethane in its ground electronic state (X̃1A1g)
along with the experimental results [122].

∠ H-C-H ∠ C-C-H C-H C-C
(deg) (deg) (Å) (Å)

MP2/cc-pVTZ 107.64 111.24 1.088 1.523
Expt [122] 107.07 111.75 1.096 1.532

Table 4.2: Symmetry, frequency, and description of the vibrational modes of g
symmetry of the electronic ground state of ethane. The experimental results are
reproduced from Ref. [70]. Note that, the theoretical frequencies are harmonic,
whereas the experimental ones are fundamental.

Vibrational frequency (ωi)/eV
Symmetry Mode MP2/cc-pVTZ Experiment Description

a1g ν1 0.1278 0.1157 C-C Stretching
ν2 0.1775 0.1705 CH3 deformation
ν3 0.3819 0.3594 C-H Stretching

eg ν4 0.1525 0.1432 Bending
ν5 0.1888 0.1810 CH3 deformation
ν6 0.3910 0.3674 C-H Stretching

of the experimental vibrational frequencies.

4.3.1 Coupling Parameters of the Hamiltonian

In order to calculate the coupling parameters of the Hamiltonian [Eqs. (4.8a-

4.8f)], we perform direct calculations of vertical ionization energies of ET by the

OVGF method [117, 118] employing the cc-pVTZ basis set [115]. The electronic

structure calculations are carried out as a function of the dimensionless normal

coordinates Qj (j = 1-6 ) = ±0.10, ±0.25 (±0.25) ±1.50 using the Gaussian03

program package [116]. The vertical ionization energies thus obtained are equated

with the adiabatic potential energy of the electronic states of ET+ relative to the

electronic ground state of ET.

The coupling parameters of the Hamiltonian matrix represent the derivatives

of the adiabatic potential-energy function of the radical cation (of appropriate
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Figure 4.1: Schematic representation of the normal vibrational modes of g sym-
metry of the electronic ground state of ethane.
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order) with respect to the dimensionless normal coordinate Qj of the vibrational

mode νj evaluated at the equilibrium geometry of the neutral at Q=0 [123].

The linear intrastate (κj) and the JT coupling parameters (λj) are defined as the

gradients of the adiabatic potential energy of the X̃2Eg state of ET+ with respect

to the dimensionless normal coordinate of the vibrational mode νj, evaluated at

the ground state equilibrium geometry of ET (Q=0) [17, 123],

κj =

(
∂VEg

∂Qj

) ∣∣∣∣∣
Q=0

, j = 1 − 3, (4.9)

λj =
1

2

(
∂∆VEg

∂Qj

) ∣∣∣∣∣
Q=0

, j = 4 − 6, (4.10)

where VEg
denotes the adiabatic potential energy of the degenerate X̃2Eg elec-

tronic state of ET+. The quantity ∆VEg
is the (signed) difference of the JT

split PESs of the X̃2Eg electronic manifold. An analogous definition holds for

κ′j, where VEg
in Eq. (4.9) is replaced by the adiabatic potential energy VA1g

of

the Ã2A1g electronic state of the radical cation. The PJT coupling parameters

λ′j for the degenerate vibrational modes ν4-ν6 can be obtained using Eq. (3.9) in

which ∆E is the difference of squares of the adiabatic potential-energy difference

between the Ã2A1g and X̃2Eg ionic states for normal coordinate displacement

Qj and the same for the equilibrium configuration, Q=0. Coupling parameters

described by the above equations can be obtained by a suitable finite difference

scheme (given in Appendix B) using small normal coordinate displacements from

the ground-state equilibrium geometry of ET.

The second-order coupling parameters of the Hamiltonian in Eqs. (4.8a-4.8c)
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are defined as follows [17, 123]:

γj =

(
∂VEg

∂Qj

) ∣∣∣∣∣
Q=0

, j = 1 − 3, (4.11)

γ′j =

(
∂VA1g

∂Qj

) ∣∣∣∣∣
Q=0

, j = 1 − 3. (4.12)

For a given symmetric mode, the linear and the quadratic coupling parameters

can be obtained in a straight forward way by a two-parameter least-square fit of

the mode specific contribution

E0 +
1

2
ωjQ

2
j + κjQj + γjQ

2
j (4.13)

to the adiabatic potential-energy function, keeping ωj constant. We note that

these parameters are calculated both by a numerical finite difference scheme and

also by a least-square fitting procedure and the identity of the results is confirmed.

For the degenerate vibrational modes, the linear JT coupling parameters λj

are calculated both by a numerical finite difference scheme and by fitting the

adiabatic potential-energy difference of the JT split surfaces by a least-square

method. Identical results are obtained by both these procedures. Finally, the

PJT coupling parameters are also determined by a numerical finite difference

scheme as well as by fitting the eigenvalues of the coupling matrix

V =


E

0
Eg

+ λjQjx λ′jQjx

λ′jQjx E0
A1g


 (4.14)

along each degenerate vibrational mode j. We note that the value obtained by

these two procedures typically show a difference of ∼ ± 0.03 eV. The difference

being somewhat more for the mode ν6. However, this is a high-frequency mode

(C-H stretch) and does not have a significant contribution to the nuclear dynamics
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Table 4.3: Ab initio calculated coupling parameters of the Hamiltonian [Eqs. (4.4-
4.8f)]. The excitation strength of each mode estimated by the Poisson parameters
(κj/ωj)

2/2, (λj/ωj)
2/2, and (κ′j/ωj)

2/2 are given in parentheses. All coupling
parameters and energies are in eV.

Mode κj or λj κ′j γj γ′j λ′j
(symmetry) X̃2Eg Ã2A1g X̃2Eg Ã2A1g X̃2Eg × Ã2A1g

ν1(a1g) 0.135(0.560) -0.256(2.008) -1.956 ×10−2 3.013 ×10−3 –
ν2(a1g) 0.167(0.443) -0.643(6.554) -6.042 ×10−2 2.124 ×10−2 –
ν3(a1g) 0.290(0.289) 0.013(0.046) 1.327 ×10−2 -3.778 ×10−3 –
ν4(eg) 0.194(0.806) – – – 0.3317
ν5(eg) 0.303(1.288) – – – 0.2721
ν6(eg) 0.233(0.177) – – – 0.0370
E0

Eg
12.711

E0
A1g

13.056

as illustrated below.

In Fig. 4.2(a-f) the adiabatic potential-energy values of the X̃2Eg and Ã2A1g elec-

tronic states of ET+ measured relative to the electronic ground state of ET (these

are the vertical ionization energies obtained from the OVGF calculations) along

the dimensionless normal coordinate of the a1g vibrational modes, ν1, ν2, and

ν3 are plotted. The asterisks and the filled circles represent the computed data

for the X̃2Eg and Ã2A1g electronic states, respectively, and a quadratic fit to

these data is shown by the solid line in each panel. The modes ν1, ν2, and ν3

represent the C-C stretching, CH3 deformation, and C-H stretching vibrations,

respectively. It can be seen that the degeneracy of the X̃2Eg electronic state of

ET+ is not split on displacements along these modes. The linear κj and κ′j and

the second-order γj and γ′j coupling parameters for these modes resulting from

the above fits are given in Table 4.3.

The linear JT coupling parameters (λj) for the eg vibrational modes ν4-ν6 in

the X̃2Eg electronic manifold are calculated by fitting the signed difference of the

JT split PESs along these modes. In Figs. 4.3(a-c), we have shown the JT split

potential energy differences plotted along the dimensionless normal coordinates of
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Figure 4.2: Adiabatic potential energies of the X̃2Eg (panels: a-c) and

Ã2A1g (panels: d-f) electronic states of ET+ measured relative to the electronic
ground state of ET along the dimensionless normal coordinates of the symmet-
ric vibrational modes ν1, ν2, and ν3. The asterisks and filled circles represent
the computed data for the X̃2Eg and Ã2A1g electronic states respectively, and a
quadratic fit to these data is shown by the solid line in each panel. The linear (κj

and κ′j) and diagonal quadratic coupling (γj and γ′j) parameters listed in Table
4.3 are obtained from the above fits.
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Figure 4.3: Potential energy difference (signed) of the JT split adiabatic sheets

of the X̃2Eg electronic manifold of ET+ plotted along the dimensionless normal
coordinate of the x component of the degenerate vibrational modes ν4, ν5, and
ν6 are shown in panels a, b, and c, respectively. The computed data are shown
by the asterisks and a quadratic fit to these data is shown by the solid lines. The
linear JT coupling parameters λj extracted from these fits are documented in
Table 4.3
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the x components of the degenerate vibrational modes ν4, ν5, and ν6. These modes

represent the C-H bending, CH3 deformation, and C-H Stretching vibrations,

respectively. Again the asterisks denote the computed energies and the solid line

represents a quadratic fit to these data in each panel.

The numerical values of all coupling parameters discussed above are given in

Table 4.3. In the last two rows of the Table 4.3, the vertical ionization energies

of the X̃2Eg and Ã2A1g electronic states of the radical cation are listed. We use

these parameters below to calculate the photoelectron band.

4.4 Results and Discussion

4.4.1 Adiabatic Potential Energy Surfaces

The topography of the adiabatic PESs of the X̃2Eg and Ã2A1g electronic states

of ET+ using the coupling parameters of Table 4.3 is discussed here. At first,

we consider the electronic Hamiltonian matrix within the LVC scheme [i.e., ex-

cluding the second-order contributions γj and γ′j of totally symmetric vibrational

modes a1g in Eqs. (4.8a-4.8c)], whereby the adiabatic PESs of the X̃2Eg and

Ã2A1g electronic states of the radical cation are obtained by diagonalizing the

diabatic electronic Hamiltonian matrix of Eq. (4.4) [17].

In Figs. 4.4(a-c) we show the one dimensional cuts of the adiabatic PESs of

the radical cation along the dimensionless normal coordinates of the three totally

symmetric vibrational modes ν1, ν2, and ν3, respectively. They are obtained by

keeping the other vibrational modes fixed at their equilibrium value (Q=0). The

potential energies of the X̃2Eg and Ã2A1g electronic states are shown by the solid

and dashed lines, respectively. The computed ionization energies added with

the harmonic ground state potential are shown by the points in the diagram.

It can be seen that the computed ab initio energies are well represented by the

linear coupling model. Since the dimensionless normal coordinates are used here,
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Figure 4.4: The adiabatic potential-energy curves of the X̃2Eg (solid lines) and

Ã2A1g (dashed lines) electronic states of ET+ along the dimensionless normal
displacement coordinates for the totally symmetric (a) ν1, C-C stretching, (b) ν2,
CH3 deformation, and (c) ν3, C-H stretching vibrational modes. Each curve in the
figure represents a cut along the multidimensional potential-energy hypersurface
of the respective electronic state. The equilibrium geometry of ET in its electronic
ground state (1A1g) corresponds to Q=0. The ab initio potential energies with a
harmonic contribution from the neutral ground electronic state are shown by the
points on the diagram.
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the PESs up to Qj = ± 1.5 are expected to represent well the large amplitude

vibrations in the internal coordinates. The agreement between the computed

energies and the model would describe fairly well the vibronic states in the energy

range of the first photoelectron band. The totally symmetric vibrational modes

cannot lift the degeneracy of the X̃2Eg electronic manifold, however, they shift

the potential energy minimum considerably away from the equilibrium geometry

of the neutral ET (Q=0) and therefore display the tuning activity. This shift

amounts to -κj/ωj for the vibrational mode νj [17]. The data listed in Table

4.3 reveal opposite signs for the coupling constants (κ and κ′) for the vibrational

modes ν1 and ν2 in the Eg and A1g electronic states. Therefore, the minimum of

these states shifts in the opposite direction relative to the equilibrium position of

the ground electronic state of ET along these vibrational modes. As a result of

this shift the X̃2Eg and Ã2A1g electronic states of the radical cation undergo PJT

crossing. The ν1 and ν2 vibrational modes are expected to be significantly excited

in the photoelectron band. The excitation strength (cf. Table 4.3) of the CH3

deformation mode ν2 is very large in the Ã2A1g electronic state, and, therefore,

it is expected to have a major role in the nuclear dynamics of this state.

The vibrational modes of eg symmetry are both JT and PJT active in ET+.

In order to calculate the adiabatic potential energy curves of the radical cation

along these vibrational modes, we consider one component (say the x component)

of these degenerate vibrations keeping the others fixed at their equilibrium value

at Q=0. The electronic Hamiltonian matrix (excluding the γj and γ′j terms) of

Eqs. (4.8a-4.8f) then assumes a block-diagonal structure. For a vibrational mode

j the eigenvalues of this block-diagonal matrix

V1,2(Qjx) = V0(Qjx) +
E0

Eg
+ E0

A1g

2
+

λj

2
Qjx ∓

√(
(E0

Eg
+ λjQjx − E0

A1g
)/2
)2

+ (λ′
jQjx)2, (4.15a)
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V3(Qjx) = V0(Qjx) + E0
Eg

− λjQjx, (4.15b)

describe the adiabatic potential energies of the X̃2Eg -Ã2A1g electronic states of

the radical cation.

The adiabatic PESs of the X̃2Eg and Ã2A1g electronic states of the ET+ are

plotted along the x component of the degenerate vibrational modes ν4, ν5, and

ν6 in Figs. 4.5(a-c), respectively. The solid and the dotted curve represent the

two components of the JT split X̃2Eg electronic manifold and the dashed curve

represents the potential energy of the Ã2A1g electronic state. As in the case

of Fig. 4.4, the computed ab initio energies are also included in Fig. 4.5 and

shown as points. It can be seen that the present linear JT-PJT coupling scheme

represents well the ab initio potentials in the FC zone and beyond up to Qj ≈
1.5. Inspection of the adiabatic potential-energy curves above reveals substantial

JT splitting of the X̃2Eg electronic manifold due to the ν4 and ν5 vibrational

modes. The JT activity of the CH3 deformation mode ν5 is somewhat stronger.

The PJT repulsions between the upper adiabatic sheet of the X̃2Eg electronic

manifold and the Ã2A1g state are almost similar in magnitude for both the ν4

and ν5 vibrational modes. It can be seen from panel c that both the JT and PJT

effects due to ν6 are weaker compared to that due to ν4 and ν5.

We now examine some static aspects of the discussed PESs. In doing so,

we first focus on the (E ⊗ e)-JT part. Within the linear coupling scheme, the

eigenvalues of the respective electronic Hamiltonian are given by [17]

V∓(Q) = V0(Q) + E0
Eg

+ κjQj ∓
√

(λjQjx)2 + (λjQjy)2. (4.16)

The quantities V− and V+ refer to the lower and upper adiabatic sheets of the

JT split X̃2Eg electronic manifold of ET+, respectively. In the absence of any
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Figure 4.5: Adiabatic potential-energy curves of the JT split X̃2Eg (solid and

dotted lines) and the Ã2A1g (dashed lines) electronic states of ET+ plotted as
a function of the dimensionless normal coordinates of the x component of the
degenerate (eg ) vibrational modes: (a) ν4, the bending vibrational mode, (b)
ν5, the CH3 deformation mode, and (c) ν6, the C-H stretching mode. The ab
initio potential energies with a harmonic contribution from the neutral ground
electronic state are shown by the points on the diagram.
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JT distortion, i.e., Qj (j=4-6) = 0, the two sheets V− and V+ remain degenerate.

This degeneracy is lifted for Qj (j=4-6) 6= 0 and the resulting two sheets form CIs

[cf. Figs. 4.5(a)-4.5(c)]. The two sheets remain degenerate in the coordinate space

of the symmetric a1g vibrational modes. The locus of this degeneracy defines the

seam of CIs and the energetic minimum on this seam is given by [17]

V(c)
min = E0

Eg
− 1

2

3∑

j=1

κ2
j

ωj

(4.17)

occurs for Q0
j (j = 1-3) = -κj/ωj within the linear coupling scheme.

The global minimum on V− at the D3d equilibrium geometry becomes a cusp

when distorted along any of the two components of a degenerate vibrational mode

which is revealed by the analytic argument of the square root in Eq. (4.16). The

minimum of V+ remains at the minimum of the seam of CIs and new minima

appear on V− at Q0
j (j = 1-3) = -κj/ωj and Q0

pj (p = x/y, j = 4-6) = ± λpj /

ωpj with an energy

V0
− = E0

Eg
− 1

2

3∑

j=1

κ2
j

ωj

− 1

2

6∑

j=4

λ2
pj

ωpj

. (4.18)

In multidimensional space this results into a “Mexican hat” type of topogra-

phy of the JT split PESs. The JT stabilization energy amounts to

6∑

j=4

λ2
pj/2ωpj.

From the data collected in Table 4.3, one can see that the V (c)
min = 12.45 eV oc-

curs at Q0
1 = -1.059, Q0

2 = -0.941, and Q0
3 = -0.760. The new minima on V0

−

[Eq. (4.18)] for the JT distorted geometry occurs at Q0
4x = 1.201, Q0

5x = 1.605,

and Q0
6x = 0.595 with an energy V0

− = 12.022 eV. The JT stabilization energy

amounts to ∼ 0.43 eV.

We now provide an approximate estimate of the energetic minimum of the

PJT crossings. In this example the same degenerate vibrational mode acts both

as the JT and PJT coupling modes. Along the x component of the degenerate
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vibrational modes, the (E + A) ⊗ e coupling matrix is given by

HPJT
el = V01 +




E0
Eg

+

3∑

j=1

κjQj +

6∑

j=4

λjQjx

6∑

j=4

λ′jQjx

6∑

j=4

λ′jQjx E0
A1g

+
3∑

j=1

κ′jQj



. (4.19)

Defining Σ = (E0
Eg

+ E0
A1g

)/2, ∆ = (E0
A1g

- E0
Eg

)/2, σj = (κj + κ′j)/2, δj =

(κ′j - κj)/2, σ′
j = λj/2, and δ′j = - λj/2, the eigenvalues of the Hamiltonian in

Eq. (4.19) are given by [17]

VEg ,A1g
(Q) = V0(Q) + Σ + σjQj + σ′

jQjx ∓W (4.20)

where VA1g
refers to the adiabatic potential energy of the Ã2A1g electronic state

of the radical cation. The quantity W in the above equation is given by [17]

W =
√
d2 + c2, (4.21)

with

d = ∆ + δjQj + δ′jQjx, (4.22)

c = λ′jQjx. (4.23)

The energetic minimum of the seam of CIs between the above two adiabatic

electronic states occurs at [17]

V(c)
min = Σ +

(F − ∆)2

2D
− 1

2

3∑

j=1

σ2
j

ωj

− 1

2

6∑

j=4

σ′2
j

ωj

, (4.24)
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where

F =

3∑

j=1

δjσj

ωj
+

6∑

j=4

δ′jσ
′
j

ωj
, (4.25)

D =

3∑

j=1

δ2
j

ωj
+

6∑

j=4

δ′2j
ωj
. (4.26)

In the present case considering the values of the parameters mentioned in Table

4.3, V (c)
min occurs at ∼ 12.99 eV. This minimum occurs well within the energetic

range of the first photoelectron band of ET+ and only ∼ 0.54 eV above the min-

imum of the JT conical intersections. Therefore, the PJT crossings are expected

to play a crucial role in the photoionization of ET.

4.4.2 Photoelectron Spectrum

In this section we report the first photoelectron band of ET+ theoretically calcu-

lated by employing the diabatic Hamiltonian of Eqs. (4.4-4.8f) developed above.

The theoretical results are compared with the available experimental results [69].

In the following discussions, we proceed systematically to treat the JT interac-

tions within the X̃2Eg electronic manifold of ET+ first and then consider the PJT

coupling with its Ã2A1g electronic state to unambiguously establish the impor-

tance of the latter in the nuclear dynamics.

In the absence of any bilinear coupling term in the Hamiltonian, the Condon

activity of the totally symmetric a1g vibrational modes and the JT activity of the

degenerate eg vibrational modes within the X̃2Eg electronic manifold of ET+ is

separable, i.e., Ha1g and Heg commute with each other. Therefore, we calculate

two partial spectra for the a1g and eg vibrational modes separately and finally

convolute them to generate the complete spectrum. This reduces the computa-

tional effort by effectively reducing the dimensionality of the secular matrix in

each calculation. All theoretical stick spectra presented below are convoluted

with a Lorentzian line shape function of 40 meV fwhm to generate the respective
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Table 4.4: The number of harmonic-oscillator (HO) basis functions along each
vibrational mode, the dimension of the secular matrix, and the number of Lanczos
iterations used to calculate the converged theoretical stick spectrum shown in
various figures.

Dimension of the Lanczos
No. of HO basis functions secular matrix iterations Figure(s)
ν1 ν2 ν3 ν4 ν5 ν6

17 13 9 - - - 2520 2000 4.6(a) & 4.7(a)
35 28 18 - - - 19,836 5000 4.8(a)
- - - 22 40 5 4,990,356 104 4.6(b), 4.7(a), & 4.8(a)
16 52 4 - - - 4505 5000 4.7(b) & 4.8(b)
5 20 3 7 13 2 11,430,720 104 4.9 & 4.11

spectral envelopes. The number of basis functions, size of the secular matrix, and

the number of Lanczos iterations used in generating the numerically converged

spectra presented below are documented in Table 4.4.

In Fig. 4.6(a), the spectrum obtained with the three a1g vibrational modes, ν1,

ν2, and ν3 within the LVC scheme is shown. The spectral intensity in arbitrary

units is plotted as a function of the energy of the final vibronic state. The sym-

metric spectrum reveals dominant excitations of ν1 and ν2 vibrational modes, the

first two peaks from the 0-0 line. These peaks are ∼ 0.128 and ∼ 0.177 eV spaced

in energy, corresponding to the frequency of ν1 and ν2 modes, respectively. The

next four peaks corresponds to the excitation of 2ν1, ν1+ν2, 2ν2, and ν3, respec-

tively. The excitation of ν3 mode is relatively weak (the intensity is 100 times less

than the 0-0 line) in accord with its low coupling strength. The remaining high

energy peaks mostly correspond to the excitation of higher quanta of ν1 and ν2

and their combinations. The peaks in the spectrum are weighed by the coupling

strength, κ2
j/2ω

2
j (Poisson parameter), of the respective vibrational mode, which

yields the intensity of the fundamental relative to the 0-0 line.

The partial spectrum obtained with the three eg vibrational modes is shown

in Fig. 4.6(b). The convergence of the stick spectrum has been explicitly checked

with respect to the size of the basis set as well as the number of Lanczos iter-
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Figure 4.6: The first photoelectron band of ET pertaining to a transition to the
X̃2Eg electronic manifold of ET+: (a) partial spectrum computed with the three
totally symmetric a1g vibrational modes ν1-ν3 and (b) partial spectrum computed
with the three JT active degenerate eg vibrational modes ν4-ν6. The spectra
above are calculated within the LVC scheme. Each theoretical stick spectrum is
convoluted with a Lorentzian function of 40 meV fwhm to calculate the spectral
envelope.
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Figure 4.7: The first photoelectron band of ET+: (a) the spectrum of the

X̃2Eg electronic manifold of ET+, obtained by convoluting two partial spectra

due to the a1g and eg vibrational modes (see text), (b) the spectrum of Ã2A1g elec-
tronic state of ET+, and (c) the composite photoelectron band obtained by su-
perimposing the spectra in panel a and b. The spectra are calculated within the
LVC scheme.
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ative steps. The spectrum is dominated by the 0-0 line, followed by a number

of irregular lines. It reveals progression along all the three ν4, ν5, and ν6 vibra-

tional modes, however, the dominant progression is formed by the degenerate

CH3 deformation mode ν5 alone. The ν4 and ν6 vibrational modes on the other

hand are only weakly excited. The line spacings, ∼ 0.166, ∼ 0.193, and ∼ 0.392

eV, corresponding to the excitation of ν4, ν5, and ν6 vibrational modes can be

observed from the spectrum. The irregular spacings of the stick spectra are due

to multimode JT interactions [17] in the ground state of ET+.

In Figs. 4.7(a)-4.7(c) we show the final convoluted vibronic spectrum of the

X̃2Eg electronic manifold of ET+ (panel a), the vibrational spectrum of the

Ã2A1g electronic state of ET+ (panel b), and the superposition of the two (panel

c) within a linear coupling scheme [setting γj and γ′j in Eqs. (4.8a-4.8c) to zero].

A convolution of the two partial stick spectra due to the a1g and eg vibrational

modes (Figs.4.6(a-b)) is presented in Fig. 4.7(a). The resulting convoluted stick

spectrum is then convoluted again with a Lorentzian function with a fwhm of

40 meV to generate the spectral envelope. The progression in the spectrum in

Fig. 4.7(a) is mostly formed by the ν1, ν2, and ν5 vibrational modes. A close look

at this spectrum reveals that the JT effect is not very strong in the X̃2Eg elec-

tronic manifold of ET+. A strong (E ⊗ e)-JT interaction would have resulted in

a characteristic bimodal distribution of the spectral intensities and more clump-

ing of the spectral lines under the envelope as revealed in other examples in the

literature [90, 119].

The spectrum of the uncoupled Ã2A1g electronic state of ET+ is shown in

Fig. 4.7(b). The vibronic structure of this spectrum reveals a dominant excitation

of the ν2 vibrational mode. The other two vibrational modes ν1 and ν3 are only

weakly excited. The superposition of the two spectra of panel (a) and (b) is

shown in Fig. 4.7(c). We again note that the PJT coupling between the X̃2Eg -

Ã2A1g electronic state is ignored in generating this spectrum. It can be seen

that the spectrum in Fig. 4.7(c) does not compare well with the experimental
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recording shown below in Fig. 4.10(a).

Analogous results are obtained when the diagonal second-order coupling terms

γj and γ′j for the a1g vibrational modes are included in the dynamical simulations.

The resulting spectra are shown in Figs. 4.8(a)-4.8(c). When compared with the

similar spectra in Figs. 4.7(a)-4.7(c), it can be seen that these diagonal coupling

terms result into a more clumping of the spectral lines and also the irregular

structure of the envelopes becomes more regular. This results from a change in the

curvature of the adiabatic electronic states of ET+ along the normal coordinates

of these vibrational modes when the second-order coupling terms are included. It

can be seen from both Figs. 4.7 and 4.8 that the Ã2A1g electronic state contributes

to the spectral intensity significantly only beyond ∼ 13.0 eV. As in the case of

the spectrum in Fig. 4.7(c), the similar one in Fig. 4.8(c) also does not agree well

with the experimental results.

We will now proceed to discuss on the change in the spectra shown above

when the PJT interactions between the X̃2Eg -Ã2A1g electronic states of ET+

are considered. Our estimation as shown in Eq. 4.24 reveals that the minimum

of the PJT crossing seam occurs at ∼ 12.99 eV, which is near to the minimum of

the JT crossing seam in the X̃2Eg electronic manifold occurring at ∼ 12.45 eV.

Also, the PJT coupling constant λ′
j is quite large for the vibrational modes ν4

and ν5 (cf. Table 4.3). Therefore, one can expect significant PJT effects due to

these two vibrational modes in the photoelectron spectrum of ET.

In Fig. 4.9, we show the photoelectron spectrum of E (panel a) and A1

(panel b) vibronic symmetries obtained by including the PJT interactions be-

tween X̃2Eg -Ã2A1g electronic states within a linear coupling scheme. The above

two spectra are to be compared with the corresponding ones in Figs. 4.7(a) and

4.7(b), respectively, obtained by excluding these PJT interactions. A comparison

of the two reveals that both the spectra become structureless and more diffuse

at high energies on inclusion of the PJT coupling terms. The latter cause a huge

increase in the line density in the spectra at high energies beyond the minimum of
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Figure 4.8: The same as in Fig. 4.7, obtained by considering the second-order
coupling parameters γj and γ′j for the totally symmetric vibrational modes ν1-ν3.
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the seam of PJT conical intersections at ∼ 12.99 eV. The higher vibronic levels of

Eg manifold are strongly mixed with the low-lying vibronic levels of the A1g elec-

tronic state and due to this mixing, the discrete vibronic levels are clumped into

quasi-bound resonances. The spectrum of E vibronic symmetry in Fig. 4.9(a) is

dominated by progressions along the ν2 and ν5 vibrational modes, whereas, the

spectrum in Fig. 4.9(b) is dominated by the progression along the ν2 vibrational

mode at low energies. The ν1 vibrational mode also has a comparable contribu-

tion to the progression in both the spectra. The average spacing of the clump of

lines in both the spectra in panel a and b is ∼ 0.20 eV. A careful inspection of

the two spectra of E vibronic symmetry shown in Fig. 4.7(a) and 4.9(a) reveals a

significant improvement of the excitation pattern at low energies on inclusion of

the PJT coupling which compares much better with the experimental findings.

The composite (E+A)⊗e vibronic spectrum of ET+ obtained within the linear

coupling scheme is shown in Fig. 4.10(b) along with the experimental results in

Fig. 4.10(a), reproduced from Ref. [69]. The theoretical spectrum in panel b is to

be compared with a similar one in Fig. 4.7(c), obtained without the PJT coupling.

The comparison reveals a very significant and extremely important contribution

of the E − A PJT interactions in the first photoelectron band of ET. It can

be seen that the progression in the low-energy wing of the spectrum is in very

good accord with the experiment when PJT coupling is considered in the nuclear

dynamics. The progression is formed mainly by the ν1, ν2, and ν5 vibrational

modes. Moreover, the diffuseness of the band at high energies is in good accord

with the experiment. A close look at the stick spectrum underneath the envelopes

in Figs. 4.7(c) and 4.10(b) clearly indicates a huge increase in the line density at

high energies when the PJT coupling is included. The three band maxima in the

ionization region of the first photoelectron band can be seen from Fig. 4.10(b)

to occur at ∼ 12.25, ∼ 12.75, and ∼ 13.50 eV which is in good accord with the

experimental results [69]. In conjunction with the static properties of the PESs

described in the previous section, these three maxima can be unambiguously
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Figure 4.9: The first photoelectron band of ET+ of E (panel a) and A1 (panel
b) vibronic symmetries computed by including the PJT interactions between

the X̃2Eg -Ã2A1g electronic states and a LVC scheme. The stick spectra are
convoluted with a Lorentzian function of 40 meV fwhm to generate the spectral
envelope.
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Figure 4.10: Comparison of the experimental (panel a) [Ref. [69]] and theoretical

(panel b) (considering linear JT and PJT coupling in the X̃2Eg -Ã2A1g electronic
manifold) spectra for the first photoelectron band of ET+. The two stick spectra
in Figs. 4.9(a) and 4.9(b) are combined in 2:1 statistical ratio to generate the
composite stick theoretical spectrum in panel b. The latter is finally convoluted
with a Lorentzian of 40 meV fwhm to obtain the spectral envelope. The the-
oretical spectrum is shifted by 0.06 eV along the energy axis to reproduce the
observed adiabatic ionization position of the band. For a clearer representation,
the stick theoretical spectrum in panel b is magnified by a factor of 5.
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attributed to be due to the JT split X̃2Eg component and the Ã2A1g electronic

states of ET+. Despite these agreements, the broadening of the spectral envelope

in Fig. 4.10(b) is somewhat less when compared to the experiment.

The remaining differences between the theoretical and experimental results

may be associated with the possible effects of the higher-order coupling terms of

the Hamiltonian. It is to be noted that the vibrational modes of u symmetry

also enter in the dynamics when a second-order coupling model is considered.

Although the 2Eu ionic state is energetically well separated from the low-lying

2Eg (by ∼ 2.75 eV) and 2A1g (by ∼ 2.40 eV) electronic states, the eu vibrational

modes may still couple the A1g-Eu and Eg-Eu ionic states. These interactions

will lead to additional PJT conical intersections.

In order to examine the role of the second-order coupling terms due to the

totally symmetric vibrational modes, we have shown in Figs. 4.11 and 4.12 the

spectra obtained by considering the γj and γ′j parameters in the Hamiltonian of

Eqs. (4.8a-4.8c). We note that the linear coupling scheme is retained in treating

the JT and PJT interactions of the degenerate vibrational modes in the above

spectra. In Figs. 4.11(a) and 4.11(b), respectively, the spectra of E and A1

vibronic symmetries are shown. When compared with the similar spectra in

Figs. 4.9(a) and 4.9(b), it can be seen that these second-order coupling terms

make the spectrum more broad and diffuse, particularly at high energies. The

agreement between the theory and experiment as shown in Figs. 4.12(a) and

4.12(b) improves to some extent when the overall structure of the envelope is

considered. It is to be noted that we have examined the effects of the second-order

coupling terms due to the degenerate eg vibrational modes also. However, the

agreement between the theory and experiment deteriorates when the vibrational

modes of g symmetry are considered alone. We therefore strongly anticipate the

role of the vibrational modes of u symmetry, possible bilinear coupling terms, and

the PJT interactions with the Eu electronic states which may further improve the

agreement between the theory and the experiment.
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Figure 4.11: The same as in Figs. 4.9(a) and 4.9(b), obtained by including the
second-order coupling parameters γj and γ′j due to the totally symmetric vibra-
tional modes, ν1-ν3.
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Figure 4.12: The same as in Figs. 4.10(a) and 4.10(b), obtained by including
the second-order coupling parameters γj and γ′j due to the totally symmetric
vibrational modes, ν1-ν3. The theoretical spectrum is shifted by 0.1 eV along the
energy axis to reproduce the observed adiabatic ionization position of the band.
The stick theoretical spectrum in panel b is magnified by a factor of 5 in order to
have a clearer representation.
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4.5 Summary and Outlook

In the foregoing discussion, we have presented a detailed theoretical account

on the JT and PJT coupling effects in the X̃2Eg -Ã2A1g electronic states of

ET+, with the aid of an ab initio based quantum dynamical approach. Both

the static and dynamic aspects of these effects are discussed. These interactions

lead to multiple multidimensional CIs of electronic states which drive the nuclear

dynamics through highly complex nonadiabatic paths. The present theoretical

results compare well with the He I excited experimental photoelectron bands of

ET [69]. Our theoretical approach is based on a model diabatic Hamiltonian

where the degenerate vibrational modes (ν4-ν6) are considered only till the first-

order and the totally symmetric vibrational modes (ν1-ν3) are considered up to

the second-order. The theoretical results for both the (E⊗e)-JT and (E+A)⊗e
JT-PJT coupling schemes are presented in order to establish unambiguously the

importance of the PJT interactions between the X̃2Eg -Ã2A1g electronic states

of ET+.

The equilibrium geometry of ET in its ground electronic state is optimized

at the MP2 level of theory employing a cc-pVTZ basis set and then the har-

monic force field and the dimensionless normal coordinates are calculated. The

equilibrium geometry parameters and the harmonic vibrational frequencies thus

obtained are in good accord with the available experimental data [70]. The ver-

tical ionization potentials of ET are calculated as a function of the normal-mode

displacement coordinates Qj by the OVGF method. The ionization energies are

then equated with the adiabatic potential energies of the X̃2Eg and Ã2A1g elec-

tronic states of ET+. The coupling parameters of the Hamiltonian [Eqs. 4.4-4.8f]

are then derived from these potential-energy functions.

In the nuclear dynamical simulations, we systematically examined the vibronic

structure of the X̃2Eg -Ã2A1g electronic states of ET+ first by considering the

JT interactions alone within the X̃2Eg ionic manifold and then by including
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the PJT interactions with the Ã2A1g electronic state. Three totally symmetric

vibrational modes (ν1-ν3) and three degenerate JT active vibrational modes (ν4-

ν6) of g symmetry are considered in the present dynamical study. This makes

the vibronic Hamiltonian a nine-dimensional one involving three electronic states.

The coupling parameters for the vibrational modes and the subsequent dynamical

results reveal that the symmetric vibrational modes ν1 (C-C stretching) and ν2

(CH3 deformation) are strongly excited in the X̃2Eg state and ν2 is the crucial

vibrational mode contributing to the progressions in the vibronic structure of the

Ã2A1g state. The progression of all three JT active vibrational modes are observed

in the overall structure of the photoelectron band. However, the vibrational mode

ν5 (CH3 deformation) is found to be strongly excited. The theoretical findings

in conjunction with the experimental observations unambiguously establish the

very crucial role of the PJT interactions in the first photoelectron band of ET.

The experimental photoelectron band of ET+ shows irregular vibrational pro-

gressions, with its numerous shoulders and small peaks below 12.55 eV that are

attributed to the dynamic (E ⊗ e)-JT effect within the X̃2Eg state. The three

maxima obtained in the first photoelectron band at ∼ 12.25, ∼ 12.75, and ∼
13.50 eV, due to the JT split X̃2Eg component states and the Ã2A1g electronic

state, compare well with the experimental observations [69]. However, the overall

diffuseness of the experimental photoelectron band is not very well reproduced

by the present theoretical model.



Chapter 5

The JT and PJT interactions in

the cyclopropane radical cation

5.1 Introduction

In the present chapter, we focus on the static and dynamic aspects of the JT

and PJT interactions in the two low-lying degenerate electronic states of CP+.

CP molecule belongs to the D3h symmetry point group in its equilibrium config-

uration. In the D3h symmetry configuration, the ground state (X̃1A′
1) molecular

orbital sequence of CP can be written as [82–86, 88]

(1a′1)
2(1e′)4(2a′1)

2(2e′)4(1a′′2)
2(3a′1)

2(1e′′)4(3e′)4.

Ionization of an electron from its two highest occupied 3e′ and 1e′′ molecular

orbitals forms CP+ in the ground X̃2E ′ and first excited Ã2E ′′ electronic states,

respectively. CP is a nonlinear molecule and its 21 vibrational modes belong to

the following symmetry species in the D3h symmetry point group:

88
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Γvib = 3a′1 + a′2 + 4e′ + a′′1 + 2a′′2 + 3e′′. (5.1)

The symmetrized direct product of two E ′ or E ′′ representations in the D3h point

group yields

(E ′)2 = (E ′′)2 = a′1 + e′. (5.2)

Similarly, the direct product of E ′ and E ′′ irreducible representations in the D3h

point group yields

E ′ × E ′′ = a′′1 + a′′2 + e′′. (5.3)

The above elementary symmetry selection rules [Eqs. (5.2-5.3)] suggest that

the degenerate X̃2E ′ and Ã2E ′′ electronic states of CP+ would undergo JT split-

ting in first order when distorted along the degenerate vibrational modes of e′

symmetry. These two degenerate electronic states may also undergo PJT-type

interactions along the vibrational modes of a′′1, a
′′
2, and e′′ symmetries. However,

by analyzing their coupling strengths extracted from our extensive ab initio elec-

tronic structure data, we note that only one of the three e′′ vibrational modes

and one a′′1 vibrational mode are found to be PJT active. Although the X̃2E ′ and

Ã2E ′′ electronic states are separated by ∼ 2.428 eV in energy at the equilibrium

configuration of neutral CP, such interactions are found to be important in the

energy range of its photoelectron bands considered in this chapter. The PJT cou-

pling of two JT split degenerate electronic states is expected to yield a series of

CIs and consequently the nuclear motion may become highly nonadiabatic owing

to the possibility of nonradiative transitions to four component electronic states.

In this chapter we have undertaken a detailed ab initio dynamical study of

the photoionization spectrum of CP (cf. Fig. 5.1). The latter is already discussed
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Figure 5.1: The He I experimental photoelectron spectrum of cyclopropane re-
produced from Ref. [75].
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in section 1.3 along with the available electronic structure results. At first, we

have treated the JT interactions in the X̃2E ′ electronic manifold of CP+ by

constructing a two-states and eleven-modes model vibronic Hamiltonian up to a

QVC scheme by an ab initio quantum dynamical approach [90]. Our results were

shown to compare well with the high-resolution He I excited recording of Holland

et al. [75] (cf. Fig. 5.1). The strong JT interactions within this state lead to

the observed bimodal intensity distribution of the first photoelectron band. The

separation between the two maxima of the bimodal profile of ∼ 0.80 eV was in

good agreement with the experimental value of ∼ 0.78 eV. Two Condon active

(a′1) and three JT active (e′) vibrational modes were found to contribute mostly

to the nuclear dynamics in this electronic manifold [90]. In addition, it was found

that the progressions in the low-energy wing of the envelope are mainly formed

by the JT active ν4 (CH2 wagging) and ν5 (ring deformation) vibrational modes.

The average spacing between the successive peaks was found to be in agreement

with the experimental value of ∼ 60 meV [75]. However, in contrast to the

experimental results, highly irregular vibronic structures in the low-energy wing

of the theoretical spectrum was found. Also, the second maximum of the bimodal

spectral profile revealed more structures than that observed in the experimental

envelope [90].

The second photoelectron band of CP+, attributed to the vibronic structure of

Ã2E ′′ electronic manifold, is highly diffuse and broad [75]. In order to reveal the

coupling effects of various vibrational modes on the vibronic fine structure of this

band, we first examined the nuclear dynamics employing a quadratic coupling

scheme in the Ã2E ′′ electronic manifold [91]. Dominant excitation of the ν2, ν3,

ν4 and ν6 vibrational modes was found in the photoelectron band [91]. However,

we note that the JT activity of the e′ vibrational modes is relatively weak in

the Ã2E ′′ electronic manifold when compared to the same in the X̃2E ′ electronic

manifold. Although the quadratic vibronic coupling results compare well with

the experimental data, still, the theoretical envelope does not reveal the observed
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structureless and diffuse nature of the band.

The discussed discrepancies between the theoretical and experimental results

motivated us to further examine the possible role of PJT interactions between

the X̃2E ′ and Ã2E ′′ electronic states of CP+ and the intermode bilinear JT

coupling terms. Therefore, we now here develop an extended diabatic vibronic

Hamiltonian considering the intermode coupling terms, apart from the possible

PJT interactions between the X̃2E ′ and Ã2E ′′ electronic states of CP+. In what

follows, a QVC scheme is employed for the JT active e′ vibrational modes and the

Condon active a′1 vibrational modes, whereas the PJT active a′′1 and e′′ vibrational

modes are treated within a LVC scheme. Therefore, the complete theoretical

model developed here consists of four interacting electronic states and fourteen

nuclear degrees of freedom. We mention that VC in CP+ represents a unique

example in which degenerate vibrational modes of two different symmetries are

involved in the JT and PJT activities.

Detailed ab initio electronic structure calculations are carried out to derive the

relevant coupling parameters of the vibronic Hamiltonian. A time-independent

matrix diagonalization approach to treat the nuclear dynamics on four interacting

electronic states including fourteen vibrational degrees of freedom is computation-

ally impracticable. This task is therefore accomplished with a time-dependent

WP propagation approach within the MCTDH scheme [53–55] which has been

very successful, in particular, treating the multistate and multimode VC prob-

lems of large dimensions. The details of the MCTDH method is documented in

a recent review article by Beck et al. [110]. In the recent past, this method has

been successfully applied to treat very complex VC in C6H
+
6 [27] and C5H

+
4 [124].

The final results of this chapter are obtained by this method, and comparison

calculations are carried out in reduced dimensions by the time-independent ma-

trix diagonalization approach, to check the consistencies of various results and

also to examine the detailed vibrational progressions in the photoelectron bands.

A systematic treatment of the nuclear dynamics revealed that PJT interactions



5.2. The Vibronic Hamiltonian 93

between the X̃2E ′ and Ã2E ′′ electronic states of CP+ play an important role in

the detailed structure of the photoelectron bands. The minimum of the seam of

PJT conical intersections is found to occur ∼ 1.475 eV above and ∼ 0.638 eV be-

low the minimum of the JT conical intersections of the X̃2E ′ and Ã2E ′′ electronic

states, respectively. The PJT couplings due to a′′1 and e′′ vibrational modes cause

a huge increase in the spectral line density. As a result, the second maxima of

the first photoelectron band and the entire second photoelectron band, exhibit a

structureless pattern. The theoretical findings also establish the importance of

the bilinear coupling terms in the nuclear dynamics. They are found to be in

excellent agreement with the experimental data.

5.2 The Vibronic Hamiltonian

The photoionization to the two low-lying degenerate X̃2E ′ and Ã2E ′′ electronic

states of CP+ is theoretically examined here. As stated in the introduction, each

of these two electronic states undergo JT splitting when CP+ is perturbed along

the degenerate vibrational modes of e′ symmetry. The symmetry selection rule

[Eq. 5.3] allows the JT split component states of the two degenerate electronic

states to exhibit PJT-type interactions via the vibrational modes of a′′1 and e′′

symmetries. In addition, there are three totally symmetric a′1 vibrational modes

that are Condon active in each of these two electronic states. The nuclear dy-

namical simulations on the resulting four coupled electronic states includes 14

vibrational degrees of freedom. The latter are selected from the set of 21 vibra-

tional degrees of freedom of CP+ by analyzing their coupling strengths extracted

from our extensive electronic structure data. In the following, we first resort to

a diabatic electronic basis [44] to treat this VC problem. This is to avoid the nu-

merical difficulties [17] that arise due to the singular nature of the nonadiabatic

coupling terms in an adiabatic electronic basis. The diabatic vibronic Hamil-

tonian is constructed in terms of the dimensionless normal coordinates of the
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electronic ground state of neutral CP. To a good approximation, the vibrational

motion in the latter is treated as harmonic. Here, we refer to Qi as the dimen-

sionless normal coordinate of the vibrational mode νi with a harmonic vibrational

frequency ωi. Actually, each Qi represents the normal displacement coordinate

from the equilibrium configuration of the electronic ground state of CP at Q=0.

In the present chapter, the three a′1 vibrational modes are numbered as ν1, ν2,

and ν3, the four e′ vibrational modes as ν4, ν5, ν6, and ν7, and one a′′1 and one of

three e′′ vibrational modes as ν8 and ν9, respectively. Following the well-known

VC theory [17], we represent the diabatic vibronic Hamiltonian of the coupled

manifold of four interacting electronic states as

H = H014 +




W11 W12 W13 W14

W22 W23 W24

h.c. W33 W34

W44



. (5.4)

Here H0 = TN + V0, with

TN = −1
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and
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ωiQ
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i +

1
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yi

)
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1
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2
8 +

1

2
ω9

(
Q2

x9 +Q2
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)
(5.6)

is the Hamiltonian matrix associated with the ground electronic state of CP and

is defined in terms of unperturbed harmonic oscillators with frequencies ωi. The

matrix Hamiltonian with elements Wij in Eq. (5.4) describes the change in the

electronic energy upon ionization from the electronic ground state of CP. These

elements are expanded in a Taylor series around the D3h equilibrium geometry
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of CP along each of the normal mode displacement coordinates. The series is

truncated after the second-order terms for the symmetric a′1 and JT active e′

vibrational modes, whereas up to the first-order terms are retained only for the

PJT active a′′1 and e′′ vibrational modes. Including the various bilinear (a′1-a
′
1,

e′-e′, and a′1-e
′) coupling terms, the following results are obtained in conjunction

with the elementary symmetry selection rules (as stated above) and a rigorous

group theoretical analysis (given in Appendix C) [17]:

W11 = E0
E′ +

3∑

i=1

κ′
iQi +

1

2

3∑

i=1

3∑

j=1

γ′
ijQiQj +

7∑

i=4

λ′
iQxi +

1

2

3∑

i=1

7∑

j=4

b′ijQiQxj

1

2

7∑

i=4

7∑

j=4

[
γ′

ij(QxiQxj + QyiQyj) + η′ij(QxiQxj − QyiQyj)
]
, (5.7a)

W22 = E0
E′ +

3∑
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κ′
iQi +

1

2
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i=1

3∑

j=1

γ′
ijQiQj −

7∑

i=4

λ′
iQxi −

1

2

3∑

i=1
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b′ijQiQxj

1

2
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i=4
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[
γ′
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]
, (5.7b)
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, (5.7c)
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, (5.7d)



5.2. The Vibronic Hamiltonian 96

W12 =

7∑

i=4

λ′iQyi −
7∑

i=4

7∑

j=4

η′ijQxiQyj +
1

2

3∑

i=1

7∑

j=4

b′ijQiQyj , (5.7e)

W13 = λ9Qx9, (5.7f)

W14 = λ8Q8 + λ9Qy9, (5.7g)

W23 = −λ8Q8 + λ9Qy9, (5.7h)

W24 = −λ9Qx9, (5.7i)

W34 =

7∑

i=4

λ′′iQyi −
7∑

i=4

7∑

j=4

η′′ijQxiQyj +
1

2

3∑

i=1

7∑

j=4

b′′ijQiQyj . (5.7j)

Here E0
E′ and E0

E′′ are the vertical ionization potentials of the X̃2E ′ and Ã2E ′′ elec-

tronic states of CP+, respectively. The quantities κ′i and κ′′i are the linear in-

trastate coupling constants for the totally symmetric vibrational modes (i = 1-3).

The parameters λ′
i and λ′′i are the linear JT coupling constants for the JT active

degenerate vibrational modes (i = 4-7). The quantities γ ′
ij and γ′′ij (i, j = 1-7,

i = j) denote the diagonal second-order coupling parameters which account for

the change of vibrational frequencies upon ionization from the electronic ground

state of CP. The coefficients γ ′ij and γ′′ij pertain to the intermode a′1-a
′
1 (i, j =

1-3, i 6= j) and e′-e′ (i, j = 4-7, i 6= j) couplings for the a′1 and e′ vibrational

modes, whereas η′ij and η′′ij, i, j = 4-7, denote the crossed quadratic JT terms.

The bij, i = 1-3, j = 4-7 are the bilinear JT coupling parameters related to the
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mixing of the vibrational modes of the a′1 and e′ symmetries. The linear PJT

coupling parameters for the a′′1 and e′′ vibrational modes are designated as λ8

and λ9, respectively. Here, we note that the primed and doubly primed parame-

ters are associated with the X̃2E ′ and Ã2E ′′ electronic states, respectively. The

calculations of these parameters are discussed in section 5.3.1 below, and their

numerical values are given in Tables 5.3 and 5.4.

5.3 Electronic Structure Calculations

For the dynamical study, the various coupling parameters of the vibronic Hamil-

tonian of Eqs. (5.7a-5.7j), need to be determined first. We therefore perform

detailed ab initio calculations of the electronic PESs of the X̃2E ′ and Ã2E ′′ elec-

tronic states of CP+ along the dimensionless normal coordinates of all 21 vibra-

tional degrees of freedom. The latter are obtained as we discussed in section

3.3.1. The important and most relevant vibrational modes are then selected and

included in the dynamical calculations based on their coupling strength. The

geometry optimization and the calculation of harmonic vibrational frequencies

(ωi) of CP in its ground electronic state (X̃1A′
1) are carried out at the MP2 level

of theory employing the cc-pVTZ basis set. The electronic structure calculations

were performed using the Gaussian03 program package [116]. The optimized ge-

ometry parameters of CP in its ground electronic state are documented in Table

5.1 along with the available experimental results [125]. It can be seen from Table

5.1 that MP2 equilibrium geometry parameters correspond well with the corre-

sponding experimental values, except the ∠ H-C-H angle, which is ∼ 2◦ smaller

than the experimental value.

The relevant normal vibrational modes of CP are schematically represented

in Fig. 5.2. The nature of these vibrational modes, their symmetry properties,

and harmonic vibrational frequencies are reported in Table 5.2, along with the

available experimental results [126]. The apparent deviations between the two can
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Table 5.1: Equilibrium geometry of CP in its ground electronic state (X̃1A′
1)

along with the experimental results of Ref. [125].

∠ H-C-H ∠ C-C-C C-H C-C
(deg) (deg) (Å) (Å)

MP2/cc-pVTZ 115.08 60 1.078 1.503
Expt [125] 117.08 59.98 1.074 1.499

Table 5.2: Symmetry, frequency, and description of the relevant vibrational modes
of the electronic ground state of CP. The experimental results are reproduced from
Ref. [126]. Note that, theoretical frequencies are harmonic, whereas, experimental
ones are fundamental.

Vibrational frequency (ωi)/eV
Symmetry Mode MP2/cc-pVTZ Experiment Description

a′1 ν1 0.1531 0.1473 C-C stretching
ν2 0.1902 0.1829 CH2 scissoring
ν3 0.3965 0.3744 Symmetric C-H stretching

e′ ν4 0.1129 0.1074 CH2 wagging
ν5 0.1309 0.1270 Ring deformation
ν6 0.1841 0.1778 CH2 scissoring
ν7 0.3954 0.3743 Asymmetric C-H stretching

a′′1 ν8 0.1449 - CH2 twisting
e′′ ν9 0.1514 - CH2 twisting

be attributed to the fact that the experimental results represent the fundamental

vibrational frequencies.

5.3.1 Coupling Parameters of the Hamiltonian

The coupling parameters of the Hamiltonian [Eqs. (5.4-5.7j)] represent deriva-

tives of the adiabatic potential-energy function of CP+ of appropriate order with

respect to the dimensionless normal coordinates Qi of the vibrational mode νi

calculated at the equilibrium geometry of neutral CP (Q=0) [94]. The linear

intrastate (κ′i and κ′′i ; i = 1-3) and the JT (λ′
i and λ′′i ; i = 4-7) coupling parame-

ters are obtained using Eqs. (4.9) and (4.10), respectively, given in section 4.3.1.

The diagonal second-order coupling parameters (γ ′
i and γ′′i ; i = 1-3) for the to-
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Figure 5.2: Schematic representation of the relevant normal vibrational modes of
CP in its ground electronic state (X̃1A′

1).
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tally symmetric a′1 vibrational modes are obtained from Eq. (4.11). Similarly, the

second-order coupling parameters (γ ′
i; i = 4-7) for the degenerate e′ vibrational

modes are obtained from the following expression,

γ′i =

(
∂2V E′

∂Q2
i

) ∣∣∣∣∣
Q=0

, i = 4 − 7. (5.8)

where V E′ is the mean of the JT split PESs of the X̃2E ′ electronic state of CP+.

An analogous definition holds for γ ′′i (i = 4-7), where V E′ in Eq. (5.8) is replaced

by V E′′ energies respectively, of the Ã2E ′′ electronic manifold.

The quadratic JT (η′i) coupling parameters of the X̃2E ′ electronic manifold

are calculated from the corresponding (signed) difference of the JT split PESs:

η′i =
1

2

(
∂2∆E ′

∂Q2
i

) ∣∣∣∣∣
Q=0

, i = 4 − 7. (5.9)

Similarly one can obtain η′′i of e′ vibrational modes (i = 4-7) by replacing ∆E ′′

energies of the Ã2E ′′ electronic manifold.

In order to estimate these coupling parameters we performed direct calcula-

tions of vertical ionization energies of CP by the OVGF method [117, 118] em-

ploying the cc-pVTZ basis set. The electronic structure calculations are carried

out as a function of the dimensionless normal mode displacement (from Q=0)

coordinates and for Qi (i = 1-7 ) = ± 0.10, ± 0.25 (± 0.25) ± 1.50, using the

Gaussian03 program package [116]. The vertical ionization energies thus obtained

are equated with the adiabatic potential energies of the X̃2E ′ and Ã2E ′′ electronic

states of CP+ and X̃1A′
1 electronic state of CP along the respective normal modes

of vibration. These energies are then fitted to the adiabatic form of the diabatic

Hamiltonian described in Eqs. (5.7a-5.7j) by a nonlinear least-square fit procedure

and thereby the coupling parameters are derived. The various fitting diagrams

are shown in Figs. 5.3-5.6 for the X̃2E ′ and Ã2E ′′ electronic manifold of CP+.

We note that, the coupling parameters are also estimated by numerical finite dif-
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ference scheme (given in Appendix B) and the identity of the results is confirmed.

The X̃2E ′-Ã2E ′′ PJT coupling parameters for the a′′1 and e′′ vibrational modes

can be obtained from

λi =
1

2

√(
∂2∆E

∂Q2
i

)∣∣∣∣∣
Q=0

, i = 8, 9. (5.10)

Here ∆E = ∆V 2
Qi

- ∆V 2
0 , where ∆V 2

Qi
and ∆V 2

0 are the potential energy differences

between the Ã2E ′′ and X̃2E ′ electronic states for the normal mode displacement

Qi, and for the equilibrium configuration (Q=0), respectively. In order to esti-

mate these parameters, additional electronic structure calculations are performed

along the a′′1 and e′′ vibrational modes as a function of the dimensionless normal

mode displacement (from Q=0) coordinates and for Qi (i = 8, 9 ) = ± 0.10,

± 0.25 (± 0.25) ± 1.50, using the Gaussian03 program package [116]. The PJT

coupling parameters are then obtained by a suitable numerical finite difference

scheme.

The a′1-a
′
1 bilinear coupling parameters of the X̃2E ′ electronic manifold are

given by

γ′ij =

(
∂2VE′

∂Qi∂Qj

) ∣∣∣∣∣
Q=0

, i, j = 1 − 3; i 6= j (5.11)

An analogous definition holds for γ ′′ij, where VE′ in Eq. (5.11) is replaced by the

adiabatic potential energy VE′′ of the Ã2E ′′ electronic manifold. In a similar man-

ner, we have also estimated the a′1-e
′ (i = 1-3; j = 4-7; i 6= j) and e′-e′ (i, j =

4-7; i 6= j) bilinear coupling parameters b′ij, b
′′
ij, and γ′ij and γ′′ij, respectively, of

the X̃2E ′ and Ã2E ′′ electronic manifold of CP+. In order to estimate these pa-

rameters, we have performed extensive electronic structure calculations by small

normal mode displacement coordinates along two vibrational modes simultane-

ously and for Qij (i, j = 1-7; i 6= j) = ± 0.10, ± 0.25 (± 0.25) ± 1.0, using the

Gaussian03 program package [116]. Then the parameters are calculated by suit-
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able numerical finite difference schemes (cf. Appendix B). The numerical values

of these intermode bilinear coupling parameters are given in Table 5.4. We note

that, the limitation to maximum distortions of 1.0 here does not seem to be a

rigorous, but a useful one. This is due to the fact that we displace along two

normal coordinates at the same time, their combined effect is bigger and may

thus reach the limitations of the coupling model more easily than with the linear

coupling constants (single mode displacements alone) [17].

In Figs. 5.3(a-f) the adiabatic potential energy values of the X̃2E ′ and Ã2E ′′ elec-

tronic states of CP+ measured relative to the X̃1A′
1 electronic state of CP (these

are the vertical ionization energy values obtained from the OVGF calculations)

along the dimensionless normal coordinate of the a′1 vibrational modes ν1, ν2,

and ν3 are plotted. The asterisks and the filled circles represent the computed ab

initio data for the X̃2E ′ and Ã2E ′′ electronic states, respectively, and a quadratic

fit to these data is shown by the solid line in each panel. The vibrational modes

ν1, ν2, and ν3 represent the C-C stretching, CH2 scissoring, and symmetric C-H

stretching motion, respectively [126]. It can be seen that the degeneracy of the

X̃2E ′ and Ã2E ′′ electronic states of CP+ is not lifted when displacing along these

vibrational modes. The linear (κ′i and κ′′i ) and the second-order (γ ′i and γ′′i ) cou-

pling parameters for these modes resulting from the above fits are given in Table

5.3.

The mean of the JT split PESs of the X̃2E ′ and Ã2E ′′ electronic states of

CP+ for displacements along the x-component of the degenerate e′ vibrational

modes ν4, ν5, ν6, and ν7 is plotted in Figs. 5.4(a-d) and 5.5(a-d), respectively, as

a function of their dimensionless normal coordinates. These modes represent the

CH2 wagging, ring deformation, CH2 scissoring, and asymmetric C-H stretching

motion, respectively, in that order [126]. The computed ab initio points in each

panel of Fig. 5.4(a-d) and Fig. 5.5(a-d) are shown by the asterisks and a quadratic

fit to these points is shown by the solid line. It can be seen, from Eqs. (5.7a-5.7j)

that, in absence of the bilinear coupling, the above fits yield the diagonal second-
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Figure 5.3: Adiabatic potential energies of the X̃2E ′ (panels: a-c) and Ã2E ′′ (pan-
els: d-f) electronic states of CP+ measured relative to the electronic ground state
of CP along the dimensionless normal coordinates of the symmetric vibrational
modes ν1, ν2, and ν3. The asterisks and filled circles represent the computed data
for the X̃2E ′ and Ã2E ′′ electronic states respectively, and a quadratic fit to these
data is shown by the solid line in each panel. The linear (κi and κ′i) and diagonal
quadratic coupling (γi and γ′i) parameters listed in Table 5.3 are obtained from
the above fits.
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order coupling parameters γ ′i and γ′′i for the ith vibrational mode of X̃2E ′ and

Ã2E ′′ electronic states, respectively. The value of these parameters obtained from

the above fits are included in Table 5.3.

The linear and quadratic JT coupling parameters of the X̃2E ′ and Ã2E ′′ elec-

tronic states of CP+ for the degenerate vibrational modes ν4-ν7 are evaluated

by fitting the (signed) difference of the JT split PESs along these modes. In

Fig. 5.6(a-h) this energy difference is plotted along the dimensionless normal co-

ordinates of the x component of the respective mode. The asterisks and the filled

circles denote the computed ab initio energies for the X̃2E ′ and Ã2E ′′ electronic

states, respectively, and the solid line superimposed on them in each panel repre-

sents the quadratic fit (excluding bilinear coupling terms). The value of the linear

(λ′i and λ′′i ) and quadratic (η′i and η′′i ) JT coupling parameters thus obtained from

the above fits are included in Table 5.3.
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The diagonal quadratic coupling constants for the JT modes (γ ′′

i ) documented in
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Table 5.3: Ab initio calculated linear and quadratic coupling constants for the X̃2E ′ and Ã2E ′′ electronic states of CP+.
The vertical ionization energies of these two electronic states are also given in the table. All quantities are in eV. The
dimensionless Poisson parameters (κ′i/ωi)

2/2, (λ′i/ωi)
2/2, (κ′′i /ωi)

2/2 and (λ′′
i /ωi)

2/2 are given in parentheses.

Mode κ′i or λ′i κ′′i or λ′′i γ′i γ′′i η′i η′′i λi

(symmetry) X̃2E ′ Ã2E ′′ X̃2E ′ Ã2E ′′ X̃2E ′ Ã2E ′′ X̃2E ′ ⊗ Ã2E ′′

ν1(a
′
1) -0.109(0.254) -0.012(0.003) -1.902 ×10−3 -1.092 ×10−2 – –

ν2(a
′
1) 0.214(0.635) -0.298(1.228) 4.350 ×10−3 -6.176 ×10−2 – –

ν3(a
′
1) 0.018(0.001) 0.324(0.333) 1.324 ×10−3 1.635 ×10−2 – –

ν4(e
′) 0.320(4.019) 0.138(0.743) 1.442 ×10−3 -6.685 ×10−3 -3.772 ×10−3a

-2.494 ×10−3

ν5(e
′) 0.370(3.997) 0.041(0.050) 5.784 ×10−3 -7.716 ×10−2 -7.410 ×10−3a

-8.052 ×10−3

ν6(e
′) 0.069(0.071) 0.224(0.741) -6.586 ×10−3 -9.558 ×10−2 -3.648 ×10−3a

3.456 ×10−2

ν7(e
′) 0.033(0.003) 0.233(0.174) 2.441 ×10−3 -6.858 ×10−3 6.692 ×10−4a

8.833 ×10−3

ν8(a
′′
1) 0.3280

ν9(e
′′) 0.1836

E0
E′ 10.801

E0
E′′ 13.229
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5.4 Results and Discussion

5.4.1 Adiabatic Potential Energy Surfaces

The adiabatic PESs of the X̃2E ′ and Ã2E ′′ electronic states are obtained by

diagonalizing the diabatic electronic Hamiltonian matrix given in Eqs. (5.4-5.7j).

In absence of the PJT coupling of the a′′1 and e′′ vibrational modes, the eigenvalues

of the X̃2E ′ and Ã2E ′′ electronic states are given by

V1,2(Q) = V0(Q) + E0
E′ +

3∑

i=1

κ′
iQi +

1

2

3∑

i=1

γ′
iQ

2
i +

1

2

7∑

i=4

γ′
i

(
Q2

xi + Q2
yi

)

∓

√√√√
[

7∑

i=4

(
λ′

iQxi +
1

2
η′i(Q

2
xi − Q2

yi)

)]2

+

[
7∑

i=4

(λ′
iQyi − η′iQxiQyi)

]2

(5.12a)

V3,4(Q) = V0(Q) + E0
E′′ +

3∑

i=1

κ′′
i Qi +

1

2

3∑

i=1

γ′′
i Q2

i +
1

2

7∑

i=4

γ′′
i

(
Q2

xi + Q2
yi

)

∓

√√√√
[

7∑

i=4

(
λ′′

i Qxi +
1

2
η′′i (Q2

xi − Q2
yi)

)]2

+

[
7∑

i=4

(λ′′
i Qyi − η′′i QxiQyi)

]2

(5.12b)

where V1 and V2 refer to the lower and upper adiabatic sheets of the X̃2E ′ elec-

tronic manifold and V3 and V4 to the lower and upper adiabatic sheets of the

Ã2E ′′ electronic manifold, respectively. With the aid of the parameters of Ta-

ble 5.3, the adiabatic PESs of the quadratic vibronic model are obtained. In

Figs. 5.7(a-c), we show one dimensional cuts of these multidimensional potential

energy hypersurfaces along the totally symmetric vibrational modes ν1, ν2, and

ν3. In the figure the potential energy values obtained from the above quadratic vi-

bronic model are shown by the solid and dashed lines for the X̃2E ′ and Ã2E ′′ elec-

tronic states, respectively, and the corresponding ab initio computed energies are

superimposed on them and indicated by the filled circles. The electronic degener-

acy of these states is restored upon displacements along the symmetric vibrational

modes. It can be seen that the model reproduces the computed energies very well.
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Table 5.4: Ab initio calculated intermode coupling parameters of the Hamiltonian.
All quantities are in eV.

Intermode couplings i, j X̃2E ′ Intermode couplings i, j Ã2E ′′

a′1-a
′
1 a′1-a

′
1

γ′12 -4.61 ×10−3 γ′′12 -1.18 ×10−2

γ′13 8.15 ×10−4 γ′′13 -6.99 ×10−3

γ′23 3.35 ×10−3 γ′′23 -2.63 ×10−2

a′1-e
′ a′1-e

′

b′14 1.28 ×10−2 b′′14 1.28 ×10−2

b′24 -1.73 ×10−2 b′′24 -3.38 ×10−3

b′34 2.60 ×10−3 b′′34 -1.15 ×10−3

b′15 1.21 ×10−2 b′′15 2.20 ×10−3

b′25 -1.13 ×10−2 b′′25 6.30 ×10−3

b′35 -9.19 ×10−3 b′′35 -2.18 ×10−3

b′16 2.49 ×10−3 b′′16 -1.40 ×10−2

b′26 3.10 ×10−3 b′′26 -4.63 ×10−2

b′36 -6.05 ×10−3 b′′36 -2.05 ×10−2

b′17 1.96 ×10−3 b′′17 5.87 ×10−3

b′27 -7.91 ×10−3 b′′27 1.73 ×10−2

b′37 2.19 ×10−3 b′′37 -9.75 ×10−3

e′-e′ e′-e′

γ′45 -6.54 ×10−3 γ′′45 -9.15 ×10−3

γ′46 4.05 ×10−3 γ′′46 -4.52 ×10−3

γ′47 2.95 ×10−4 γ′′47 6.89 ×10−4

γ′56 -9.36 ×10−3 γ′′56 1.34 ×10−3

γ′57 -1.64 ×10−4 γ′′57 -1.20 ×10−4

γ′67 8.36 ×10−4 γ′′67 -7.18 ×10−4

η′45 3.80 ×10−5 η′′45 5.09 ×10−5

η′46 1.71 ×10−3 η′′46 -1.91 ×10−3

η′47 -4.94 ×10−3 η′′47 -1.19 ×10−2

η′56 -4.01 ×10−3 η′′56 5.83 ×10−4

η′57 3.13 ×10−3 η′′57 2.26 ×10−3

η′67 -1.70 ×10−3 η′′67 1.42 ×10−3
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Figure 5.7: The adiabatic potential energy curves of the X̃2E ′ (solid lines) and

Ã2E ′′ (dashed lines) electronic states of CP+ along the dimensionless normal co-
ordinates for the totally symmetric (a′1): (a) ν1 (C-C stretching), (b) ν2 (CH2

scissoring) and (c) ν3 (symmetric C-H stretching) vibrational modes. Each curve
in the figure represents a cut along the multidimensional potential energy hyper-
surface of the respective electronic states. The equilibrium geometry of CP in
its electronic ground state (1A′

1) corresponds to Q=0. The ab initio ionization
energies with a harmonic contribution from the neutral ground electronic state
are shown by the filled circles on the diagram.
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Figure 5.8: Adiabatic potential energy curves of the JT split X̃2E ′ (solid lines)

and the Ã2E ′′ (dashed lines) electronic states of CP+ plotted as a function of the
x component of the dimensionless normal coordinates of the degenerate (e′): (a)
ν4 (CH2 wagging mode) (b) ν5 (ring deformation), (c) ν6 (CH2 scissoring) and
(d) ν7 (asymmetric C-H stretching) vibrational modes. The ab initio ionization
energies with a harmonic contribution from the neutral ground electronic state
are shown by the filled circles on the diagram.
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One-dimensional cuts of the above two electronic states along the x-component

of the JT active vibrational modes ν4, ν5, ν6, and ν7 are plotted in Figs. 5.8(a-d).

As above, the solid and dashed lines describe the energy values obtained from

the model for the X̃2E ′ and Ã2E ′′ electronic states, respectively, and the points

superimposed on them represent the corresponding computed energies. It can be

seen that the degeneracy of the X̃2E ′ and Ã2E ′′ electronic states is split upon

displacements along these modes. It is noteworthy that the degenerate vibra-

tional modes ν4 and ν5 cause a large JT splitting in the X̃2E ′ electronic manifold

compared to that in the Ã2E ′′ electronic manifold. On the other hand, the vibra-

tional modes ν4 and ν6 cause a relatively large splitting of the degeneracy of the

Ã2E ′′ electronic manifold when compared to that of the X̃2E ′ electronic manifold.

It is apparent from Fig. 5.8 that the JT coupling in the X̃2E ′ electronic manifold

is stronger than in the Ã2E ′′ electronic manifold, which is also revealed by the

magnitude of the coupling strengths given in Table 5.3. The curve crossings at

the origin in the above figures represent the CIs associated with the (E × e)-

JT effect. In addition, there are curve crossings between the upper sheet of the

X̃2E ′ and the lower sheet of the Ã2E ′′ electronic states, which will be shown and

discussed below.

At this point it is useful to examine a few stationary points of the PESs

discussed above. To begin with let us examine the stationary points of the (E×e)-
JT split PESs of the X̃2E ′ electronic manifold within the LVC scheme. The two

sheets of the latter manifold remain degenerate [Eq. (5.12a); consider that γ ′
i and

η′i are zero] in absence of any JT distortion, that is, Qi (i = 4-7) = 0. These two

sheets form CIs and the minimum of this intersection seam occurs at Q0
i (i = 1-3)

= -κ′i/ωi, in the space of a′1 vibrational modes with an energy [17, 90]

V(c)
min,JT = E0

E′ − 1

2

3∑

i=1

κ′
2

i

ωi

(5.13)
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This global minimum on V1 at the D3h equilibrium geometry becomes a cusp

when distorted along any of the two components of the degenerate vibrational

modes. The minimum of V2 remains at the minimum of the seam of CIs and new

minima appear on V1 at, Q0
i (i = 1-3) = -κ′i/ωi and Q0

pi (p = x/y, i = 4-7) = ±
λ′pi / ωpi with an energy [90]

V0
1 = E0

E′ − 1

2

3∑

i=1

κ′
2

i

ωi
− 1

2

7∑

i=4

λ′
2

pi

ωpi
(5.14)

In multidimensional space this results into a “Mexican hat” topography of the

JT split PESs. The JT stabilization energy amounts to
∑7

i=4 λ
′2
pi / 2ωpi.

Considering the data collected in Table 5.3, one can see that the V (c)
min =

10.6408 eV, occurs at Q0
1 = 0.7126, Q0

2 = -1.1272 and Q0
3 = -0.444. The new

minima on V0
1 [Eq. (5.14)] for the JT distorted geometry occurs at Q0

4x = 2.8351,

Q0
5x = 2.827, Q0

6x = 0.3759, and Q0
7x = 0.0829 with an energy V0

1 = 9.6495 eV.

The JT stabilization energy amounts to ∼ 0.991 eV.

The above stationary points of the PESs are further modified when the quadratic

coupling terms γ′i and η′i in Eq. (5.12a) are considered. In the space of a′1 vibra-

tional modes the minimum of the seam of CIs now occurs at Q0
i (i = 1-3) = -

κ′i/(ωi + γ′i), and the energy at the minimum is given by [90]

V(c)
min,JT = E0

E′ − 1

2

3∑

i=1

κ′
2

i

(ωi + γ′i)
(5.15)

Along the JT active e′ vibrational modes, this energetic minimum changes

to a cusp and the new minima and saddle points appear on the lower adiabatic

component of the JT split X̃2E ′ electronic manifold. When we distort along one

component (say x) of these doubly degenerate vibrational modes, two solutions
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are obtained for Qxi = ∓λ′i/(ωi + γ′i ± η′i) (i = 4 -7), with energies [90]

V0
1 = E0

E′ − 1

2

3∑

i=1

κ′
2

i

(ωi + γ′i)
− 1

2

7∑

i=4

λ′
2

i

(ωi + γ′i + η′i)
(5.16)

and

Vsp
1 = E0

E′ − 1

2

3∑

i=1

κ′
2

i

(ωi + γ′i)
− 1

2

7∑

i=4

λ′
2

i

(ωi + γ′i − η′i)
(5.17)

where V0
1 and Vsp

1 refer to the energy of the minimum and the saddle point,

respectively for the signs of the coupling constants as given in Table 5.3. With

the data listed in Table 5.3 one obtains V (c)
min = 10.6419 eV at Q0

1 = 0.7171,

Q0
2 = -1.1145 and Q0

3 = -0.0443. The new minima on V1 for the JT distorted

geometry occur at Q0
4x = 2.7541, Q0

5x = 2.6363, Q0
6x = 0.3859, and Q0

7x = 0.0825,

with energy V0
1 = 9.6563 eV. The saddle point occurs at Qsp

4x = -2.8464, Qsp
5x =

-2.7831, Qsp
6x = -0.3939, and Qsp

7x = -0.0824, with energy Vsp
1 = 9.6985 eV. The

JT stabilization energy amounts to ∼ 0.924 eV. A comparison with the linear

coupling results (discussed above) reveals that when the quadratic couplings are

considered both V (c)
min and V0

1 shifts to slightly higher energy value. The shift

in the value of V0
1 is relatively greater than that in V (c)

min. As a result, the JT

stabilization energy also decreases slightly [90].

Let us now consider the (E × e)-JT PESs of the Ã2E ′′ electronic manifold

and also its PJT coupling with the X̃2E ′ electronic manifold. In the space of a′1

vibrational modes, the minimum of the seam of CIs now occurs at Q0
i (i = 1-3)

= -κ′′i /(ωi + γ′′i ), and the energy at the minimum is given by [91]

V(c)
min,JT = E0

E′′ − 1

2

3∑

i=1

κ′′
2

i

(ωi + γ′′i )
(5.18)

When distorted along the JT active e′ vibrational modes, this energetic min-

imum changes to a cusp and new minima and saddle points appear on the lower
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adiabatic component of the JT split Ã2E ′′ electronic manifold. Along one com-

ponent (say x) of these doubly degenerate vibrational modes, two solutions are

obtained for Qxi = ∓λ′′i /(ωi + γ′′i ± η′′i ) (i = 4 -7), with energies [91]

V0
3 = E0

E′′ − 1

2

3∑

i=1

κ′′
2

i

(ωi + γ′′i )
− 1

2

7∑

i=4

λ′′
2

i

(ωi + γ′′i − η′′i )
(5.19)

and

Vsp
3 = E0

E′′ − 1

2

3∑

i=1

κ′′
2

i

(ωi + γ′′i )
− 1

2

7∑

i=4

λ′′
2

i

(ωi + γ′′i + η′′i )
(5.20)

where V0
3 and Vsp

3 refer to the energy of the new minima and the saddle points,

respectively. Using the parameters given in Table 5.3, we obtain V (c)
min,JT = 12.756

eV occurring at Q0
1 = 0.085, Q0

2 = 2.320 and Q0
3 = -0.784; V0

3 = 12.118 eV

occurring at Q0
4x = 1.266, Q0

5x = 0.668, Q0
6x = 4.155 and Q0

7x = 0.668 and Vsp
3

= 12.374 eV occurring at Qsp
4x = -1.327, Qsp

5x = -0.904, Qsp
6x = -1.822 and Qsp

4x =

-0.587 for the Ã2E ′′ electronic manifold. The JT stabilization energy of the latter

amounts to ∼ 0.638 eV [91].

We now provide an approximate estimate of the energetic minimum of the

PJT crossings of the X̃2E ′ and Ã2E ′′ electronic states. We repeat that the PJT

active modes here are of a′′1 and e′′ symmetries, and only two such modes ν8 (a′′1)

and ν9 (e′′) are relevant in the present situation. Defining Σ = (E0
E′ + E0

E′′)/2, ∆

= (E0
E′′ - E0

E′)/2, σi = (κ′i + κ′′i )/2, δi = (κ′′i - κ′i)/2, σ′
i = (λ′i + λ′′i )/2, δ′i = (λ′′i

- λ′i)/2 and setting Qyi, Q8, Q9x, Q9y = 0, the energetic minimum of the seam

of CIs between the JT split components of the X̃2E ′ and Ã2E ′′ electronic states

occurs at [17]

V(c)
min,PJT = Σ +

(F − ∆)2

2D
− 1

2

3∑

i=1

σ2
i

ωi

− 1

2

7∑

i=4

σ′2
i

ωi

, (5.21)
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where

F =

3∑

i=1

δiσi

ωi
+

7∑

i=4

δ′iσ
′
i

ωi
, (5.22)

D =

3∑

i=1

δ2
i

ωi
+

7∑

i=4

δ′2i
ωi
. (5.23)

At this point it is necessary to discuss a few technical points. The determina-

tion of the energetic minimum of the PJT crossing using Eq. (5.21) requires the

knowledge of a definite relative sign of the JT coupling parameters λ′
i and λ′′i in

the X̃2E ′ and Ã2E ′′ electronic states, respectively. In principle, there may be four

different possibilities for this relative sign: (i) λ′
i > 0, λ′′i > 0; (ii) λ′

i > 0, λ′′i < 0;

(iii) λ′i < 0, λ′′i < 0; (iv) λ′
i < 0, λ′′i > 0. The last two possibilities do not yield

any new results when compared to the first two. Using the parameters given in

Table 5.3 one finds that V (c)
min,PJT occurs at 12.878 eV in case of (i) and at 12.118

eV in case of (ii). The first value is ∼ 0.123 eV above and the second one is ∼
0.638 eV below the minimum of the JT conical intersections in the Ã2E ′′ elec-

tronic manifold. In practice, the relative signs of these two JT parameters is fixed

by examining the invariance property of the Hamiltonian matrix with respect to

the symmetry operations of the D3h point group. Such an exercise is detailed in

Appendix C. This shows that (ii) is the correct option in this case. Therefore, the

minimum of the PJT crossing in the present situation occurs ∼ 1.475 eV above

the minimum of the X̃2E ′ and ∼ 0.638 eV below the minimum of the Ã2E ′′ JT

conical intersections in CP+.

Interestingly, these relative signs of the JT coupling parameters (λ′
i and λ′′i )

can be determined from energy calculations alone. We note that, the relative

JT signs do not matter at all for the PJT active e′′ vibrational mode. However,

they do matter when we incorporate the PJT active a′′1 vibrational mode in the

dynamical calculations. Therefore, we have estimated some more ab initio data

points by simultaneously distorting the JT active and a′′1 vibrational modes. The
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Figure 5.9: The adiabatic potential energies of the JT split X̃2E ′ and Ã2E ′′ elec-
tronic states of CP+ plotted along the dimensionless normal coordinates of the
x components of the degenerate vibrational vibrational modes ν4, ν5, ν6, and ν7

in panel a, b, c, and d, respectively. The solid lines represent the ab initio data
points for displacement along the degenerate e′ vibrational modes, whereas the
dashed lines represent the ab initio data points obtained by simultaneous distor-
tion of e′ and a′′1 vibrational modes. In order to have a clearer representation, the
a′′1 displacements are kept as constants in these calculations.
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relative JT signs can then be extracted from the observation, whether the two

upper (as well as the two lower) JT sheets repel each other, or whether the

upper E ′ sheet repels from the lower E ′′ sheet (and the lower E ′ sheet repels

from the upper E ′′ sheet). In order to guide the eye properly, the a′′1 mode

displacements are kept constant and then the ab initio data points are estimated.

In Fig. 5.9(a-d), we have shown these data points by dashed lines superimposed

on the JT active (ν4-ν7) potential energy curves by solid lines of the X̃2E ′ and

Ã2E ′′ electronic manifold of CP+.

Given the above, we could identify a clear relative sign of the JT coupling

constants only for the mode ν4 (panel a), where it is negative, since the upper E ′

curve repels from the lower E ′′ curve and the lower E ′ repels from the upper E ′′

curve. For the other modes, the situation is less clear to us and it is difficult to

extract a clear repulsion pattern from the curves.

5.4.2 Photoelectron Spectrum

In this section we report on the photoelectron bands revealing the vibronic energy

level structure of the X̃2E ′ and Ã2E ′′ electronic states of CP+. These photoelec-

tron bands are calculated by the time-independent and time-dependent quantum

mechanical methods described above and using the parameters of Table 5.3 and

Table 5.4. Consistencies of various theoretical results are explicitly checked when-

ever possible and the final theoretical results are compared with the experimental

data [75]. The final theoretical results of this paper are, however, obtained by

propagating wave packets using the MCTDH algorithm [53–55]. In the following,

we start with various reduced dimensional models and systematically approach

the full simulation of nuclear dynamics using the four states and fourteen modes

Hamiltonian of Eqs. (5.4-5.7j).
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5.4.2.1 The X̃2E ′ photoelectron band

Here we report on the photoelectron band of the X̃2E ′ electronic manifold of

CP+. The theoretical results are compared with the most recent experimental

results of Holland et al. [75]. The experimental photoelectron band revealed a

characteristic bimodal structure indicating a strong first-order JT splitting in

the X̃2E ′ electronic manifold of CP+. The energetic separation between the two

maxima in the bimodal profile is reported to be ∼ 0.78 eV [75], which amounts to

this JT splitting. A fairly resolved vibrational progression is observed in the low-

energy wing of the bimodal spectral envelope, which becomes extremely diffuse

with increasing energy. An average spacing of 60 meV is reported for the resolved

structure at low-energies, which is mainly attributed to the progression of the

degenerate vibrational mode ν4 [75].

We in the following discuss this X̃2E ′ photoelectron band of CP+ calculated

with the linear and QVC schemes. We again note that in absence of the bilinear

and PJT coupling terms, the Hamiltonian is decoupled in terms of the symmet-

ric (a′1) and degenerate (e′) vibrational modes. We utilize this property of the

Hamiltonian in our numerical calculations and calculate two partial spectra by

considering the totally symmetric and degenerate vibrational modes separately

in the nuclear dynamics. Finally, these two partial spectra are convoluted to

generate the complete spectrum. This substantially reduces the effective dimen-

sionality of the secular matrix in each calculation. Furthermore, we did not

consider the degenerate vibrational mode ν7 in the dynamics, as it has a very

low coupling strength and causes only negligible splitting in the X̃2E ′ electronic

manifold (cf. Fig.5.8 (d)).

In Fig. 5.10(a) the spectrum obtained with three totally symmetric modes ν1,

ν2, and ν3 within the LVC scheme is shown. The spectral intensity in arbitrary

units is plotted as a function of the energy of the final vibronic state (E ′). For

the symmetric modes, all nuclear motions decouple and the spectrum is obtained
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Table 5.5: The number of harmonic oscillator (HO) basis functions along each
vibrational mode, the dimension of the secular matrix, and the number of Lanczos
iterations used to calculate the converged theoretical stick spectrum shown in
various figures noted below.

Dimension of the Lanczos
No. of HO basis functions secular matrix iterations Figure(s)

ν1 ν2 ν3 ν4 ν5 ν6 ν7

8 20 3 - - - - 960 1,500 5.10(a) & 5.12(a)
- - - 40 40 8 - 33,359,445 15,000 5.10(b), 5.12(b), & 5.13(b)
4 38 10 - - - - 3,040 1,500 5.17(a) & 5.18(a)
- - - 23 2 22 5 51,207,200 15,000 5.17(b) & 5.18(b)

by convoluting the spectra of the individual one-dimensional oscillators. Each of

the latter spectra can be expressed analytically and follow a Poisson distribution

of intensity [17]. The resulting stick eigenvalue spectrum thus obtained is again

convoluted with a Lorentzian line shape function of 20 meV fwhm to generate the

spectral envelope. The same Lorentzian function is used to convolute all time-

independent stick spectra shown below. In Table 5.5, the number of harmonic

oscillator basis functions along the considered vibrational modes, the size of the

secular matrix, and the number of Lanczos iterations used in computing the

numerically converged spectra are given.

The spectrum reveals a dominant excitation of ν1 and ν2 modes, the first two

peaks from the 0-0 line. These peaks are ∼ 153 and ∼ 190 meV spaced in energy,

corresponding to the frequency of ν1 and ν2 modes, respectively, in the cationic

ground state. The next three peaks correspond to the excitation 2ν1, ν1 + ν2, and

2ν2, respectively. The remaining high-energy peaks correspond to the excitation

of higher quanta of ν1 and ν2 and to combination modes. The excitation of

the ν3 vibrational mode is negligibly small (the intensity is 103 times less than

the 0-0 line) and is not visible in the spectrum. The peaks in the spectrum are

weighted by the coupling strength, κ′
2

i /2ω
2
i (Poisson parameter), of the respective

vibrational mode, which yields the intensity of the fundamental relative to the
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Figure 5.10: The photoelectron band of the X̃2E ′ electronic manifold of CP+ com-
puted with three totally symmetric modes (ν1-ν3) and three degenerate (ν4-ν6)
modes alone, within the LVC scheme, is shown in panel (a) and (b), respectively.
Each theoretical stick spectrum is convoluted with the Lorentzian function of 20
meV fwhm to calculate the spectral envelope.
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0-0 line.

In Fig. 5.10(b) the spectrum obtained with the degenerate vibrational modes

ν4, ν5, and ν6 and a LVC scheme is shown. The convergence of the stick spectrum

is explicitly checked with respect to the size of the basis set as well as the number

of Lanczos iteration steps. A careful inspection of the spectral intensity and

the coupling strengths of the vibrational modes ν4, ν5, and ν6 reveals dominant

excitations of ν4 and ν5 modes in the spectrum. Line spacings of ∼ 114, ∼ 134,

and ∼ 184 meV corresponding to the excitation of ν4, ν5, and ν6 vibrational

modes can be observed from the spectrum. The latter is very weakly excited,

which is also indicated by its extremely small coupling strength. The clumping

of spectral lines under each peak and a huge line density is indicative of strong

coupling JT effects due to the vibrational modes ν4 and ν5. This increases the

line density in the spectrum, and for energies below ∼ 11 eV leads to a long series

of resonances corresponding to vibrational motion on the lower JT sheet V1. For

energies above ∼ 11 eV also V2 plays a role. The strong nonadiabatic effects,

however, mix the discrete vibrational levels of V2 with the quasi-continuum levels

of V1, and therefore, the nuclei undergo simultaneous transitions to both sheets

of the JT split PES. The occurrence of higher energy maxima in the spectral

envelope is thus explained to be due to the metastable resonances of the upper

potential well. The latter is very narrow and extremely anharmonic and as a

result its lowest levels are widely spaced in energy. These are showing up in the

spectral envelope of Fig. 5.10(b) in the energy range above 11 eV: between ∼
11 and 11.5 eV the resonance corresponds to the ground vibrational level of V2

while around 11.8 eV another structure becomes visible which represents the first

excited vibrational level of V2. The broadening mechanisms are just the strong

nonadiabatic coupling effects characteristic for JT intersections [38]. These are

referred to as Slonczewski resonances and the existence of these resonances was

demonstrated in several model (E × e)-JT problems [6, 127, 128].

The complete photoelectron band of the electronic ground state of CP+ ob-
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tained with the LVC scheme is shown in Fig. 5.11(b) along with the experi-

mental result of Holland et al. in Fig.5.11(a). The theoretical stick spectrum in

Fig.5.11(b) is obtained by convoluting the two partial stick spectra in Figs. 5.10(a)

and 5.10(b). Because of this convolution, the progression of the symmetric mode

spectrum is represented on each JT line of Fig. 5.10(b). The resulting convoluted

stick spectrum is then convoluted again with a Lorentzian function of 20 meV

fwhm to generate the spectral envelope shown in Fig. 5.11(b). A comparison of

this theoretical envelope with the experimental one in Fig. 5.11(a) reveals a very

good overall agreement between the two. The overall width of the theoretical

spectrum is in good accord with the experimental one. The splitting between

the two maxima of the theoretical spectrum of ∼ 0.80 eV compares well with its

experimental value of ∼ 0.78 eV. The progression in the low-energy wing of the

envelope is mainly formed by the JT active ν4 and ν5 vibrational modes. The

spacing between the successive peaks in the theoretical envelope is ∼ 40 meV

higher than its experimentally reported average value of ∼ 60 meV. We, how-

ever, note that the experimental band is smoothed and it is not clear at this

point if the line spacings are affected in this smoothening procedure. In fact,

the structure present in the second maximum of the theoretical envelope is not

seen in the experimental result. Apart from these discrepancies, the regularity in

the low-energy progression is nicely reproduced by the theoretical result. When

compared with the pure JT spectrum of Fig. 5.10(b), it can be seen that the

symmetric vibrational modes cause additional broadening of the spectral enve-

lope and some of the low-energy structures are quenched.

We now discuss the effect of second-order coupling on the above theoretical

spectra. In Fig. 5.12 we show the two partial spectra obtained with the symmetric

(panel a) and JT active (panel b) vibrational modes. The complete spectrum

obtained by convoluting these two partial spectra is shown in Fig. 5.12(c). A close

look at the quadratic symmetric mode spectrum in Fig. 5.12(a) reveals essentially

no difference with that obtained with the linear coupling scheme (cf. Fig. 5.10(a)).
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Figure 5.11: A comparison of the experimental [Ref. [75]] and final theoretical (of

the LVC model) results for the X̃2E ′ photoelectron band of CP+. The theoretical
stick spectrum is obtained by convoluting the two partial spectra of Figs. 5.10(a)
and5.10(b). The resulting complete stick spectrum is again convoluted with a
Lorentzian of 20 meV fwhm to calculate the spectral envelope. The theoretical
spectrum is shifted by 0.062 eV to the higher energy along the abscissa in order
to reproduce the adiabatic ionization position of the band at its experimental
value.
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The peaks are ∼ 152 and ∼ 192 meV spaced in energy corresponding to the

frequencies of ν1 and ν2 vibrational modes modified by the respective second-

order coupling terms (cf. Table 5.3).

The quadratic JT mode spectrum in Fig. 5.12(b), on the other hand, differs

considerably from the linear one (cf. Fig. 5.10(b)). Each peak of the linear spec-

trum is further split in the quadratic coupling scheme. Because of the increase

of the line density, the quadratic JT spectrum is somewhat more diffuse. The

apparent regularity in the low-energy progression is lost in the quadratic JT spec-

trum. The higher-energy maxima appearing at 11.3 and 11.8 eV in Fig. 5.12(b),

however, survive in the quadratic model. As discussed in relation to Fig. 5.10(b),

these represent the first and second Slonczewski resonances. The above symmet-

ric and the JT mode spectra are convoluted and the resulting composite spectrum

is shown in Fig. 5.12(c). The overall appearance of the composite spectrum looks

similar to the one obtained with the LVC scheme (cf. Fig. 5.11(b)).

In both cases, in particular, the second Slonczewski resonance at 11.8 eV is

blurred by the convolution (cf. Fig. 5.11(b) with 5.10(b) and Fig. 5.12(c) with

5.12(b)) while the first one at 11.3 eV becomes broadened but still dominates the

high-energy spectral profile. Thus, the first photoelectron band of CP represents

a prominent example of such a resonance in an actual molecular JT spectrum.

However, a more detailed analysis of the spectrum in Fig. 5.12(c) reveals a dra-

matic effect of the quadratic JT coupling parameters on the vibronic fine structure

of the photoelectron band. To reveal this more clearly, we present in Fig. 5.13 an

enlarged view of the low-energy part of Fig. 5.12(c) (in panel b) along with the

experimental data (in panel a). A comparison of the two results indicates that

the quadratic JT coupling does account for a lower value (< 100 meV) of the

average spacing of this low-energy progression. An average spacing of the order

of ∼ 60 meV can be estimated from the QVC result.

To optimize various numerical parameters in the time-dependent WP calcula-

tions using the MCTDH scheme, we have simulated the X̃2E ′ photoelectron band
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Figure 5.12: The photoelectron band of the X̃2E ′ electronic manifold of CP+

calculated with the quadratic coupling scheme (see text for details). The intensity
in arbitrary units is plotted as a function of the energy of the final vibronic states.
The spectrum calculated with the symmetric (ν1-ν3) modes and the JT (ν4 -
ν7) modes alone is shown in panel (a) and (b), respectively. These two partial
spectra of panels (a) and (b) are convoluted to generate the complete spectrum
of panel (c). The theoretical stick spectrum of each panel is convoluted with
the Lorentzian function of 20 meV fwhm to generate the corresponding spectral
envelope. In order to have a clearer representation the stick spectra in panel (b)
and (c) are magnified by a factor of 3.
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Figure 5.13: The low-energy wing of the X̃2E ′ photoelectron band of CP+. The
experimental result of Holland et al. [75] is shown in panel (a). The theoretical
result of Fig. 5.12(c) is reproduced in panel (b) in order to clearly reveal the
impact of quadratic coupling terms on the low-energy progression in the band.
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once again using the Hamiltonian developed in section 5.2 and compare the same

with the time-independent results. In the time-dependent simulations, the linear

vibronic Hamiltonian for the X̃2E ′ electronic manifold is used considering the

three totally symmetric Condon active (ν1, ν2 and ν3) and three degenerate JT

active (ν4, ν5 and ν6) vibrational modes as it was done with the time-independent

simulations [90]. These modes are found to be primarily important, and form the

major progressions in the vibronic structure of the X̃2E ′ photoelectron band.

The combination of normal modes, the sizes of the primitive and SPF bases used

for these calculations are given in the upper part of Table 5.6. A total of four

multidimensional particles are used: Of these, particle 1 is three-dimensional and

combines ν1, ν2, and ν3 vibrational modes. The remaining three particles are

two-dimensional and combine the x and y components of ν4, ν5, and ν6 vibra-

tional modes, respectively. The sizes of the primitive and SPF bases are selected

in such a way that the calculations are converged with respect to the vibronic

structure of the photoelectron band.

The photoelectron band thus obtained is shown in Fig. 5.14(a) along with the

corresponding time-independent results in Fig. 5.14(b). The latter is essentially

reproduced from Fig. 5.11(b). The theoretical spectrum in panel a represents

a sum of contributions from the two JT split components (x and y) of the de-

generate X̃2E ′ electronic manifold. Each of these contributions is the Fourier

transform of the time-autocorrelation function Cm(t) computed with an initial

WP located on the mth electronic state (cf. Eq. (2.49)). The WP in each calcula-

tion is propagated for 150 fs, which effectively yields Cm(t) up to 300 fs, using

the prescription, Cm(t) = 〈Ψm(t/2)?|Ψm(t/2)〉, for a real initial WP [129]. This

prescription helps to increase the energy resolution, ∆E = 2π ~/T , in the spec-

trum by effectively doubling the propagation time T . A constant energy shift of

-0.743 eV was applied while plotting the photoelectron band in Fig. 5.14(a) in or-

der to match the energy ranges covered by the time-independent “stick” spectrum

(cf. Fig. 5.14(b)). This, in turn, reproduces the adiabatic ionization position of
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Table 5.6: The normal mode combinations, sizes of the primitive and the single
particle basis used in the WP propagation using the MCTDH algorithm on the (a)

X̃2E ′ electronic manifold within the LVC scheme, (b) Ã2E ′′ electronic manifold

within the QVC scheme and (c) X̃2E ′-Ã2E ′′ coupled electronic manifold within
the quadratic JT plus linear PJT coupling scheme. The CPU time required for
each run is also given.

Normal Primitive SPF CPU Figure
modesa basisb basisc time

(a)
[E′

x, E′
y]

d

(ν1, ν2, ν3) (8, 20, 3) [8, 8] E′
x: 13h 41m 12s

(ν4x, ν4y) (40, 40) [30, 30] E′
y: 13h 28m 21s Fig. 5.14(a)

(ν5x, ν5y) (40, 40) [30, 30]
(ν6x, ν6y) (8, 8) [10, 10]

(b)e

[E′′
x, E′′

y]
(ν1, ν2, ν3) (4, 21, 7) [8, 8] E′′

x: 14h 44m 50s
(ν4x, ν4y) (23, 23) [22, 22] E′′

y: 15h 06m 16s Fig. 5.18(d)
(ν5x, ν5y) (6, 6) [12, 12]
(ν6x, ν6y) (22, 22) [22, 22]
(ν7x, ν7y) (8, 8) [10, 10]

(c)f

[E′
x, E′

y,E
′′
x, E′′

y]
(ν1, ν2, ν3) (7, 23, 9) [10, 10, 5, 5] E′

x: 126h 15m 26s
(ν4x, ν4y) (40, 40) [22, 22, 17, 17] E′

y: 136h 03m 02s Fig. 5.20(b)
(ν5x, ν5y) (40, 40) [22, 22, 16, 16] E′′

x: 82h 14m 32s
(ν6x, ν6y, ν8) (12, 12, 19) [14, 14, 15, 15] E′′

y: 116h 31m 02s
(ν7x, ν7y, ν9x, ν9y) (5, 5, 8, 8) [13, 13, 11, 11]

The calculations were converged with respect to the spectrum. aVibrational modes

bracketed together were treated as a single particle, e.g., particle 1 is a 3-dimensional

particle including modes ν1, ν2, and ν3.
b The primitive basis is the number of

harmonic oscillator DVR functions, in the dimensionless coordinate system required

to represent the system dynamics along the relevant mode. Here we note that the

number of basis functions are identical in both the time-independent (cf. Table 5.5)

and time-dependent calculations. The primitive basis for each particle is the product

of the one-dimensional bases; e.g for particle 2 in (a), the primitive basis was 40 × 40

= 1600 functions. The full primitive basis consists of a total of 7.86 ×1010 functions.
c The SPF basis is the number of single-particle functions used, one set for each of

the two electronic (component) states. Here they are same in numbers in order to

give equal weight for the x and y components of the degenerate electronic states. d

The total number of configurations is 144 000. e The full primitive basis consists of a

total of 3.46 ×1011 functions and there are 929 280 configurations altogether. f The

full primitive basis consists of a total of 1.62 ×1016 functions and there are 2 210 560

configurations altogether.
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Figure 5.14: The first photoelectron band of CP revealing the vibronic level
structure of the X̃2E ′ electronic manifold of CP+. The intensity in arbitrary
units is plotted as a function of the energy of the final vibronic state. The
energy is measured relative to the zero-point level of the electronic ground state
of CP. The photoelectron band obtained by the wave packet propagation method
within the MCTDH scheme considering a two-state six-mode model is shown
in panel a. The absolute values of the time autocorrelation functions |C(t)|
computed by locating the initial wave packet separately on the two component
states of the X̃2E ′ electronic manifold are plotted in the insert of panel a and
are shown by the solid and dotted lines. The corresponding results obtained by
the time-independent matrix diagonalization method are essentially reproduced
from Ref. [90] (see text) and shown in panel b.
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the band at its experimental value along the abscissa [90]. The overall width and

the tiny structures of both the spectral envelopes are in very good agreement with

each other over the entire energy range. The splitting between the two maxima

in the bimodal intensity distribution in Fig. 5.14(a) is ∼ 0.81 eV and compares

well with the time-independent (cf. Fig. 5.14(b)) and experimental results of ∼
0.80 eV and ∼ 0.78 eV, respectively.

To account for the finite broadening of the experimental spectra due to poor

energy resolution of the spectrometer and also due to the possible role of addi-

tional degrees of freedom (like rotation) not considered here, the stick vibronic

spectrum is convoluted with a suitable line-shape function of appropriate width.

In the time-dependent picture, the latter is equivalent to damping the autocorre-

lation function by a time-dependent function. By a careful choice of this function,

one can minimize the artifacts due to the finite length of propagation time. In the

following, all spectra resulting from the time-dependent calculations are obtained

by damping the corresponding autocorrelation functions by the time-dependent

function

F (t) = cos

(
πt

2T

)
, (5.24)

with T being the total length of the time propagation. As t → T , F (t)C(t) → 0

and therefore the artifacts due to finite time Fourier transformation are reduced.

Multiplying C(t) with F (t) is equivalent to convoluting the spectrum with the

Fourier transform of F (t), which in this case reads [110]

F̃ (ω) =
4πT

π2 − (2ωT )2
cos(ωT ), (5.25)

with a fwhm of Γ = 3.4/T. Further phenomenological broadening, due to the

spectral resolution and neglect of the other degrees of freedom, is added by the



5.4. Results and Discussion 133

function

G(t) = exp

(−t
τr

)
, (5.26)

with τr being the relaxation time. This leads to a Lorentzian broadening of the

spectrum with fwhm Γ = 2/τr. In Fig. 5.14(a) the vibronic spectrum of the

X̃2E ′ electronic manifold is obtained by damping the autocorrelation function

with τr = 66 fs ( Γ ≈ 20 meV). The same damping is used in all later spectra

presented here.

In Figs. 5.15(a-c) the photoelectron band for the X̃2E ′ electronic manifold up

to the QVC scheme is shown at different levels of approximation. The photoelec-

tron band of panel a is reproduced from Fig. 5.12(c), which was obtained by a

time-independent matrix diagonalization approach using the Lanczos algorithm

and without the bilinear coupling terms of Table 5.4. This is included here in

order to check the consistency of the present WP propagation results using the

MCTDH algorithm [53–55]. The latter are shown in panel b (without the bilinear

coupling terms) and panel c (with the bilinear coupling terms). The details of the

mode combinations, sizes of the primitive and SPF bases used in the MCTDH

simulations are given in Table 5.7(a). The theoretical spectrum shown in panels

b and c represents a sum of contributions from the two JT split components (x

and y) of the degenerate X̃2E ′ electronic manifold. Each of these contributions is

the Fourier transform of the corresponding time autocorrelation function Cm(t)

computed with an initial WP located on the respective electronic (component)

states and propagated up to 150 fs.

A constant energy shift of -0.793 eV was applied while plotting the photo-

electron bands in Figs. 5.15(b) and 5.15(c) in order to match the energy ranges

covered by the time-independent “stick” spectrum (cf. Fig. 5.15(a)). This in turn

reproduces the adiabatic ionization position of the band at its experimental value

along the abscissa [90]. It can be seen from Fig. 5.15 that the WP results of panel
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Figure 5.15: The first photoelectron band of CP, pertaining to an ionization to the
X̃2E ′ electronic manifold of CP+, calculated with the quadratic vibronic coupling
model. The results obtained from the time-independent matrix diagonalization
approach are reproduced from Fig. 5.12(c) and shown in panel a. The present
WP dynamical results without and with the intermode bilinear coupling terms
are shown in panels b and c, respectively.
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b are in very good accord with the time-independent results of panel a. There is

an important difference immediately noticed between the two spectra in panels b

and c: the vibronic structure in the low-energy wing is substantially modified by

the bilinear intermode (particularly the bilinear a′1-e
′ JT coupling) terms. Such

an effect of the bilinear JT coupling terms has been discovered recently in other

(E⊗e)-JT systems [130,131]. The e′-e′ bilinear coupling terms on the other hand

are of the order of 10−3 or less (cf. Table 5.4). These are not expected to con-

tribute noticeably to the spectrum and therefore are not included in the present

calculations.

5.4.2.2 The Ã2E ′′ photoelectron band

To unravel the complex vibronic structure of the second photoelectron band of CP,

we here treat the nuclear dynamics systematically in the isolated Ã2E ′′ electronic

manifold first and then finally for the coupled X̃2E ′-Ã2E ′′ electronic states of

CP+. The second photoelectron band at ∼ 13 eV, attributed to the vibronic struc-

ture of Ã2E ′′ electronic manifold of CP+, is essentially structureless (cf. Fig. 5.1).

To reveal the coupling effects of various vibrational modes on the vibronic fine

structure of this band, we first examine the nuclear dynamics employing the linear

and the quadratic coupling scheme, separately in the Ã2E ′′ electronic manifold

alone. For this purpose we used the time-independent matrix diagonalization

scheme to solve the eigenvalue equation (cf. Eq. (2.45)) in order to find the precise

locations of the vibronic energy levels. The simulation of the nuclear dynamics in

the coupled X̃2E ′-Ã2E ′′ electronic states is more involved and computationally

unfeasible with the matrix diagonalization approach and is therefore carried out

by the WP propagation approach using the MCTDH scheme.

It is mentioned in Sec. 5.1 that the X̃2E ′ and Ã2E ′′ electronic states can

couple together via the PJT active a′′1 and e′′ vibrational modes. The minimum

of the seam of PJT crossings occurs below/above the minimum of the JT conical

intersections in the Ã2E ′′/X̃2E ′ electronic states. The intersections of JT split
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Table 5.7: The normal mode combinations, sizes of the primitive and the SPFs
used in the WP propagation using the MCTDH algorithm on the (a) X̃2E ′ elec-
tronic manifold with (Fig. 5.15(c)) and without (Fig. 5.15(b)) the intermode

coupling terms, (b) Ã2E ′′ electronic manifold with the intermode coupling terms

and (c) X̃2E ′-Ã2E ′′ coupled electronic manifold within the full second-order JT
(including intermode) plus linear PJT coupling scheme. The CPU time required
for each run is also given.

Normal Primitive SPF CPU Figure(s)
modes basis basis time

(a)d

[E′
x, E′

y]
(ν1, ν2, ν3) (8, 20, 3) [8, 8] E′

x: 17h 13m 35sg

(ν4x, ν4y) (40, 40) [30, 30] E′
y: 17h 12m 41sg 5.15(b) & (c)

(ν5x, ν5y) (40, 40) [30, 30]
(ν6x, ν6y) (8, 8) [10, 10]

(b)e

[E′′
x, E′′

y]
(ν1, ν2, ν3) (4, 21, 7) [8, 8] E′′

x: 37h 01m 44sg

(ν4x, ν4y) (23, 23) [22, 22] E′′
y: 39h 03m 40sg 5.19

(ν5x, ν5y) (6, 6) [12, 12]
(ν6x, ν6y) (22, 22) [22, 22]
(ν7x, ν7y) (8, 8) [10, 10]

(c)f

[E′
x, E′

y,E
′′
x, E′′

y]
(ν1, ν2, ν3) (6, 21, 8) [8, 8, 5, 5] E′

x: 73h 25m 58sg

(ν4x, ν4y) (38, 38) [20, 20, 14, 14] E′
y: 19h 46m 05sh 5.21(b)

(ν5x, ν5y) (38, 38) [20, 20, 14, 14] E′′
x: 32h 01m 32sh

(ν6x, ν6y, ν8) (12, 12, 19) [8, 8, 10, 10] E′′
y: 42h 31m 19sh

(ν7x, ν7y, ν9x, ν9y) (5, 5, 8, 8) [11, 11, 9, 10]
d The full primitive basis consists of a total of 7.86 ×1010 functions. The total
number of configurations is 144 000. e The full primitive basis consists of a total
of 3.46 ×1011 functions and there are 929 280 configurations altogether. f The
full primitive basis consists of a total of 9.20 ×1015 functions and there are 749
400 configurations altogether. g Calculations are done on a 3.00 GHz processor
Linux machine. h Calculations are done on a 3.20 GHz processor Linux machine.
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Figure 5.16: Schematic drawing of the JT and PJT conical intersections in the
X̃2E ′-Ã2E ′′ coupled electronic manifold of CP. The potential energies of the JT
split components of the X̃2E ′ (solid lines) and Ã2E ′′ (dashed lines) are plotted
along the dimensionless normal coordinate of an effective vibrational mode (see
text for further details). They appear as curve crossings and are marked by open
circles in the diagram.
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components of the X̃2E ′-Ã2E ′′ electronic manifold are schematically shown in

Fig. 5.16. In this drawing, the potential energies of these component electronic

states are plotted as a function of the dimensionless normal coordinates of an

effective vibrational mode. The latter is constructed individually for the X̃2E ′ and

Ã2E ′′ electronic states by combining the highly excited a′1 and e′ vibrational

modes in those states. From Table 5.3 it can be seen that the coupling strengths

of the ν2, ν4, and ν5 vibrational modes in the X̃2E ′ electronic manifold and

that of the ν2, ν4, and ν6 vibrational modes in the Ã2E ′′ electronic manifold are

significant. Therefore, the mentioned vibrational modes are considered within the

respective electronic states and the effective first-order coupling constant, κeff

=
√∑

i κ
2
i , and effective vibrational frequency, ωeff =

∑

i

ωiκ
2
i /κ2

eff , for the

effective mode are calculated. Therefore, in the schematic diagram of Fig. 5.16,

the effective mode for the X̃2E ′ electronic manifold consists of ν2, ν4, and ν5 and

that for the Ã2E ′′ electronic manifold consists of ν2, ν4, and ν6 vibrational modes.

The crossings of the PESs in Fig. 5.16, become multidimensional CIs in the

multidimensional space of a′1 and e′ vibrational modes. Therefore, a WP initially

excited to one component of the Ã2E ′′ electronic manifold would approach these

multiple multidimensional CIs and the resulting nuclear motion is expected to

be highly nonadiabatic. In the following, we save some space to discuss this

nonadiabatic transition of the nuclear WP to the component electronic states of

the X̃2E ′-Ã2E ′′ electronic manifold by examining the time evolution of a WP

initially prepared on the Ã2E ′′ electronic manifold.

The Ã2E ′′ photoelectron band is calculated with the linear and also the QVC

scheme in absence of the PJT coupling with the X̃2E ′ electronic manifold. In

Fig. 5.17(a) the partial spectrum obtained with the three totally symmetric a′1

vibrational modes ν1, ν2, and ν3 within the LVC scheme is shown. The spectral

intensity in arbitrary units is plotted as a function of the energy of the final

vibronic state. A careful analysis of the spectrum reveals dominant excitation of

the ν2 vibrational mode. The excitation of the ν3 vibrational mode is weaker. The
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vibrational mode ν1 on the other hand does not reveal any noticeable excitation.

Relatively strong excitation of the ν2 vibrational mode compared to ν1 and ν3 was

also observed in the X̃2E ′ photoelectron band [90]. However, ν1 is the weakest

mode in the Ã2E ′′ electronic manifold in contrast to ν3 in the X̃2E ′ electronic

manifold. The peaks in the spectrum in Fig. 5.17(a) are ∼ 190 meV and ∼
396 meV spaced in energy and correspond to the frequency of the ν2 and ν3

vibrational modes, respectively. In Table 5.5, the number of harmonic oscillator

basis functions along the considered vibrational modes, the size of the secular

matrix and the number of Lanczos iterations used in computing the numerically

converged spectra are given.

The spectrum obtained with the JT active vibrational modes ν4, ν5, ν6 and ν7

within the linear coupling scheme is shown in Fig. 5.17(b). A convolution of the

symmetric mode spectrum of Fig. 5.17(a) and the JT spectrum of Fig. 5.17(b)

is presented in Fig. 5.17(c). The JT spectrum in Fig. 5.17(b) reveals dominant

excitation of the ν4 and ν6 vibrational modes. The excitation strength of these two

vibrational modes are almost the same (cf. Table 5.3). Peak spacings of ∼ 122, ∼
137, ∼ 187, and ∼ 397 meV can be observed in the spectrum and they correlate

with the frequencies of the ν4, ν5, ν6, and ν7 vibrational modes, respectively. The

excitation of the ν5 and ν7 vibrational modes, however, is much weaker compared

to that for ν4 and ν6. We note that the JT coupling strengths of the e′ vibrational

modes in the Ã2E ′′ electronic manifold are much weaker compared to those in the

X̃2E ′ electronic manifold. The JT coupling of the ν4 and ν5 vibrational modes

in the latter electronic manifold is quite strong, and therefore, a distinct bimodal

intensity distribution is observed for the first photoelectron band of CP. The

dominant excitations in the convoluted composite spectrum of Fig. 5.17(c) are

therefore due to the ν2, ν3, ν4, and ν6 vibrational modes. When compared with

the experimental band shown in Fig. 5.1, it can be seen that the linear coupling

approach is not at all adequate to reproduce the highly diffuse structure of the

second photoelectron band of CP.
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Figure 5.17: The second photoelectron band of CP pertaining to an ionization
to the Ã2E ′′ electronic manifold of CP+ calculated within the LVC scheme: (a)
partial spectrum obtained with the three symmetric a′1 vibrational modes ν1-ν3,
(b) partial spectrum obtained with the four JT active degenerate e′ vibrational
modes ν4-ν7 and (c) the composite theoretical spectrum obtained by convoluting
the above two partial spectra. The stick vibronic spectrum of each panel is
convoluted with a Lorentzian function of 20 meV fwhm to generate the spectral
envelope.
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Figure 5.18: Panels (a-c): same as in Figs. 5.17(a-c), obtained with the QVC
model. Panel (d): the results obtained by the wave packet propagation method
within the MCTDH scheme, using the same quadratic vibronic Hamiltonian for
the Ã2E ′′ electronic manifold as employed above. The absolute value of the time
autocorrelation function, |C(t)|, computed by locating the initial wave packet
separately on the two component states of this degenerate electronic manifold is
shown by the solid and dotted lines in the insert.
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The effect of the second-order coupling terms of the Hamiltonian on the vi-

bronic structure of the above photoelectron band is shown in Fig. 5.18(a-c). The

two partial spectra computed separately with the a′1 and e′ vibrational modes are

shown in panels a and b, respectively, and a convolution of the two is shown in

panel c. In comparison with the linear coupling spectra of Figs. 5.17(a-c), the

second-order coupling terms, in general, cause an increase of the spectral line

density. The dominant progression in the composite spectrum of Fig. 5.18(c) is

mainly caused by the ν2, ν4, and ν6 vibrational modes. It can be seen that the

quadratic JT coupling terms significantly increase the spectral line density and,

as a result, the spectral envelope becomes broad and diffuse and it resembles

more closely the experimental envelope (cf. Fig. 5.1) when compared to the lin-

ear coupling results (cf. Fig. 5.17(c) and Fig. 5.18(c)). In Fig. 5.18(d) the same

photoelectron band is shown as obtained by propagating wave packets within the

MCTDH scheme. The spectrum in Fig. 5.18(d) is obtained by combining two

partial spectra calculated by locating the initial WP on the x and y component

of the Ã2E ′′ electronic manifold separately. The time dependence of the autocor-

relation function, |C(t)|, for these two initial conditions are shown as an inset in

Fig. 5.18(d), by the solid and dotted lines. The details of the mode combinations

and the size of various bases used in the WP propagation are given in Table

5.6(b). It can be seen from the inset of Fig. 5.18(d) that the time period of the

quasi-periodic oscillations in |C(t)| remains the same; however, their amplitude

differs for the two initial conditions. The damping time (66 fs) of autocorrela-

tion function in Fig. 5.18(d) corresponds to the convolution width (20 meV fwhm

Lorentzian function) of the spectrum in Fig. 5.18(c). The vibronic fine structure

of the time-dependent spectrum of panel d is virtually in perfect accord with the

time-independent results of panel c.

In Fig. 5.19 the photoelectron band for the Ã2E ′′ electronic manifold con-

sidering the full quadratic vibronic Hamiltonian including the bilinear a′1-a
′
1 and

a′1-e
′ coupling terms is shown. The WP propagation is carried out using the
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Figure 5.19: The second photoelectron band of CP, pertaining to an ioniza-
tion to the Ã2E ′′ electronic manifold of CP+, calculated in the same way as in
Fig. 5.15(c).
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MCTDH algorithm, and the details of the primitive and SPF bases are given in

Table 5.7(b). Other numerical details of the calculations are the same as described

above. In contrast to the experimental results (cf. Fig. 5.1), the theoretical band

in Fig. 5.19 contains too many resolved vibronic structures. Therefore, the PJT

coupling between the X̃-Ã electronic states is considered in the final theoretical

simulations.

5.4.2.3 The coupled X̃2E ′-Ã2E ′′ photoelectron band

So far we did not include the PJT coupling due to the a′′1 and e′′ vibrational

modes in the calculations. When these coupling terms are considered in the

Hamiltonian, the separability of the Hamiltonian in terms of the symmetric and

degenerate vibrational modes as explored above no longer exists. It is therefore

necessary to simulate the nuclear dynamics on four component electronic states of

the coupled X̃2E ′-Ã2E ′′ electronic manifold simultaneously including all relevant

vibrational degrees of freedom. As mentioned before, this task is computationally

impracticable by the time-independent matrix diagonalization approach.

The complete photoelectron band that represents the final results is therefore

simulated by propagating wave packets using the MCTDH program package [53],

including four electronic states and fourteen relevant vibrational degrees of free-

dom. Four WP propagations are carried out separately by locating the initial

WP on each of the component electronic states of the coupled X̃2E ′-Ã2E ′′ elec-

tronic manifold. The fourteen vibrational degrees of freedom are grouped into five

particles, out of which one is four dimensional, two are three-dimensional, and

the remaining two are two-dimensional. The detailed combination scheme of the

vibrational modes is given in Table 5.6(c) along with the sizes of the primitive

and SPF bases. These parameters are optimally chosen to ensure the numeri-

cal convergence of the photoelectron band. The WP for each initial location is

propagated for 150 fs, which leads to ∼ 13.7 meV energy resolution in the pho-

toelectron band. The final theoretical results are shown in panel b of Fig. 5.20
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along with the experimental results in panel a. The final theoretical spectrum

of panel b represents a combination of the partial spectra obtained for four dif-

ferent initial conditions stated above. The relative intensity in arbitrary units

is plotted as a function of the energy of the final vibronic state. It can be seen

from Fig. 5.20 that the theoretical results compare extremely well with the exper-

iment. We note that to generate the partial spectra the autocorrelation functions

are damped with τr = 66 fs (≈ 20 meV) before Fourier transformation.

The theoretical results in Fig. 5.20(b) when compared with the results of

Fig. 5.18(c-d) discussed above immediately reveal the strong impact of the PJT

coupling on the vibronic structure of both the photoelectron bands. The vibronic

structure of the second band is perturbed starting from its origin. This is be-

cause the minimum of the seam of PJT conical intersections occurs ∼ 0.638 eV

below that of the Ã2E ′′ JT conical intersections. The PJT coupling of the two

degenerate electronic states causes a huge increase in spectral line density - the

almost continuum levels of the X̃2E ′ electronic manifold mix with the low-lying

vibronic levels of the Ã2E ′′ electronic manifold. This mixing of levels of two dif-

ferent vibronic symmetries causes the increase in the spectral line density. As

a result, the second maximum due to the JT split upper adiabatic cone of the

X̃2E ′ electronic manifold of the first photoelectron band and the entire second

photoelectron band becomes moderately and extremely diffuse and structureless,

respectively. Despite a good overall agreement between theory and experiment,

there are remaining minor discrepancies in the finer details of the two. For exam-

ple, the overall widths of the second maximum of the first band and the second

band are somewhat narrow compared to the experimental results. These minor

discrepancies may be attributed to the inadequate energy resolution in the exper-

imental recording and also to the neglect of the intermode coupling terms of the

Hamiltonian in the theoretical calculations. Therefore, the impact of the latter

on the vibronic structure of the photoelectron band is also analyzed and discussed

below.
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Figure 5.20: The photoelectron bands (first and second) of CP. The final the-
oretical results are shown in the panel b along with the experimental results of
Holland et al. [75] in panel a. The relative intensity in arbitrary units is plotted

as a function of the energy of the vibronic levels of the X̃2E ′-Ã2E ′′ coupled elec-
tronic manifold. The zero of energy corresponds to the zero-point energy of the
electronic ground state of CP. The theoretical results are obtained by the WP
propagation approach using the MCTDH algorithm (see text).
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In the final theoretical simulations, PJT interactions among the four JT split

components of X̃-Ã electronic manifold of CP+ are considered. The full quadratic

Hamiltonian (excluding the bilinear e′-e′ coupling terms) including 14 relevant

vibrational modes is employed in the WP propagation. The theoretical photo-

electron bands are shown in Fig. 5.21(b) along with the experimental results of

Ref. [75] in Fig. 5.21(a). The details of the normal mode combinations, the sizes

of the primitive and SPF bases used to generate the theoretical spectra are given

in Table 5.7(c). The theoretical spectra of panel b represent a combination of

the partial spectra obtained from four different WP propagations carried out by

locating the initial WP in each of the four JT split component states of the cou-

pled X̃-Ã electronic manifold. It can be seen from Fig. 5.21 that the theoretical

results are in very good accord with experiment [75]. An impact of the bilinear

JT coupling terms is immediately seen in the low-energy wing of the first photo-

electron band when comparing Fig. 5.21(b) with Fig. 5.20(b). The progressions in

this part of the spectrum are substantially modified by the bilinear (particularly

a′1-e
′ ) terms and as a result the theoretical envelope agrees much better with the

experiment (when compared to Fig. 5.11(b)).

5.4.3 Time-Dependent Wave Packet Dynamics

In this section we discuss the femtosecond internal conversion dynamics of a WP

initially prepared on one component of the JT split Ã2E ′′ electronic manifold.

This WP during its evolution in time approaches all the JT and PJT conical

intersections in the X̃2E ′-Ã2E ′′ coupled electronic manifold (shown schematically

in Fig. 5.16), and nonradiatively transits to all four component electronic states of

this manifold. The time dependence of the diabatic electronic populations of these

four electronic states is shown in Fig. 5.22. The WP is initially located on one

component of the Ã2E ′′ electronic manifold. The population of this state starts

from 1.0 at t = 0 and decays to a value of ∼ 0.20 at longer times (dotted line).
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Figure 5.21: The X̃-Ã photoelectron bands of CP. The final theoretical results
obtained by propagating wave packets on the coupled X̃-Ã electronic states (see
text for details) are shown in panel b along with the experimental results of
Holland et al. [75] in panel a. The relative intensity in arbitrary units is plotted as

a function of the energy of the vibronic levels of the X̃2E ′-Ã2E ′′ coupled electronic
manifold. The zero of energy correspond to the minimum of the potential energy
of the electronic ground state of CP.
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The initial decay of population of this state relates to a decay rate of ∼ 10 fs.

Companion calculations reveal a decay rate of ∼ 10 fs of the second component

of the Ã2E ′′ electronic manifold. It can be seen from Fig. 5.22 that at t = 0 the

population of the remaining three electronic states of the X̃2E ′-Ã2E ′′ electronic

manifold is zero. At longer times the WP approaches the PJT and JT conical

intersections and undergoes nonadiabatic transitions and populates these three

electronic states. The population of the second component of the Ã2E ′′ electronic

manifold and that of the x and y components of the X̃2E ′ electronic manifold is

shown in Fig. 5.22 by the thick solid line, solid line, and dashed line, respectively.

Finally, the populations of both the components of the Ã2E ′′ electronic manifold

saturate nearly to the same value. When the WP is initially prepared on the

JT split component of the X̃2E ′ electronic manifold, the population transfer to

the Ã2E ′′ electronic manifold is found to be negligible (diagram not shown here).

This WP moves back and forth between the two component electronic states only

through the X̃2E ′ JT conical intersections and their populations fluctuate around

an average value of ∼ 0.5.

In order to better understand the population dynamics of Fig. 5.22, in Fig. 5.23(a-

f) we show snapshots of the WP evolving on the X̃2E ′-Ã2E ′′ coupled electronic

manifold. The probability density (|Ψ|2) of the WP is superimposed on the po-

tential energy curves along the normal coordinate of the strongest Condon active

a′1 vibrational mode ν2. The potential energy curves and the WP probability den-

sities are shown as solid and dashed lines for the X̃2E ′ and Ã2E ′′ electronic states,

respectively. For the purpose of drawing, the zero of the WP probability densities

is chosen to occur near a potential energy of ∼ 13.5 eV. Since the Condon activity

of ν2 is strongest in both the electronic states, most of the significant structures

in the population diagram of Fig. 5.22 can be interpreted from the WP snapshots

along this mode. Again we mention that the electronic degeneracy of the two

electronic states is retained along this totally symmetric vibrational mode.

Since the WP is initially (at t = 0) located on one component of the Ã2E ′′ elec-
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Figure 5.22: Time evolution of the diabatic electronic populations obtained by
locating an initial wave packet on one component of the Ã2E ′′ electronic manifold
of CP+. The decay of the population of this component electronic state is shown
by the dotted line and the growth of the population of the other component of
the Ã2E ′′ electronic state and the two JT split components of the X̃2E ′ electronic
state is shown by the thick solid line, solid and dashed lines, respectively.
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Figure 5.23: Wave packet probability densities (|Ψ|2) as a function of the di-
mensionless normal coordinate Q2 of the vibrational mode ν2 integrated over all
other coordinates at different times (indicated in each panel) superimposed on

the potential energy curves of the Ã2E ′′ (dashed line) and X̃2E ′ (solid line) elec-
tronic states of CP+. The WP probability densities on these electronic states are
shown by the same line types. The zero of the WP probability densities has been
chosen, for graphical reasons, to occur near a potential energy of 13.5 eV. The
scale for the probability density is arbitrary but identical for all |Ψ|2 displayed in
the figure.
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tronic manifold (not shown in the figure), the population of this state starts from

1.0 (dotted line in Fig. 5.22). In about 5 fs (cf. Fig. 5.23(a)), a fraction of popu-

lation (∼ 42 %) transfers to the X̃2E ′ electronic manifold and as a result a sharp

drop in the Ã2E ′′ population occurs (cf. Fig. 5.22). In about 10 fs (Fig. 5.23(b)),

the WP component on the Ã2E ′′ electronic manifold moves more towards the

X̃ − Ã PJT crossing seam, and in ∼ 40 fs (Fig. 5.23(d)), it moves solely to-

ward it. At longer times (Figs. 5.23(e-f)), the remaining WP component on this

electronic manifold moves closer to its potential energy minimum. The WP com-

ponent on the X̃2E ′ electronic manifold, on the other hand, moves away from the

crossing seam and mostly remains localized near its own potential energy mini-

mum. This is because the minimum of the X̃2E ′-Ã2E ′′ PJT crossing seam occurs

∼ 1.475 eV above the minimum of the X̃2E ′ electronic manifold. Therefore, the

recrossing probability of the WP component on this electronic manifold to the

Ã2E ′′ electronic manifold is expected to be very small. We note that in addition

to this crossing through the X̃− Ã PJT conical intersections, the WP component

on each degenerate electronic manifold undergoes crossing through the respective

JT conical intersections. The seam of the latter occurs at the equilibrium configu-

ration Q=0. Therefore, motion of the WP towards the minimum of the potential

energy curves in Fig. 5.23 is associated with the population exchange between

the JT split components of the respective degenerate electronic manifold. This is

revealed by the growth of population in time of the three JT component states

in Fig. 5.22. The weak structures in the population diagram appear due to the

interference of the WP components in the vicinity of various curve crossings in

the X̃2E ′-Ã2E ′′ coupled electronic manifold.

5.5 Summary and Outlook

A detailed theoretical description of the multimode JT and PJT interactions in

the low-lying doubly degenerate X̃2E ′ and Ã2E ′′ electronic states of CP+ has
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been presented. Degenerate vibrational modes of e′ symmetry split the electronic

degeneracy of these electronic states and the resulting JT split component states

exhibit PJT interactions via the vibrational modes of a′′1 and e′′ symmetries. The

theoretical model here is constructed by considering interactions among these four

component electronic states and fourteen relevant vibrational degrees of freedom.

Quantum dynamical simulations of the nuclear motion are carried out both by a

time-independent and by a time-dependent approach and the vibronic level struc-

ture of this coupled manifold of electronic states is calculated. The theoretical

results are compared with the available experimental photoelectron spectrum of

CP.

In the theoretical description, a model vibronic Hamiltonian of the four in-

teracting electronic states including the fourteen vibrational degrees of freedom

is constructed in terms of the dimensionless normal coordinates of the electronic

ground state of CP in a diabatic electronic basis. A QVC scheme is employed

to describe the Condon activity of the three a′1 vibrational modes and the JT

activity of the four e′ vibrational modes. The PJT activity of the a′′1 and e′′ vi-

brational modes is treated by a LVC scheme. In addition, we have considered the

a′1-a
′
1 and a′1-e

′ intermode bilinear coupling terms in our theoretical simulations.

The coupling parameters of the Hamiltonian are determined by calculating the

adiabatic PESs of the X̃2E ′ and Ã2E ′′ electronic states along each vibrational

mode by the OVGF method.

In the nuclear dynamical simulations, we systematically examined the vi-

bronic energy level structure of the X̃2E ′ and Ã2E ′′ electronic states of CP+ first

by considering the JT interactions alone in both these states and then by intro-

ducing the PJT interactions between the two. To start with, we reproduced the

time-independent results on the first band by the time-dependent WP propaga-

tion method. Moreover, the importance of the bilinear JT coupling terms for

the vibronic structures of the low-energy wing of the X̃2E ′ photoelectron band

is established. The Ã2E ′′ photoelectron band is then calculated by considering
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three Condon active (ν1-ν3) and four JT active vibrational modes (ν4-ν7) within

a linear coupling scheme by the time-independent method. The results obtained

from this approach do not correspond well with the experiment. The effect of the

second-order coupling terms of the Hamiltonian is then considered and the spec-

trum is calculated by both the time-independent and time-dependent approaches.

The second-order coupling terms cause an increase in the spectral line density,

and the spectral envelope reveals much better agreement with the experiment.

The dominant progression in this band is mainly caused by the ν2, ν4, and ν6

vibrational modes. The vibronic fine structure of the time-dependent spectrum

of Fig. 5.18(d) is in good accord with the time-independent one of Fig. 5.18(c).

The complete photoelectron band is simulated by propagating wave packets

using the MCTDH approach, including four electronic states and fourteen relevant

vibrational degrees of freedom. Such a task is computationally not viable by

the time-independent matrix diagonalization approach. When we compare the

theoretical results with the experimental one, a strong impact of the PJT coupling

on the vibronic structure of both the photoelectron bands can be observed. The

impact of the PJT coupling on the second band is more than that on the first

band. This is because the minimum of the seam of PJT conical intersections

occurs ∼ 0.638 eV below that of the Ã2E ′′ JT conical intersections. As a result,

the continuum levels of the X̃2E ′ electronic manifold mix with the low-lying

vibronic levels of the Ã2E ′′ electronic manifold. The huge increase in the spectral

line density results from this mixing of levels of two different vibronic symmetries.

The time evolution of the diabatic electronic populations reveals a nonradia-

tive decay time of ∼ 10 fs of the Ã2E ′′ electronic manifold of CP+ mediated

by the PJT interaction with the X̃2E ′ electronic manifold through the a′′1 and

e′′ vibrational modes. The X̃2E ′-Ã2E ′′ photoelectron band of CP+ represents a

unique and complex example of the interplay between the JT and PJT interac-

tions involving two doubly degenerate electronic states.



Chapter 6

Future Directions

The static and dynamic aspects of the JT and PJT interactions in B3, C2H
+
6 ,

and C3H
+
6 are studied in this thesis. The theoretical approach is based on ab

initio electronic structure calculations and quantum dynamical studies. With the

advent of high-resolution spectroscopic techniques, advances in electronic struc-

ture calculations, and computational capabilities, better understanding of the

highly complicated JT and PJT vibronic coupling effects in isolated molecules

has become possible. The success of the theoretical approach lies on the adoption

of simple VC model Hamiltonians. Further computational advantage is the as-

sumption of harmonic diabatic potentials and truncation of Taylor series (around

the equilibrium geometry of the neutral molecule) in low-order.

The main findings of the present work are given below.

1. (a) The vibronic structure of the C̃2E ′ photoelectron band of B3 showed a

progression along the degenerate ν2 vibrational mode. The spacing between the

successive lines is ∼ 1103 cm−1 [68], this is in very good agreement with the

observed sharp splitting of ∼ 1100 ± 80 cm−1; in the experimental recording.

(b) Our explicit theoretical analysis indicates that the linear PJT, quadratic,

and bilinear JT couplings have practically no impact on the vibronic structure of

the X̃2A′
1-C̃

2E ′ photoelectron band of B3.

(c) The JT effect in the C̃2E ′ electronic manifold is also quite weak when

155
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compared to the similar other examples treated in the literature [26, 90, 119].

2. (a) For the X̃2Eg electronic manifold of ET+, the irregular vibrational pro-

gressions, with its numerous shoulders and small peaks observed below 12.55 eV

are attributed due to the dynamic (E × e)-JT effect.

(b) Our findings revealed that the PJT activity of the degenerate vibrational

modes (eg) is particularly strong in the coupled X̃2Eg-Ã
2A1g electronic manifold

which leads to a broad and diffuse structure of the observed photoelectron band.

(c) The three maxima obtained in the X̃2Eg -Ã2A1g photoelectron band of

ET+ at ∼ 12.25, ∼ 12.75, and ∼ 13.50 eV, due to the JT split X̃2Eg component

states and the Ã2A1g electronic state [89], compare well with the experimental

observations [69].

3. (a) For the X̃2E ′ electronic manifold of CP+, the observed splitting between

the two maxima in the bimodal intensity distribution was found to be ∼ 0.78

eV [75] and compares well with the time-independent and time-dependent results

of ∼ 0.80 and ∼ 0.81 eV, respectively, within the LVC scheme [91].

(b) The minimum of the PJT crossing occurs ∼ 1.475 eV above the minimum of

the X̃2E ′ and ∼ 0.638 eV below the minimum of the Ã2E ′′ JT conical intersections

in CP+.

(c) Therefore, the vibronic structure of the coupled X̃-Ã electronic manifold

of CP+ is calculated by propagating wave packets using the MCTDH algorithm

considering the PJT interactions between the two electronic states through the

a′′1 and e′′ vibrational modes.

(d) The time evolution of the diabatic electronic populations reveals a nonra-

diative decay time of ∼ 10 fs of the Ã2E ′′ electronic manifold of CP+ [91].

To conclude in case of B3, we note that besides the model study presented

here, which, in fact, reproduces the experimental results reasonably well, a more

rigorous electronic structure calculations to establish the anionic and neutral

PESs and the nonadiabatic coupling elements are to be carried out with an aim

to perform wave packet dynamical simulations to study the decay of the excited
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electronic states of B3 cluster.

In case of ET+, the overall diffuseness of the experimental photoelectron band

(X̃2Eg-Ã
2A1g) is not very well reproduced by the present theoretical model. This

can be attributed due to the neglect of the second-order coupling terms of de-

generate eg vibrational modes and the various (a1g-a1g, a1g-eg, and eg-eg) bilinear

coupling terms. We note that the vibrational modes of u symmetry also enter in

the dynamics when a QVC model is considered. Moreover, the PJT interaction

of B̃2Eu electronic manifold via eu vibrational modes with the well separated

low-lying states X̃2Eg (by ∼ 2.75 eV) and Ã2A1g (by ∼ 2.40 eV) are also to be

analyzed which may bring the theoretical results close to the experiment. An

estimate of the feasibility of such interactions (X̃2Eg - Ã2A1g - B̃2Eu ) and the

nuclear dynamics which includes the above five component states and fifteen vi-

brational degrees of freedom are to be carried out using the MCTDH algorithm.

To this end we mention that by studying systems of growing size (going from

B3 to C3H
+
6 ), the scenario of the nuclear dynamics changes from single coupling

mode to multi coupling modes which essentially makes the vibronic structure of

the photoelectron bands highly complex to understand and the computational

resources required to simulate them also grows exponentially. Therefore, we

would like to learn which are the relevant prevailing coupling mechanisms and

what type of modes are important in the nuclear dynamics. The outcome of the

present study gives a pathway to understand more complex vibronic interactions

ubiquitous in molecular systems. The understanding of the nuclear dynamics in

vibronically interacting medium and large systems and the exploration of the im-

pact of these intricate interactions in photophysical and photochemical processes,

are some of the prospective directions for the future studies.

However, the study of systems of growing size is an uphill task. Because,

the number of vibrational degrees of freedom increases as the number of atoms

increases in a molecule. This makes the problem more difficult to access since

we require a predefined PES over which the nuclei moves. Calculation of this
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multidimensional PES is an impossible task. Alternatively, if we look at the

on-the-fly (or direct) molecular dynamics where the PES is provided by explicit

evaluation of the electronic wave function for the states of interest, the larger

systems are also treated successfully [132].



Appendix A

The Lanczos Algorithm

For multi-mode VC problems, the solution of the eigenvalue problem of the Hamil-

tonian matrix H in the harmonic-oscillator basis functions is a formidable numer-

ical task. The large dimension of the sparse-Hamiltonian matrix causes problem

related to storing the matrix elements. Lanczos algorithm is used to circum-

vent this problem. In this method the structured sparsity of the Hamiltonian is

exploited. The following is a brief description of the algorithm.

Let us consider some initial state |p0〉 and define the state vector |p1〉 by the

relations

|q1〉 = H|p0〉 − 〈p0|H|p0〉|p0〉

|p1〉 = q1/
√
〈q1|q1〉. (A.1)

Given these states, one can start the following three-term recurrence relations,

also called Lanczos iteration [56, 133], as follows:

|qi+1〉 = H|pi〉 − 〈pi|H|pi〉 −
√
〈qi|qi〉|pi〉

|pi+1〉 = |qi+1〉/
√
〈qi+1|qi+1〉. (A.2)

The above Lanczos iterations generate a sequence of orthonormal states |p0〉,
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|p1〉, |p2〉...spanning the so-called Krylov subspace of H. In this new basis, the

Hamiltonian matrix takes a tridiagonal form as follows,

Tii = 〈pi|H|pi〉

Ti,i+1 =
√

〈qi+1|qi+1〉 = Ti+1,i.

Ti,j = 0 for |i− j| > 1 . (A.3)

The matrix elements are generated automatically during the recursion process

(Eq. A.2).

For our purposes, we identify

|p0〉 = T †|Ψi〉, (A.4)

and use the basis set expansion of Eq. (2.46) to represent the Krylov subspace

as the sequence of column vectors p0, p1,p2,... Similarly, the coefficients a
(ν)
m are

combined into a column vector a(ν). Using Eq. (A.3) we have

P†
mHPm = Tm, (A.5)

where Tm represents the m×m tridiagonal matrix with elements resulting from

performing m Lanczos iterations, Eqs. (A.1) and (A.2). Let xm be the eigenvector

of Tm with eigenvalue Em
ν . Then Pmxm

ν denotes the corresponding eigenstates

of the original Hamiltonian and its spectral intensity turns out as [39]

Im
ν = |p†

0Pmxm
ν |2

= |p†
0 (p0,p1, ...pm)xm

ν |2

= | (1, 0, 0, ...0)xm
ν |2

= |xm
ν (1)|2. (A.6)
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Because of the orthogonality of pi, and by the virtue of the choice of |p0〉, it is

only the first component xm
ν (1) of the eigenvectors of the tridiagonal matrix that

determines the spectral intensity [134].



Appendix B

Finite Difference Scheme

The intrastate coupling parameters can be obtained from the symmetric finite

difference equation as follows

κi =
∂V

∂Qi

∣∣∣∣∣
Qi=Q0

i

=
V (Qi + ∆Qi) − V (Qi − ∆Qi)

2∆Qi
. (B.1)

The JT coupling parameters can be defined as


 E0

1 λiQi

λiQi E0
2


 (B.2)

V1,2 =
E0

1 + E0
2

2
±

√(
E0

1 − E0
2

2

)2

+ λ2
iQ

2
i (B.3)

V1 − V2 = 2
√

∆2 + λ2
i ∆Q

2
i (B.4)

where, ∆ =
E0

1−E0
2

2
= 0 at equilibrium geometry and therefore

λi =
1

2

(
∂∆VE

∂Qi

) ∣∣∣∣∣
Qi=Q0

i

=
V1 − V2

2∆Qi
(B.5)

where, ∆VE is the (signed) difference of the JT split PESs.
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The second-order coupling parameters which represent the diabatic frequency

shifts can be obtained from

γi =
∂2V

∂Q2
i

∣∣∣∣∣
Qi=Q0

i

=
V (Qi + ∆Qi) − 2V (Q0

i ) + V (Qi − ∆Qi)

(∆Qi)2
. (B.6)

Using small normal coordinate displacements one can obtain the various inter-

mode bilinear coupling parameters by the following set of finite difference equa-

tions

γij =
1

h2

[
V (Q0

i + h,Q0
j + h) − V (Q0

i + h,Q0
j) − V (Q0

i , Q
0
j + h) + V (Q0

i , Q
0
j)

]
(B.7)

γij =
1

2h2

[
V (Q0

i + h,Q0
j + h) + V (Q0

i − h,Q0
j − h) − V (Q0

i + h,Q0
j) − V (Q0

i − h,Q0
j)

−V (Q0
i , Q

0
j + h) − V (Q0

i , Q
0
j − h) + 2V (Q0

i , Q
0
j)

]
(B.8)

γij =
1

4h2

[
V (Q0

i + h,Q0
j + h) + V (Q0

i − h,Q0
j − h)

−V (Q0
i + h,Q0

j − h) − V (Q0
i − h,Q0

j + h)

]
(B.9)

where, h represents the amount of displacement.



Appendix C

Group theoretical analysis of the

Hamiltonian of CP+

In this appendix we demonstrate the correctness of the Hamiltonian matrix, Eqs.

(5.4-5.7j), that is, show that the various coupling terms transform totally sym-

metric under the symmetry operations of the pertinent point group, D3h. The

general reasoning is similar to the one developed for the benzene radical cation

in the appendix of Ref. [26]. Only linear coupling terms will be considered here,

quadratic coupling terms can be treated in an analogous way.

To simplify the analysis, we note that the proper transformation behavior

under the reflection operation σh is already ensured by the superscripts (primes)

embodied in the symmetry selection rules, Eqs. (5.2, 5.3), and the Hamiltonian

matrix elements of Eqs. (5.4-5.7j). We can confine the analysis, therefore, to a

suitable subgroup of D3h, which we choose to be C3v and thus have identical

representation matrices for the E ′ and E ′′ electronic states (as well as for e′ and

e′′ vibrational modes). These are given in the Table C.1, which focuses on only

one convenient choice for the C3 and σv symmetry operations.

With the underlying phase conventions, one arrives at the following transfor-

mation properties of the electronic projection operators in the E ′ as well as E ′′
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Table C.1: Characters and transformation matrices of basis functions of the D3h

irreducible representations for some symmetry operations of the C3v subgroup.

A′
1 A′

2 E ′ A′′
1 A′′

2 E ′′

E 1 1

(
1 0
0 1

)
1 1

(
1 0
0 1

)

C3 1 1

(
−1

2
−

√
3

2√
3

2
−1

2

)
1 1

(
−1

2
−

√
3

2√
3

2
−1

2

)

σv 1 −1

(
−1 0
0 1

)
−1 1

(
−1 0
0 1

)

electronic function spaces (since the superscripts are not needed, the kets |x〉 and

|y〉, as well as the corresponding bras, refer collectively to the first and second

rows/columns of the E ′ as well as E ′′ representation matrices of the Table C.1).

|x〉〈y| − |y〉〈x| C3−→ |x〉〈y| − |y〉〈x| (C.1)

|x〉〈y| − |y〉〈x| σv−→ − (|x〉〈y| − |y〉〈x|) (C.2)


 |x〉〈x| − |y〉〈y|

|x〉〈y| + |y〉〈x|


 C3−→


 −1/2

√
3/2

−
√

3/2 −1/2




 |x〉〈x| − |y〉〈y|

|x〉〈y|+ |y〉〈x|




(C.3)



 |x〉〈x| − |y〉〈y|
|x〉〈y|+ |y〉〈x|



 σv−→



 1 0

0 −1







 |x〉〈x| − |y〉〈y|
|x〉〈y| + |y〉〈x|



 (C.4)

Note that the latter two relations hold only for the specific transformation ma-

trices given in Table C.1.

Let us denote byQx andQy the nuclear displacement coordinates transforming
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as the |y〉 and |x〉 electronic basis states, respectively. Then, similar transforma-

tion laws as Eqs. (C.3 – C.4) hold for them also, and one can subsequently verify

that the operator

We = (Qx, Qy)


 |x〉〈x| − |y〉〈y|

|x〉〈y|+ |y〉〈x|


 (C.5)

remains invariant under the C3 and σv symmetry operations, i.e. transforms

totally symmetric in the C3v molecular point group. Since the additional sym-

metry operations of D3h need no further consideration (see second paragraph of

the Appendix), this establishes the correctness of all coupling terms linear in the

coordinates of the e′ and e′′ modes in Eqs. (5.7a-5.7j). One notes that they have

all (including the PJT coupling terms) the usual form familiar from JT theory.

We next investigate the coupling terms involving nondegenerate vibrational

modes. The labeling of their vibrational coordinates follows the same indexing

convention as the irreducible representations according to which they transform.

Then, within an electronic state, there are only the following two totally sym-

metric electron-vibrational operators (cf. the Table C.1 and Eqs. (C.1, C.2)):

Wa′

1
= Q′

1 (|x〉〈x| + |y〉〈y|) (C.6)

Wa′

2
= Q′

2 (|x〉〈y| − |y〉〈x|) (C.7)

Eqs. (C.6, C.7) hold again for the E ′ as well as for the E ′′ state. Eq. (C.6)

reproduces (for completeness) the well-known results about the linear coupling

to totally symmetric modes, while the second term, Eq. (C.7), does not satisfy

the requirement of hermiticity and the corresponding coupling element has to be

dropped in the Hamiltonian (for a corresponding momentum coupling operator,

however, see Ref. [135]).

Concerning the PJT coupling terms, the E ′ and E ′′ electronic basis states

now have to be distinguished by corresponding superscripts. Then, Eqs. (C.1,

C.2) and the Table C.1 allow to see rather easily that the following two (and
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only two) electron-vibrational operators transform totally symmetric (that is, are

form-invariant under the C3 and σv symmetry operations):

Wa′′

1
= Q′′

1 (|x′〉〈y′′| − |y′〉〈x′′|) (C.8)

Wa′′

2
= Q′′

2 (|x′〉〈x′′| + |y′〉〈y′′|) (C.9)

Note that the vibrational subscripts 1 and 2 are interchanged as compared to Eqs.

(C.6, C.7). This is a direct consequence of the different transformation properties

of e.g. Q′
1 and Q′′

1 according to Table C.1. Also, the PJT coupling term (C.8) does

not violate hermiticity because it appears in the off-diagonal 2 × 2 blocks of the

4×4 coupling matrix, Eq. (5.4). Taken together, in matrix form the relations (C.6

– C.9) establish the linear coupling terms also for the nondegenerate vibrational

modes in Eqs. (5.7a-5.7j). Here the element Wa′′

2
from Eq. (C.9) is suppressed

because these modes turn out to be unimportant for CP+.

We point out that the form of Wa′′

1
of Eq. (C.8) may be changed by a suitable

redefinition of either the E ′ or the E ′′ electronic basis states. This, however,

would lead to different E⊗e-JT coupling matrices in these states and underlines,

that care is needed to work with a consistent choice of electronic wave functions

to arrive at correct Hamiltonians for simultaneous JT and PJT interactions.

It remains to clarify the determination of the relative signs of the JT coupling

constants λ′ and λ′′ for the various modes. These prove to be important (at least

for the a′′1 coupling mode) for reasons similar to those discussed earlier for the

benzene radical cation [27]. They can be determined, e.g., by using symmetry-

adapted displacements of the JT active modes. In the higher-symmetry subgroup

ofD3h (here C2v) the two JT-split potential energy surfaces are then distinguished

by symmetry and can be identified with either of the diagonal elements of the

coupling matrix of Eqs. (5.4-5.7j). (Thus λ′ and λ′′ are signed quantities.)

Lacking symmetry-adapted JT displacements we may perform electronic struc-

ture calculations for simultaneous JT and PJT displacements and deduce the
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relative signs of λ′ and λ′′ (for a given mode) from the repulsion pattern of

the potential energy surfaces. This is seen by transforming the Hamiltonian

(Eqs. 5.4-5.7j) to an electronic basis which is adiabatic within each of the E ′ and

E ′′ electronic states only (resulting in an interaction matrix Wtr). For a single

JT-mode displacement this is achieved by the same 2×2 orthogonal matrix (in

either degenerate state) which leaves the Q′′
1 coupling term invariant according

to the following result:

Wtr =




λ′ρ 0 0 λQ′′
1

0 −λ′ρ −λQ′′
1 0

0 −λQ′′
1 λ′′ρ 0

λQ′′
1 0 0 −λ′′ρ




(C.10)

Here ρ is the polar radius for the JT active mode in question, and the λ′ and

λ′′ are signed quantities. Eq. (C.10) demonstrates that for the same sign of λ′

and λ′′ the PJT mode Q′′
1 couples the upper with the lower sheet of the E ′ and

E ′′ electronic manifolds, while for opposite signs it couples the upper sheets with

each other (and also the lower ones, of course). This allows to determine the rela-

tive signs, provided the displacements are chosen suitably to reveal the difference

between the two cases.
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[10] U. Öpik and M. H. L. Pryce, Proc. R. Soc. London, Ser. A 238, 425 (1957).

[11] H. C. Longuet-Higgins, in Advances in Spectroscopy, H. W. Thompson (Ed.),

Interscience, New York, 1961, Vol. II, p.429.

169



Bibliography 170

[12] J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry: Principles

of structure and reactivity, 4th ed. (Haper Collins, New York, 1993).

[13] M. D. Sturge, Solid State Phys. 20, 91 (1967).

[14] M. D. Kaplan and B. G. Vekhter, Cooperative phenomena in Jahn-Teller

Crystals (Plenum Press, New York, 1995).

[15] L. R. Falvello, J. Chem. Soc., Dalton Trans. 23, 4463 (1997).

[16] In Molecular Ions: Spectroscopy, Structure, and Chemistry, edited by T. A.

Miller and V. E. Bondybey (North-Holland, Amsterdam, 1983).
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gapore, 2004).
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[47] H. Köppel, L. S. Cederbaum, and W. Domcke, J. Chem. Phys. 89, 2023

(1988).

[48] L. S. Cederbaum, W. Domcke, and H. Köppel, Chem. Phys. 33, 319 (1978).
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(1993).
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