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Chapter 1

Introduction

1.1 A brief overview of the Jahn-Teller effect

and vibronic coupling

The Born-Oppenheimer (BO) adiabatic approximation [1–3], which represents

one of the cornerstones of molecular physics and chemistry, supports the calcula-

tion of molecular dynamical processes to be divided into two steps. The first step

involves into the solution of electronic problem keeping the atomic nuclei clamped

in space whereas the nuclear dynamics on a given predetermined electronic po-

tential energy surface (PES) is treated in the second step. This approximation

is based on the fact that the spacing of electronic eigenvalues is generally large

compared to typical spacings of the energy levels associated with nuclear motion.

Clearly, the approximation breaks down when electronic states are close in energy

(approach to within a quantum of energy of nuclear vibration) and the residual

coupling via the nuclear kinetic energy operator causes transitions between the

adiabatic electronic states. Therefore, the nuclear motion is no longer confined

to a single ’adiabatic’ electronic PES. In this situation there will be a strong

coupling between the nuclear and electronic motions which is termed as vibronic

coupling (VC). A pictorial outcome of these phenomena in polyatomic molecules

1
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is the occurrence of conical intersection (CI) [4–14]. An overview of CIs and their

ramification in chemical dynamics has been presented in the next section.

The most striking deviations from the adiabatic approximation arises due to

the presence of orbitally degenerate electronic states. From a historic perspec-

tive, the concept of instability and spontaneous distortion of the nuclear config-

uration of a non-linear molecule in an orbitally degenerate electronic state was

first proposed by Jahn and Teller in 1937 [15, 16]. This type of VC is known

as Jahn-Teller (JT) effect [16–23] which is one of the most fascinating phenom-

ena in chemical physics. Later through the seminal work of Longuet-Higgins et

al. [24, 25] it was recognized that the degeneracy of electronic wavefunction re-

quires a coupled-surface treatment of the nuclear motion; the spectral intensity

distribution for the so-called (E×e)-JT effect (JT effect in a doubly degenerate

(E) electronic state caused by the degenerate (e) vibrational modes) was com-

puted accordingly (for an explicit demonstration of the nonadiabatic coupling

effects see, for example [26]) and opens the doorway for further research to eluci-

date its nature and importance in a wide variety of systems including, transition

metal complexes [27], solid-state physics and chemistry [28–30], organic hydrocar-

bons, radicals and ions [4,17,21,31–34], and fullerenes [35]. A typical phenomena

associated with the (E × e)-JT CI is the formation of “Mexican hat” type of

topography within a linear coupling limit. Where the lower PES containing three

equivalent minima and three equivalent saddle points connecting pairs of min-

ima and the upper one resembles a conical shape with its vertex touching the

lower one at the point of 3-fold-symmetry [36]. In multimode situation, because

of these CIs the vibrational levels of the upper surface are completely mixed

with the quasi-continuum vibrational levels of the lower surface [4] which leads a

highly diffuse spectral envelope. In a time-dependent picture this generally yields

a femtosecond non-radiative decay of the upper electronic state [4, 37–41].

In 1957, Öpik and Pryce first noted that effects similar to the JT effect may be

inherent in systems with near (quasi-degenerate or pseudo-degenerate) electronic
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states [42]. This is known as pseudo-Jahn-Teller (PJT) effect in the literature

[4,14,22,43–45]. In the following year in 1958, Longuet-Higgins along with Öpik,

Pryce and Sack worked on the dynamic aspects of the JT effect, that is the

interaction between motions of the nuclei and the electrons [24]. In general, the

degeneracy of an electronic state can be removed both by degenerate and non-

degenerate nuclear motion. While the former one occurs rather widely in physics

and chemistry [17, 21, 24] the latter one is also encountered in the molecules

possessing two or four fold axis of symmetry, for example, C4, C4v, C4h, D4, D2d,

D4h, S4, and D4d point groups [4,17,21,28,37,46,47]. This is known as (E×b)-JT

effect since here the degeneracy is lifted by vibrational modes of b symmetries. In

this case vibrational modes of e symmetries participate in PJT activity. The JT

effect as well as the PJT effect have been studied extensively over the past few

decades (see, for example, the Refs. [4, 14, 17–23, 33] and the references therein).

Although most of the applications of the JT effect are related to the field of

spectroscopy, excited state dynamics and structural phase transformations, it

has also played a key role in one of the most important (Nobel Prize in 1987)

discoveries of modern physics: high temperature superconductivity [48].

A situation analogous to the JT effect in nonlinear polyatomic molecules also

occurs in linear molecules in their degenerate or pseudo-degenerate states within

quadratic VC scheme and is termed as Renner-Teller (RT) effect, following the

original paper of Renner in 1934 [49]. In that paper he describes the vibronic

interactions in degenerate Π electronic states of linear triatomic molecules. In

the course of time, the RT effect has been extended to consider tetra-atomic

linear molecules [50], treatment of ∆ states [51], inclusion of magnetic-coupling

effects [52], inclusion of anharmonic coupling and Fermi Resonances [53], inclusion

of molecular rotation [54], etc. For a detailed survey of the RT effects, see the

review by Rosmus and Chambaud [55].
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1.2 Classification of CIs and their importance

in chemical dynamics

While crossing of electronic states of the same symmetry is prohibited by von

Neumann and Wigner’s non-crossing rule [56] in diatomic molecules, the same

constraint does not apply to the polyatomic molecules due to the presence of

three or more nuclear degrees of freedom. In this situation electronic states do

cross, and they form a CI which is a (3N-6-2)-dimensional seam (or hyperline) of

the electronic energy for an N-atomic molecular system. Historically, the crossing

of electronic PESs was discovered in the early 1930s [5, 16, 49]. In the course of

time, an intense theoretical research activity started in this area and predicts a

wide range of physical phenomena that emerge from PES crossings. The field has

undergone a monumental growth thereafter following the outstanding contribu-

tions of several research groups [4, 7, 17–19, 21, 28, 57–59]. The CIs of electronic

PESs are classified into few groups as follows: (i) by electronic state symmetry:

the noncrossing rule, (ii) by topography and (iii) by dimension of the branching

space.

Symmetry-required (enforced) CIs do occur when two electronic states form

the components of a degenerate irreducible representation (IREP). An example

of this class of CI is the JT intersection by two lowest excited states of Na3

which corresponds to the components of an E IREP of C3v point group. Conical

intersections which are not required by symmetry are accidental intersection.

Accidental intersection corresponds to two states of distinct spatial symmetry is

known as accidental symmetry-allowed (different symmetry) CI. The two lowest

excited singlet electronic states (A′′) of H-S-H, provides an example of this type

of CI. For C2v geometries these states are of 1A2 and 1B1 symmetry, so that

symmetry allowed accidental CI occurs [60–63]. Likewise when PESs of two

states of same symmetry cross, the intersection is termed as accidental same

symmetry CI. An intersection of electronically excited 21A and 31A states of
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CH3-S-H provides an example of this type of CI [60,63,64].

Based on the shape and orientation of the PESs, CIs are further classified

as peaked and sloped CI [65–67]. Peaked CIs appear when both the PESs are

elliptical cones pointing towards each other with a common tip. In this case,

the crossing point is the minimum of the upper PES and the topology at this

point looks like a double cone. At slopped CIs, both the PESs have downhill

slope and touch each other at the crossing point in branching space. Here, the

crossing point is always at higher energies compare to the minimum of the upper

PES and the crossing appear as a seam of intersections. While a large variety

of photochemical reactions via excited-state reaction pathways are controlled by

peaked CIs, the sloped CIs are key factor for the unsuccessful chemical reactions

and arrange decay channels for the ultrafast nonradiative deactivation of excited

states [66,67].

Seams of the CI can also be catagorised based on the dimension of the branch-

ing space, η, for intersection of two PESs with η = 2, 3 or 5 [68]. Among them

η = 2 is the most common case of a two state CI for even electronic molecular

system in a non-relativistic situation.

Not surprisingly, CIs of electronic PESs have now emerged to be the paradigm

of triggering strong nonadiabatic effects leading to blurring of vibrational level

structure of molecular electronic states, various ultrafast molecular processes [14]

and also serve as the “bottleneck ” in photophysical and photochemical tran-

sitions [9–11]. They are also referred to as photochemical funnels in the liter-

ature [69]. The book edited by Domcke, Yarkony and Köppel represents an

excellent collection of articles in this emerging area of chemical dynamics [14].

Nowadays, CIs can be considered as generalizations of the JT intersections in

lower symmetric cases or in other way JT degeneracies are recognized as special

cases of CIs [4, 6, 7, 10, 14, 70, 71], because the linear coupling terms predicted by

JT theorem leads to a conical shape of the JT split PESs near the point of degen-

eracy [17,21,23]. Novel signature of VC and the associated JT and PJT effects are
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the appearance of nominally forbidden electronic bands, odd quantum excitation

of nontotally symmetric modes, unusual and complex vibronic fine structures of

electronic spectra, loss of mirror symmetry of absorption and emission bands and

observed quenching of fluorescence emission [4,14,72]. As the optical absorption

and photoelectron spectroscopy probes the excited state within Franck-Condon

(FC) region, these features becomes dominant when the CIs occur near or within

the FC zone.

1.3 Current state of research and outline of the

thesis

Aromatic fluorinated compounds are prototype organic species of fundamental

importance for which electronic structure, spectroscopy and dynamics have re-

ceived great attention in literature both theoretically and experimentally [73–91].

The perfluoro effect - fluorination causes a stabilization of the σ-type molecular

orbitals (MO) [92,93]. As a result the energetic minimum of the seam of various

CIs and the equilibrium minimum of a state varies with fluorine substitution,

causing a difference in its emissive properties for both cation and neutral fluori-

nated hydrocarbons. It is already established from experimental studies [94, 95]

that 1,3,5-trifluorobenzene radical cation (TFBz+ ) shows considerable emmision

in contrast to the parent benzene radical cation (Bz+ ) and as the number of

fluorine substituent increases the absorption spectra of the neutral fluorinated

benzenes becomes increasingly congested and the well resolved vibrational spec-

tra of it’s parent compound is almost completely lost [85]. This highly diffuse and

complex pattern of molecular electronic spectra indeed bears the signature of com-

plex entanglement of electronic and nuclear motion and indicates the paramount

importance of the nonadiabatic effects on the spectral envelope and energy re-

laxation process [4]. Although a contemporary knowledge of electronic structure



1.3. Current state of research and outline of the thesis 7

and spectroscopy of these molecules have been collected in several experimental

and theoretical studies [73–91], at the same time some important aspects of the

excited states are poorly understood and a rich theoretical interpretation of the

observed spectral envelope is yet to be explored. Even less is known of the nuclear

dynamics following electronic excitation, the possible energy redistribution and

relaxation mechanism.

Therefore in the present thesis, a rigorous quantum-mechanical formalism

is devised for studying the dynamics of polyatomic fluorinated systems (both

cation and neutral) on n electronically adiabatic state, interacting due to the

presence of nonadiabatic couplings. This formalism is then applied to investi-

gate the complex vibronic spectra and nonradiative decay dynamics of highly

symmetric multimode JT and related systems as well as the structure and dy-

namics at conically intersecting PESs in lower symmetry polyatomic molecules

with the help of ab initio electronic structure calculations and quantum dynamical

simulations. More specifically, the electronic states displaying the JT and PJT

interactions are probed through photoelectron spectroscopic experiment where as

conically intersecting electronic states of lower symmetric molecules are probed

through optical absorption spectroscopic experiment. The dynamical observ-

ables are predicted both by time-independent matrix diagonalization and time-

dependent wave packet (WP) propagation approach. While the time-independent

matrix diagonalization method is used to unravel the nonadiabatic effects on the

complex and irregular vibronic spectra, the nonradiative decay of excited elec-

tronic states and the broadening of the vibronic bands are investigated within a

time-dependent framework by propagating WPs.

Chapter 2 presents the theoretical and computational methodologies to inves-

tigate the static and dynamic aspects of multimode VC effects. The fundamental

concept of adiabatic approximation and the necessity of a diabatic electronic

representation to examine both the JT and PJT interactions and vibronic in-

teractions in multimode molecular systems have been outlined. Construction of
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model diabatic vibronic Hamiltonian using the elementary symmetry selection

rules and electronic structure calculations to extract parameters of Hamiltonian

follow. The time-independent and time-dependent approaches for solving the

quantum eigenvalue equation to calculate vibronic spectra are also illustrated.

A detailed theoretical account of the multimode JT and PJT interactions in

the five lowest electronic states of CF3CN+ have been presented in Chapter

3 to elucidate highly complex vibronic structure of the first two photoelectron

bands of CF3CN. Extensive ab initio electronic structure calculations are per-

formed to develop a model vibronic Hamiltonian and first-principles calculations

are carried out both via time-independent and time-dependent quantal methods

to simulate the nonadiabatic nuclear motion on the coupled manifold of these

electronic states.

Chapter 4 provides the static and dynamic aspects of multimode JT and

PJT interactions in the four lowest electronic states of TFBz+ . Detail topogra-

phy of the adiabatic PES and various low-energy CIs among them are estimated

through model vibronic Hamiltonian. Nonadiabatic effects due to these intersec-

tions on the vibronic dynamics are examined by WP propagation method. Re-

duced dimensional calculations are also performed to unravel the better resolved

vibrational level structures of the mass analyzed threshold ionization (MATI)

spectroscopy. The impact of the increasing fluorination on the structure and dy-

namics of the excited states is discussed in relation to the parent benzene radical

cation and its mono- and di-fluoro derivatives.

Chapter 5 deals with the photophysics of the first few low-lying singlet elec-

tronic states of four fluorinated benzene, namely monofluorobenzene (MFBz),

ortho-difluorobenzene (o-DFBz), meta- difluorobenzene (m-DFBz) and pentaflu-

orobenzene (PFBz). The complex and broad absorption spectra and the nonra-

diative internal conversion rate of the excited states are calculated by developing

model vibronic Hamiltonian and solving the eigenvalue equation. Theoretical re-

sults are compared with the available experimental results. Justification is also
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provided for the low quantum yield and biexponential fluorescence emission with

increasing number of fluorine substitution.

Final conclusions and prospects of the current thesis are presented in Chapter

6.



Chapter 2

Theoretical Methodology

2.1 Basic concepts of nonadiabatic dynamics

2.1.1 Nonadiabatic coupling and adiabatic electronic rep-

resentation

The typical molecular Hamiltonian is

H = Te + TN + U(r,R) (2.1)

where Te and TN are the electronic and nuclear kinetic energy operators, respec-

tively, and U(r,R) is the total potential energy of the molecule. The vector r

denotes the set of electronic coordinates and the vector R stands for the nuclear

coordinates describing the displacements from a reference configuration. By set-

ting the kinetic energy of the nuclei equal to zero, i.e., TN = 0, one defines the

familiar electronic Hamiltonian:

He = Te + U(r,R). (2.2)

10
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Obviously, He is an operator in the electronic space which depends parametrically

on R. Its eigenfunctions Φn(r, R) and eigenvalues Vn(R) fulfill

HeΦn(r,R) = Vn(R)Φn(r,R). (2.3)

They are known as the BO adiabatic electronic states and adiabatic PESs [96],

respectively. The full molecular wavefunction Ψ(r,R) can now be expanded in

terms of the above adiabatic electronic states as

Ψ(r,R) =
∑

n

χn(R)Φn(r,R). (2.4)

This expansion is known as the BO expansion [3]. Formally, Eq.(2.4) is exact,

since the set {Φn(r,R)} is complete. It is only when the expansion is trun-

cated that approximation is introduced. The BO expansion certainly provides

a perfectly valid ansatz if Φn(r,R) describes a bound state solution of the full

Schrödinger equation

(H − E)Ψ(r,R) = 0. (2.5)

From the Schrödinger Eq.(2.5) one can readily obtain [96] the coupled equations

for the expansion coefficients χn(R) in the ansatz (2.4). Inserting Eq. (2.4) into

(2.5), multiplying from the left by Φ∗
m(r,R) and integrating over the electronic

coordinates leads to

[TN + Vn(R)− E] χn(R) =
∑

m

Λ̂nmχm(R). (2.6)

The operators Λnm are known as the nonadiabatic operators describe the dy-

namical interaction between the electronic and nuclear motion. They are given
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by [3]

Λ̂nm = −
∫

drΦ⋆
n(r,R)[TN,Φm(r,R)]. (2.7)

and are obviously operators in R-space. Decomposition of the nonadiabatic op-

erators in terms of the first- and second-order derivative couplings, in Cartesian

coordinates reads [4, 97,98]

Λ̂nm = −
∑

k

~
2

Mk

Fnm

∂

∂Rk

−
∑

k

~
2

2Mk

Gnm, (2.8)

where Mk are nuclear masses and

F(k)
nm = 〈Φn(r)| ▽k |Φm(r)〉, (2.9)

G(k)
nm = 〈Φn(r)| ▽2

k |Φm(r)〉, (2.10)

in which ▽k ≡ ∂/∂Rk.

Returning to the fundamental set of equations given in Eq. (2.6) one can

rewrite this set of coupled equations as a matrix Schrödinger equation


TN1 + V(R)− Λ̂︸ ︷︷ ︸

H

−E1


χ = 0. (2.11)

The matrix Hamiltonian H describes the nuclear motion in the manifold of elec-

tronic states. χ is the column vector with elements χn; 1 is the unit matrix, and

V(R) = {Vn(R)δnm} is the diagonal matrix of electronic energies. The quan-

tity Λ̂ represents the nonadiabatic coupling effects in the adiabatic electronic

representation.

From the aforementioned description it can be seen that in an adiabatic elec-

tronic representation, nuclear kinetic energy operator is non-diagonal and the po-
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tential energy operator is diagonal. The elements of Λnm define the off-diagonal

elements of the nuclear kinetic energy operator (cf., Eq. 2.6) and therefore states

are coupled through the nuclear kinetic energy operator. When Λnm is set to zero

altogether, one arrives at the well-known BO or adiabatic approximation [1, 59]

and the coupled dynamical equation of motion (Eq. 2.6) reduces to the one

describing the motion of the nuclei on the uncoupled adiabatic PESs

{TN(R) + Vn(R)− E}χn(R) = 0 (2.12)

Although the adiabatic approximation is often a very useful approach, it may

fail in cases where the PESs of different electronic states are energetically close.

In these cases the elements of the nonadiabatic coupling matrix Λnm can become

extremely large, and huge ratio of nuclei to electronic masses is overcome by the

large derivative coupling Fnm and the BO approximation remains no longer valid.

The derivative coupling matrix elements diverge at the intersection of the PESs

according to Hellmann-Feynmann type of relation [4, 99]

F(k)
nm =

〈Φn(r)| ▽k Hel(r,R)|Φm(r)〉
Vn(R)−Vm(R)

, (2.13)

where Hel defines the electronic Hamiltonian for fixed nuclear coordinates. When

the two surfaces are degenerate, Vn(R) = Vm(R) the Fnm exhibit singular be-

havior [4]. As a result, both the electronic wavefunction and energy become

discontinuous at the seam of CIs which makes the adiabatic electronic represen-

tation unsuitable for dynamical studies. To circumvent this problem the concept

of diabatic electronic states is introduced [100].

2.1.2 Diabatic electronic representation

In a diabatic electronic representation the diverging kinetic energy couplings of

the adiabatic representation are transformed into smooth potential energy cou-
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plings through a suitable unitary transformation. In this representation the nu-

clear kinetic energy operator is diagonal and the coupling between the electronic

states is introduced through the off-diagonal elements of potential energy oper-

ator of the molecular Hamiltonian. In a diabatic electronic representation the

coupled equations of motion (cf, Eq. 2.6) takes the form [59,72]

{TN(R) + Unn(R)− E}χn(R) =
∑

m6=n

Unm(R)χm(R), (2.14)

where Unn(R) are the diabatic PESs and Unm(R) are their coupling elements.

The latter are given by

Unm(R) =

∫
drφ⋆

n(r,R)[Te + V(r,R)]φm(r,R), (2.15)

where φ represents the diabatic electronic wavefunction.

The diabatic electronic states φ(r,R) are defined via a unitary transformation

of the adiabatic electronic states Φ(r,R) through

φ(r,R) = SΦ(r,R), (2.16)

where S is orthogonal transformation matrix

S(Q) =


 cos θ(Q) sin θ(Q)

− sin θ(Q) cos θ(Q)


 . (2.17)

The matrix S(Q) is called the adiabatic-to-diabatic transformation (ADT) ma-

trix and θ(Q) defines the transformation angle. The required condition for such

transformation is the first-order derivative coupling of Eq. (2.13) vanishes in this

diabatic representation for all nuclear coordinates [101,102]

∫
drφ∗

n(r,R)
∂

∂Rk

φm(r,R) = 0. (2.18)
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This requirement yields the following differential equations for the transformation

matrix [103–105]

∂S

∂Rk

+ F(k)S = 0, (2.19)

where the elements of the first-order derivative coupling matrix F (k) are given by

Eq. (2.13). A unique solution of the above equation exist only when [103–105]

∂A
(k)
nm

∂Rl

− ∂A
(l)
nm

∂Rk

= [A(k)
nm,A(l)

nm]. (2.20)

The concept of diabatic electronic basis was introduced quite early in the

literature in the context of describing the electron-nuclear coupling in atomic

collision processes [100] as well as in molecular spectroscopy [25, 70]. However,

construction of the latter for polyatomic molecular systems is a tedious and dif-

ficult since it is a problem depending on multi-coordinates rather than a single

nuclear coordinate. Therefore, various approximate mathematical schemes have

been proposed in the literature [101–103,106–112] to accomplish this task.

2.1.3 Normal Coordinates

Following the traditional approach [19–21, 25], we introduce normal coordinates

[113] to describe small vibrations around the equilibrium geometry of the elec-

tronic ground state. We assume here that we are dealing with a closed-shell

molecular system. The normal coordinates are defined by

q = L−1δR (2.21)

where δR is the 3N − 6 (3N − 5 for linear molecules) dimensional vector of

internal displacement coordinates (changes of bond lengths and bond angles) for

an N atomic molecule, and L is the L-matrix of the well-known Wilson FG-matrix
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method [113]. It is convenient to introduce dimensionless normal displacement

coordinates via

Qi = (ωi/~)1/2qi (2.22)

where ωi is the harmonic vibrational frequency of the ith normal mode. In the

harmonic approximation, the kinetic-energy and potential-energy operators of the

electronic ground state take the simple form (let us consider that ~ = 1)

TN = −1

2

∑

i

ωi
∂2

∂Q2
i

(2.23)

V0 =
1

2

∑

i

ωiQ
2
i (2.24)

In the following sections, we proceed by expanding the diabatic excited-state

potential-energy functions and coupling elements in terms of normal mode dis-

placement coordinate Qi.

2.1.4 Linear Vibronic Coupling Scheme

Let us assume that a diabatic basis has been obtained for a given set of vibroni-

cally interacting electronic states. In this basis the matrix Hamiltonian is given

by [4]

H = TN1 + W(Q). (2.25)

The matrix elements of the potential matrix W(Q) read

Wnm(Q) =

∫
drφ⋆

n(r,Q)Heφm(r,Q). (2.26)

The φn(r,Q) are the diabatic wavefunctions for an electronic state of index n. For

a polyatomic molecule, the accurate solution of the matrix Hamiltonian (Eq. 2.25)
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is very tedious and often impracticable. Therefore, an approximate form of the

matrix Hamiltonian is often considered for which the Schrödinger equation can

be accurately solved. The simplest, yet elegant approximation is to expand the

potential-energy matrix W(Q) about a reference nuclear configuration Q0 and

retaining the terms linear in Q for the off-diagonal terms. This method is known

as the linear vibronic coupling (LVC) scheme [4,97]. The linear approximation is

often sufficient since the elements of the W(Q) matrix are, by definition, slowly

varying functions of Q. Without any loss of generality it is assumed that the

diabatic and adiabatic states are identical at the reference geometry Q0.

For the interacting electronic states n and m, the elements of the matrix

Hamiltonian in the linear approximation are

Hnn = TN + V0(Q) + En +
∑

s

κ(n)
s Qs (2.27)

Hnm =
∑

s

λ(n,m)
s Qs. (2.28)

The energies En which appear in the diagonal of H are constants given by

Wnn(Q0). The quantities κ
(n)
s and λ

(n,m)
s are known as intrastate and interstate

electron-vibrational coupling constants, respectively, given by [4]

κ(n)
s =

(
∂Vn(Q)

∂Qs

)

Q0

, (2.29)

λ(n,m)
s =

(
∂Vnm(Q)

∂Qs

)

Q0

. (2.30)

The non-vanishing interstate coupling constants λ
(n,m)
s are those for which the

product of the irreducible representations of electronic states φn and φm, and

of the nuclear coordinate Qs contains the totally symmetric representation ΓA,
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i.e. [4],

Γn × ΓQs
× Γm ⊃ ΓA. (2.31)

The analogous condition for the intrastate coupling constants κ
(n)
s is

Γn × ΓQs
× Γn ⊃ ΓA. (2.32)

Certainly all totally symmetric modes can couple to the electronic motion which

emphasize the important role of these modes in the VC problem. From the above

symmetry selection rules (Eqs. 2.31 and 2.32), we can say that, only the totally

symmetric modes give rise to nonzero intrastate coupling constants and only

nontotally symmetric modes to nonzero interstate coupling constants.

2.1.5 Vibronic coupling involving degenerate modes and

degenerate states

The degenerate electronic states are outstanding examples of the failure of the

adiabatic approximation. In the case of linear molecules the VC problem is known

as the RT effect [49]; otherwise, it is known as the JT effect [16]. Starting with

the JT effect, which is the part of essential ingredient of this thesis, nearly all

(nonlinear) molecules with degenerate electronic states possess several degenerate

modes which can vibronically couple the components of these states. It is thus

clear that we have to solve the multimode JT problem in order to arrive at an

understanding of the interactions that occur in actual molecules.

2.1.5.1 The Jahn-Teller Effect

The derivation of JT Hamiltonians follows general principles of vibronic coupling

theory, several of which have, in fact, first been formulated within JT theory

[17, 25]. The component of degenerate electronic states at the high-symmetry
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reference configuration are used as an electronic basis also for displaced, lower-

symmetry nuclear configurations. The JT Hamiltonian is then represented as a

matrix with respect to this basis, and the matrix elements are usually expanded

in a Taylor series for small displacements Qi (i = 1, · · · , n) from the reference

configuration: [4, 17,21]

Hαα′

JT = H0δαα′ +
∑

i

∂Vαα′

∂Qi

Qi +
∑

i,j

∂2Vαα′

∂Qi∂Qj

QiQj +O
(
Q3
)
. (2.33)

Here Vαα′ (α, α′ = 1, · · · ,m) denote the matrix elements of the potential energy

operator in the electronic basis chosen, and the derivatives are to be taken at

the symmetric conformation Qi = Qj = 0 (i, j = 1, · · · , n). The term H0 in-

cludes the zero-order element of the expansion, i.e., the degenerate electronic

energy eigenvalue V (0) at the high-symmetry nuclear configuration, the nuclear

kinetic energy, and also the “JT-unperturbed” vibrational potential energy. The

latter is usually specified in the harmonic approximation, comprising all relevant

vibrational degrees of freedom and serves to define the displacement normal co-

ordinates Qi (i = 1, · · · , n) of the expansion in Eq. (2.33). Generally, it can be

chosen to represent vibrational motion on the arithmetic mean of the JT split

potential energy surfaces. Alternatively, it is often equated with the vibrational

Hamiltonian of the initial, nondegenerate electronic state, if such an electronic

transition is under investigation.

Comparison between the above written JT Hamiltonian (2.33) and other vi-

bronic coupling Hamiltonians discussed in the literature immediately reflects that

the underlying concepts between them are virtually identical. The only essen-

tial difference is that for JT cases, the relative sizes and signs of the derivatives

of Vαα′ within a degenerate electronic manifold are constrained by symmetry.

Also, the degeneracy itself, being a conical intersection for finite first derivatives

∂Vαα′/∂Qi, occurs for Qi = Qj = 0, i.e. it is not accidental, but again fixed by

symmetry. Finally, the symmetries of the JT-active normal modes, within LVC
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scheme, are determined by the requirement that their irreducible representations

Γvib are contained in the decomposition of the symmetrized direct product of the

irreducible representation Γel of the electronic state according to [15,17,21]

(Γel)
2 ⊃ Γvib (2.34)

In the following, these general statements will be exemplified for prototype cases

of CF3CN+ and TFBz+ involving twofold degenerate electronic states on Chapter

3 and Chapter 4. The extensions to include additional (nondegenerate) states will

also be discussed there.

2.1.5.2 The single-mode E ⊗ e Jahn-Teller effect

The simplest case which shows the JT effect is a system with a doubly degenerate

electronic state and a threefold principal rotation axis. In this system there are

always doubly degenerate vibrational modes that are (linearly) JT-active, that

is, the derivatives ∂Vαα′/∂Qi do not vanish for their (cartesian) displacement

components Qx and Qy. Now considering the elementary symmetry selection

rule mentioned above (2.34), the corresponding 2× 2 JT matrix Hamiltonian up

to second order is found to be [17,23,24]

HE⊗e = H01 + k


 Qx Qy

Qy −Qx


+

g

2


 Q2

x −Q2
y 2QxQy

2QxQy Q2
y −Q2

x


 . (2.35)

H0 =
ω

2

(
− ∂2

∂Q2
x

− ∂2

∂Q2
y

+ Q2
x + Q2

y

)
. (2.36)

H0 is seen to represent the Hamiltonian of the isotropic two-dimensional harmonic

oscillator (with frequency ω), and the electronic energy at the origin Qx = Qy = 0

has been chosen to be zero. 1 denotes the 2 × 2 unit matrix. The parame-

ters k (k > 0) and g are called the first-order (or linear) and second-order (or

quadratic) coupling constants, respectively.
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To start with, let us first consider the second-order coupling constant g to

zero. This then reduces the Eq. (2.35) to the well-known Hamiltonian of the

linear E ⊗ e JT effect which has been amply studied in the literature (see, for

example, Refs. [4,17,21] and references therein). Diagonalization of the potential

energy part leads to the famous “Mexican hat” potential energy surfaces

V± =
ω

2
ρ2 ± kρ, (2.37)

ρ2 = Q2
x + Q2

y. (2.38)

These rotationally symmetric surfaces are characterized by the JT stabilization

energy

EJT =
k2

2ω
, (2.39)

occurring at the optimum distortion

ρ0 = k/ω. (2.40)

The so-called pseudorotational angle φ is defined as

φ = arctan (Qy/Qx) . (2.41)

The corresponding eigenvector matrix reads

S =


 cos (φ/2) − sin (φ/2)

sin (φ/2) cos (φ/2)


 , (2.42)

where the two columns represent the expansion coefficients of the adiabatic wave-

functions in the diabatic electronic basis. Transforming the complete Hamiltonian
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(2.35) to the adiabatic basis leads to

HE⊗e
ad = S†HE⊗eS = H01 +


 V+ 0

0 V−


+ Λ, (2.43)

with the nonadiabatic coupling operator

Λ =
ω

2ρ2




1
4

i ∂
∂φ

i ∂
∂φ

1
4


 , (2.44)

which is seen to diverge at the origin ρ = 0, where the two adiabatic potential

energy surfaces exhibit the JT intersection.

2.1.6 Influence of additional modes

The above comprehensive presentation of the single-mode E ⊗ e JT effect serves

as the basis for the discussion of related and more general systems. These will be

discussed more briefly, focussing on their similarities and differences with respect

to the prototype case. We start with the inclusion of additional vibrational modes.

2.1.6.1 Additional e vibrational modes

Additional e modes are included in the Hamiltonian (2.35) by replacing the cor-

responding single-mode terms by summations over all relevant vibrations, e.g.

kQx →
∑

i

kiQ
i
x, kQy →

∑

i

kiQ
i
y, (2.45)

in a self-explanatory notation (and an analogous extension in the zero-order

Hamiltonian H0). Since virtually all molecules exhibiting the E ⊗ e JT effect

possess several e modes (except for equilateral X3 systems) this generalization

is of immediate relevance. Although the total JT stabilization energy EJT is
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additive, i.e.

EJT =
∑

i

k2
i

2ωi

≡
∑

i

E
(i)
JT , (2.46)

the Hamiltonians HE⊗e
i for the various modes do not commute (i 6= j):

[
HE⊗e

i ,HE⊗e
j

]
6= 0. (2.47)

Thus, the eigenvalue problem of the individual Hamiltonians cannot be solved

separately. Rather, the multi-mode vibronic secular matrix has to be diagonalized

as a whole [4].

The nonseparability of the JT active modes makes it necessary to sum over

all contributions Hj of the individual modes

H =
M∑

j

Hj, (2.48)

and treat the total matrix Hamiltonian H as a whole rather than the individ-

ual terms separately. As a consequence, the vibronic symmetries are reduced

considerably. The individual vibronic angular momenta

Jj =
1

i

∂

∂φj

12 +
1

2


1 0

0 −1


 (2.49)

are no longer constants of the motion. It is only the total vibronic angular

momentum

J =
M∑

j

1

i

∂

∂φj

12 +
1

2


1 0

0 −1


 (2.50)

that commutes with H [4]. In the adiabatic PESs this manifests itself in a depen-

dence of V± on the azimuthal angles φj of the individual modes. The potentials

are invariant only under a common change of the angles of all vibrational modes
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otherwise of a very complicated shape. In addition, the locus of intersection is

no longer a single point in coordinate space, but rather a subspace of dimension

2M - 2. It must be evident from these remarks that the multimode JT problem

leads to much more complicated nuclear dynamics than the single-mode problem.

We note that it is important to take these multimode effects into consideration

in order to arrive at a realistic treatment of actual molecules [4].

2.1.6.2 Inclusion of totally symmetric vibrational modes

From Eq. (2.27) it is clear that displacements along totally symmetric vibrations

can tune the energy gap (|E2 − E1|) between two electronic states and generally

lead to intersections of the potential-energy functions, which are allowed by sym-

metry. These vibrational modes have therefore been termed tuning modes [4]. On

the other hand, the nontotally symmetric modes satisfying Eq. (2.31) describe the

coupling between two electronic states. Therefore, they are termed as coupling

modes [4]. Within the LVC approach, the tuning modes contribute only to the

diagonal elements of the electronic Hamiltonian matrix, see Eq. (2.27). There-

fore, the inclusion of these modes to the VC models described earlier becomes

straightforward.

In the (E × e)-JT case the Nt tuning modes are represented by

H t
JT =

Nt∑

i=1



(

∂2

∂Q2
i

+ Q2
i

)
12 +


κE

i 0

0 κE
i


Qi


 , (2.51)

where the normal coordinates Qi, i = 1 · · ·Nt, are the totally symmetric modes

and the κE
i are the gradients of the adiabatic potential-energy functions of the E

state with respect to the ith tuning mode.

From Eqs. (2.35) and (2.51), we have

[
HE⊗e, H t

JT

]
= 0. (2.52)
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For this reason a1 modes are usually omitted from JT treatments and included

in the computation of optical spectra.

2.1.7 The pseudo-Jahn-Teller effect involving degenerate

electronic states

So far the discussion has been restricted to an isolated doubly degenerate (E)

electronic state which is not always be suitable for a real molecular system. This

is particularly very true when there are other electronic states energetically very

close to this doubly degenerate electronic state, where couplings to other elec-

tronic states may play a crucial role. As a simple generalization we will therefore

consider now the interaction of an E electronic state with a nondegenerate state,

characterized by the symmetry label A. The intra-state (JT) interaction within

the E state will initially be suppressed for clarity.

2.1.7.1 The single-mode (E + A)⊗ e pseudo-Jahn-Teller effect

Considering the same general principles and symmetry selection rule for the con-

struction of the vibronic Hamiltonian as indicated above and discussed in section

2.1.5.1, the Hamiltonian for the linear (E + A) ⊗ e pseudo-Jahn-Teller effect is

found to be [4, 43]

H = H01 +




EE 0 λQx

0 EE λQy

λQx λQy EA


 . (2.53)

Here EE and EA denote the E and A state energies for the undistorted nuclear

configuration (Qx = Qy = 0) and 1 represents the 3× 3 unit matrix.

We note that the Hamiltonian (2.53) shares many features with the general

vibronic coupling problem for two nondegenerate electronic states, discussed am-

ply in the literature. We also note that the notion “pseudo-Jahn-Teller” (PJT)
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interaction has been used for systems where one of the interacting states as well as

the coupling mode are degenerate and unlike general vibronic coupling systems,

the totally symmetric modes are nonseparable from the PJT problem and play an

important role already in first order. Although they are neglected in Eq. (2.53)

for simplicity but are included in the examples discussed in this thesis whenever

applicable.

The adiabatic eigenvectors corresponding to Eq. (2.53) involve either the

asymmetric (potential surface V0) or symmetric (potential surfaces V+ and V−)

linear combinations of the E component basis states. The eigenvalues are

V0 =
ω

2

(
Q2

x + Q2
y

)
+ EE

V± =
ω

2

(
Q2

x + Q2
y

)
+

EE + EA

2
(2.54)

±

√(
EE − EA

2

)2

+ λ2
(
Q2

x + Q2
y

)
.

It depends on the sign of EE −EA whether V+ or V− correlates with the E state

for Qx = Qy = 0 and becomes degenerate there with the “unperturbed” surface

V0.

2.1.7.2 The single-mode (E ⊗ e + A)⊗ e pseudo-Jahn-Teller effect

Let us now address the more general case of systems with simultaneous JT and

PJT vibronic interactions. Depending on the particular symmetries prevailing,

the same vibrational mode may be JT and PJT active in first order. This is,

quite likely the case, for example, in trigonal point groups with a single doubly

degenerate irreducible representation (it follows necessarily, if there exists a single

mode of this symmetry only). Then the relevant Hamiltonian is obtained by

adding Eqs. (2.35, 2.36, 2.53) for the same mode [4, 43,114]:
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HPJT = H01 + k




Qx Qy 0

Qy −Qx 0

0 0 0


+

g

2




Q2
x −Q2

y 2QxQy 0

2QxQy Q2
y −Q2

x 0

0 0 0




+




EE 0 λQx

0 EE λQy

λQx λQy EA


 . (2.55)

As in the preceding subsection, the second-order PJT couplings have been

suppressed. (While their form is straightforward to work out, they may often

be less important, if the E-A energy gap is not too small). The meaning of

the zero-order Hamiltonian H0 and of the coupling constants is also the same as

above. Although the totally symmetric modes has an important influence on the

system dynamics, they are not included in the Hamiltonian (2.55) for simplicity.

However, they may be not only Condon-active through finite first-order coupling

constants, but also modulate the E − A energy gap through different first-order

constants in the two electronic states. This is the same behavior as in vibronic

coupling systems with nondegenerate states [4] and as in the (E + A) ⊗ e PJT

coupling systems discussed above. It may lead to additional conical intersections

with two or three (for PJT systems) intersecting potential energy surfaces.

2.2 Calculation of the excitation spectrum

Assume that a molecule initially in the state Ψ0 is excited by some operator T̂

into a manifold of vibronically coupled electronic state. According to Fermi’s

Golden rule, the excitation spectrum is described by the function

P (E) =
∑

v

∣∣∣〈Ψv|T̂ |Ψ0〉
∣∣∣
2

δ(E − Ev + E0), (2.56)
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where |Ψ0〉 is the reference state of the molecule with energy E0. |Ψv〉 is the final

vibronic state in the coupled electronic manifold and Ev is the vibronic energy.

Considering the reference state is energetically well separated and decoupled from

the excited electronic manifold, the initial and final states are given by

|Ψ0〉 = |Φ0〉|χ0
0〉, (2.57)

|Ψv〉 = |Φ1〉|χ1
v〉+ |Φ2〉|χ2

v〉, (2.58)

where |Ψ〉 and |χ〉 represent the diabatic electronic and vibrational part of the

wavefunction, respectively. The superscripts 0, 1, and 2 refer to the ground

and the two interacting diabatic electronic states, respectively. With the use of

Eqs. (2.57-2.58), the excitation function of Eq. 2.56 can be rewritten as [4]

P (E) =
∑

v

∣∣τ1〈χ1
v|χ0

0〉+ τ2〈χ2
v|χ0

0〉
∣∣2δ(E − Ev + E0), (2.59)

where

τm = 〈Φm|T̂ |Φ0〉, (2.60)

represent the matrix elements of the transition dipole operator of the final elec-

tronic state m. Upon rewriting Eq. (2.59), the matrix elements of the transition

dipole operator are treated to be independent of nuclear coordinates. These el-

ements are not calculated and are treated as constants, in accordance with the

applicability of the generalized Condon approximation in a diabatic electronic

basis [115].
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2.2.1 Time-Independent quantum mechanical approach

In a time-independent quantum mechanical approach the excitation spectrum is

calculated by solving the eigenvalue equation

H|Ψv〉 = Ev|Ψv〉 (2.61)

numerically, by representing the vibronic Hamiltonian H in a complete direct

product basis of one dimensional harmonic oscillator eigenfunctions of H0. In

this basis, |χm
v 〉 takes the following form [4]:

|χm
v 〉 =

∑

n1,n2,...,nk

am
v,n1,n2,...,nk

|n1〉|n2〉...|nk〉. (2.62)

Here m is the electronic state index, nl is the quantum number associated with

the lth vibrational mode, and k is the total number of such modes. The summa-

tion runs over all possible combinations of quantum numbers associated with each

mode. For each vibrational mode, the oscillator basis is suitably truncated in the

numerical calculations. The maximum level of excitation for each mode is ap-

proximately estimated from the corresponding Poisson parameter [1
2

(κorλ
ω

)2]. The

Hamiltonian matrix written in such a direct product basis is usually highly sparse,

and is tridiagonalized using the Lanczos algorithm prior to diagonalization [116].

The diagonal elements of the resulting eigenvalue matrix give the eigenenergies

of the vibronic energy levels and the relative intensities of the vibronic lines are

obtained from the squared first components of the Lanczos eigenvectors [72,116].

Finally, the spectral envelope is calculated by convoluting the line spectrum

with a suitable Lorentzian line-shape function of appropriate width of the follow-

ing:

L(E) =
1

π

Γ/2

E2 + (Γ/2)2
. (2.63)
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The quantity Γ represents the full width at the half maximum (FWHM) of the

Lorentzian.

2.2.2 Time-Dependent Wave Packet Approach

In a time-dependent approach the Fourier transform representation of the Dirac

delta function is used in the Golden formula (Eqs. 2.56, 2.59) to calculate the

spectral intensity. In this representation the delta function is expressed as

δ(x) =
1

2π

∫ +∞

−∞

eixt/~δt. (2.64)

Using this the spectral intensity (Eq. (2.56)) transforms into the following useful

form, readily utilized in a time-dependent picture

P (E) ≈ 2Re

∫ ∞

0

eiEt/~〈Ψf (0)|τ †e−iHt/~
τ |Ψf (0)〉dt, (2.65)

≈ 2Re

∫ ∞

0

eiEt/~ Cf (t) dt, (2.66)

where the elements of the transition dipole matrix τ
† is given by, τ

f = 〈Φf |T̂ |Φi〉.
The above integral represents the Fourier transform of the time-autocorrelation

function [4, 117]

C(t) = 〈Ψf (0)|e−iHt/~|Ψf (0)〉 = 〈Ψf (0)|Ψf (0)〉, (2.67)

of the WP, initially prepared on the f th electronic state and, Ψf (t) = e−iHt/~ Ψf (0).

In the time-dependent calculations, the time autocorrelation function is damped

with a suitable time-dependent function before Fourier transformation. The usual

choice has been a function of type

f(t) = exp[−t/τr] , (2.68)
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where τr represents the relaxation time. Multiplying C(t) with f(t) and then

Fourier transforming it is equivalent to convoluting the spectrum with a Lorentzian

line shape function (cf., Eq. 2.63) of FWHM, Γ = 2/τr.

In case of multimode nonadiabatic dynamical studies this traditional ap-

proach to solve the Schrödinger equation becomes computationally impractica-

ble with increase in the electronic and nuclear degrees of freedom. Therefore,

for large molecules and with complex vibronic coupling mechanism this method

often becomes impracticable. The WP propagation approach within the multi-

configuration time-dependent Hartree (MCTDH) scheme provides an alternative

efficient tool to circumvent this problem [118–123]. The key ingredient of this

scheme is to use a multiconfigurational ansatz [121, 123] for the wavefunction,

with each configuration being expressed as a Hartree product of time-dependent

basis functions, known as Single Particle Functions (SPFs). For the nonadiabatic

problem examined here, a multiset formulation is much more appropriate and the

corresponding wavefunction can be expanded as:

Ψ(Q1, Q2, ..., Qf , t) = Ψ(q1, q2, ..., qp, t)

=
σ∑

α=1

n
(α)
1∑

j1=1

...

n
(α)
p∑

jp=1

A
(α)
j1...jp

(t)

×
p∏

k=1

φ
(α,k)
jk

(qk, t)|α〉 (2.69)

=
∑

α

∑

J

A
(α)
J Φ

(α)
J |α〉, (2.70)

where, f and p represent the number of vibrational degrees of freedom, and

MCTDH particles (also called combined modes), respectively. A
(α)
j1...jp

denote the

MCTDH expansion coefficients and the φ
(α,k)
jk

are the one-dimensional expansion

functions, known as SPFs. The labels {α} are indices denoting the discrete

set of electronic states considered in the calculation. Thus, the WP, Ψ(α) ( =
∑

J A
(α)
J Φ

(α)
J ) associated with each electronic state is described using a different
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set of SPFs, {φ(α,k)
jk
}. Here the multiindex, J = j1 ... jp depends implicitly on

the state α as the maximum number of SPFs may differ for different states. The

summation
∑

J is a shorthand notation for summation over all possible index

combinations for the relevant electronic state. The variables for the p sets of

SPFs are defined in terms of one or multidimensional coordinates of a particle.

The equations of motion for the expansion coefficients, A
(α)
J and SPFs, φ

(α,k)
jk

have been derived using the Dirac-Frankel variational principle [124, 125]. The

resulting equations of motion are coupled differential equations for the coefficients

and the SPFs. For k degrees of freedom there are nk SPFs, and these SPFs are

represented by Nk primitive basis functions or grid points. The efficiency of the

MCTDH algorithm grows with increasing Nk/nk [123]. The use of the variational

principle ensures that the SPFs evolve so as to optimally describe the true WP;

i.e., the time-dependent basis moves with the WP. This provides the efficiency of

the method by keeping the basis optimally small.

We mention that the accuracy of a MCTDH calculation depends on both the

size of the primitive and the SPF bases. The populations of the primitive basis

functions, e.g. the grid points is used to check that enough primitive basis func-

tions have been used for the calculation. This can be done either by calculating

the maximum population, or by evaluating the change of population with time

of the points at the ends of the grid.

The quality of SPF basis is reflected in the population of natural orbitals.

If a calculation contains natural orbital with a low population, these are not

significant for the representation of the wavefunction, and the calculation is of a

reasonable quality. Unfortunately, different properties have different convergence

criteria. Therefore, it is not possible to give absolute figures for when the natural

orbitals are insignificant. As a general rule of thumb, when the population of

highest (least populated) natural orbital is below 1% (i.e. a population below

0.01), the calculation will be reasonable, although convergence may be a way off.

Experience has shown that it is important that the SPF bases for all modes are
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balanced i.e. the lowest natural orbital populations are similar for all. There is

little point spending effort on converging the SPF basis for one mode when the

dynamics can be seriously affected by the poor representation of another mode.

Next the efficiency of a calculation can be improved by knowing how much

time is spent in the various sections of the calculation. For instance, if in a

constant mean-field (CMF) run the Bulirsch-Stoer (BS)-integrator (used to prop-

agate SPFs) takes less than one or two percent of the total effort, one should

combine more SPFs. If on the other hand, the BS-integrator takes more than

80 % of totall effort, one should remove some of the combinations. Again if the

propagation of one certain mode takes much longer time than the propagation

of the other modes although the combined grid sizes are comparable, then one

should check whether the DVR representation is appropriate

Here we provide a brief overview on the memory requirement for the MCTDH

method. The memory required by standard method is proportional to N f , where

N is the total number of grid points or primitive basis functions and f is the

total number of degrees of freedom. In contrast, memory needed by the MCTDH

method scales as

memory ∼ fnN + nf (2.71)

where, n represent the SPFs. The memory requirements can however reduced if

SPFs are used that describe a set of degrees of freedom, termed as multimode

SPFs. By combining d degrees of freedom together to form a set of p=f/d

particles, the memory requirement changes to

memory ∼ fñNd + ñf (2.72)

where ñ is the number of multimode functions needed for the new particles. If

only single-mode functions are used i.e. d=1, the memory requirement, Eq. 2.72,



2.2. Calculation of the excitation spectrum 34

is dominated by nf . By combining degrees of freedom together this number can

be reduced, but at the expense of longer product grids required to describe the

multimode SPFs.



Chapter 3

Complex dynamics at conical

intersections : vibronic spectra

and ultrafast decay of

electronically excited

trifluoroacetonitrile radical cation

3.1 Introduction

A detailed theoretical account on the multimode JT and PJT interactions in the

five lowest electronic states of CF3CN+is presented in this chapter. The ground

state equilibrium geometry of the trifluoroacetonitrile (CF3CN) molecule belongs

to the C3v symmetry point group. Ionization of an electron from each of its

five highest occupied 6e, 10a1, 1a2, 9a1 and 5e molecular orbitals (MOs) yields

CF3CN+ in its ground X̃2E and first four excited Ã2A1 , B̃2A2 , C̃2A1 and

D̃2E electronic states, respectively. The 12 vibrational degrees of freedom of

CF3CN are grouped into 4a1⊕4e irreducible representations of the C3v symmetry

35
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point group. The symmetrized direct product of two E representations in the

C3v point group yields

(E)2 = a1 + e (3.1)

Similarly, the direct products of E ⊗ A1 and E ⊗ A2 in the C3v symmetry point

group result,

E ⊗ A1 = e

E ⊗ A2 = e (3.2)

These symmetry rules suggest that the degenerate X̃2E and D̃2E electronic

states of CF3CN would undergo JT splitting in first-order when distorted along

the degenerate vibrational modes of e symmetry (note that the symmetry of the

electronic and nuclear degrees of freedom are designated by the upper and lower

case symbols, respectively). From Eq. (3.2) it can be seen that the same JT

active degenerate vibrational modes also cause PJT type [4, 43–45] of coupling

between different electronic states. The totally symmetric a1 vibrational modes,

on the other hand, cannot lift the electronic degeneracy and are Condon active [4].

The impact of these four JT and PJT active degenerate and four Condon active

totally symmetric vibrational modes in the vibronic dynamics of CF3CN+ in its

five low-lying electronic states is examined below.

The photoelectron spectrum of CF3CN has been recorded by various experi-

mental groups using He I, He II, and synchrotron radiation [126,127] as ionization

sources. These experiments revealed different energy resolution and intensity of

peaks in the vibronic bands. The first two photoelectron bands in the ∼13.3 -

∼17.7 eV energy range revealed highly overlapping and diffuse vibronic struc-

tures, resulting from ionization of electron from the 6e, 10a1, 1a2, 9a1 and 5e

MOs of CF3CN, respectively. They are attributed to the vibronic structures of
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the energetically close lying five lowest electronic states of CF3CN+ [126,127].

In this chapter, we attempt to develop a theoretical model in order to ex-

amine the nuclear motion underlying the vibronic structures of the mentioned

photoelectron bands. It is clear from the discussion above that various electronic

coupling mechanisms need to be incorporated in the model to reach to a satisfying

interpretation of the highly overlapping and complex structures of the latter. Our

theoretical model consists of five low-lying (seven altogether when JT splitting is

taken into consideration) electronic states of CF3CN+ plus its twelve vibrational

degrees of freedom. The JT coupling within the X̃ and D̃ electronic states and

their PJT coupling with the Ã , B̃ and C̃ electronic states are taken into consid-

eration. The PJT coupling between the JT split X̃ and D̃ electronic states are

not considered mainly because they are vertically ∼3.32 eV apart and expected

to not have any profound effect on the nuclear dynamics. While the JT coupling

due to e vibrational modes is treated upto fourth-order and the Condon activity

due to a1 vibrational modes is treated upto second-order, the PJT coupling due

to e vibrational modes is treated with a linear coupling scheme.

3.2 Equilibrium structure and normal vibrational

modes of the electronic ground state of CF3CN

The electronic structure calculations of CF3CN are carried out at the Møller-

Plesset perturbation (MP2) level of theory and employing both cc-pVDZ as well

as 6-311++g** basis sets using Gaussian-03 program package [128]. The opti-

mized equilibrium geometry of its electronic ground state (X̃1A1 ) belongs to the

C3v symmetry point group. The optimized geometry parameters are : rCF =1.33

Å, rCC=1.48 Å, rCN=1.17 Å, ∠ F-C-F=108.54o and ∠ C-C-F=109.33o, in good

agreement with their experimental values [129]: 1.33 Å, 1.49 Å, 1.15 Å, 109.23o

and 109.74o in that order, respectively. Examination of occupied canonical MOs
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reveals a configuration, · · · (3e)4(4e)4(5e)4(9a1)
2(1a2)

2(10a1)
2(6e)4, for the elec-

tronic ground state of CF3CN. The sequence of MOs above are in agreement

with the results of Shimizu et al. [129] and differs with the results of Åsbrink et

al. [130] and understandably the difference arises from the the level of quantum

chemistry calculations that could be performed at that time.

Ionization of electrons from the degenerate highest occupied molecular orbital

(HOMO) (6e), HOMO-1 (10a1), HOMO-2 (1a2), HOMO-3 (9a1) and HOMO-4

(5e) results CF3CN+ in its X̃2E , Ã2A1 , B̃2A2 , C̃2A1 and D̃2E electronic states,

respectively. These MOs are schematically shown in Fig. 3.1. According to

Shimizu et al. [129] the characteristics of these MOs are as follows : HOMO is C-

N π bonding, HOMO-1 is mainly the nitrogen lone pair, HOMO-2 is non-bonding

and purely F 2p lone-pair, HOMO-3 is delocalized over the entire molecule and

is bonding in nature. HOMO-4 is mostly F 2p lone-pair but also reveals C-F

bonding. The diagrams shown in Fig. 3.1, describe the nature of these MOs

illustrated above. These MOs are energetically close lying. The Ã , B̃ , C̃ and

D̃ electronic states are vertically ∼0.50 eV, ∼2.67 eV, ∼2.84 eV and ∼3.32 eV

above the X̃ state of CF3CN+ . The harmonic frequencies (ωi, i=1-12) of the

vibrational modes of the electronic ground state of CF3CN are calculated by

diagonalizing the MP2 force field, and are given in Table 3.1 along with their

fundamental values available from the experiment [131]. Along with the frequen-

cies the mass weighted normal coordinates are obtained, which are transformed

into their dimensionless form by multiplying with
√

ωj (in atomic units used

here) [113]. These coordinates represent the normal displacement coordinates

(from their equilibrium value at Q=0), referred here as Qi for the ith vibrational

mode. Analysis shows that the twelve vibrational modes of CF3CN decompose

into 4a1⊕ 4e irreducible representations of the C3v symmetry point group. These

vibrational modes are schematically shown in Fig. 3.2, and their predominant

nature are given in Table 3.1.
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Figure 3.1: Schematic representation of the five valence type molecular orbitals
of the electronic ground state of CF3CN.
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Table 3.1: Symmetry, frequency and description of the normal vibrational modes of the electronic ground state of trifluo-
roacetonitrile. The experimental results are reproduced from Ref. [131]. Note that, theoretical frequencies are harmonic,
whereas, experimental ones are fundamental.

Vibrational Frequency (ωi)/eV Predominant
Symmetry Mode MP2/6-311++G** Experiment nature Coordinate

a1 ν1 0.2716 0.2821 C-N Stretching Q1

ν2 0.1559 0.1521 C-C Stretching Q2

ν3 0.1010 0.0994 CF3 Bending Q3

ν4 0.0656 0.0647 Umbrella Bending Q4

e ν5 0.1508 0.1505 C-F Stretching Q5x, Q5y

ν6 0.0779 0.0766 C-C-F Scissoring Q6x, Q6y

ν7 0.0583 0.0574 F-C-C Twisting Q7x, Q7y

ν8 0.0234 0.0243 C-C-N Bending+F-C-F twisting Q8x, Q8y
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Figure 3.2: Schematic representation of the normal vibrational modes of the
electronic ground state of CF3CN.
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3.3 The vibronic coupling model

Electronic structure and nuclear dynamics of CF3CN+ in its coupled X̃ -Ã -B̃ -

C̃ -D̃ electronic states are examined in this chapter. As mentioned above these

electronic states are energetically close and are readily accessible upon photoion-

ization of CF3CN and give rise to highly overlapping vibronic bands. An analysis

of the structure of the latter requires the potential energies of these electronic

states and their interaction potentials along various nuclear coordinates. The

two degenerate (X̃ and D̃ ) electronic states of CF3CN+ undergo a JT splitting

upon displacement along the degenerate vibrational modes. The latter modes can

also cause PJT type of coupling between the two degenerate (which is not consid-

ered here) and also between the degenerate and nondegenerate electronic states.

The four totally symmetric vibrational modes are Condon active within each elec-

tronic state [4]. In order to describe these couplings in the vibronic Hamiltonian

we use a diabatic electronic basis [100,115], in which they are represented in the

electronic part and are smoothly varying functions of nuclear coordinates. The

Hamiltonian is written in terms of the dimensionless normal coordinates of the

vibrational modes of CF3CN as discussed above and defined in Table 3.1, in con-

junction with the stated symmetry selection rules [Eqs. (3.1-3.2)]. Therefore, the

Hamiltonian for the coupled manifold of seven electronic states of CF3CN+ can

be written as

H = H017 +




WX
1 WX

12 WX−A
1 WX−B

1 WX−C
1 0 0

WX
2 WX−A

2 WX−B
2 WX−C

2 0 0

WA 0 0 WA−D
1 WA−D

2

WB 0 WB−D
1 WB−D

2

h.c. WC WC−D
1 WC−D

2

WD
1 WD

12

WD
2




.(3.3)
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Here, H0 = TN + V0, represents the Hamiltonian of the unperturbed electronic

ground state of CF3CN. Nuclear motions in the latter are treated as harmonic

with

TN = −1

2

4∑

i=1

ωi
∂2

∂Q2
i

− 1

2

8∑

i=5

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (3.4)

and

V0 =
1

2

4∑

i=1

ωiQ
2
i +

1

2

8∑

i=5

ωi

(
Q2

ix + Q2
iy

)
. (3.5)

The matrix Hamiltonian with elements W in Eq. (3.3) describes the change in

the electronic energy upon ionization from this unperturbed electronic ground

state and define the details of diabatic electronic potential energy surfaces of

CF3CN+ [4]. These elements are expanded in a Taylor series around the C3v equi-

librium geometry of CF3CN along each normal mode displacement coordinates.

Excluding various intermode coupling terms, the following expansions are re-

tained for these elements :

WX(D)
1,2 = E

X(D)
0 +

4∑

i=1

κ
X(D)
i Qi ±

8∑

i=5

λ
X(D)
i Qix +

1

2

4∑

i=1

γ
X(D)
i Q2

i +

1

2

8∑

i=5

[γ
X(D)
i (Q2

ix + Q2
iy)± η

X(D)
i (Q2

ix −Q2
iy)] +

1

6

8∑

i=5

[δ
X(D)
i (−6QixQ2

iy + 2Q3
ix)± µ

X(D)
i (Q3

ix + QixQ2
iy)] +

1

24

8∑

i=5

[ζ
X(D)
i (Q2

ix + Q2
iy)

2 ± α
X(D)
i (Q4

ix − 6Q2
ixQ2

iy + Q4
iy)±

β
X(D)
i (Q4

ix −Q4
iy)] (3.6a)
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WX(D)
12 =

8∑

i=5

λ
X(D)
i Qiy −

8∑

i=5

η
X(D)
i QixQiy +

1

6

8∑

i=5

µ
X(D)
i (Q2

ixQiy + Q3
iy) +

1

24

8∑

i=5

[4α
X(D)
i QixQiy(Q

2
ix −Q2

iy)− 2β
X(D)
i QixQiy(Q

2
ix + Q2

iy)] (3.6b)

WX(D)−k
1 =

8∑

i=5

λ
X(D)−k
i Qix (3.6c)

WX(D)−k
2 = −

8∑

i=5

λ
X(D)−k
i Qiy (3.6d)

Wk = Ek
0 +

4∑

i=1

κk
i Qi +

1

2

4∑

i=1

γk
i Q2

i +
1

2

8∑

i=5

γk
i (Q2

ix + Q2
iy) +

1

24

8∑

i=5

ζk
i (Q4

ix + Q4
iy) ; k ∈ Ã, B̃ and C̃. (3.6e)

The quantity Ej
0 represents the vertical ionization potential of the jth electronic

state. The linear intrastate and JT coupling parameters of the jth electronic

state are denoted by κj
i and λj

i for the symmetric and degenerate vibrational

modes, respectively. The linear PJT coupling parameters for the latter modes

between the electronic states j and k are represented by λj−k
i . The diagonal

second-order coupling parameters for the vibrational modes are given by γj
i , and

ηj
i represents the quadratic JT coupling parameters for the degenerate vibrational

modes. The diagonal cubic and quartic [132] coupling parameters for these vi-

brational modes are given by δj
i and ζj

i , respectively, whereas the corresponding

off-diagonal coupling parameters are given by µj
i , αj

i and βj
i . To calculate these

coupling parameters, we perform direct calculations of vertical ionization energies
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(VIEs) of CF3CN by the outer valence Green’s function method [133] employing

the same basis sets as noted above. The VIEs are calculated for Qi = ± 0.10, ±
0.25 (0.25) ± 1.50, along the ith vibrational mode keeping others at their equi-

librium value. These VIEs are equated with the adiabatic potential energies of

CF3CN+ relative to the electronic ground state of CF3CN. Subsequently, these

energies are fitted to the adiabatic form of the diabatic electronic Hamiltonian of

Eq. (3.3), using least-squares algorithm and thereby the coupling parameters are

obtained. Since the latter represent the derivatives of various order in the Taylor

series expansion of the elements of the electronic Hamiltonian of [Eq. (3.6a-3.6e)],

they are also estimated by numerical finite difference schemes. The parameters

that represent the best agreement between the model and the ab initio adiabatic

potentials are given in Tables 3.2, 3.3 and 3.4.

Table 3.2: Parameters of the vibronic Hamiltonian for the degenerate ground
X̃2E electronic state of CF3CN+, derived from the ab initio electronic structure
results (see text for details). The vertical ionization energy of this electronic state
(EX

0 ) is also given in the table. All quantities are in eV.

Mode κi or λi γi ηi ζi φi µi αi βi

ν1 0.2779 0.0325 – – – – – –
ν2 0.2890 -0.0165 – – – – – –
ν3 -0.0669 0.0005 – – – – – –
ν4 -0.0040 -0.0027 – – – – – –
ν5 0.0109 -0.0100 -0.0032 -0.0080 -0.0060 -0.0008 -0.0003 -0.0002
ν6 0.0082 -0.0070 0.0037 -0.0040 -0.0025 0.0009 0.0005 0.0002
ν7 0.0093 -0.0085 -0.0013 -0.0063 -0.0040 0.0009 0.0004 0.0002
ν8 0.0092 -0.0082 -0.0004 -0.0065 -0.0061 -0.0003 -0.0002 -0.0002
EX

0 14.031
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Table 3.3: Parameters of the vibronic Hamiltonian for the three lowest nonde-
generate Ã2A1 , B̃2A2 and C̃2A1 electronic states of CF3CN+, derived from the
ab initio electronic structure results (see text for details). The vertical ionization
energies of these three electronic states (EA

0 , EB
0 , EC

0 ) are also given in the table.
All quantities are in eV.

Mode κi γi φi

Ã /B̃ /C̃ Ã /B̃ /C̃ Ã /B̃ /C̃
ν1 -0.0927/0.0515/-0.0915 -0.0081/-0.0033/-0.0163
ν2 0.2612/-0.1642/0.1685 -0.0271/-0.0110/-0.0229
ν3 -0.0326/0.0593/-0.0639 -0.0003/-0.0107/ 0.0065
ν4 0.0270/-0.0744/0.0907 -0.0006/ 0.0029/-0.0039
ν5 – -0.0075/-0.0916/-0.0514 -0.0020/-0.0002/-0.0007
ν6 – -0.0037/-0.0182/-0.0184 -0.0025/-0.0030/-0.0050
ν7 – 0.0022/-0.0280/-0.0077 0.0009/-0.0035/-0.0029
ν8 – 0.0066/-0.0048/-0.0080 0.0019/-0.0015/-0.0035
EA

0 14.529
EB

0 16.701
EC

0 16.872

Table 3.4: Same as in Table 3.2 for the degenerate D̃2E electronic state of
CF3CN+.

Mode κi or λi γi ηi ζi φi µi αi βi

ν1 0.0556 0.0033 – – – – – –
ν2 -0.2526 0.0037 – – – – – –
ν3 0.0231 -0.0098 – – – – – –
ν4 -0.0945 -0.0075 – – – – – –
ν5 0.1910 -0.0348 -0.0742 -0.0008 -0.0008 -0.0006 -0.0005 -0.0003
ν6 0.0428 0.0023 -0.0044 0.0009 0.0005 -0.0009 -0.0005 -0.0003
ν7 0.0614 -0.0026 -0.0020 -0.0006 -0.0004 -0.0007 -0.0004 -0.0002
ν8 0.0014 -0.0010 0.0008 0.0007 0.0005 0.0005 0.0004 0.0001
ED

0 17.350
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3.4 Adiabatic potential energy surfaces

The adiabatic PESs of the lowest five electronic states are obtained by diagonal-

izing the diabatic electronic Hamiltonian matrix given in Eqs. (3.3-3.6e) using

the parameters of Tables 3.2, 3.3 and 3.4. One dimensional cuts of these multi-

dimensional PESs along the dimensionless normal coordinate of each vibrational

mode are shown in Figs. (3.3-3.4). In each plot, the points represent the adi-

abatic potential energies computed ab initio , and the curves superimposed on

them represent those obtained by the present vibronic model of Section 3.3. In

Figs. 3.3(a-d) the potential energies of X̃ , Ã , B̃ , C̃ and D̃ electronic states

(indicated in the panel) are plotted along the symmetric vibrational modes ν1-ν4,

respectively. It can be seen that the model reproduces ab initio data extremely

well. The degeneracy of the X̃ and D̃ states remains unperturbed on distortion

along these symmetric vibrational modes. While the crossing of the X̃ state with

the others seems not very important (except with the Ã state; panel a), the cross-

ings of the D̃ state with B̃ and C̃ electronic states appear to have crucial role in

shaping up the details structure of the second vibronic band. The participating

electronic states in the latter are energetically close and the curve crossings seen

in the diagram would lead to multiple low-lying energetically accessible conical

intersections among them. The locus of degeneracy of the two components of the

X̃ and also D̃ electronic states define the seam of the JT conical intersections

within these states, occurring at the C3v symmetry configuration of CF3CN+.

In a second-order coupling approach the energetic minimum of these seams are

given by

V(c)
min,X(D) = E

X(D)
0 − 1

2

4∑

i=1

(κ
X(D)
i )2

(ωi + γ
X(D)
i )

, (3.7)

with the parameters of Table 3.2-3.4, these minima occur at, V(c)
min,X ∼ 13.58 eV

and V(c)
min,D ∼ 17.06 eV.
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Figure 3.3: Adiabatic potential energies of the lowest five electronic states of
CF3CN+ along the dimensionless normal co-ordinates of its four totally sym-
metric vibrational modes ν1-ν4. The potential energies obtained from the present
vibronic model are shown by solid lines and the computed ab initio data are
superimposed on them are shown by the points.
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Figure 3.4: Same as in Fig. 3.3, along the dimensionless normal coordinates of
the x component of the degenerate vibrational modes ν5-ν8.
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The electronic degeneracy of the X̃ and D̃ states splits on distortion along

the degenerate vibrational modes ν5 − ν8 and this splitting leads to a total of

seven states altogether in the X̃ -Ã -B̃ -C̃ -D̃ electronic manifold. The potential

energies of the X̃ , Ã , B̃ , C̃ and D̃ electronic states of CF3CN+ are shown

in Figs. 3.4(a-d) along the x component of the degenerate vibrational modes

ν5 − ν8, respectively. The symmetry rule forbids the first-order coupling due

to these vibrational modes in the nondegenerate Ã , B̃ and C̃ electronic states.

However, these modes are JT active in first-order in the X̃ and D̃ states. It can

be seen from Fig. 3.4 that, the JT splitting is very small in the X̃ state along all

the degenerate vibrational modes, in contrast significant splitting can be observed

along ν5, ν6 and ν7 vibrational modes in the D̃ state. As before, the points on

the diagram are the computed adiabatic energies and the curves superimposed on

them represent fit to the present theoretical model. Moreover, the quartic terms of

the Taylor expansion (Eqs. 3.6a-3.6e) seem to have significant role in representing

the potential energies of the X̃ state, particularly along the vibrational mode ν8.

The seam of JT conical intersections in the X̃ and D̃ electronic states occurs in

the coordinate space of a1 vibrational modes. The energetic minimum of these

seams becomes critical point on the surface upon JT distortion. New minimum

on the lower adiabatic sheets of the JT split X̃ and D̃ states occurs at ∼13.57

eV and ∼ 16.58 eV, respectively, and give rise to JT stabilization energies of

∼ 4.6× 10−3 eV and ∼ 0.48 eV for the X̃ and D̃ states, respectively.

Table 3.5: Pseudo-Jahn-Teller coupling parameters (in eV) of the vibronic Hamil-
tonian of equation (3.3).

Mode λX,A
i λX,B

i λX,C
i λA,D

i λB,D
i λC,D

i

ν5 0.0203 0.0050 0.0020 0.0100 0.1570 0.0798
ν6 0.0500 0.0400 0.0400 0.0636 0.0572 0.0496
ν7 0.0500 0.0040 0.0800 0.0090 0.0639 0.0239
ν8 0.1250 0.2500 0.2800 0.0070 0.0030 0.0070

Approximate estimates of the energetic minimum of various PJT crossing
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seams are as follows. The minimum of the seam of X̃ -Ã conical intersections

occurs ∼ 0.43 eV above the minimum of the JT conical intersections in the

X̃ state. The minimum of the X̃ -B̃ and X̃ -C̃ conical intersections occurs ∼
2.02 eV and ∼ 1.81 eV above the latter. The minimum of the D̃ -Ã , D̃ -B̃ and

D̃ -C̃ conical intersections, on the other hand, occurs at ∼ 0.5 eV, ∼ 0.27 eV

below and ∼ 0.04 eV above the minimum of the JT conical intersections in the

D̃ state, respectively. All these critical points of the PESs occur well within the

energy range of the first two photoelectron bands studied here.

3.5 Vibronic energy levels

Vibronic energy levels of the X̃2E , Ã2A1 , B̃2A2 , C̃2A1 and D̃2E electronic states

of CF3CN+ are shown and discussed in this section. These are calculated by the

quantum mechanical methods described above using the parameters of Tables 3.2-

3.4. To start with, let us first examine the energy levels of each of these electronic

states excluding the PJT coupling with their neighbors and using a second-order

model Hamiltonian. The final theoretical results of this chapter are, however,

obtained by including all couplings [as described in the Hamiltonian of Eq.(3.3)]

and propagating WPs using the MCTDH algorithm [118–123]. In the following,

we start with various reduced dimensional models and systematically approach

to carry out the final simulation of nuclear dynamics using the seven electronic

states and twelve vibrational modes.

In the uncoupled states situation and in absence of any intermode coupling

terms, the Hamiltonian for the X̃ and D̃ states are separable in terms of the a1

and e vibrational modes. One can therefore calculate partial spectra separately

for the a1 and e vibrational modes and convolute them to generate the complete

spectrum, for these degenerate electronic states. Such a separation reduces the

dimension of the secular matrix and facilitates the numerical computation. The

vibronic energy level spectrum of the X̃ electronic manifold is shown in Fig. 3.5.
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Figure 3.5: Vibronic energy levels of the X̃2E electronic manifold of CF3CN+:
(a) partial spectrum computed with the four totally symmetric a1 vibrational
modes ν1-ν4, (b) partial spectrum computed with the four JT active degenerate
e vibrational modes ν5-ν8, and (c) the composite theoretical spectrum obtained
by convoluting the above partial spectra. The relative intensity (in arbitrary
units) is plotted as a function of the energy of the final vibronic state. The zero
of energy correspond to the equilibrium minimum of the electronic ground state
of CF3CN. The theoretical stick spectrum in each panel is convoluted with a
Lorentzian function of 20 meV FWHM to generate the spectral envelope. The
stick spectrum of panel c is multiplied by a factor of 3 for a better clarity.
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The two partial spectra of the a1 and e vibrational modes are shown in panels a

and b, respectively. The results of convolution of the two partial spectra are shown

in the panel c. The vibronic energy eigenvalues are obtained by diagonalizing

the Hamiltonian matrix using the Lanczos algorithm and are shown as the stick

lines in the figure. The envelopes are obtained by convoluting these stick lines

with a Lorentzian function with a full width at the half maximum (FWHM) of

20 meV. Further details of the calculations are given in Table 3.6. The partial

Table 3.6: The number of harmonic oscillator (HO) basis functions along each
vibrational mode and the dimension of the secular matrix used to calculate the
converged theoretical stick spectrum shown in various figures noted below.

Dimension of the
No. of HO basis functions secular matrix Figure(s)

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

12 39 6 2 - - - - 11232 3.5(a)
- - - - 2 2 4 30 460800 3.5(b)
2 38 2 30 - - - - 9120 3.6(a)
- - - - 17 5 11 2 6993800 3.6(b)
6 54 5 8 - - - - 25920 3.7(a)
2 12 10 28 - - - - 13440 3.7(b)
3 16 14 60 - - - - 80640 3.7(c)

spectrum of the e vibrational modes (panel b) is essentially structureless because

of their very weak JT coupling in the X̃ state (cf., Table 3.2 and Fig. 3.4).

The a1 vibrational modes (panel a), ν1, ν2 and ν3 form progressions and peaks

are ∼0.302 eV, ∼0.138 eV and ∼ 0.101 eV spaced in energy corresponding to

the frequencies of these vibrational modes (cf., Table 3.1), respectively. The

vibrational mode ν2 forms the dominant progression in the band. Fundamental

transition due to ν7 and ν8 vibrational modes are observed in the partial spectrum

for the degenerate vibrational modes (panel b). Lines are ∼0.049 eV and ∼0.015

eV spaced in energy and correspond to the frequency of the ν7 and ν8 vibrational

modes, respectively. Similar spectra for the JT split D̃2E electronic manifold

of CF3CN+ are shown in Figs. 3.6 (a-c). In contrast to the X̃ state spectrum
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Figure 3.6: Same as Fig. 3.5, for the D̃2E electronic manifold of CF3CN+.
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(cf, Fig. 3.5(a)), the symmetric mode spectrum of this state (panel a) reveals

dominant excitations of the ν2 and ν4 vibrational modes. The dominant lines

are ∼0.058 eV and ∼0.154 eV spaced relative to the band origin and correspond

to the frequency of the ν4 and ν2 vibrational modes in the D̃ electronic state,

respectively. The excitation of the ν1 and ν3 vibrational modes in this case are

found to be much weaker compared to that in the X̃ state. The spectrum for the

JT active vibrational modes (panel b) clearly reveals that the JT effect is much

stronger in this electronic manifold. Excitations due to the degenerate ν5, ν6 and

ν7 vibrational modes can be found in this case. The irregular spacings of lines in

the spectrum result from the multimode JT interactions. The composite vibronic

spectrum shown in panel c turned out to be very diffuse, due to much increase

in the spectral line density arising from relatively stronger JT coupling strength

of the degenerate vibrational modes in the D̃ state.

The three nondegenerate electronic states (Ã , B̃ and C̃ ) of CF3CN+ lie

(vertically) in between the two degenerate electronic states (X̃ and D̃ ). The

vibronic band structures of the latter electronic states shown above in Figs. (3.5-

3.6) differ significantly from the experimental results (presented later in Fig.

3.8). Therefore, it seems necessary to consider their possible PJT interactions

with these three nondegenerate electronic states to account for the detail fine

structure of the first two photoelectron bands of CF3CN. The vibronic energy

level spectrum of these nondegenerate electronic states without including the

coupling with their neighbors are shown in Figs. 3.7(a-c). The vibronic structure

of the uncoupled Ã2A1 electronic state (panel a) reveal dominant excitation of

the ν2 vibrational mode upto its seventh overtone. The other three symmetric

vibrational modes are very weakly excited in this band. The vibronic structure

of the B̃2A2 (panel b) and C̃2A1 (panel c) electronic states, on the other hand,

reveals dominant excitations of ν2 and ν4 vibrational modes.

So far we did not consider the PJT coupling of various electronic states in

the numerical calculations. On inclusion of this coupling, the separation of the
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Figure 3.7: Same as Fig. 3.5, for the nondegenerate Ã2A1 (panel a), B̃2A2 (panel

b) and C̃2A1 (panel c) electronic states of CF3CN+.
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Figure 3.8: Comparison of the present theoretical and experimental photoelectron
bands of CF3CN: (a) He-I and He-II experimental spectrum [126], (b) composite
theoretical spectrum employing a full second-order Hamiltonian and without con-
sidering the PJT coupling. The stick vibronic spectrum is multiplied by a factor 4
for clear representation, (c) the final theoretical results obtained by including all
couplings described in the Hamiltonian of Eqs.(3.3-3.6e). The theoretical spectral
envelopes in panel b and c correspond to a Lorentzian line shape function with 40
meV FWHM. The vibronic stick eigenvalue spectrum obtained by diagonalizing
the X̃2E -Ã2A1 block of the Hamiltonian is shown in the inset of panel b (see
text for details). The spectral envelop in it correspond to a Lorentzian function
with 40 meV FWHM. The stick vibronic spectrum is multiplied by a factor of
2.5. The magnified version of the experimental He I band are also included on
top of the theoretical results of panel c for a better clarity.
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Hamiltonian in terms of the symmetric and degenerate vibrational modes for

the degenerate electronic states as explored above is no longer possible. It is

therefore necessary to follow the nuclear dynamics simultaneously on seven cou-

pled electronic states (four from the two JT split X̃ and D̃ states plus three

nondegenerate Ã , B̃ and C̃ electronic states) including all relevant vibrational

degrees of freedom. Computationally, it turns out to be a daunting task to sim-

ulate the nuclear dynamics quantum mechanically by the matrix diagonalization

approach employed above. We therefore resort to the promising MCTDH algo-

rithm [118–123], and propagate WPs on seven coupled electronic states including

all twelve vibrational degrees of freedom in order to arrive at our goal. The twelve

vibrational degrees of freedom are grouped into four three dimensional particles.

The combination scheme of the vibrational modes is given in Table 3.7, along

with the sizes of the primitive and SPF bases.
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Table 3.7: The normal mode combinations, sizes of the primitive and the single particle basis used in the WP propagation
employing the MCTDH algorithm on the (X̃2E -Ã2A1 -B̃2A2 -C̃2A1 -D̃2E ) coupled electronic manifold using the complete
vibronic Hamiltonian of Eqs. (3.3-3.6e). The CPU time and the required memory of each run is also given.

Normal Primitive SPF CPU Required Figure
modesa basisb basisc time RAM [Mbyte]

[Ex
X , Ey

X , A1
A

A2, A1
C , Ex

D, Ey
D]

(ν6x, ν3, ν5x) (7, 6, 6) [9, 9, 12, 14, 14, 23, 23] Ex
X : 14h 01min 31.2s 435.4 Fig. 3.8

(ν4, ν5y, ν8y) (4, 6, 8) [5, 5, 9, 9, 11, 9, 9] Ey
X : 14h 01min 31.7s ”

(ν2, ν1, ν7x) (17, 10, 7) [23, 23, 9, 9, 11, 21, 21] A1: 12h 23min 19.9s ”
(ν8x, ν7y, ν6y) (8, 7, 7) [14, 14, 14, 9, 9, 12, 12] A2: 10h 11min 43.0s ”

A1: 9h 19min 26.6s ”
Ex

D: 8h 7min 4.4s ”
Ey

D: 8h 7min 26.2s ”

The calculations were converged with respect to the spectrum. aVibrational modes bracketed together were treated as a single

particle, e.g., particle 1 is a 3-dimensional particle that combines ν6x, ν3, and ν5x vibrational modes. b The primitive basis is the

number of harmonic oscillator DVR functions, in the dimensionless coordinate system required to represent the system dynamics

along the relevant mode. The full primitive basis consists of a total of 2.26 ×1010 functions. c The SPF basis is the number of

single-particle functions used, one set for the each component of the seven electronic states. Here they are same in numbers in order

to give equal weight for the x and y components of the degenerate X̃2E and D̃2E electronic state. Total number of configurations

are 172368.
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The parameters documented there are optimally chosen to ensure the numeri-

cal convergence of the vibronic bands shown below. The WP in each calculation is

propagated for 200 fs which effectively yields results for 400 fs propagation [134].

Fig. 3.8 displays in comparison, the experimental and present theoretical photo-

electron bands of CF3CN in the energy range ∼13-18 eV, resulting from ionization

from the five valence type MOs of CF3CN (cf., Fig. 3.1). The theoretical results

are shown in panel b and c along with the experimental He I and He II results

in panel a [126]. The theoretical results of panel b are obtained by superimpos-

ing the spectra shown in Figs. (3.5-3.7) without considering the PJT interactions

among the states. The results shown in panel c, are obtained by including all cou-

pling terms as given in the Hamiltonian of Eqs. (3.3-3.6e) and propagating WPs

employing the MCTDH scheme [118–123]. Details of the MCTDH calculations

are given in Table 3.7. Seven WP propagations in the coupled X̃ -Ã -B̃ -C̃ -

D̃ electronic manifold are carried out by initially preparing the WP separately

on each of the component state of this manifold. Finally, results from these seven

calculations are combined with appropriate statistical weights (2:1 statistical ra-

tio for lines of E and A vibronic symmetries). The resulting time autocorrelation

function is damped with an exponential function, e−t/τ , with τ=33 fs (which cor-

responds to a 40 meV FWHM Lorentzian function) before Fourier transformation

to generate the spectral envelopes of panel c. The stick spectrum of panel b is

also convoluted with a 40 meV FWHM Lorentzian function to obtained the cor-

responding spectral envelope. A comparison of the theoretical results of panel b

and c with the experimental one in panel a, immediately reveals strong impact of

PJT interactions in the fine structure of the vibronic bands. For clarity the exper-

imental He I bands in magnified form are included on top of the theoretical bands

of panel c. The JT couplings within the X̃ state and its PJT coupling with the

Ã state primarily contribute to the vibronic structure of the first band. The JT

coupling within the D̃ state plus the B̃ -C̃ -D̃ PJT couplings, on the other hand,

yield the irregular and highly overlapping structure of the second band. The the-
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oretical results of panel c are in good accord with the experimental, particularly

with the He II, data.

The foregoing discussions reveal that, in practice the seven coupled electronic

states Hamiltonian assumes a block diagonal structure hence the final results can

be obtained by solving the eigenvalue equations separately for each block. These

blocks consist of X̃ -Ã and B̃ -C̃ -D̃ coupled electronic states. We attempted

to diagonalize each of these two blocks of the Hamiltonian matrix separately.

While a nearly converged stick eigenvalue spectrum could be obtained for the

X̃ -Ã block, we miserably failed (due to large computer hardware requirements)

to get a presentable structure of the vibronic eigenvalue spectrum for the B̃ -

C̃ -D̃ block. The nearly converged vibronic level spectrum of the X̃ -Ã coupled

electronic states is included as an inset in panel b of Fig. 3.8. The precise

location of the adiabatic ionization positions of the seven states of CF3CN+ are

not reported in the experimental investigations [126]. However, the onset of the

experimental band is found at ∼ 13.6 eV, we adjusted our theoretical result of the

band origin to the latter value. It was necessary to decrease the vertical ionization

energy of the Ã state by ∼ 0.2 eV (from its ab initio value reported in Table 3.3)

to obtained the experimentally observed maximum of the X̃ -Ã band at ∼ 14.3

eV. We note that apart from this, no other adjustments of parameters (reported

in various tables in this chapter) are made. Precise quantitative informations

on the vibronic energy levels could not be extracted from the poorly resolved

experimental spectra [126, 127], however, our estimates show that the dominant

progressions in the X̃ -Ã band caused by the vibrational mode ν2: the peaks are

∼ 0.144 eV apart compared to the experimental (rough) estimate of ∼ 0.136 eV.

Similarly, the dominant progression in the B̃ -C̃ -D̃ electronic states caused by

the vibrational mode ν2, and the peaks are ∼ 0.154 eV apart compared to the

estimated experimental value of ∼ 0.140 eV.

To this end it is worthwhile to discuss the above results in relation to those

found for CH3CN+ [135]. Substitution of F atom results into appearance of
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many energetically close lying electronic states arising from ionization from MOs

of CF3CN with predominant F lone pair orbital character. The nature of HOMO

and HOMO-1 of both CH3CN [135] and CF3CN is similar, describing predomi-

nantly C-N π bonding and N lone pair orbitals, respectively. However, HOMO-2,

HOMO-3 and HOMO-4 (cf., Fig. 3.1) of CF3CN reveal major contributions from

the lone pair orbitals of F atom and are closely spaced in energy. This results

into highly overlapping nature of the second photoelectron band of CF3CN.

As discussed above the first band in the photoelectron spectrum of CF3CN

(cf., Fig. 3.8) describes the vibronic structure of the X̃ -Ã coupled electronic

states of CF3CN+ . Low energy conical intersections between the X̃ -Ã states are

obtained along the symmetric vibrational mode of C-N stretching type. While

such conical intersections are located very near to the equilibrium geometries of

these states for CF3CN+ (cf., panel a of Fig. 3.3), they are located far away from

the equilibrium geometries of these states for CH3CN+ [135]. The JT interactions

are weak in the X̃ state, in both CH3CN+ and CF3CN+. However, the X̃ -Ã PJT

coupling is far stronger in CF3CN+ , particularly along ν8, compared to that in

CH3CN+ [135]. The harmonic frequency of this mode also reduces by a factor of

2 in CF3CN+ . In summary, the far stronger PJT coupling leads to the highly

diffuse vibronic structure of the first band of CF3CN+ when compared to the

same of CH3CN+ [135].

Although He I and He II experimental results for the first band of CF3CN+ (cf.,

panel a of Fig. 3.8) reveal no differences in the spectral intensities, the latter for

the second band reveal dramatic differences. This bears the signature of ioniza-

tion from MOs localized mainly on the CF3 group and this band appears well

within the ”finger print” region (15.0-17.5 eV) of CF3 ionization [136, 137]. The

JT interactions in the D̃ electronic state have been shown to be much stronger

than in the X̃ state. In addition, the PJT couplings between Ã -D̃ (through ν6),

B̃ -D̃ (through ν5, ν6 and ν7) and C̃ -D̃ (through ν5, ν6 and ν7) electronic states

contribute substantially to the observed highly diffuse structure of this vibronic
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band.

3.6 Nonadiabatic transitions : time dependent

dynamics

In order to examine nonadiabatic transitions in the X̃ -Ã -B̃ -C̃ -D̃ coupled

electronic manifold and nonadiabatic decay of electronically excited CF3CN+,

we recorded the time-dependence of the diabatic electronic populations for an

initial transition to each of the above electronic states separately. The results are

shown in Figs. 3.9(a-e). In panel a, the population dynamics is shown for an

initial transition of the WP to one of the two JT split components of the X̃ state.

The decay and growth of population of these components and the growth of

the Ã state population can be seen from the diagram. The population of the

B̃ -C̃ -D̃ electronic states show only minor variations in this case. It is therefore

clear that the electronic nonadiabatic dynamics in this situation is predominantly

governed by the JT coupling within the X̃ state and its PJT coupling with the

Ã state. The PJT conical intersections with the other electronic states occur at

higher energies and remain inaccessible to the WP in this case. The initial decay

of the population of the X̃ state relates to a decay rate of ∼ 52 fs . It can be seen

from panel a that the WP mostly undergoes nonadiabatic transitions back and

forth between the two JT split components of the X̃ state. This is because the

minimum of the X̃ -Ã conical intersections occur ∼ 0.43 eV above the minimum

of the JT conical intersections within the X̃ state.

The population dynamics changes dramatically when the WP is initially pre-

pared on the Ã state, as shown in panel b. The X̃ -Ã PJT conical intersections

are readily accessible to the WP packet in this case and therefore the population

of the Ã state decays at a much faster rate of ∼ 22 fs . It can be seen that the

decay of the Ã state population mainly (”only”) contributes to the growth of the
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Figure 3.9: Time-dependence of diabatic electronic populations in the X̃ -Ã -
B̃ -C̃ -D̃ coupled states nuclear dynamics of CF3CN+. The results obtained by
initially locating the WP on one component of the JT split X̃ state, Ã state,
B̃ state, C̃ state and one component of the JT split D̃ state are shown in panels
a-e, respectively.
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population of the two components of the X̃ state. This reflects that the coupling

of the Ã state with B̃ , C̃ and D̃ electronic states is not very significant (cf., Table

3.5).

The nonadiabatic transition dynamics of the WP initially prepared on the

B̃ and C̃ states are shown in panel c and d, respectively. In these cases the

transitions take place primarily within the B̃ -C̃ -D̃ electronic states only. The

states within the X̃ -Ã electronic manifold mostly remain unpopulated during

the dynamics. The decay rates of the B̃ and C̃ electronic states are estimated to

be ∼ 32 fs and ∼ 125 fs , respectively, and are slower compared to that of the

Ã state.

Finally, the electronic population dynamics for an initial transition of the WP

to one component of the JT split D̃ state is shown in panel e. It can be seen

that the D̃ state decays at a much faster rate ∼ 21 fs compared to the X̃ state.

This is due to the relatively stronger JT coupling within the D̃ state and also due

to the energetically close locations of the JT and B̃ -D̃ and C̃ -D̃ PJT conical

intersections. Only minor population transfer takes place to the X̃ -Ã coupled

electronic manifold in this case also.

3.7 Summary and outlook

A detailed theoretical account of the multimode JT and PJT interactions in the

five lowest electronic states of CF3CN+ have been presented here to elucidate

highly complex vibronic structure of the first two photoelectron bands of CF3CN.

Extensive ab initio electronic structure calculations are performed to develop a

vibronic coupling model [Eqs. (3.3-3.6e)] and first principles calculations are

carried out both via time-independent and time-dependent quantal methods to

simulate the nonadiabatic nuclear motion on the coupled manifold of these elec-

tronic states. The theoretical results are found to be in good accord with the

available experimental results. The vibronic Hamiltonian is constructed in a di-
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abatic electronic basis, including the JT coupling within the degenerate X̃ and

D̃ electronic states and the PJT couplings of these JT split states with the non-

degenerate Ã , B̃ and C̃ electronic states of CF3CN+. The coupling parameters

of the vibronic Hamiltonian are determined by calculating the adiabatic potential

energy surfaces of the X̃2E , Ã2A1 , B̃2A2 , C̃2A1 and D̃2E electronic states along

each of the twelve vibrational modes.

The vibronic energy level structure of these electronic states of CF3CN+ are

systematically examined at various level of theoretical approximations calculated

by the time-independent matrix diagonalization approach. The final theoretical

simulations using the full Hamiltonian of Eqs. (3.3-3.6e) can only be carried out

by propagating WPs employing the MCTDH algorithm [118–123]. A careful ex-

amination of various theoretical results enabled us to arrive at the following con-

clusions. The symmetric vibrational modes ν1 and ν2 are crucial and are strongly

excited. While the former leads to low-energy crossings of the X̃ -Ã electronic

states, the latter and ν4 are both important for the low-energy crossings of B̃ -

C̃ -D̃ electronic states. The JT effects in the X̃ electronic states is far weaker

compared to that in the D̃ state. The JT stabilization energy of ∼ 4.6 × 10−3

eV and∼ 0.48 eV are estimated, respectively, for these electronic states. The

JT and PJT interactions of the X̃ -Ã electronic states mostly contributes to the

overall vibronic structure of the first photoelectron band. The PJT coupling due

to ν8 vibrational mode is found to be strongest and the vibrational modes ν2, ν7

and ν8 are found to make the progressions in this band. Energetically close lying

B̃ -C̃ -D̃ electronic states are found to be responsible for the highly overlapping

structure of the second photoelectron band. The relatively stronger JT coupling

within the D̃ electronic state and appreciable PJT coupling due to ν5 and ν6 vi-

brational modes among these electronic states contributes to the diffuse vibronic

structure of this band. The vibrational modes ν2, ν4, ν5 and ν7 form the major

progressions in this band.



Chapter 4

The Jahn-Teller and

pseudo-Jahn-Teller effects in the

low-lying electronic states of

1,3,5-trifluorobenzene radical

cation

4.1 Introduction

In this chapter we examine the multimode JT and PJT interactions in the ground

X̃2E ′′ and low-lying excited Ã2A′′
2 , B̃2E ′ and C̃2A′

2 electronic states of large 1,3,5-

trifluorobenzene radical cation (TFBz+ ). This study helps us to understand the

complexiety involved in the theoretical treatment of a system of growing size.

The radical cations of benzene and its derivatives have been extensively stud-

ied by electron spectroscopy to understand the complex vibronic structure and

dynamics of their low-lying electronic states [138–142]. In particular, the fluo-

robenzene radical cations have received considerable attention to unravel the ef-

67
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fect of fluorine substitution on the emissive properties of their excited electronic

states [94, 95, 140, 143–146]. Laser-induced fluorescence (LIF) technique was ex-

tensively used for this purpose [146]. In recent years, a variety of experimental

techniques are developed to record the vibronic structure of these systems with in-

creasing energy resolution [147–149]. The symmetric benzene (Bz+ ), TFBz+ and

hexafluorobenzene (HFBz+ ) radical cations have attracted special attention to

study the vibronic coupling mechanisms arising from the JT instability in their

degenerate electronic states [140–143]. In this chapter we consider the TFBz+ as

a prototypical system which in contrast to the parent Bz+ shows considerable

emission [94, 95]. The underlying mechanistic details of this observation are ex-

amined here by an ab initio quantum dynamical approach.

The neutral 1,3,5-trifluorobenzene (TFBz ) molecule possesses D3h equilib-

rium configuration in its electronic ground state (1A′
1 ). Ionization of an elec-

tron from its four highest occupied e′′, a′′
2, e′ and a′

2 valence molecular orbitals

(MOs) yields TFBz+ in its electronic ground X̃2E ′′ and excited Ã2A′′
2 , B̃2E ′ and

C̃2A′
2 states, respectively. The excited Ã , B̃ and C̃ electronic states of TFBz+ are

energetically close-lying and occur vertically ∼2.95 eV, ∼4.22 eV and ∼4.30 eV

above its X̃ state, respectively. Therefore, the vibronic interactions among these

excited electronic states of TFBz+ expected to have profound impact on its nu-

clear dynamics. This crucial issue is addressed and examined in this chapter.

The 30 vibrational degrees of freedom of TFBz decompose into the following

irreducible representations (IREPs) of the D3h symmetry point group:

Γ = 4a′
1(ν1−ν4)+3a′

2(ν5−ν7)+7e′(ν8−ν14)+3a′′
2(ν15−ν17)+3e′′(ν18−ν20). (4.1)

Applying the elementary symmetry selection rule, Γn ⊗ ΓQ ⊗ Γm ⊃ A1, (with, Γ

representing the IREPs; n,m denoting the electronic state index and Q defining

the coordinate of the relevant vibrational mode) one finds that the X̃2E ′′ and

B̃2E ′ electronic states would undergo JT splitting in first-order when distorted
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along the degenerate vibrational modes of e′ symmetry. On the other hand,

the degenerate e′′ vibrational modes can cause first-order PJT type of coupling

between the Ã2A′′
2 and the B̃2E ′ electronic states and the degenerate e′ vibrational

modes can lead to a coupling between the X̃2E ′′ -Ã2A′′
2 and B̃2E ′ -C̃2A′

2 electronic

states. In addition to this, the four totally symmetric (a′
1) vibrational modes are

Condon active within each electronic state [4].

The photoelectron spectrum of TFBz+ has been recorded by several experi-

mental groups using He II and a mixture of He I and He II [79,150,151] radiations

as ionization sources. Among the first three bands in the ∼9-15 eV energy range,

the third one revealed highly diffuse and overlapping vibronic structure [151].

These three ionic bands result from the 2e′′, 2a′′
2, 9e′ and 2a′

2 valence MOs of

the neutral TFBz , respectively. One photon mass analyzed threshold ionization

(MATI) spectrum has been recorded by Kwon [152] et al. using vacuum ultra-

violet radiation. This MATI spectrum revealed a rich vibrational structure of the

electronic ground state of TFBz+ . Maier et al. [153] have estimated the fluores-

cence life time of ∼57-59 ns for an excitation to the Ã2A′′
2 state region state of

TFBz+ using a photoelectron-fluorescence photon coincidences (PEFCO) tech-

nique. Whereas, Dujardin et al. [94] have found the same as 54.9 ns using the

threshold-PEFCO technique. Cage et al. [154] have measured a value ∼57±2 ns

for this quantity using an open cylindrical Penning trap.

In this chapter, we aim to develop a theoretical model to examine the vibronic

structure and dynamical properties of the mentioned electronic states of TFBz+ .

It is already obvious from the foregoing discussions that the electronic nonadia-

batic coupling may have pivotal role in the dynamics of these electronic states.

Therefore, four low-lying (six altogether when JT splitting is taken into consider-

ation) electronic states of TFBz+ are considered including all relevant vibrational

degrees of freedom in this study. A diabatic electronic basis is employed and the

elements of the electronic Hamiltonian matrix are expanded in a Taylor series.

The JT coupling within the X̃ and B̃ electronic states and their PJT coupling
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with the Ã and C̃ electronic states are taken into consideration.

Extensive ab initio electronic structure calculations are carried out to derive

the relevant coupling parameters of the vibronic Hamiltonian discussed in Sec-

tion 4.3 below. A time-independent matrix diagonalization approach to treat the

nuclear dynamics on six interacting electronic states including twenty three rel-

evant vibrational degrees of freedom is computationally not viable. This task is

therefore accomplished with a time-dependent WP propagation approach employ-

ing the multiconfiguration time-dependent Hartree (MCTDH) scheme [118–123].

While the final results of this chapter are obtained by this method, comparison

calculations are carried out in reduced dimensions by the time-independent ma-

trix diagonalization approach [4]. The results from the latter calculations enable

us to precisely locate and assign various vibrational excitations and to compare

with the better resolved experimental data.

4.2 Equilibrium structure and normal modes of

vibration of TFBz in its electronic ground

state

The geometry optimization and calculation of harmonic vibrational frequencies

of TFBz at the equilibrium geometry of its electronic ground state (1A′
1 ) are car-

ried out at the second-order Møller-Plesset perturbation (MP2) level of theory

employing the correlation-consistent polarized valence triple-ζ (cc-pVTZ) basis

set of Dunning [155]. Electronic structure calculations are performed using the

Gaussian-03 suites of program [128]. The optimized geometry parameters of the

electronic ground state of TFBz are given in Table 4.1 along with the available ex-

perimental results of Ref. [156]. It can be seen from Table 4.1, that the theoretical

results are in good accord with the experiment [156].

The harmonic vibrational frequencies (ωi) of TFBz are calculated at the same



4.2. Equilibrium structure and normal modes of vibration of TFBz in
its electronic ground state 71

level of theory by diagonalizing the ab initio force constant matrix. These vi-

brational frequencies are recorded in Table 4.2 along with their available exper-

imental values [157]. The symmetry and the dominant nature of the vibrations

are also given in this Table. The mass-weighted normal coordinates of the vibra-

tional modes are calculated from the eigenvectors of the force constant matrix.

These are then multiplied with
√

ωi (in a0) to obtain the dimensionless normal

coordinates (Qi).

Table 4.1: The equilibrium geometry of the electronic ground state of TFBz along
with the available experimental data. Theoretical calculations are carried out at
the MP2 level of theory employing the cc-pVTZ basis set.

C-C C-F ∠ C-C(F)-C ∠ C(F)-C-C(F) ∠ F-C-C
(Å) (Å) (deg) (deg) (deg)

MP2/cc-pVTZ 1.386 1.340 122.97 117.03 118.51
Experiment [156] 1.381 1.356 123.81 116.30 118.10
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Table 4.2: Description of the vibrational modes of the electronic ground state of TFBz . The theoretical frequencies are
harmonic, where as, the experimental ones are fundamental.

Vibrational Frequency (ωi)/eV Predominant
Symmetry Mode MP2/cc-PVTZ Experiment [157] nature Coordinate

a′
1 ν1 0.4053 0.3814 C-H symmetric stretching Q1

ν2 0.1742 0.1690 C-F symmetric stretching Q2

ν3 0.1274 0.1255 Trigonal distortion Q3

ν4 0.0724 0.0719 Ring breathing mode Q4

a′
2 ν5 0.1819 0.1604 C-C stretching Q5

ν6 0.1507 0.1444 C-H in-plane bending Q6

ν7 0.0689 0.0699 C-F in-plane bending Q7

e′ ν8 0.4055 0.3863 C-H asymmetric stretching Q8x,Q8y

ν9 0.2078 0.2011 C-C stretching Q9x,Q9y

ν10 0.1871 0.1829 C-C symmetric stretching Q10x,Q10y

ν11 0.1428 0.1400 C-H in-plane bending Q11x,Q11y

ν12 0.1261 0.1235 C-C-C scissoring Q12x,Q12y

ν13 0.0623 0.0625 C-C-C in-plane bending Q13x,Q13y

ν14 0.0405 0.0407 C-F scissoring Q14x,Q14y

a′′
2 ν15 0.1042 0.1050 C-C Twisting Q15

ν16 0.0834 0.0822 C-C out of plane Bending Q16

ν17 0.0263 0.0257 C-F out of plane Bending Q17

e′′ ν18 0.1056 0.0982 C-C Twisting Q18x,Q18y

ν19 0.0759 0.0741 C-C out of plane Bending Q19x,Q19y

ν20 0.0313 0.0305 C-F out of plane Bending Q20x,Q20y
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4.3 The Vibronic Hamiltonian and dynamical

observables

In this section we construct a suitable Hamiltonian to simulate the nuclear dy-

namics underlying the complex vibronic structures of the X̃ -Ã -B̃ -C̃ electronic

states of TFBz+ . As noted in the introduction, we employ a diabatic electronic

basis and Taylor series expansion of the electronic matrix elements for the pur-

pose. The JT coupling due to the e′ vibrational modes and the Condon activity

of the a′
1 vibrational modes are treated up to second-order and the PJT coupling

due to e′ and e′′ vibrational modes is treated until the linear term. The PJT

coupling of the X̃ state with the B̃ and C̃ states is excluded on energetic ground

(see below). The diabatic vibronic Hamiltonian in terms of the dimensionless

normal coordinates of the vibrational modes is given by

H = H016 +




WX
1 WX

12 WX−A
1 0 0 0

WX
2 WX−A

2 0 0 0

WA WA−B
1 WA−B

2 0

WB
1 WB

12 WB−C
1

h.c. WB
2 WB−C

2

WC




. (4.2)

Here, H0 = TN + V0, represents the unperturbed Hamiltonian (treated as har-

monic) of the electronic ground state of the neutral TFBz with

TN = −1

2

∑

i ∈ a′

1, a′

2, a′′

2

ωi
∂2

∂Q2
i

− 1

2

∑

i ∈ e′, e′′

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (4.3)
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and

V0 =
1

2

∑

i ∈ a′

1, a′

2, a′′

2

ωiQ
2
i +

1

2

∑

i ∈ e′, e′′

ωi

(
Q2

ix + Q2
iy

)
. (4.4)

The change of electronic energy upon ionization is expressed by the electronic

Hamiltonian matrix with elementsW in Eq. (4.2). The diagonal elements of this

matrix represent the diabatic potential energies of the electronic states and the

off-diagonal elements describe the coupling between them. These elements are

expanded in a Taylor series around the reference equilibrium configuration (at

Q = 0) as follows

WX(B)
1,2 = E

X(B)
0 +

∑

i ∈ a′

1

κ
X(B)
i Qi ±

∑

i ∈ e′

λ
X(B)
i Qix +

1

2

∑

i ∈ a′

1, a′

2, a′′

2

γ
X(B)
i Q2

i +

1

2

∑

i ∈ e′

[γ
X(B)
i (Q2

ix + Q2
iy)± η

X(B)
i (Q2

ix −Q2
iy)] +

1

2

∑

i ∈ e′′

[γ
X(B)
i (Q2

ix + Q2
iy)], (4.5a)

WA(C) = E
A(C)
0 +

∑

i ∈ a′

1

κ
A(C)
i Qi +

1

2

∑

i ∈ a′

1, a′

2, a′′

2

γ
A(C)
i Q2

i +

1

2

∑

i ∈ e′, e′′

[γ
A(C)
i (Q2

ix + Q2
iy)], (4.5b)

WX(B)
12 =

∑

i ∈ e′

λ
X(B)
i Qiy −

∑

i ∈ e′

η
X(B)
i QixQiy, (4.5c)

Wj−k
1 =

∑

i

λ
j−k
i Qix, (4.5d)
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Wj−k
2 = −

∑

i

λ
j−k
i Qiy, (4.5e)

where, (j−k) ∈ (X−A), (A−B), (B−C) with, i ∈ e′, e′′, e′, respectively.

Calculations reveal that the intermode bilinear coupling parameters for the active

vibrational modes are generally small in magnitude (∼10−3 or less) therefore, they

are excluded from this study. The quantity Ej
0 is the vertical ionization energy

of the jth electronic state. The first-order intrastate and JT coupling parameters

are denoted by κj
i and λj

i for the symmetric (a′
1) and degenerate (e′) vibrational

modes, respectively. The first-order PJT coupling parameter for the ith degen-

erate vibrational mode between the electronic states j and k is given by λj−k
i .

The diagonal second-order and the quadratic JT coupling parameters of the ith

vibrational mode are denoted by γj
i and ηj

i , respectively. To estimate these cou-

pling parameters, the adiabatic electronic PESs of the X̃2E ′′ , Ã2A′′
2 , B̃2E ′ and

C̃2A′
2 electronic states of TFBz+ are calculated along the dimensionless normal

coordinates of its thirty vibrational modes. The vertical ionization energies of

these electronic states are calculated for Qi = ±0.10, ±0.25 (0.25), ±2.00, along

the ith vibrational mode (keeping others at their equilibrium value) by the outer

valence Green’s function (OVGF) method [133] using the same basis set as noted

in Sec. 4.2. The ionization energies thus obtained are equated with the adiabatic

potential energies (relative to the energy of the electronic ground state of neutral

TFBz ) of the electronic states of TFBz+ . These energies are then fitted to

the adiabatic form of the diabatic electronic Hamiltonian of Eq. (4.2) by a least

squares procedure to derive the coupling parameters. These parameters for vari-

ous vibrational modes are given in Tables 4.3 and 4.4. A careful inspection of the

data given in these tables reveals that only three totally symmetric a′
1 (ν2 − ν4),

one nondegenerate a′
2 (ν5), six degenerate e′ (ν9−ν14), one nondegenerate a′′

2 (ν16)

and three degenerate e′′ (ν18 − ν20) modes are relevant for the nuclear dynamics
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in the coupled X̃ -Ã -B̃ -C̃ electronic manifold of TFBz+ .

4.4 Adiabatic Potential Energy Surfaces and con-

ical intersections

In this section, we discuss a few relevant static aspects of the adiabatic PESs

obtained by performing ab initio calculations as discussed above. The model

adiabatic PESs are obtained by diagonalizing the diabatic electronic Hamiltonian

matrix of Eq. (4.2) and using the parameters documented in Tables 4.3 and

4.4. Locations of various energetic minima and saddle points on these PESs are

important to understand the nuclear dynamics on them. In Figs. 4.1(a-c) one

dimensional cuts of the multidimensional PESs of TFBz+ along the dimensionless

normal coordinate of the tuning vibrational modes ν2 − ν4 (a′
1) are shown. The

high frequency C-H stretching mode, ν1, has extremely small coupling strength

[1
2
(κ/ω)2 = 0.0001 (X̃ -state), 0.0003 (Ã -state), 0.0555 (B̃ -state) and 0.0001

(C̃ -state)], and the PESs along this mode are not shown in the diagram. The

potential energy values obtained from the present quadratic vibronic coupling

(QVC) model are shown by the solid lines and the computed ab initio energies

are shown by the asterisks in Fig. 4.1. It can be seen that the computed ab

initio data are well reproduced by the model potential energy functions. The

three totally symmetric modes ν2-ν4 cannot lift the degeneracy of the X̃ and

B̃ electronic states. The X̃ state is energetically well separated from the rest and

it does not reveal any significant coupling with the Ã , B̃ and C̃ states in the

energy range considered here. The Ã , B̃ and C̃ electronic states on the other

hand, are energetically close (cf., Table 4.3) and the crossings among them as seen

in Fig. 4.1 would result conical intersections in multidimensions. The impact of

such intersections on the vibronic dynamics is examined below.

The adiabatic potential energy cuts of the X̃ , Ã , B̃ and C̃ electronic states of
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Table 4.3: Ab initio calculated linear and quadratic coupling constants for the
X̃2E ′′ , Ã2A′′

2 , B̃2E ′ and C̃2A′
2 electronic states of 1,3,5-triflurobenzene radical

cation. The vertical ionization energies of these four electronic states are also
given in the table. All data are given in eV unit.

Mode κi or λi γi κi γi κi or λi γi κi γi

(Symmetry) X̃ X̃ Ã Ã B̃ B̃ C̃ C̃
ν1(a

′
1) 0.0058 0.0021 -0.0093 0.0018 0.1351 -0.0250 -0.0055 0.0022

ν2(a
′
1) -0.2064 -0.0048 - 0.2472 -0.0068 -0.2333 -0.0254 -0.1396 -0.0276

ν3(a
′
1) 0.0544 -0.0010 0.1276 0.0022 -0.0886 -0.0394 0.1153 -0.0088

ν4(a
′
1) 0.0242 -0.0020 -0.0145 -0.0022 -0.0444 -0.0056 0.0590 -0.0064

ν5(a
′
2) – 0.0568 – 0.0482 – -0.0544 – 0.0014

ν6(a
′
2) – 0.0074 – 0.0056 – -0.0458 – -0.0092

ν7(a
′
2) – 0.0012 – -0.0020 – -0.0074 – -0.0082

ν8(e
′) 0.0010 0.0019 – -0.0014 0.1009 -0.0228 – 0.0096

ν9(e
′) 0.1769 0.0038 – -0.0032 0.2420 -0.0540 – 0.0261

ν10(e
′) 0.0524 -0.0097 – -0.0208 0.0961 -0.0500 – 0.0700

ν11(e
′) 0.0204 -0.0044 – -0.0026 0.0283 -0.0090 – 0.0090

ν12(e
′) 0.0387 -0.0011 – 0.0022 0.0997 -0.0146 – -0.0022

ν13(e
′) 0.0793 -0.0037 – -0.0016 0.0776 -0.0072 – -0.0088

ν14(e
′) 0.0107 0.0056 – 0.0046 0.0315 -0.0074 – 0.0234

ν15(a
′′
2) – 0.0006 – -0.0054 – -0.0484 – -0.0038

ν16(a
′′
2) – -0.0216 – -0.0124 – -0.0006 – -0.0222

ν17(a
′′
2) – 0.0106 – 0.0110 – 0.0074 – 0.0142

ν18(e
′′) – 0.0038 – -0.0576 – -0.0248 – 0.0010

ν19(e
′′) – -0.0058 – -0.0218 – -0.0040 – -0.0078

ν20(e
′′) – -0.0102 – -0.0152 – 0.0012 – -0.0056

IP 9.704 12.655 13.929 13.960
Adjusted IP 9.704 12.455 14.060 13.683
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Table 4.4: The JT and PJT coupling parameters (in eV) of the vibronic Hamilto-

nian of Eq. (4.2-4.5e) for the four lowest X̃2E ′′ , Ã2A′′
2 , B̃2E ′ and C̃2A′

2 electronic
states of TFBz+ , estimated from the ab initio electronic structure results (see
text for details).

Mode ηi ηi λ′
i λ′

i λ′
i

X̃ B̃ X̃ -Ã Ã -B̃ B̃ -C̃
ν8 0.0000 -0.0028 0.0617 – 0.0346
ν9 -0.0056 -0.0380 0.0603 – 0.0590
ν10 -0.0074 0.0534 0.1619 – 0.2400
ν11 0.0010 -0.0120 0.0628 – 0.0750
ν12 0.0000 0.0000 0.0729 – 0.0275
ν13 -0.0004 0.0022 0.0643 – 0.0274
ν14 0.0010 0.0088 0.0818 – 0.0350

ν18 – – 0.0969 –
ν19 – – – 0.0667 –
ν20 – – – 0.0638 –

TFBz+ along the degenerate e′ vibrational modes are shown in Fig. 4.2. As dis-

cussed above, these modes split the JT degeneracy of the X̃ and B̃ states and as

a result, a total of six electronic states are obtained in the X̃ -Ã -B̃ -C̃ electronic

manifold. For the nondegenerate Ã and C̃ electronic states the lowest order cou-

pling is described by the second-order terms (cf., Eq. (4.5b)) along these modes.

It can be seen from Fig. 4.2 that the JT splitting in the B̃ state is generally

larger compared to that in the X̃ state. As before, the asterisks on the diagrams

represent the computed ab initio energies, and the curves superimposed on them

represent the model adiabatic potential energy functions of the Hamiltonian of

Eq. (4.2). It is well known that the JT distortion causes a symmetry breaking

and as a result the new minima on the lower adiabatic sheets of the JT split

X̃ and B̃ states occur at ∼9.42 eV and ∼13.26 eV, respectively. The minimum of

the seam of the JT conical intersections occur at V(c)
min,X ∼ 9.56 eV and V(c)

min,B ∼
13.66 eV, in the X̃ and B̃ electronic state, respectively. The JT stabilization

energies amount to ∼ 0.142 eV (∼1145 cm−1) and ∼0.346 eV (∼2791 cm−1) for
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Figure 4.1: Adiabatic potential energies of the lowest four electronic states of
TFBz+ along the dimensionless normal coordinates of its three totally symmet-
ric vibrational modes ν2-ν4. The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio data are
shown by the asterisks.



4.4. Adiabatic Potential Energy Surfaces and conical intersections 80

10

12

14

16

18

20

10

12

14

16

-5 -4 -2 0 2 4

10

12

14

16

-4 -2 0 2 4 5

Po
te

nt
ia

l E
ne

rg
y 

[e
V]

Q

ν9 ν10

ν11
ν12

ν13
ν14

X

A

B

C

X

A

B

C

X

A

B

C

X

A

B

C

X

A

B

C

X

A

B

C

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Figure 4.2: Same as in Fig. 4.1, along the dimensionless normal coordinates of
the x component of the degenerate vibrational modes ν9-ν14.
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the X̃ and B̃ states, respectively. It is worthwhile to mention that the JT sta-

bilization energy estimated above for the X̃ state is in close agreement with the

estimate of ∼1022 cm−1 from the experimental data [152]. An examination of

various PJT crossings in the space of a′1 and e′ vibrational modes with a linear

coupling scheme reveals the following. The minimum of the seam of Ã -B̃ and

B̃ -C̃ PJT conical intersections occurs at ∼13.56 eV and ∼13.78 eV, respectively.

The energetic minimum of the X̃ -Ã conical intersections occurs at ∼21.23 eV,

which is ∼11.66 eV above the minimum of the Ã state and beyond the energy

range of the vibronic bands investigated here. On the other hand, the minimum of

Ã -B̃ and B̃ -C̃ intersections occur ∼1.43 eV and ∼0.076 eV above the minimum

of the B̃ and C̃ electronic states, respectively. The nuclear dynamics in the latter

electronic states is therefore expected to be perturbed by these intersections.

4.5 Vibronic energy levels

4.5.1 The photoelectron spectrum

The vibronic energy levels of the X̃ -Ã -B̃ -C̃ electronic states of TFBz+ ,

calculated with the aid of the diabatic Hamiltonian [cf., Eqs. (4.2-4.5e)] con-

structed in Sec. 4.3 are reported below. The theoretical results are compared

with the low resolution spectral data recorded in photoelectron spectroscopy ex-

periments [79, 151]. In a later section, the resolved vibrational structures of the

electronic ground state of TFBz+ recorded in a MATI spectroscopy experiment

by Kwon et al. [152] are also examined in detail. To proced systematically, we

construct various reduced dimensional models and examine the vibrational en-

ergy levels of each of these electronic states by excluding the PJT coupling with

their neighbors. These results help us to understand the role of various vibra-

tional modes and electronic states in the complex vibronic structures of TFBz+ .

The final simulation of the nuclear dynamics is carried out by including all rel-
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evant couplings of the Hamiltonian and propagating WPs using the MCTDH

algorithm [118–123]. The Hamiltonian for the degenerate (X̃ and B̃ ) electronic

states is separable in terms of the a′
1 and e′ vibrational modes in absence of the

PJT and bilinear coupling terms. Therefore, in the reduced dimensional investiga-

tions partial spectra for the a′
1 and e′ vibrational modes are calculated separately

and finally convoluted to generate the composite band. The vibrational struc-

tures of the X̃ electronic manifold of TFBz+ are shown in Fig. 4.3. The two

partial spectra of the a′
1 and e′ vibrational modes and the composite spectrum

are shown in panels a, b and c, respectively. Three a′
1 vibrational modes (ν2−ν4)

and three e′ vibrational modes (ν9, ν12 and ν13) are included in the calculations.

The vibronic energy eigenvalues are obtained by diagonalizing the Hamiltonian

matrix using the Lanczos algorithm [116]. These are shown as stick lines in the

figure. The stick spectrum is further convoluted with a Lorentzian function of 20

meV full width at the half maximum (FWHM) to generate the spectral envelope.

The dominant progression in the band of panel a is caused by the ν2 vibrational

mode. Both the fundamental and overtones of this mode are excited. Peak spac-

ing of ∼0.169 eV corresponding to the frequency of this mode can be estimated

from the band. Apart from this, the vibrational mode ν3 and combination level

ν2 + ν3 are also excited in the band. Corresponding peak spacing of ∼0.126 eV

and ∼0.295 eV, respectively, can be estimated from the spectrum. Fundamental

transition due to ν9 and ν13 vibrational modes are observed in the partial spec-

trum for the degenerate e′ vibrational modes shown in panel b. Lines are ∼0.220

eV and ∼0.067 eV spaced in energy and correspond to the frequency of the ν9

and ν13 vibrational modes, respectively.

Similar spectra for the JT split B̃ electronic manifold of TFBz+ are shown

in Figs. 4.4(a-c). Here also the symmetric vibrational modes, ν2, ν3, and their

combinations form the dominant progressions in the symmetric mode spectrum

of panel a. The intense lines are ∼0.147 eV and ∼0.079 eV spaced relative to the

band origin and correspond to the frequency of the ν2 and ν3 vibrational modes,
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Figure 4.3: Vibrational energy levels of the X̃2E ′′ electronic manifold of TFBz+ :
(a) partial spectrum computed with the three totally symmetric a′

1 vibrational
modes ν2-ν4, (b) partial spectrum computed with the three JT active degenerate
e′ vibrational modes ν9, ν12 and ν13, and (c) the composite theoretical spectrum
obtained by convoluting the above two partial spectra. The relative intensity
(in arbitrary units) is plotted as a function of the energy of the final vibronic
state. The zero of energy correspond to the equilibrium minimum of the electronic
ground state of TFBz . The theoretical stick spectrum in each panel is convoluted
with a Lorentzian function of 20 meV FWHM to generate the spectral envelope.
The stick spectrum of panel c is multiplied by a factor of 3 for a better clarity.
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Figure 4.4: Same as Fig. 4.3, for the B̃2E ′ electronic manifold of TFBz+ .
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respectively, in the B̃ state. In contrast to the X̃ state spectrum of Fig. 4.3(a),

the spectrum in Fig 4.4(a) exhibits an extended progression owing to the larger

coupling strength of ν2 and ν3 (cf., Table 4.3) in the B̃ state. The spectrum for

the JT active e′ vibrational modes for the B̃ state, shown in Fig. 4.4 (b), exhibits

much complex structure compared to that for the X̃ state (cf., Fig. 4.3(b)).

Note that the potential energy curves of the lower adiabatic sheet of the JT split

B̃ state are extremely flat along ν9 and ν10 vibrational modes (cf., Fig. 4.2).

This leads to a convergence problem of the e′ mode spectrum of Fig. 4.4(b). We

carried out several test calculations and the best results obtained with 9, 5, 5 and

12 basis functions along ν9, ν10, ν12 and ν13 modes are shown in this figure. We

mention with caution that while the above results reproduces the low resolution

photoelectron spectrum further refinements of the potential energy curves along

these two modes are necessary for high resolution spectroscopic application. The

complex energy level structure of Fig. 4.4(b) clearly reveals stronger JT coupling

effects in the B̃ state and as a result the composite band of this state (panel c)

becomes highly diffuse and structureless.

The vibronic energy level spectrum of the uncoupled (without the PJT cou-

pling) nondegenerate Ã and C̃ electronic states are shown in panel a and b of Fig.

4.5, respectively. The vibronic structure of the uncoupled Ã electronic state re-

veals dominant excitation of the ν2 and ν3 vibrational mode and the correspond-

ing peak spacings are ∼0.167 eV and ∼0.130 eV, respectively. In the C̃ state

spectrum (panel b) all three symmetric vibrational modes form progressions and

the peak spacings of ∼0.144 eV, ∼0.118 eV and ∼0.066 eV due to ν2, ν3 and

ν4 vibrational modes, respectively, can be estimated from the spectrum. To this

end, it is worthwhile to mention that, the dominant progressions observed above

for different states are in good agreement with the experimental results [79]. For

example, progression of ν2, ν3 and ν4 vibrational modes are estimated from the

experimental band of the X̃ electronic state. Line spacing of ∼0.180 eV, ∼ 0.120

eV and ∼0.070 eV are found [79] in that order, in good accord with the theoretical
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Figure 4.5: Same as in Fig. 4.3, for the nondegenerate Ã2A′′
2 (panel a) and

C̃2A′
2 (panel b) electronic states of TFBz+ and calculated with the symmetric

vibrational modes ν2-ν4 only.
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results of ∼0.169 eV, ∼0.126 eV and ∼0.078 eV, respectively.

It is discussed above that the X̃ state is energetically well separated from the

Ã , B̃ and C̃ states and the X̃ -Ã conical intersections occur much beyond the

energy range of the recorded vibronic bands. The Ã , B̃ and C̃ electronic states

on the other hand, are energetically close and conical intersections among them

are shown to occur within this energy range. It is therefore necessary to include

the relevant PJT interactions in the full simulation of the nuclear dynamics in

the X̃ -Ã -B̃ -C̃ electronic manifold in order to make a detailed comparison with

the experimental band structures.

The nuclear motion is simulated below including twenty three relevant vibra-

tional modes employing the vibronic Hamiltonian of Eq. 4.2. This leads to a huge

increase of the dimension of the Hamiltonian matrix which can not be diagonal-

ized to calculate its eigenvalues and eigenvectors. We therefore use the MCTDH

algorithm [118–123], and propagate WPs to calculate the eigenvalue spectrum.

The required normal mode combinations, sizes of the primitive and single parti-

cle bases in the WP propagation using the MCTDH algorithm [118–123] in the

coupled X̃ -Ã -B̃ -C̃ electronic states are given in Table 4.5.
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Table 4.5: Normal mode combinations, sizes of the primitive and the single particle basis used in the WP propagation
within the MCTDH framework in the (X̃ -Ã -B̃ -C̃ ) coupled electronic manifold using the complete vibronic Hamiltonian
of Eqs. (4.2-4.5e). The CPU time and the required memory of each WP calculation are also given.

Normal Primitive SPF CPU Required Figure
modesa basisb basisc time RAM [Mbyte]

[E′′
X,x, E′′

X,y, A′′
2

E′
B,x, E′

B,y, C′
2]

(ν2, ν11x, ν11y, ν19x, ν19y) (24, 4, 4, 4, 4) [8, 8, 8, 8, 8, 4] E′′
X,x: 24h 33min 37.83s 1094.06

(ν9x, ν4, ν14y, ν20x, ν5) (18, 5, 5, 4, 4) [6, 6, 4, 10, 10, 10] E′′
X,y: 26h 31min 51.55s 1094.06

(ν9y, ν12x, ν14x, ν20y, ν16) (18, 8, 5, 4, 4) [6, 6, 4, 8, 8, 4] A′′
2: 16h 43min 59.38s 1094.06 Fig. 4.6

(ν13x, ν12y, ν18x, ν3) (36, 8, 4, 7) [6, 6, 5, 7, 7, 4] E′
B,x: 19h 37min 01.37s 1094.06

(ν13y, ν10x, ν18y, ν10y) (36, 5, 4, 5) [7, 7, 4, 6, 6, 5] E′
B,y: 22h 09min 42.13s 1094.06
C′

2: 22h 08min 00.79s 1094.06

The calculations were converged with respect to the spectrum. aVibrational modes bracketed together were treated as a single

particle, e.g., particle 1 is a 5-dimensional particle that combines ν2, ν11x, ν11y, ν19x, and ν19y vibrational modes. b The primitive

basis is the number of harmonic oscillator DVR functions, in the dimensionless coordinate system required to represent the system

dynamics along the relevant mode. The full primitive basis consists of a total of 1.479 ×1019 functions. c The SPF basis is the

number of single-particle functions used, one set for the each component of the seven electronic states. Here they are same in

numbers in order to give equal weight for the x and y components of the degenerate X̃ and B̃ electronic state. Total number of

configurations is 83712. The calculations are carried out employing the MCTDH program package of Ref. [ [118]].
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Six calculations are carried out by initially preparing the WP separately on

each component of the X̃ -Ã -B̃ -C̃ electronic manifold. The WP in each calcu-

lation is propagated for 200 fs . The time autocorrelation functions from these

six calculations are combined, damped with an exponential function, e−t/τr (with

τr=14 fs.), and finally Fourier transformed to calculate the composite vibronic

bands. The damping of the autocorrelation function corresponds to a convolution

of the vibronic line spectrum with a Lorentzian function of 94.3 meV FWHM.

The final theoretical results are presented in panel b of Fig. 6 along with the

experimental results of Ref. [151] in panel a. It can be seen that the theoretical

results are in good accord with the low resolution experimental spectrum. We

note that, it was necessary to adjust the vertical ionization energies of the Ã ,

B̃ and C̃ electronic states within the error limit of the OVGF data (∼ ±0.3 eV)

to reproduce the adiabatic ionization positions of the bands at their experimental

value. The adjusted ionization energies are also given in Table 4.3. Apart from

these, no other parameters are adjusted in the theoretical simulations.

The nonadiabatic coupling among the X̃ -Ã -B̃ -C̃ electronic manifold leads

to the complex structures of the vibronic bands in Fig. 4.6. While the first two

bands exhibit poor vibrational structure at the experimental resolution, the third

one is highly diffuse and overlapping in nature. We note that precise quantitative

informations on the vibronic energy levels could not be extracted from these

experimental bands [151]. Somewhat better resolved experimental X̃ and Ã bands

are shown in Fig. 4.7 along with the theoretical results. Three distinct vibrational

intervals of 565, 968 and 1452 cm−1 were found in the experimental data of both

the bands [79]. These frequencies compare well with our theoretical data of 631,

1019 and 1365 cm−1 for the X̃ band and 566, 1045, 1349 cm−1 for the Ã band,

respectively. The 1452 cm−1 vibration is strongly excited in both the bands. This

is followed by a moderate and weak excitation of the 968 and 565 cm−1 vibrations,

respectively. The excitation of the 968 cm−1 vibration is relatively stronger and

that of 565 cm−1 one is relatively weaker in the Ã state compared to the X̃ state.
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Figure 4.6: Vibronic bands of the coupled X̃ -Ã -B̃ -C̃ states of TFBz+ . The
experimental [151] and theoretical results are shown in panel a and b, respectively.
The intensity (in arbitrary unit) is plotted along the energy (relative to minimum
of the 1A′

1 state of TFBz ) of the final vibronic states.
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Figure 4.7: Vibronic band structure of the X̃ and Ã electronic states of TFBz+ .
The experimental results are reproduced from Ref. [79]. The theoretical stick
spectrum is convoluted with a Lorentzian function of 20 meV FWHM to generate
the spectral envelope.
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These observations are in good accord with our theoretical findings. The three

vibrations discussed above correspond to the ν2, ν3 and ν4 vibrational modes (cf.,

4.2) of TFBz+ .

The effect of the X̃ -Ã PJT coupling on the dynamics of the X̃ state is

negligible. The energetic minimum of X̃ -Ã CIs is estimated to occur at ∼21.23

eV within the present theoretical model. Understandably, this is too high in

energy to be relevant for the nuclear dynamics on the present time scale. As

a result, the vibrational structure of the X̃ state is not affected by these CIs.

However, the B̃ state is moderately coupled with the Ã state through degenerate

e′′ vibrational modes and strongly coupled with the C̃ state through degenerate e′

vibrational modes (cf., Table 4.4). The energetic minimum of the B̃ -C̃ CIs occurs

very close to the equilibrium minimum of these states (see the discussion in Sec.

4.4). The vibrational structures of both the B̃ and C̃ states are therefore, strongly

and that of the Ã state weakly perturbed by the associated nonadiabatic coupling.

This finally leads to a highly overlapping and diffuse vibrational structure (as can

be seen from Fig. 4.6) of the B̃ and C̃ electronic states.

4.5.2 The MATI spectrum of the X̃2E ′′ electronic state

The low resolution photoelectron spectroscopy data discussed above do not allow

to identify all the major vibrational progressions in the band. The better resolved

MATI spectrum recorded by Kwon et al. [152] revealed a rich vibrational structure

of the X̃2E ′′ electronic manifold of TFBz+ . The MATI measurements involve an

excitation to a Rydberg state whereas, we directly excite the molecule from its

neutral ground state to the relevant cationic states in our theoretical model. We

therefore, do not expect to reproduce the intensities so as to compare with the

experiment and only the line positions can be compared directly. The theoretical

spectra reported below are calculated by a matrix diagonalization method em-

ploying the Lanczos algorithm [116]. Since the coupling of the X̃ state with the



4.5. Vibronic energy levels 93

Ã state is very weak (cf., Table 4.4) and the corresponding conical intersections

occur at high energies (as discussed in Sec. 4.4), we do not expect any effect of

this coupling in the low-lying vibronic structure of this state. We therefore ex-

clude it from the calculations discussed below. The vibronic eigenvalue spectrum

of the X̃ state obtained with six JT active e′ modes (ν9-ν14) and three totally

symmetric a′
1 modes (ν2-ν4) is shown in the lower panel along with the exper-

imental MATI spectrum reproduced from Ref. [152] in the upper panel of Fig.

4.8. The converged stick spectrum of the lower panel is obtained by diagonalizing

a secular matrix of dimension 1.87 ×107 using 5000 Lanczos iterations. The stick

data is convoluted with a Lorentzian function of 2 meV FWHM to generate the

spectral envelope. The high frequency C-H stretching modes ν1 (a′
1) and ν8 (e′)

have very low coupling strength and are excluded from the calculations. A close

look at the spectra of Fig. 4.8 reveals that despite a good agreement between the

theory and experiment, the theoretical spectrum possesses rich vibronic structure

also at high energies. This is presumably arising from the fact that the theoretical

calculations consider a direct ionization whereas, the experimental MATI mea-

surement involves an intermediate Rydberg state. The energetic location of some

of the intense peaks obtained from the above calculations are reported in Ta-

ble 4.6 along with the experimental MATI [152], LIF [146] and (2+1) resonance

enhanced multiphoton ionization (REMPI) [158] spectroscopy data.

The nonadiabatic effects due to the JT interactions within the X̃ state solely

contributes to its dense vibrational structure. Understandably, a complete iden-

tification and assignment of all the vibrational levels of Fig. 4.8 is an impossible

task. Therefore, some of the prominent lines appearing in Fig. 4.8 are reported

only in Table 4.6 and compared with the experiment to reveal the accuracy of

the theoretical model developed here. It can be seen from the collected data in

Table 4.6 that the fundamentals of all the vibrational modes are excited closer

to an experimental line at that frequency. The intense peak at ∼569 cm−1 is as-

signed to the fundamental of ν13. This is consistent with the assignment of Sears
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Figure 4.8: The vibronic structure of the X̃2E ′′ electronic manifold of TFBz+ .
The better resolved experimental MATI spectrum (upper panel) is plotted along
with the present theoretical results (lower panel). The theoretical stick spectrum
is convoluted with a 2 meV Lorentzian to generate the spectral envelope. The
magnified view of a subset of the experimental spectrum [152] is given in the inset
of the upper panel.
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Table 4.6: Vibrational energy levels of the X̃2E ′′ electronic manifold of TFBz+ (in
cm−1). The present theoretical results are given along with the experimental
MATI [152], LIF [146] and REMPI [158] spectroscopy data.

Present MATI LIF REMPI Most probable assignment
235 240 249 - -
334 332 334 347 ν14

569 550 557 557 ν13

583 592 596 - ν4

854 859 - 860 ν13+ν14

930 943 945 982 ν12

1025 1028 1043 1070 ν3

1152 1154 - - ν2
13

1170 1192 - - ν11

1271 1262 - ν12+ν14

1409 1441 - 1435 ν2

1529 1527 - - ν10

1637 1654 - 1660 ν9

1743 1741 - 1694 ν3
13

1978 1978 - 2000 ν2+ν13

2049 2031 - - ν2
3

2196 2171 - - ν9+ν13

2263 2213 - - ν4
13

2385 2399 - - ν2+ν12

2434 2420 - 2430 ν2+ν3

and coworkers, who found this peak at ∼557 cm−1 in their LIF emission spec-

trum [146]. This assignment was not unambiguously settled for the corresponding

MATI peak at ∼550 cm−1 [152]. Corresponding peak found by Philis et al. at

∼557 cm−1 in their (2+1) REMPI spectrum [158]. ν13 is the strongest JT active

mode in the X̃ state therefore, many of its overtones and combination levels are

excited in the spectrum and a few of them are also listed in Table 4.6. The funda-

mental of much weaker JT active mode ν14 appears at ∼334 cm−1 in good accord

with the MATI [152], LIF [146] and REMPI [158] data. The fundamental of ν12

appears at ∼930 cm−1, also in good accord with the MATI [152], LIF [146] and

REMPI [158] data. The fundamentals of ν10 and ν9 appears at ∼1529 cm−1 and

∼1637 cm−1, respectively. These are absent in the LIF data [146] but lines closer
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to these frequencies are present (as noted in Table 4.6) in both the MATI [152]

and REMPI [158] data. However, a different assignment is proposed in the MATI

data.

Among the totally symmetric a′
1 vibrational modes the C-H stretching vibra-

tion ν1 revealed no excitation in the experiment and as mentioned before that it is

dropped from the present calculations. The fundamental of the strongest Condon

active mode ν2 appears at ∼1409 cm−1 in good accord with both the MATI data

of ∼1441 cm−1 and REMPI data of ∼1435 cm−1. The ν2 fundamental is very

intense and its overtones are also found at high energies. The Condon activity

of ν3 is much weaker than ν2 (cf., Table 4.3). The fundamental of ν3 appears at

∼1025 cm−1 and its intensity is about ten times smaller than that of ν2. The

fundamental of ν3 appears at ∼1028 cm−1, ∼1043 cm−1 and ∼1070 cm−1 in the

MATI [152], LIF [146] and REMPI [158] data, respectively, in good accord with

our theoretical results. As can be seen from Table 4.3 that the excitation strength

of ν4 is extremely small in the X̃ state. A weak line at ∼583 cm−1 is attributed

to the fundamental of this mode and is in good accord with its location found at

∼596 cm−1 in the LIF emission spectrum [146]. A corresponding weak peak (in

accordance with our results) observed in the MATI spectrum at ∼592 cm−1 [152]

and not unambiguously assigned, can be assigned to this fundamental. Apart

from these fundamentals, a large number of overtones and combination levels are

excited in the theoretical data. A one-to-one comparison of these levels with the

experiment is understandably impossible and therefore, we list a few most intense

ones in Table 4.6 along with the line closer to it found from the MATI [152] and

REMPI [158] spectrum.

4.6 Electronic population dynamics

In order to understand the impact of complex nonadiabatic coupling on the dy-

namics of the excited electronic states, the time dependence of the diabatic elec-
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tronic populations in the X̃ -Ã -B̃ -C̃ coupled electronic manifold of TFBz+ is

recorded and discussed in this section. These electronic populations are obtained

by initially locating the WP on one component of the JT split X̃ state, the

Ã state, one component of the JT split B̃ state and the C̃ state are shown in

Figs. 4.9(a-d), respectively. It can be seen from panel a that an extremely small

population transfer occurs to the Ã state when the WP is initially prepared on

one component of the JT split X̃ state. All other states remain unpopulated in

this situation. The electronic population in panel a moves back and forth between

the two components of the X̃ state driven solely by the JT intersections. The

initial decay of the population relates to a nonradiative internal conversion rate

of ∼ 80 fs of the X̃ state.

The electronic population dynamics for an initial transition of the WP to the

Ã state is depicted in panel b of Fig. 4.9. It can be seen that hardly any internal

conversion takes place in this case. A reconsideration of the topographical features

of the Ã state discussed in section 4.4 shows that the energetic minimum of the

X̃ -Ã conical intersections occurs ∼ 11.66 eV above the minimum of the Ã state.

The minimum of the Ã -B̃ conical intersections occurs at ∼13.56 eV, which is

∼1.43 eV above the B̃ state minimum. It therefore follows that the WP does

not have sufficient energy to access these high energy conical intersections, when

initially prepared on the Ã state. Also the Ã -B̃ intersections occur for large

values of dimensionless normal coordinates of the a′1 and e′ vibrational modes

(cf., Figs. 4.1 and 4.2). These regions of the surfaces are sufficiently away from

the Franck-Condon zone center and remain less explored by the WP during its

dynamical evolution. In addition, the Ã -B̃ PJT coupling is generally small (cf.,

Table 4.4). These considerations imply a long-lived nature of the Ã state and

forms the mechanistic basis underlying the observed emission of TFBz+ . We

return to this point again in the next section.

The electron population dynamics becomes more complex and involved when

the WP is initially prepared either on the B̃ (panel c) or C̃ (panel d) electronic
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Figure 4.9: Time-dependence of diabatic electronic populations in the X̃ -Ã -B̃ -
C̃ coupled state nuclear dynamics of TFBz+ . The results obtained by initially
locating the WP on one component of the JT split X̃ state, Ã state, one compo-
nent of the JT split B̃ state and C̃ state are shown in panel a-d, respectively.
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state. In these cases the WP can access the Ã -B̃ -C̃ conical intersections and

internal conversion to all three states becomes feasible. The Ã -B̃ and B̃ -C̃ PJT

intersections occur ∼1.43 eV and ∼0.076 eV above the minimum of the B̃ and

C̃ states, respectively. These energetic considerations allow significant popula-

tion transfer within the Ã -B̃ -C̃ coupled electronic manifold. The population

transfer to the Ã state is significantly less due to the reasons discussed above.

The initial sharp decay of the population of the B̃ and C̃ electronic states in

panel c and d relates to the nonradiative decay rate of ∼51 fs and ∼7 fs of these

states, respectively. A very fast decay of the C̃ state population arising from

the strong B̃ -C̃ PJT coupling particularly, along the degenerate C-C stretching

mode ν10. Also the B̃ -C̃ conical intersections occurs below the zero point level

of the C̃ electronic state. As a result the WP upon transition to the C̃ state is

immediately perturbed by the strong nonadiabatic effects.

4.7 Fluorescence dynamics

The emissive properties of the parent Bz+ and its fluoroderivatives have been

investigated experimentally [94, 95, 140, 143–146] to understand the dynamics of

their excited electronic states. The emission of fluorescence was observed for at

least three-fold fluorination of Bz+ [94,95]. Analogously, the monofluoro benzene

radical cation (MFBz+) and difluoro benzene radical cation (DFBz+) (except the

meta isomer which emits weakly [145] ) do not show any emission [145]. Details of

this observations have been investigated in recent theoretical studies by examining

the topography of the low-lying electronic states of these systems [139,159–162].

These studies established conical intersections of potential energy surfaces as the

crucial mechanistic element for quenching of fluorescence emission. Fluorination

of Bz causes a re-ordering of its MOs and a stabilization of the σ type of MOs.

The extent of stabilization increases with increasing fluorination (an effect called

the ”perfluoro effect”). This stabilization causes a shift of the corresponding ionic
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state to higher energy. As a result, the energetic minimum of the seam of various

conical intersections and the equilibrium minimum of a state changes varies with

fluorine substitution causing a difference in its emissive properties.

To portray this situation more clearly a few valence canonical MOs of Bz,

MFBz, difluoro benzene (DFBz) and TFBz are shown in Fig. 4.10. These MOs

are calculated at the MP2/cc-pVTZ level of theory. Their symmetry assignments

are in general agreement with the literature except for the p-DFBz for which a

different choice of the C2 axis leads to somewhat different assignment of symme-

try, without affecting the energetic ordering. The highest occupied MO (HOMO)

of all these molecules is of π-type. The degenerate E1g HOMO of Bz transforms

into two nondegenerate MOs in MFBz and DFBz due to a reduction of symmetry

from D6h to C2v. The electronic degeneracy is restored again in the symmetric

TFBz because of its D3h equilibrium symmetry. The next σ-type degenerate

E2g MO (HOMO-1) of Bz undergoes considerable energy shift upon fluorina-

tion. The states derived from this MO corresponds to B̃2B2-D̃
2A1, C̃2A1-D̃

2B2,

C̃2A1-D̃
2B2, B̃2B3g-D̃

2B2u and B̃2E ′ symmetry species in MFBz+, o-DFBz+, m-

DFBz+, p-DFBz+ and TFBz+ , respectively. The vertical ionization energies of

the electronic states of Bz+ , MFBz+, DFBz+ and symmetric TFBz+ are plotted

in Fig. 4.11. It can be seen that owing to a stabilization of the underlying MOs

upon fluorination (cf., Fig. 4.10), all 2E2g derived states shifts to the higher en-

ergies in the fluoroderivatives. The energies of the next π-type state (C̃ state in

Bz+ , MFBz+ and p-DFBz+; B̃ state in o- and m-DFBz+ and Ã state in TFBz+ )

derived from π-type A2u MO (HOMO-2) of Bz remain almost unchanged (cf., the

horizontal line in Fig. 4.11).

The lack of fluorescence emission in Bz+ has been explained to be due to the

multimode dynamical JT effect, which leads to low energy conical intersections

between the upper and lower JT sheets of the X̃ and B̃ states, respectively [138].

In MFBz+ and DFBz+ the low-lying electronic states split into two sets viz.,

X̃ -Ã and B̃ -C̃ -D̃ [159–162]. The minimum energy of intersections of these



4.7. Fluorescence dynamics 101

Figure 4.10: Schematic plot of the canonical MOs of benzene and its fluoroderiva-
tives.
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Figure 4.11: The energy of the ionic states of Bz+ and its fluoroderivatives by
ionizing an electron from the MOs (vertically) shown in Fig. 4.10.
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two sets of states governs nonradiative decay of excited states and a quenching

of fluorescence emission. These two sets of states are connected through both

X̃ -B̃ and Ã -B̃ crossings in MFBz+ [160]. In DFBz+ these sets are connected

through Ã -C̃ curve crossings in the ortho and meta isomers and through Ã -

B̃ crossings in the para isomer [161]. The minimum energy of crossings between

these sets is ∼12.29 eV in MFBz+ and ∼13.11 eV, ∼13.65 eV and ∼13.08 eV in

the ortho, meta and para DFBz+, respectively [160,161]. In the parent Bz+ this

energy is ∼11.58 eV [138] between the X̃ and B̃ states. Therefore, it can be seen

that the minimum energy of crossings between the relevant states progressively

increases upon fluorine substitution. This energy is being highest for the meta

DFBz+ which does not allow much of the WP to access this intersection and

therefore, gives rise to weak fluorescence emission [145].

The above scenario dramatically changes in case of 1,3,5-TFBz+ . The degen-

erate E2g MO of Bz transforms to E′ in TFBz . The vertical ionization potential

of the B̃2E ′ state of TFBz+ is ∼2.2 eV higher than the corresponding state in

Bz+ [145]. In this case the ground X̃2E ′′ state remains essentially decoupled from

the excited states. The present theoretical model yields the minimum energy of

the X̃ -Ã and Ã -B̃ intersections at ∼21.23 eV and ∼13.56 eV, respectively. These

intersections occur at much higher energies and also the PJT coupling between

these states is also weak (cf., Table 4.4). Therefore, these intersections remain

essentially inaccessible for the WP to nonradiatively relax to the X̃ state. Such

dynamical features already emerged from the time dependence of electronic pop-

ulations shown in Fig. 4.9. It can be seen from the latter that on the present

time scale hardly any WP returns to the X̃ state when initially prepared on one

of the excited electronic state. This is quite notable for the dynamics of the

Ã state (cf., Fig. 4.9(b)). In this case only ∼0.3% WP moves to the other states

in 200 fs and since the population curve is nearly parallel to time axis, no sig-

nificant transfer of WP is expected at longer times. Therefore, unlike Bz+ and

its mono- and di-fluoroderivatives, occurrence of high energy conical intersections
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prevents a nonradiative internal conversion and leads to the fluorescence emission

in TFBz+ .

4.8 Summary and outlook

Static and dynamic aspects of multimode JT and PJT interactions in the four

lowest electronic states of TFBz+ have been theoretically investigated. A vibronic

coupling model is developed through extensive ab initio electronic structure cal-

culations and first principles simulations are carried out to examine the electronic

nonadiabatic effects on the nuclear dynamics. The theoretical results are found

to be in good accord with the available experimental results.

The vibronic Hamiltonian is constructed in a diabatic electronic basis, in-

cluding the JT coupling within the degenerate X̃ and B̃ electronic states and

the possible PJT coupling of these JT split states with the other nondegenerate

electronic states of TFBz+ . The coupling parameters of the vibronic Hamilto-

nian are determined by calculating the adiabatic potential energy surfaces of the

X̃2E ′′ , Ã2A′′
2 , B̃2E ′ and C̃2A′

2 electronic states along the relevant vibrational

modes of TFBz+ .

The nuclear dynamical simulations are carried out both by the time-independent

and time-dependent quantum mechanical methods. A careful examination of var-

ious theoretical results reveals that the symmetric vibrational modes ν2 and ν3

are strongly excited in the vibronic bands of the X̃ -Ã -B̃ -C̃ electronic mani-

fold. While ν3 causes low-energy crossings of the Ã -B̃ electronic states, all three

symmetric vibrational modes (ν2-ν4) are important for the low-energy crossings

of B̃ -C̃ electronic states. The JT effect in the X̃ electronic state is far weaker

compared to that in the B̃ state. The JT stabilization energies of ∼ 0.142 eV

and ∼ 0.346 eV are estimated, respectively, for these electronic states. The vi-

bronic structure of the X̃ state is mostly dominated by progressions due to the

symmetric ν2 and degenerate ν9 and ν13 vibrational modes. This state is ener-
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getically well separated from others and impact of PJT coupling on its vibronic

structure is not significant. Among the Ã , B̃ and C̃ states, The B̃ and C̃ states

undergo fast internal conversions in 51 fs and 7 fs, respectively. The coupling of

the Ã state with either X̃ or the B̃ state is weak and occurs at higher energies.

Therefore, the low-amplitude nuclear motion in the Ã state remains unaffected

by these couplings. This leads to a long-lived nature of the Ã state and triggers

fluorescence emission in TFBz+ .



Chapter 5

Photophysics of fluorinated

benzene and perfluoro effect

5.1 Introduction

So far we have investigated the JT and PJT effects on the low-lying doublet elec-

tronic states of fluorinated radical cations of organic hydrocarbons. The effect

of fluorine atom substitution, addressed long back in the literature, on the elec-

tronic structure and dynamics of benzenoid system is investigated here with re-

newed vigor [73–78,81–91]. In this chapter we discuss the role of vibronic interac-

tions on the photophysics of the low-lying excited singlet electronic states of neu-

tral fluorinated benzene to understand the recent measurements [73–78, 81–91].

Apart from a systematic study portraying individual examples in this chapter,

we have considered a set of fluorinated benzene (monofluorobenzene (MFBz),

ortho-difluorobenzene (o-DFBz), meta-difluorobenzene (m-DFBz) and pentaflu-

orobenzene (PFBZ)) molecules.

Benzene (Bz) and its halogenated derivatives are prototype organic molecules

of fundamental importance. The electronic structure and spectroscopy of these

molecules studied with renewed vigor in recent years [73–78,81–91]. Historically,

106



5.1. Introduction 107

the absorption band arising from lowest singlet state of Bz represents the first

example of an electronic transitions in a polyatomic molecule [36]. Although for-

bidden by symmetry, such a transition was interpretated using vibronic selection

rules [36]. The forbidden electronic transitions in Bz however, become symmetry

allowed in the substituted Bz.

Among the halogenated derivatives of Bz, the fluorobenzene molecules have

received special attentions to study the chemical impact of fluorine atoms on

the electronic structure and properties of Bz. Increasing fluorine substitution is

known to stabilize the σ orbitals of the system and the phenomenon is known as

perfluoro effect in the literature [92,93]. Although several experimental and theo-

retical studies on neutral fluorobenzene molecules have appeared in the literature

over the past decades [73–78,81–91], a detailed understanding of the spectroscopic

and dynamical properties of their electronic excited states is still not achieved.

We note that, there has been some detailed theoretical work carried out to un-

derstand these properties of fluorobenzene cations in recent years [160–163].

Spectroscopic [82,85] and photophysical [76,78] studies have revealed that the

features of the electronic absorption and emission bands and lifetimes of fluores-

cence strongly depends on the number of substituted fluorine atoms. For example,

C6Fn with n≤ 4 exhibit structured S1 ← S0 absorption band, large quantum yield

and nanosecond lifetime of fluorescence. On the other hand, C6Fn with n=5 and 6

exhibit structureless S1 ← S0 absorption band [82,85], low quantum yield [76,78],

picosecond and nanosecond lifetime of fluorescence emission [86]. Furthermore, a

biexponential decay of fluorescence is observed for the latter molecules [86]. Ex-

perimental measurements of Philis et al. [85] have revealed that lowering of D6h

symmetry of Bz by fluorine substitution leads to the appearance of additional

bands within 8.0 eV not resolved in the parent Bz molecule. For example, apart

from three singlet-singlet transitions analogous to the B2u ← A1g, B1u ← A1g and

E1u ← A1g transitions in Bz, one additional band has been observed in MFBz

and in o-DFBz in the region of the 1B1u band. This band is characterized as
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the 3s member of 1E1g Rydberg state of Bz molecule [85]. Similarly one addi-

tional band has been identified in PFBz at ∼5.85 eV and is designated as the

C-band [84]. A clear understanding of the origin of these additional bands is still

lacking. Furthermore, these additional bands are highly diffuse and exhibit ir-

regular structures and hardly allow any definitive vibrational assignments. Even

though the excited states of fluorobenzene molecules contributing to the absorp-

tion bands within 8.0 eV are known, their excitation energies are not accurate

enough for a satisfactory theoretical interpretation of the observed vibrational

structures [85]. On the theoretical front, a study of nuclear dynamics follow-

ing the electronic excitation, the possible energy redistribution and relaxation

mechanism of neutral fluorobenzene molecules has not been attempted so far.

We address some of the unresolved issues observed in the optical spectra of

fluorobenzene molecules and attempt to understand them by performing detail ab

initio electronic structure calculations and first principles simulations of nuclear

dynamics. The PESs and the coupling surfaces of the low-lying electronic states

of MFBz, o-DFBz, m-DFBz and PFBz molecules are constructed by calculating

the vertical excitation energies (VEEs) by the equation-of-motion coupled-cluster

singles and doubles (EOM-CCSD) method [164] implemented in MOLPRO suite

of program [165]. For the VEEs, EOM-CCSD is a well studied method [164]

and fully equivalent to the symmetry adapted cluster method [166] and coupled-

cluster linear response theory [167]. It also provides affordable computational

cost and reasonably good accuracy. The VEEs are calculated along the dimen-

sionless normal displacement coordinates of all vibrational modes of the four

fluorobenzene molecules. The calculated adiabatic energy points are fitted to

the theoretical models devised in this chapter. The coupling between different

electronic states is taken into consideration in accordance with the symmetry

selection rules.

To this end we mention that all four molecules belong the C3v symmetry

point group at the equilibrium configuration of their electronic ground state (S0).
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The symmetry, nature, vertical excitation energy (VEE) and oscillator strength of

their low-lying excited electronic states at the reference geometry of the respective

S0 state are given in Table 5.1 along with the data available from the literature.

It can be seen from Table 5.1 that the present VEEs are generally closer to the

experimental data compared to those available in the literature [83].

5.2 Details of electronic structure calculations

The geometry optimization and calculation of harmonic vibrational frequencies

of the electronic ground state [S0 (1A1 )] of MFBz, o-DFBz, m-DFBz and PFBz

are carried out at the second-order Møller-Plesset perturbation (MP2) level of

theory employing the augmented correlation-consistent polarized valence double-

ζ (aug-cc-pVDZ) basis set of Dunning [155]. The Gaussian-03 suite of program

[128] is used for this purpose. The optimized equilibrium geometry data for the

ground state thus obtained agree very well with the available literature data

[156] for MFBz, o-DFBz and PFBz molecules. These theoretical results along

with the literature data are given in Table 5.2-5.5, respectively. The harmonic

vibrational frequencies (ωi) are calculated by diagonalizing the ab initio force

constant matrix. These vibrational frequencies are recorded in Table 5.6. The

mass-weighted normal coordinates of the vibrational modes are calculated from

the eigenvectors of the force constant matrix. These are then multiplied with
√

ωi

(in a0) to obtain the dimensionless normal coordinates (Qi) of the vibrational

modes.
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Table 5.1: Vertical excitation energy (VEE) and symmetry of the low-lying excited singlet states of MFBz, o-DFBz, m-
DFBz and PFBz within 8.0 electron Volt (eV). Oscillator strengths are given in parentheses along with the VEEs (in eV).
Note that states with zero oscillator strength (as given in Fig. 5.7) are not listed in this table.

Molecule State Transition VEE calculated Experimental VEE estimated VEE calculated
symmetry in this work by Frueholz et al. [84] by Duke et al. [83]
S1(

1B2) (ππ∗) 5.055 (0.0072) 4.780 4.627
S2(

1A1) (ππ∗) 6.469 (0.0003) 6.230 5.760
MFBz S3(

1B1) (πσ∗) 6.724 (0.0058)
S4(

1B2) (ππ∗) 7.288 (0.6520) 6.990 6.629
S5(

1A1) (ππ∗) 7.317 (0.6756) 6.990 6.639

S1(
1A1) (ππ∗) 5.075 (0.0083) 4.760 4.504

S2(
1B2) (ππ∗) 6.503 (0.0002) 6.220 5.577

o-DFBz S3(
1B1) (πσ∗) 6.796 (0.0191)

S4(
1B2) (ππ∗) 7.323 (0.6605) 7.020 6.460

S5(
1A1) (ππ∗) 7.378 (0.6522) 7.020 6.477

S1(
1B2) (ππ∗) 5.084 (0.0074) 4.790 4.531

S2(
1A1) (ππ∗) 6.492 (0.0002) 6.170 5.632

m-DFBz S3(
1A1) (ππ∗) 7.272 (0.6295) 6.960 6.472

S4(
1B2) (ππ∗) 7.382 (0.6574) 6.960 6.489

S1(
1B2) (ππ∗) 5.111 (0.0086) 4.790 4.184

S2(
1B1) (πσ∗) 6.314 (0.0013) 5.850

PFBz S3(
1A1) (ππ∗) 6.597 (0.0041) 6.360 5.180

S4(
1A1) (ππ∗) 7.475 (0.6697) 7.120 6.040

S5(
1B2) (ππ∗) 7.509 (0.6537) 7.120 6.041
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Table 5.2: The equilibrium geometry of the electronic ground state of MFBz along with the available experimental [156]
data. The theoretical calculations are carried out at the MP2 level of theory employing the aug-cc-pVDZ basis set.

Bond distance (Å) Bond angle (deg)
Bond Theory Experiment [156] Angle Theory Experiment [156]
C4-C5 1.399 1.377 C3-C4-C5 122.85 123.40
C4-F12 1.369 1.364 F12-C4-C5 118.58 118.30
C5-C6 1.408 1.389 C4-C5-C6 118.15 117.88
C6-C1 1.408 1.388 C5-C6-C1 120.49 120.37
– – – C6-C1-C2 119.85 120.10

Table 5.3: Same as in Table 5.2, for o-DFBZ.

Bond distance (Å) Bond angle (deg)
Bond Theory Experiment [156] Angle Theory Experiment [156]
C4-F11 1.358 1.346 F11-C4-C5 120.29 120.73
C4-C5 1.397 1.376 F11-C4-C3 119.06 118.31
C4-C3 1.401 1.378 C3-C4-C5 120.64 120.95
C1-C2 1.407 1.389 C2-C3-C4 120.64 120.82
C1-C6 1.407 1.384 C1-C2-C3 119.07 118.67
– – – C6-C1-C2 120.29 120.56
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Table 5.4: Same as in Table 5.2, for m-DFBZ.

Bond distance (Å) Bond angle (deg)
Bond Theory Angle Theory
C4-F10 1.366 H12-C3-C4 121.67
C4-C5 1.399 C3-C4-C5 123.08
C4-C3 1.399 C4-C5-C6 118.01
C3-H12 1.091 C5-C6-C1 121.14
C5-C6 1.401 C3-C4-F10 118.03
C5-H8 1.092 F10-C4-C5 118.89
— – C4-C5-H8 120.03

Figure 5.1: Ab initio calculated chemical structure of the electronic ground state
of MFBz at the MP2/aug-cc-pVDZ level of theory.
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Figure 5.2: Same as in Fig. 5.1, for o-DFBZ.
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Figure 5.3: Same as in Fig. 5.1, for m-DFBZ.
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Table 5.5: Same as in Table 5.2, for PFBZ.

Bond distance (Å) Bond angle (deg)
Bond Theory Experiment [156] Angle Theory Experiment [156]
C6-F10 1.354 1.340 F10-C6-C1 118.57 118.30
C6-C1 1.400 1.367 F10-C6-C5 119.95 120.00
C6-C5 1.398 1.373 C1-C6-C5 121.48 121.70
C1-F11 1.348 1.341 F11-C1-C6 120.97 121.00
C1-C2 1.401 1.371 F11-C1-C2 119.88 119.50
C2-F12 1.347 1.337 C6-C1-C2 119.14 119.50
C5-H7 1.111 – F12-C2-C1 119.80 120.20
– – – F12-C2-C3 119.80 120.00
– – – C1-C2-C3 120.40 119.80
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Figure 5.4: Same as in Fig. 5.1, for PFBZ.
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Table 5.6: Ab initio calculated harmonic frequencies of the vibrational modes of MFBz, o-DFBz, m-DFBz and PFBz at
the MP2/aug-cc-pVDZ level of theory. All values are in eV.

Mode MFBz Symmetry o-DFBz Symmetry m-DFBz Symmetry PFBz Symmetry

ν1 0.4021 0.4025 0.4038 0.4038
ν2 0.4008 0.4007 0.4032 0.2087
ν3 0.3981 0.2049 0.3998 0.1901
ν4 0.2018 0.1885 0.2051 0.1762
ν5 0.1851 0.1836 0.1815 0.1572
ν6 0.1525 a1 0.1588 a1 0.1586 a1 0.1318 a1

ν7 0.1439 0.1437 0.1339 0.0888
ν8 0.1277 0.1286 0.1256 0.0711
ν9 0.1245 0.0941 0.0907 0.0579
ν10 0.0997 0.0700 0.0640 0.0402
ν11 0.0632 0.0350 0.0401 0.0331

ν12 0.1139 0.1126 0.1147 0.1043
ν13 0.1093 0.0936 b1 0.1067 0.0734
ν14 0.0932 b1 0.0555 0.0960 b1 0.0673 b1

ν15 0.0772 0.0357 0.0791 0.0394
ν16 0.0609 0.4017 0.0562 0.0254
ν17 0.0288 0.3992 0.0280 0.0196
ν18 0.4018 0.2031 0.4026 0.2082
ν19 0.3993 0.1807 0.2037 0.1924
ν20 0.2036 0.1558 0.1852 0.1834
ν21 0.1831 0.1473 b2 0.1836 0.1469
ν22 0.1800 b2 0.1362 0.1571 b2 0.1399 b2

ν23 0.1605 0.1038 0.1442 0.1174
ν24 0.1442 0.0671 0.1390 0.0848
ν25 0.1338 0.0535 0.1182 0.0532
ν26 0.0752 0.1130 0.0624 0.0372
ν27 0.0494 0.1028 0.0584 0.0337
ν28 0.1153 0.0761 a2 0.1084 0.0783
ν29 0.1017 a2 0.0664 0.0733 a2 0.0477 a2

ν30 0.0510 0.0229 0.0300 0.0164
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Ab initio calculations of electronic energies of the low-lying singlet states of

MFBz, o-DFBz, m-DFBz and PFBz are carried out along the dimensionless nor-

mal coordinates of their 30 vibrational degrees of freedom. Hereafter, these elec-

tronic states are designated as S0, S1, S2, S3, · · · etc. in the order of increasing

energy at the reference equilibrium geometry of the S0 state. The VEEs of these

electronic states are calculated for Qi = ±0.25 (0.25) ±1.00 and ±1.00 (0.50)

±3.00, along i th vibrational mode (keeping others at their equilibrium value) us-

ing the EOM-CCSD method as implemented in MOLPRO program package [165].

While the aug-cc-pVDZ basis set [155] used for carbon and fluorine atoms, the

hydrogen atoms are described by the standard cc-pVDZ basis set [155] for MFBz,

o-DFBz and m-DFBz. For PFBz (having 41 occupied MOs) use of a basis set

as described above turned out to be computationally very expensive. There-

fore, for PFBz we used energy-consistent pseudopotentials of Stuttgart/Cologne

group [168] for the fluorine atoms in addition to the basis set as described above

for the carbon and hydrogen atoms. These pseudopotentials include one compo-

nent (non-relativistic and scalar-relativistic) effective-core potentials (ECP). Two

1s electrons of the fluorine atoms are treated as core electron and are described

by the pseudopotential. The advantage of this pseudopotential method is that

it restricts the explicit quantum chemical treatment to the valence shell, while

the effects of the core shells are simulated by the pseudopotentials. This causes a

drastic reduction of the computational cost without compromising the accuracy

to a significant extent as compared to the all-electron calculations.

While the computational overheads restrict the use of larger basis sets for

these molecular systems, we however, examined the basis set dependencies of the

results whenever possible. For example, the MFBz and PFBz molecules have

been studied with somewhat larger basis sets in order to add to the reliability of

the results presented in this chapter. To this effort, the aug-cc-pVDZ basis set

used for MFBz is replaced by the aug-cc-pVTZ basis. The computational time

thereby increases six fold. The results obtained on the VEEs at the reference
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geometry of the S0 state are summarized in the first half of Table 5.7. It can

be seen from the data presented in this table that the deviations are within the

acceptable limit of accuracy. Next, in order to establish a reliable basis for using

ECPs for fluorine atoms, we have done test calculations of the VEEs of the low-

lying electronic states of PFBz with and without ECPs. The results are tabulated

in the second half of Table 5.7. It can be seen from Table 5.7 that the change

in VEEs for all five states are very minor (the average deviation is ∼0.034 eV),

indicating the reliability of ECPs to describe the excited state PESs of PFBz.

Table 5.7: Basis set dependencies of the vertical excitation energies (VEEs) of
the low-lying excited singlet states of MFBz and PFBz. VEEs are in eV.

Molecule State aug-cc-pVDZ aug-cc-pVTZ ECP
symmetry
1B2 (S1) 5.055 5.049
1A1 (S2) 6.469 6.412

MFBz 1B1 (S3) 6.724 6.724
1B2 (S4) 7.288 7.267
1A1 (S5) 7.317 7.290

1B2 (S1) 5.142 5.111
1B1 (S2) 6.244 6.314

PFBz 1A1 (S3) 6.618 6.597
1A1 (S4) 7.495 7.475
1B2 (S5) 7.537 7.509

5.3 The vibronic Hamiltonian

In order to perform the quantum dynamical studies we first construct the required

vibronic Hamiltonians for the low-lying excited singlet electronic states of the

fluorobenzene molecules introduced above. The Hamiltonian is constructed in

terms of dimensionless normal coordinates of the vibrational modes and is based

on a diabatic ansatz for the electronic basis [100].

The 30 vibrational degrees of freedom of the four fluorobenzene molecules de-
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compose into the following irreducible representations (IREPs) of the C2v equi-

librium symmetry point group.

MFBz,m −DFBz, PFBz : Γvib = 11a1 ⊕ 6b1 ⊕ 10b2 ⊕ 3a2

o −DFBz : Γvib = 11a1 ⊕ 4b1 ⊕ 10b2 ⊕ 5a2 (5.1)

The diabatic vibronic Hamiltonian in the normal coordinates of these vibrational

modes can be written as

H = H015 +Wx, (5.2)

where H0 defines the Hamiltonian of the reference ground (S0) electronic state

which is assumed to be harmonic, H0 = 1
2

∑
s ωs(− ∂2

∂Q2
s

+ Q2
s). The quantity 15

is a 5×5 diagonal unit matrix. The nondiagonal matrix Hamiltonian Wx de-

scribes the PESs of the excited electronic states and their coupling surfaces. The

elements of this matrix are expanded in a Taylor series around the reference equi-

librium geometry at Q=0. Employing the symmetry selection rule, the electronic

Hamiltonian matrices for the four fluorobenzene molecules are given by

WMFBz =




E1 + U1
∑

s∈b2

λ1,2
s Qs

∑

s∈a2

λ1,3
s Qs 0

∑

s∈b2

λ1,5
s Qs

E2 + U2
∑

s∈b1

λ2,3
s Qs

∑

s∈b2

λ2,4
s Qs 0

E3 + U3
∑

s∈a2

λ3,4
s Qs

∑

s∈b1

λ3,5
s Qs

h.c. E4 + U4
∑

s∈b2

λ4,5
s Qs

E5 + U5




,(5.3a)
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Wo−DFBz =




E1 + U1
∑

s∈b2

λ1,2
s Qs

∑

s∈b1

λ1,3
s Qs

∑

s∈b2

λ1,4
s Qs 0

E2 + U2
∑

s∈a2

λ2,3
s Qs 0

∑

s∈b2

λ2,5
s Qs

E3 + U3
∑

s∈a2

λ3,4
s Qs

∑

s∈b1

λ3,5
s Qs

h.c. E4 + U4
∑

s∈b2

λ4,5
s Qs

E5 + U5




,(5.3b)

Wm−DFBz =




E1 + U1
∑

s∈b2

λ1,2
s Qs

∑

s∈b2

λ1,3
s Qs 0

E2 + U2 0
∑

s∈b2

λ2,4
s Qs

h.c. E3 + U3
∑

s∈b2

λ3,4
s Qs

E4 + U4




, (5.3c)

WPFBz =




E1 + U1
∑

s∈a2

λ1,2
s Qs

∑

s∈b2

λ1,3
s Qs

∑

s∈b2

λ1,4
s Qs 0

E2 + U2
∑

s∈b1

λ2,3
s Qs

∑

s∈b1

λ2,4
s Qs

∑

s∈a2

λ2,5
s Qs

E3 + U3 0
∑

s∈b2

λ3,5
s Qs

h.c. E4 + U4
∑

s∈b2

λ4,5
s Qs

E5 + U5




.(5.3d)
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In Eqs. 5.3a-5.3d, U i =
∑

s∈a1

κi
sQs +

1

2

∑

s∈a1

γi
sQ

2
s. Ei is the vertical excitation en-

ergy of the ith excited electronic state; κi
s and λi,j

s represents the linear intrastate

and interstate coupling parameters [4], respectively; γi
s denotes the second-order

coupling parameter along totally symmetric vibrations of the ith state. The sum-

mations run over the normal modes of vibration of specified symmetry. The vibra-

tional modes entering the various coupling terms i.e., diagonal and off-diagonal

matrix elements, are in accordance with the symmetry rule. Note that for m-

DFBz the S5 state is located at high energies and therefore, not included in Eq.

5.3c. The VEEs calculated in Sec. 5.2 describe the adiabatic potential energies

of the excited singlet states of the four fluorobenzene molecules. These energies

are fitted to the adiabatic form of diabatic electronic Hamiltonian of Eqs. (5.3a-

5.3d) by a least squares procedure to estimate the coupling parameters. These

parameters for various vibrational modes are given in Tables 5.8-5.11. A careful

examination of the coupling parameters suggests that not all 30 vibrational de-

grees of freedom play significant role in the vibronic coupling mechanism. There-

fore, the relevant modes having significant coupling strengths are retained only in

Tables 5.8-5.11 for clarity. Such considerations result 18 nonseparable vibrational

degrees of freedom in case of MFBz, 22 in case of o-DFBz, 15 in case of m-DFBz

and 26 in case of PFBz.
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Table 5.8: Ab initio calculated coupling parameters of the electronic Hamiltonian [cf., Eq. 5.3a] of MFBz. All quantities
are in eV.

Symmetry Mode κ1
s γ1

s κ2
s γ2

s κ3
s γ3

s κ4
s γ4

s κ5
s γ5

s

ν6 -0.0980 0.0009 -0.0824 -0.0111 -0.0507 -0.0138 -0.0908 0.0008 -0.0935 0.0079
ν7 0.0360 0.0035 0.0376 -0.0212 0.0858 -0.0046 0.0349 -0.0010 0.0294 0.0110
ν8 -0.0836 -0.0030 -0.0672 -0.0041 -0.0032 -0.0005 -0.0703 -0.0085 -0.0772 -0.0072

a1 ν9 0.1080 0.0000 0.0896 -0.0027 0.0400 -0.0067 0.0961 -0.0058 0.0995 -0.0042
ν10 -0.0864 -0.0023 -0.0527 -0.0053 -0.0212 -0.0090 -0.0339 -0.0066 -0.0698 -0.0029
ν11 -0.0136 -0.0129 -0.0210 -0.0060 -0.0826 -0.0077 0.0337 -0.0024 -0.0082 -0.0020

λ1−2
s λ1−3

s λ1−5
s λ2−3

s λ2−4
s λ3−4

s λ3−5 λ4−5

ν12 0.0529 0.4175
ν13 0.0635

b1 ν14 0.0505 0.0428
ν16 0.0674 0.0914
ν17 0.0476

ν20 0.0000 0.2356 0.2254 0.0518
ν24 0.0000 0.0112 0.0663

b2 ν26 0.0648 0.1123 0.0347 0.0062
ν27 0.0235 0.0147 0.0101

ν28 0.1656 0.0362
a2 ν29 0.1259 0.0273

ν30 0.1278
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Table 5.9: Same as in Table 5.8 of the electronic Hamiltonian [Eq. 5.3b] of o-DFBz.

Symmetry Mode κ1
i γ1

i κ2
i γ2

i κ3
i γ3

i κ4
i γ4

i κ5
i γ5

i

ν3 0.0160 0.0044 -0.1161 -0.0423 -0.1389 -0.0310 -0.1802 0.0267 0.0109 -0.0022
ν4 -0.0498 -0.0031 -0.0437 -0.0081 -0.0492 -0.0210 -0.0424 -0.0021 -0.0352 -0.0139
ν6 0.1180 0.0032 0.1066 -0.0054 0.0504 -0.0170 0.1124 0.0076 0.1120 -0.0006
ν7 -0.0271 0.0054 -0.0216 -0.0094 -0.0527 -0.0146 -0.0312 0.0129 -0.0235 0.0020

a1 ν8 0.0991 -0.0013 0.0865 -0.0029 -0.0071 -0.0030 0.0960 -0.0046 0.0984 -0.0065
ν9 -0.1077 -0.0020 -0.0655 -0.0036 -0.0656 -0.0302 -0.0607 -0.0048 -0.0791 -0.0030
ν10 0.0238 -0.0020 -0.0150 -0.0052 0.0664 -0.0148 -0.0224 -0.0034 -0.0193 -0.0010
ν11 -0.0055 -0.0004 -0.0014 -0.0005 -0.0152 0.0083 0.0021 0.0008 0.0021 -0.0005

λ1−2
s λ1−3

s λ1−4
s λ2−3

s λ2−5
s λ3−4

s λ3−5 λ4−5

ν12 0.1709 0.0000
ν13 0.1225 0.0000

b1 ν14 0.1341 0.0000
ν15 0.1100 0.0000

ν18 0.0000 0.0000 0.2648 0.0667
ν21 0.0000 0.0000 0.1058 0.0211

b2 ν23 0.0000 0.0000 0.0457 0.0189
ν24 0.0228 0.0000 0.0529 0.0180
ν25 0.0000 0.0000 0.0624 0.0188

ν26 0.0631 0.0000
ν27 0.0556 0.0000

a2 ν28 0.0829 0.0000
ν29 0.0729 0.0399
ν30 0.0507 0.0000
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Table 5.10: Same as in Table 5.8 of the electronic Hamiltonian [Eq. 5.3c] of m-DFBz.

Symmetry Mode κ1
s γ1

s κ2
s γ2

s κ3
s γ3

s κ4
s γ4

s

ν4 -0.0128 0.0063 -0.0975 -0.0421 0.1353 0.0536 -0.0121 -0.0047
ν5 -0.0285 -0.0068 -0.0410 -0.0199 0.0433 -0.0045 -0.0311 -0.0147
ν6 -0.1137 -0.0023 -0.1064 -0.0036 -0.1174 -0.0016 -0.1100 -0.0011

a1 ν7 0.0360 -0.0041 0.0271 -0.0112 0.0190 0.0028 0.0301 -0.0056
ν8 0.1171 0.0000 0.1024 -0.0025 0.1131 -0.0045 0.1130 -0.0027
ν9 -0.0918 -0.0044 -0.0467 -0.0063 -0.0353 -0.0035 -0.0559 -0.0030
ν10 -0.0124 -0.0059 0.0107 -0.0060 0.0175 -0.0036 0.0222 -0.0003

λ1−2
s λ1−3

s λ2−4
s λ3−4

s

ν19 0.0000 0.0000 0.2605 0.0666
ν20 0.0000 0.0000 0.0490 0.0167
ν22 0.0000 0.0000 0.0535 0.0167
ν23 0.0000 0.0000 0.0743 0.0210

b2 ν24 0.0000 0.0000 0.0370 0.0120
ν25 0.0000 0.0000 0.0353 0.0150
ν26 0.0000 0.0525 0.0698 0.0244
ν27 0.0000 0.0000 0.0501 0.0096
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Table 5.11: Same as in Table 5.8 of the electronic Hamiltonian [Eq. 5.3d] of PFBz.

Symmetry Mode κ1
s γ1

s κ2
s γ2

s κ3
s γ3

s κ4
s γ4

s κ5
s γ5

s

ν2 -0.0130 0.0080 0.1411 -0.0231 -0.1080 -0.0360 -0.0208 -0.0001 -0.0062 -0.0027
ν3 -0.0771 0.0009 0.0850 -0.0380 -0.0804 -0.0098 -0.0810 -0.0126 -0.0897 -0.0140
ν4 0.1280 0.0001 -0.0220 -0.0098 0.1163 -0.0085 0.1128 -0.0006 0.1068 -0.0050
ν5 0.0344 -0.0017 0.0375 -0.0162 0.0282 -0.0075 0.0163 0.0014 0.0196 -0.0039
ν6 -0.0209 -0.0032 0.0395 -0.0199 -0.0240 -0.0081 -0.0243 -0.0002 -0.0409 -0.0070

a1 ν7 0.0801 -0.0022 0.0190 -0.0085 0.0560 -0.0060 0.0600 -0.0046 0.0751 -0.0034
ν8 -0.0851 0.0007 -0.0371 -0.0144 -0.0550 -0.0012 -0.0626 -0.0028 -0.0650 -0.0017
ν9 -0.0116 -0.0088 0.0697 -0.0136 0.0235 -0.0095 0.0245 -0.0017 0.0293 -0.0002
ν10 0.0089 -0.0002 0.0273 -0.0085 0.0025 -0.0012 0.0028 -0.0013 0.0038 -0.0017
ν11 -0.0124 -0.0020 -0.0434 -0.0026 0.0031 -0.0024 0.0032 -0.0016 -0.0343 0.0051

λ1−2
s λ1−3

s λ1−4
s λ2−3

s λ2−4
s λ2−5

s λ3−5 λ4−5

ν12 0.0994 0.2049
ν13 0.0747 0.2010
ν14 0.0464 0.2491

b1 ν15 0.0144 0.2607
ν16 0.0243 0.1810
ν17 0.0860 0.2229

ν18 0.0000 0.0000 0.2919 0.0703
ν19 0.0000 0.0000 0.0854 0.0059
ν20 0.0000 0.0000 0.1113 0.0200
ν21 0.0000 0.0000 0.0907 0.0146

b2 ν22 0.0000 0.0000 0.0830 0.0155
ν25 0.0000 0.0000 0.1028 0.0311
ν26 0.0000 0.0000 0.0370 0.0080
ν27 0.0000 0.0000 0.0390 0.0095

ν28 0.1401 0.1640
a2 ν29 0.1153 0.2376

ν30 0.0388 0.1126
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It can be seen from the data in Tables 5.8-5.11 that the linear coupling pa-

rameters are of crucial importance to describe the potential energy surfaces and

the coupling surfaces of the diabatic electronic states. We have considered the

second-order coupling parameters also for the totally symmetric modes. How

the coupling constants obtained numerically and how well the quadratic coupling

model reproduces the ab initio data points are typically illustrated in Fig. 5.5. It

displays the ab initio data points in comparison with the corresponding potential

energy curves (full lines) obtained from the quadratic model. A representative

vibrational mode of a1 symmetry has been chosen for all four molecules. The

deviations of the model curves from the ab initio points can be seen to be very

minor. The quadratic model seems to have some effects in case of PFBz. Im-

portance of the quadratic terms in the vibronic dynamics has been discussed in

the literature [169]. These illustrations also confirm the minor importance of the

further higher-order (cubic and quartic) coupling parameters and indicate that

the quadratic model as adopted in Eqs. (5.3a-5.3d) provides reliable description

of the vibronic interactions in the four molecules considered here.

5.4 Potential energy surfaces of the ground and

excited electronic states

It is worthwhile to examine the topography of the electronic states of the four

fluorobenzene molecules considered here in order to understand the nuclear dy-

namics on them. This will allow to unravel the complex spectral features recorded

in the experiment and the relaxation mechanism of these electronic states. The

adiabatic potential energy surfaces can be obtained by diagonalizing the elec-

tronic Hamiltonian of the diabatic model developed above in section 5.3. How

well these model adiabatic potential energy functions reproduce the computed ab

initio data is typically illustrated in Fig. 5.6-5.9 for all four molecules. These
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Figure 5.5: Quadratic fit (full lines) to the ab initio calculated VEEs (asterisks)
for (a) MFBz, (b) o-DFBz, (c) m-DFBz and (d) PFBz along a representative
vibrational mode of a1 symmetry.
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represent one dimensional cuts of the multidimensional potential potential energy

hypersurface plotted along the dimensionless normal coordinates of symmetric vi-

brational mode indicated in each panel. In these figures the solid curves represent

the adiabatic potential energies from the model and the points superimposed on

them are obtained from ab initio quantum chemical calculations as discussed

above.

Table 5.12: Energy (eV) of the equilibrium minimum (diagonal entry) and min-
imum of the seam of the CIs (off-diagonal entry) of various electronic states of
MFBz, o-DFBz, m-DFBz and PFBz molecules.

MFBz o −DFBz


s1 s2 s3 s4 s5

s1 61.36 12.03 45.47 > 100
s2 6.38 6.74 13.13 47.22
s3 6.63 7.46 7.69
s4 7.19 7.20
s5 7.20







s1 s2 s3 s4 s5

s1 30.18 8.75 16.21 80.60
s2 6.41 6.77 19.60 11.57
s3 6.64 7.40 7.53
s4 7.14 7.26
s5 7.26




m −DFBz PFBz



s1 s2 s3 s4

s1 20.58 18.81 87.43
s2 6.37 7.69 16.79
s3 7.12 7.29
s4 7.27







s1 s2 s3 s4 s5

s1 6.92 19.17 86.73 76.83
s2 6.19 6.47 8.32 8.32
s3 6.47 17.66 14.00
s4 7.36 7.39
s5 7.38




In Fig. 5.6 the potential energy cuts of the ground and five low-lying ex-

cited electronic states of MFBz molecule are shown. The S0 state is vertically

well separated from the rest. This also holds for the remaining three molecules

[cf., Figs 5.7-5.9]. It can be seen from Fig. 5.6 that for MFBz S1 state is well

separated from the next higher ones. The electronic states S2, S3, S4 and S5 on

the other hand exhibit quasi-degeneracy or even curve crossings. These curve

crossings develop into CIs of potential energy surfaces in multidimensions. En-
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Figure 5.6: Adiabatic potential energies of ground and low-lying excited singlet
states of MFBz, along the normal coordinates of totally symmetric vibrational
modes. The potential energies obtained from the present vibronic model are
shown by the solid lines and the computed ab initio data are shown by the aster-
isks.
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Figure 5.7: Same as in Fig. 5.6 for o-DFBz.
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Figure 5.8: Same as in Fig. 5.6 for m-DFBz.
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Figure 5.9: Same as in Fig. 5.6 for PFBz.
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ergetic minimum of the seam of these CIs plays decisive role in the dynamical

evolution of the corresponding state. The energetic location of the minimum of

the seam (off-diagonal entries) and equilibrium minimum of the states involved

(diagonal entries) for all four molecules are calculated within LVC scheme and

given in Table 5.12. When the quadratic terms are included in this calculations,

the equations become highly nonlinear (see Ref [160] and appendix of this thesis).

Understandably, the solution is ambiguous in this case. But we carried out addi-

tional calculations using MATHEMATICA package to check the reproducibility

of these numbers by including the quadratic terms and some of the stable solu-

tions are indeed very similar to the numbers given in Table 5.12. These numbers

are tabulated in Table 5.13.

Table 5.13: Comparison of the minimum of the seam of the CIs of various elec-
tronic states of MFBz, o-DFBz, m-DFBz and PFBz (in eV) between LVC and
QVC scheme.

Molecule Seam of the CIs of Numbers obtained Numbers obtained
various electronic states in LVC scheme including quadratic terms

S2-S3 6.74 7.05
S3-S4 7.46 7.49

MFBz S3-S5 7.69 7.66
S4-S5 7.20 7.26

S2-S3 6.77 6.66
o-DFBz S3-S4 7.40 7.65

S4-S5 7.26 7.26

m-DFBz S3-S4 7.29 7.27

S1-S2 6.92 6.35
PFBz S2-S3 6.47 6.46

S4-S5 7.39 7.38

It can be seen from Table 5.12 that for MFBz the minimum of the crossing of

the S1 state with others occurs at very high energies. The minimum of the S2-S3

CIs occurs only ∼0.36 eV and ∼0.11 eV above the minimum of the S2 and S3

state, respectively. The minimum of the S3-S4 CIs occurs ∼0.83 eV and ∼0.27
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eV above the minimum of the S3 and S4 state, respectively. S3 also undergoes

low-energy curve crossings with S5. The minimum of the S3-S5 CIs occurs ∼1.06

eV and ∼0.49 eV above the minimum of the S3 and S5 state, respectively. The

S4 and S5 states are quasi-degenerate around their equilibrium geometry. The

minimum of the S4-S5 CIs occurs at or very near to the equilibrium minimum of

these states. The importance of these energy data in the mechanistic details of

nuclear dynamics is discussed in subsequent section.

The situation is very similar in o-DFBz [cf., Fig. 5.7] and m-DFBz [cf., Fig.

5.8]. Like in MFBz the S1 state is well separated from the next higher ones in

these molecules also. The CIs of S1 with others occur at higher energies (cf.,

Table 5.12). In o-DFBz S2-S3 CIs, like in MFBz, occur ∼0.36 eV and ∼0.13 eV

above the minimum of the S2 and S3 state, respectively. The CIs between S3-S4,

S3-S5 and S4-S5 occur close to the minimum of the respective interacting states.

Analogous situation is also observed for m-DFBz [cf., Fig. 5.8 and Table 5.12].

Unlike MFBz and o-DFBz, in this case the S2-S3 CIs occur at higher energy;

∼1.32 eV and ∼0.57 eV above the minimum of the S2 and S3 state, respectively.

The energetic locations of the other CIs in m-DFBz are nearly identical to those

in the MFBz and o-DFBz.

The situation is very much different in case of PFBz as illustrated in Fig. 5.9.

In this case energies of most of the CIs are lowered compared to the other three

discussed above (cf., Table 5.12). It can be seen that the S1 and S2 state also cross

in PFBz and the energetic minimum of the corresponding CIs occurs at ∼6.92

eV, which is only ∼0.73 eV above the S2 minimum. The S2-S3 CIs occur only

∼0.28 eV above the S2 minimum and it nearly coincides with the S3 minimum.

The S4 and S5 states are quasi-degenerate and their CIs occur very close to their

equilibrium minimum. We add that the S1-S2 CIs are accessible and significantly

contribute to the nuclear dynamics in the S1-S2 interacting electronic state of

PFBz within the energy range of the present study.

In summary, for all four molecules (discussed above) excited electronic states
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are energetically well separated from the S0 state. The S1 state undergoes cross-

ing with the S2 state at very high energies in MFBz, o-DFBz and m-DFBz. This

crossing occurs at much lower energy in PFBz and expected to have noticeable

impact on the vibronic structure of these electronic states. For all molecules

several low-energy (within 8.0 eV) CIs are established for the S2 and further

higher excited states. These intersections are expected to be the crucial bottle-

neck controlling the nuclear dynamics in the excited states of these fluorobenzene

molecules.

5.5 Optical absorption below 8 eV and perfluoro

effect

At this point it is important to discuss a few stringent issues on the optical ab-

sorption of the singlet states of all four molecules mentioned above. The electronic

structure data presented seem to be accurate enough to interpret and understand

the experimental results discussed in the next section. A more pertinent question

addressed here is how the increased fluorination modifies the electronic energy

and causes a dramatic change in the dynamical outcome of the first two excited

states of these benzene derivatives? Fig. 5.10 portrays the nature and energies of

the excited electronic states of benzene and its fluoroderivatives within 8.0 eV.

The energies are calculated at the equilibrium geometry of the respective

S0 state. It can be seen that the energy of the two lowest ππ∗ states exhibit

only mild variation however, the energy of the two lowest πσ∗ states decreases

significantly upon increasing fluorination. The first πσ∗ state is formed by the

promotion of ring π electron to the σ∗ orbital localized on the C-C bond whereas,

the second one is due to promotion of similar π electron to the σ∗ orbital localized

predominantly on the C-F bond. A Mulliken population analysis results (within

the present level of theoretical treatment) confirm these designations. The second
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Figure 5.10: The VEEs of the first four low-lying electronic states of fluorobenzene
molecules obtained at the reference equilibrium geometry of the respective S0

state. Some of the oscillator strengths are given in the parenthesis (see text). The
abbreviations TBz and TFBz refer to tri-fluorobenzene and tetra-fluorobenzene,
respectively.
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type of πσ∗ state occurs above 8.0 eV for MFBz and DFBz (not shown in Fig.

5.10 for brevity) and the two πσ∗ states are degenerate in HFBz. The oscillator

strengths of the two πσ∗ states are given in the parenthesis in Fig. 5.10. The

data provided therein reveal that the second excited state (S2) in PFBz is of πσ∗

type localized on the C-F bond, since the one localized on the C-C bond has zero

oscillator strength. It is seen in Fig. 5.9 that this state undergoes crossing with

the S1 state in PFBz. For molecules with less than five fluorine atom the S2 state

(with nonzero oscillator strength) is however energetically well separated from

the S1 state. Therefore, transition from a structured S1 ← S0 absorption band to

a blurred and diffused one with increasing fluorination can be attributed to the

appearance of the low energy S1(ππ∗) - S2(πσ∗) [σ∗ localized on the C-F bond]

conical intersections. It is already seen in Table 5.12 that minimum energy of

this intersection is substantially lowered in PFBz with respect to the other three

molecules considered here.

To this end it is worthwhile to compare the presented data to those available

in the literature. Zgierski and co-workers [89] have predicted the lowering of the

πσ∗ state [with σ∗ localized on the C-F bond] energy with increasing fluorina-

tion through time-dependent density functional theory calculations. Their results

show that this πσ∗ state becomes nearly degenerate with the lowest ππ∗ (C-C)

state in PFBz and becomes the LUMO in case of HFBz. A similar observation

was also made by Studzinski et al. [170]. By comparing the features observed

in the fluorescence and absorption spectra of jet cooled PFBz and HFBz with

others with less number of fluorine atoms and also supported by their electronic

structure data Zgierski and co-workers concluded that the S1 state of the former

molecules deserves a πσ∗ assignment [89]. This assignment differs from that of

Holland and co-workers [171] who established with the aid of a combined ex-

perimental and computational study that the LUMO of HFBz is of ππ∗ (C-C)

character. The results of the present study (by a wavefunction based approach)

are consistent with the findings of Holland and co-workers [171]. As can be seen
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from Fig. 5.10 that the S1 state of all fluorobenzene molecules is of ππ∗ type.

The πσ∗ state comes down in energy with increasing fluorination and becomes

S2 in PFBz and HFBz. As already discussed above that the S1 and S2 states in

PFBz from CIs at lower energies, the energetic minimum of these CIs is expected

to be further lowered in HFBz. Because of such vibronic coupling between the

S1(ππ∗)-S2(πσ∗) states of PFBz and HFBz the adiabatic S1 state will have a dou-

ble minimum topography. The biexponential nature of the decay of fluorescence

emission of PFBz and HFBz and the differences in their absorption and emission

profiles can be ascribed to the effects due to S1-S2 vibronic coupling.

5.6 Electronic absorption spectrum

5.6.1 The first absorption band

The first absorption band corresponding to the S1 ← S0 transition is calculated

by diagonalizing the diabatic Hamiltonian constructed in section 5.3. It is al-

ready established that the coupling between the S1 state with the S2-S3- S4-S5

electronic manifold occurs much beyond the energy range of the first absorption

band of MFBz, o-DFBz and m-DFBz molecules. The coupling strengths of the

relevant vibrational modes are also very weak. Therefore, the nuclear dynamics

in the S1 state of these three molecules remains insensitive to this coupling, and

treated to proceed adiabatically on this electronic state. The scenario however

changes in case of PFBz as described in section 5.4 above. In this case low-energy

CIs between the S1 and S2 states are found, which become accessible to the nu-

clear motion on the S1 electronic state. The S1-S2 coupling in PFBz is also much

stronger compared to the other three molecules. Therefore, for PFBz we first

calculate the first absorption band without considering any vibronic coupling fol-

lowed by a dynamical simulation considering such coupling with the excited S2

state in order to reveal the nonadiabatic coupling effects on the spectral enve-
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lope. The theoretical results are finally compared with the available experimental

absorption spectra.

According to the symmetry selection rule only totally symmetric vibrational

modes can have non-zero first-order (intrastate) coupling in the S1 state. A

careful analysis of all eleven totally symmetric vibrational modes of MFBz reveal

that only six (ν6 − ν11) of them exhibit large first-order coupling (cf., Table 5.8).

We therefore considered linear and quadratic coupling due to these modes in

the dynamical simulations. The final theoretical results are presented in panel

b of Fig. 5.11 along with the experimental results of Ref. [85], in panel a. The

theoretical stick spectrum of Fig. 5.11 is obtained by considering a vibrational

basis consisting of 6, 2, 6, 11, 11 and 2 harmonic oscillator functions along ν6−ν11

modes, respectively. This leads to a secular matrix of dimension 17424, which

is diagonalized using 5000 Lanczos iterations. The theoretical stick spectrum is

convoluted with a Lorentzian line shape function of 20 meV full width at the half

maximum (FWHM), to generate the spectral envelope. The same convolution

procedure is applied to all the later stick data presented in this chapter. It can

be seen from Fig. 5.11 that the theoretical results agree well with the experimental

spectrum. The dominant progressions in the band are formed by ν6, ν8, ν9 and

ν10 vibrational modes. The peaks are ∼0.1534, ∼0.1247, ∼0.1245 and ∼0.0974

eV spaced in energy and correspond to the frequencies of these vibrational modes,

respectively. Apart from the excitations of the fundamentals, their overtones and

several combination levels are also excited in the band.

The S1 ← S0 absorption band of o-DFBz is shown in Fig 5.12(a-b). Among

the eleven totally symmetric vibrational modes, only seven (ν3, ν4, ν6-ν10) are

relevant for the nuclear dynamics in the S1 state in this case (cf., Table 5.9). A

secular matrix of dimension 461700 is obtained by using 2, 5, 9, 5, 9, 19 and

6 harmonic oscillator basis functions along the above vibrational modes, respec-

tively, (in the given order) is diagonalized by employing 5000 Lanczos iterations.

The fundamentals of symmetric vibrational modes, ν6, ν8 and ν9 and their over-
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Figure 5.11: Vibronic band structure of the S1 excited singlet electronic state of
MFBz. The experimental [85] and theoretical results are shown in panel a and
b, respectively. The relative intensity (in arbitrary units) is plotted as a function
of the energy of the final vibronic state. The theoretical stick spectrum of panel
b is convoluted with a Lorentzian function of 20 meV FWHM to generate the
spectral envelope.
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tones and combinations form most of the progressions in the theoretical spectrum

shown in the panel b of Fig. 5.12. The intense lines are ∼0.1620, ∼0.1273 and

∼0.0921 eV spaced relative to the band origin and correspond to the frequency

of the ν6, ν8 and ν9 vibrational modes, respectively. It can be seen from Fig. 5.12

that the fine structure and the overall envelope of the experimental [85] spectrum

is very well reproduced by our theoretical data.

The S1 ← S0 optical absorption spectrum of m-DFBz is shown in Fig. 5.13.

The experimental [85] and present theoretical results are shown in panel a and b,

respectively. A careful examination of the coupling parameters (cf., Table 5.10)

of all totally symmetric nuclear vibrations indicates seven of them (ν4 − ν10) are

important in the nuclear dynamics in the S1 state of m-DFBz. The theoretical

stick spectrum is therefore calculated including these modes and using 6, 14, 8,

20, 24, 6 and 8 harmonic oscillator basis functions along them (in that order),

respectively. The resulting secular matrix of dimension 15482880 is diagonalized

using 5000 Lanczos iterations. A very good agreement between theoretical and

experimental data can be immediately seen from Fig. 5.13. The calculated spec-

trum of panel b of Fig. 5.13 reveals that the dominant progressions are formed

by the ν9, ν8 and ν6 vibrational modes. Peak spacings of ∼0.0862, ∼0.1256 and

∼0.1563 eV corresponding to the fundamentals of these modes, respectively, are

found from the calculated spectrum. Several overtones and combination levels

are also excited.

The fluorescence excitation spectrum of the S1 state of jet cooled o-DFBz and

m-DFBz recorded by Tsuchiya et al. [172] revealed numerous weak and strong

peaks. These authors have predicted strong vibronic coupling of the S1 state of

these molecules with a nearby state of πσ∗ type. Based on this assumption they

assigned the observed weak lines to the excitations of the nontotally symmetric

vibrational modes in addition to the expected strong excitations of the totally

symmetric vibrational modes. In contrast, the present theoretical analysis reveals

that the coupling of the S1 state with the higher excited states of o-DFBz and
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Figure 5.12: Same as in Fig. 5.11, for the o-DFBz.
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Figure 5.13: Same as in Fig. 5.11, for the m-DFBz.
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m-DFBz is extremely weak and occurs at much higher energies, much beyond the

energy range of the S1 band. In our theoretical studies we did not observe exci-

tations of any nontotally symmetric vibration in the S1 band of these molecules.

The dominant excitations of symmetric vibrational modes are however in good

agreement with those reported by Tsuchiya et al. [172]. For comparison, energy

eigenvalues of the prominent peaks of the S1 absorption band of o-DFBz and

m-DFBz are given in Table 5.14 along with the experimental results [172].

Table 5.14: Vibrational energy levels of the S1 electronic state of o-DFBz and
m-DFBz (in cm−1) The present theoretical results are given along with the ex-
perimental fluorescence excitation spectroscopy data of Ref. [172].

Molecule Present Data Fluorescence Data Vibrational assignment
742 722 ν9

1027 925 ν8

o-DFBz 1306 1265 ν6

1485 1445 ν2
9

314 317 ν11

638 682 ν2
11

695 702 ν9

m-DFBz 1013 966 ν8

1260 1267 ν6

1651 1650 ν11 + ν8

1708 1712 ν9 + ν8

It can be seen from Table 5.11 that for PFBz seven symmetric vibrational

modes, ν3-ν5, ν7-ν8 and ν10-ν11 are relevant for the nuclear dynamics in the S1

state. As stated above, in this case the S1 state forms low-energy CIs with the S2

state. These CIs are accessible for the nuclear motion on the S1 state. When the

S1-S2 coupling included, the dynamics becomes more involved. In addition to the

above seven, two additional symmetric modes ν2 and ν9 become relevant for the

dynamics. These two additional modes have relatively larger coupling strength

in the S2 state. The coupling (in first order) between S1 and S2 state in PFBz is

caused by the three vibrational modes of a2 symmetry. From Table 5.11 it can be

seen that all three modes have large coupling strength (λ2/2ω2) of ∼1.60, ∼2.92
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and ∼2.79, for ν28, ν29 and ν30, respectively.

In order to have a complete overview of the complex structure of the S1 ← S0

absorption band of PFBz, we first examined the nuclear dynamics in the isolated

(uncoupled) S1 state. The vibrational basis used for this purpose contains 5, 8, 3,

12, 21, 3 and 3 harmonic oscillator functions along the ν3-ν5, ν7, ν8, ν10 and ν11

modes, respectively. This choice leads to a secular matrix of dimension 272160

which is finally diagonalized with 5000 Lanczos iterations. The result emerged

from this calculation is presented in panel c of Fig. 5.14. The experimental result

reproduced from Ref. [85] is presented in panel a of Fig. 5.14. Understandably,

the theoretical results of panel c are not in agreement with the observed diffused

S1 ← S0 absorption band of PFBz. Major progressions due to ν4, ν7 and ν8

vibrational modes are identified from the theoretical stick spectrum. The lines

are ∼0.1763, ∼0.0866 and ∼0.0718 eV spaced corresponding to the excitation of

the fundamentals along these vibrational modes, respectively.

In the subsequent attempt we included nine symmetric vibrational modes and

three coupling vibrational modes of a2 symmetry in the dynamical treatment. A

diagonalization of matrix Hamiltonian for two coupled electronic states including

twelve nuclear degrees of freedom turned out to be very difficult. The spec-

trum obtained by diagonalizing the two-state vibronic Hamiltonian could not be

converged numerically and is not shown here. A huge increase of spectral line

density is observed when the coupling between the states included. Finally, the

S1-S2 coupled state spectrum of PFBz is calculated by the WP propagation ap-

proach employing the MCTDH algorithm [118–123]. The numerical details of this

calculation are summarized in Table 5.15. The numerically converged spectrum

obtained from this calculation is given in panel b of Fig. 5.14. It can be seen

that the theoretical results of panel b is in very good accord with the experiment

establishing the important role of S1-S2 coupling in the detailed shape of the S1

absorption band of PFBz.
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Figure 5.14: Vibronic band structure of S1 excited singlet electronic state of
PFBz: (a) experimental spectrum (reproduced from Ref. [85]); (b) spectrum
calculated by diagonalizing the S1-S2 coupled state Hamiltonian; (c) uncoupled
S1 state spectrum calculated by the matrix diagonalization approach.
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Table 5.15: Normal mode combinations, sizes of the primitive and the single
particle basis used in the WP propagation within the MCTDH framework in
the coupled electronic manifold using the complete vibronic Hamiltonian of Eqs.
(5.2-5.3d). Second column denotes the vibrational degrees of freedom (DOF)
which are combined to particles. Third column gives the number of primitive
basis functions for each DOF. Fourth column gives the number of single particle
functions (SPFs) for each electronic state.

Molecule Normal modes Primitive basis SPF basis Figure
(ν9, ν30, ν14, ν20) (15, 11, 8, 9) [7, 6, 4, 6, 7]
(ν10, ν13, ν27, ν29) (10, 8, 9, 10) [7, 6, 4, 4, 6]

MFBz (ν6, ν12, ν17, ν28) (12, 8, 8, 10) [6, 6, 4, 6, 6] 5.19 (b)
(ν8, ν26, ν16) (12, 9, 8) [6, 5, 4, 5, 6]
(ν7, ν11, ν24) (8, 7, 9) [4, 4, 7, 6, 4]

(ν6, ν10, ν12, ν23, ν25) (12, 10, 8, 6, 10) [7, 7, 8, 7, 7]
(ν3, ν14, ν24, ν26) (15, 10, 8, 8) [5, 5, 8, 8, 5]

o-DFBz (ν4, ν11, ν18, ν27, ν30) (7, 8, 10, 8, 11) [5, 5, 5, 5, 5] 5.20 (b)
(ν7, ν13, ν15, ν28) (10, 7, 12, 10) [5, 5, 7, 5, 5]
(ν8, ν9, ν21, ν29) (10, 12, 7, 10) [7, 7, 6, 7, 7]

(ν6, ν5, ν19, ν27) (14, 7, 10, 8) [7, 7, 7, 7]
(ν8, ν4, ν26, ν23) (14, 14, 8, 9) [7, 7, 7, 7]

m-DFBz (ν9, ν7, ν22, ν25) (14, 8, 8, 6) [7, 5, 4, 6] 5.21 (b)
(ν10, ν20, ν24) (10, 6, 6) [5, 5, 6, 6]

(ν2, ν11, ν4, ν28) (10, 12, 4, 15) [8, 10]
PFBz (ν3, ν8, ν9, ν29) (7, 9, 12, 15) [9, 10] 5.14 (b)

(ν6, ν7, ν10, ν30) (6, 5, 12, 157) [8, 7]

(ν4, ν13, ν16, ν25) (4, 11, 10, 12) [7, 8, 8, 8, 8]
(ν3, ν12, ν20, ν26) (7, 14, 11, 6) [4, 9, 9, 4, 4]

PFBz (ν9, ν15, ν17, ν27) (12, 7, 15, 6) [4, 8, 5, 5, 5] 5.22 (b)
(ν6, ν11, ν18, ν22, ν28) (6, 12, 10, 7, 15) [4, 6, 4, 4, 7]
(ν8, ν10, ν19, ν21, ν29) (9, 12, 10, 7, 15) [7, 4, 5, 6, 6]

(ν7, ν2, ν14, ν30) (5, 10, 9, 15) [4, 7, 4, 4, 5]
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5.6.2 The overlapping second and third absorption bands

The second and third absorption bands of all four molecules are highly overlapping

and extremely diffuse. These bands correspond to the 1B1u ← 1A1g and 1E1u ←
1A1g transitions in the parent benzene molecule. Because of symmetry lowering

the electronic states of the four fluorobenzene molecules considered here are all

nondegenerate. The low-lying excited states S2, S3, S4 and S5 are energetically

close and undergo crossing with each other and form several low-energy CIs as

discussed in detail in section 5.4. Except for the m-DFBz (in which the states up

to S4 occur within 8.0 eV), the vibronic structures of electronic states up to S5

are relevant for the observed features of the second and third absorption bands.

In addition to the above, in PFBz the S1 state also contributes to the observed

experimental data. As already shown, the coupling between the S1 and S2 states

significantly contributes to the broadening of the S1 ← S0 absorption spectrum in

this case. Therefore, it is obvious that this coupling will have significant effect on

the low-energy wing of the S2 band. In order to examine the vibronic structure

of the second and third absorption bands of the four fluorobenzene molecules

systematically, we first consider each electronic state without considering the

coupling with its neighbors and simulate the nuclear dynamics on it. In the

next step all possible couplings between the states are included in the dynamical

treatment and the results are compared with the available experimental data [85].

While the matrix diagonalization method is employed for the uncoupled electronic

states, the final results in the coupled states situation are obtained by propagating

WPs employing the MCTDH algorithm [118–123].

The vibrational energy level spectrum of the uncoupled S2, S3, S4 and S5 elec-

tronic states of MFBz are shown in panel a, b, c and d, respectively, of Fig. 5.15.

The energy eigenvalues are obtained by the matrix diagonalization method using

the most important symmetric vibrational modes; ν6-ν11 for S2; ν4, ν6, ν7 ν9-ν11

for S3; ν6-ν11 for S4 and ν4, ν6-ν10 for S5. The theoretical spectra presented in Fig.
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5.15 and also the latter ones in Figs. 5.16, 5.17 and 5.18 converged with respect

to the numerical parameters used in the calculations. The vibronic structure of

the uncoupled S2 electronic state of MFBz reveals dominant excitation of the ν6,

ν8, ν9 and ν10 vibrational modes and the corresponding peak spacings of ∼0.1410,

∼0.1235, ∼0.1218 and ∼0.0943 eV, respectively, are found from the spectrum of

Fig. 5.15(a). In the S3 ← S0 spectrum presented in Fig. 5.15(b), ν4, ν7, and ν11

vibrational modes form the dominant progressions. The peak spacings found at

∼0.1967, ∼0.1392 and ∼0.0550 eV, respectively, correspond to the fundamental

excitations along these vibrations. Similarly, the theoretical results indicate exci-

tation of ν6, ν8, ν9, ν10 and ν11 fundamentals in the S4 ← S0 absorption spectrum

presented in Fig 5.15(c). Peak spacings of ∼0.1533, ∼0.1188, ∼0.1185, ∼0.0928

and ∼0.0607 eV along these vibrational modes, respectively, are found from the

theoretical data. The S5 ← S0 spectrum presented in Fig. 5.15(d) is dominated

by the progressions along the ν4, ν6, ν8, ν9 and ν10 vibrational modes and peak

spacings of ∼0.2208, ∼0.1602, ∼0.1202, ∼0.1202 and ∼0.0967 eV, respectively,

corresponding to these modes are estimated from the theoretical data. In ad-

dition to the excitation of the fundamentals, various overtones and combination

peaks are also excited. Similar observations are made for all other fluorobenzene

molecules discussed in this chapter.

Electronic absorption spectra of the uncoupled S2, S3, S4 and S5 electronic

states of o-DFBz are shown in panel a, b, c and d of Fig. 5.16, respectively.

In this case the theoretical data reveal dominant excitation of the ν6, ν8 and

ν9 vibrational modes in the S2 band; ν3, ν9 and ν10 vibrational modes in the

S3 band; ν3, ν6, ν8 and ν9 vibrational modes in the S4 band and ν6, ν8 and ν9

vibrational modes in the S5 band. Apart from the fundamentals several overtone

and combination levels are also excited.

Similar electronic absorption spectra of the uncoupled S2, S3 and S4 excited

electronic states of m-DFBz are shown in panel a, b and c of Fig. 5.17, respec-

tively. The theoretical data indicate that ν6, ν8 and ν9 vibrational modes form



5.6. Electronic absorption spectrum 151

Figure 5.15: Electronic absorption bands of the uncoupled excited singlet elec-
tronic states (indicated in the panel) of MFBz. Relative intensity (in arbitrary
units) is plotted as a function of the energy of the vibrational levels of the final
electronic state. The zero of energy corresponds to the equilibrium minimum of
the S0 state.



5.6. Electronic absorption spectrum 152

Figure 5.16: Same as in Fig. 5.15, for o-DFBz.
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Figure 5.17: Same as in Fig. 5.17, for m-DFBz.
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Figure 5.18: Same as in Fig. 5.18, for PFBz.
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the major progressions in the S2 and S4 bands and ν4, ν6, ν8 and ν9 vibrational

modes form the major progressions in the S3 band of m-DFBz.

The electronic absorption spectra of the uncoupled S2, S3, S4 and S5 electronic

states of PFBz are shown in Figs. 5.18(a-d), respectively. Unlike other molecules

the S2 band in PFBz is somewhat broad and diffuse. This is because two low-

frequency symmetric vibrational modes ν9 (0.0579 eV) and ν11 (0.0331 eV) are

strongly excited in this case (see Table 5.11). Strong excitations of these modes

cause a huge increase in the density of the vibrational levels. Note that frequencies

of these modes in PFBz are also lower compared to those in other molecules.

Energy eigenvalues of dominant peaks observed above in the absorption spectra

of four fluorobenzene molecules are given in Tables 5.16-5.19. The most probable

assignment of the peaks are also included in these tables.

It is now obvious that the structured electronic absorption bands presented

above in Figs. (5.15-5.18) are quite different from the spectral envelopes recorded

in the experiment [85]. The experimental spectral envelopes are broad and usu-

ally structureless. As described above that a meaningful interpretation of the

experimental data requires the nonadiabatic coupling among various states to be

considered in the dynamical calculations. Such attempts are made in the rest of

this section. It is important to mention that the uncoupled state spectrum pre-

sented above contains rich informations on the excitation of vibrational modes,

which otherwise can not be deciphered from the results presented below. Un-

derstandably, because of the dimensionality problem the matrix diagonalization

approach could not be used any further to carry out the first principles simula-

tion of nuclear dynamics on the coupled manifold of multiple electronic states.

We therefore resort to the most credible WP propagation approach within the

MCTDH framework [118–123] to accomplish the task.

The calculated second and third absorption bands of MFBz, o-DFBz, m-DFBz

and PFBz are shown in panel b of Figs. 5.19, 5.20, 5.21 and 5.22, respectively.

The corresponding experimental results are reproduced from Ref. [85] and given
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Table 5.16: Line spacings (in eV) of the dominant excitations relative to the band
origin extracted from the electronic absorption bands of Fig. 5.15 of MFBz.

Electronic state Dominant excitation Line spacing
ν6 0.1410
ν8 0.1235
ν9 0.1218
ν10 0.0943

ν9 + ν10 0.2160
S2 ν8 + ν10 0.2178

ν6 + ν10 0.2352
2ν9 0.2436

ν8 + ν9 0.2453
ν6 + ν9 0.2627
ν6 + ν8 0.2645

ν4 0.1967
ν7 0.1392
ν11 0.0550

S3 2ν11 0.1099
3ν11 0.1649

ν7 + 2ν11 0.2492
ν4 + ν11 0.2517

ν6 0.1533
ν8 0.1188
ν9 0.1185
ν10 0.0928

S4 ν11 0.0607
ν9 + 2ν11 0.1793

2ν9 0.2371
ν8 + ν9 0.2374
ν6 + ν9 0.2718

ν4 0.2208
ν6 0.1602
ν8 0.1202
ν9 0.1202

S5 ν10 0.0967
2ν9 0.2404
2ν8 0.2405

ν6 + ν10 0.2569
ν6 + 2ν9 0.2804
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Table 5.17: Same as in Table 5.16, extracted from Fig. 5.16 for o-DFBz.

Electronic state Dominant excitation Line spacing
ν6 0.1575
ν8 0.1257
ν9 0.0905

S2 ν8 + ν9 0.2161
ν6 + ν9 0.2479
ν6 + ν8 0.2832

2ν6 0.3108

ν3 0.2338
ν9 0.1205
ν10 0.0834

S3 2ν10 0.1669
ν9 + 2ν10 0.2040

2ν9 0.2411
ν3 + ν10 0.3173

ν3 0.2301
ν6 0.1662
ν8 0.1239
ν9 0.0892

S4 ν8 + ν9 0.2131
2ν8 0.2478

ν6 + ν9 0.2554
ν6 + ν8 0.2901
ν3 + ν9 0.3192

ν6 0.1582
ν8 0.1219
ν9 0.0911

S5 2ν9 0.1821
ν8 + ν9 0.2130

2ν8 0.2439
ν6 + ν9 0.2493
ν6 + ν8 0.2801

2ν6 0.3164
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Table 5.18: Same as in Table 5.16, extracted from Fig. 5.17 for m-DFBz.

Electronic state Dominant excitation Line spacing
ν4 0.1644
ν6 0.1549
ν8 0.1230
ν9 0.0842

S2 ν8 + ν9 0.2072
ν6 + ν9 0.2391

2ν8 0.2461
ν6 + ν8 0.2780

2ν6 0.3144

ν4 0.2531
ν6 0.1570
ν8 0.1211
ν9 0.0872

S3 ν8 + ν9 0.2082
2ν8 0.2421

ν8 + ν6 0.2780
2ν6 0.3140

ν4 + ν8 0.3741

ν6 0.1575
ν8 0.1229
ν9 0.0877

S4 ν8 + ν9 0.2106
ν6 + ν9 0.2451

2ν8 0.2457
ν6 + ν8 0.2804

2ν6 0.3150
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Table 5.19: Same as in Table 5.16, extracted from Fig 5.18 for PFBz.

Electronic state Dominant excitation Line spacing
ν8 0.0548
ν9 0.0421
ν11 0.0305

S2 ν9 + ν11 0.0727
2ν9 0.0843

ν8 + ν9 0.0970
ν9 + 2ν11 0.1032
2ν9 + ν11 0.1148

ν2 0.1690
ν4 0.1675
ν7 0.0826

S3 ν8 0.0699
2ν8 0.1398

ν7 + ν8 0.1525

ν3 0.1772
ν4 0.1756
ν7 0.0841
ν8 0.0682
ν9 0.0562

S4 ν8 + ν9 0.1244
2ν8 0.1365
2ν7 0.1681

ν4 + ν8 0.2438
ν3 + ν8 0.2455

ν4 0.1711
ν7 0.0853
ν8 0.0693

S5 ν9 0.0577
ν8 + ν9 0.1270

2ν8 0.1387
ν7 + ν8 0.1547
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Figure 5.19: The second and third electronic absorption bands of MFBz obtained
from the coupled state dynamical studies (see text for details). The experimental
[85] and theoretical results are shown in panel a and b, respectively. The intensity
(in arbitrary unit) is plotted as a function of the energy of the final vibronic states.
The vertical lines are drawn to better reveal the correspondence of the structures
in the theoretical spectrum to those in the experimental results.
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Figure 5.20: Same as in Fig. 5.19, for o-DFBz.
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Figure 5.21: Same as in Fig. 5.19, for m-DFBz.
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Figure 5.22: Same as in Fig. 5.19, for PFBz.
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in panel a of each figure. The two curves in panel a of each figure emerge from

a decomposition of the experimental spectrum. This was done to eliminate the

overlapping components and to correctly estimate the oscillator strengths of the

two curves of 1B1u and 1E1u origin of benzene parentage. Further details on

this decomposition of bands are given in Ref. [85]. The technical details of WP

calculations by the MCTDH method are given in Table 5.14. The WP calculations

are carried out starting from each electronic state of a given molecule. The WP

in each calculation is propagated for 200 fs which effectively yields results for

400 fs propagation [134]. The time autocorrelation functions obtained from these

calculations are combined, damped with an exponential function, e−t/τr (with

τr=12 fs.), and finally Fourier transformed to calculate the composite vibronic

bands for each molecule. The exponential damping corresponds to a spectral

broadening equivalent to Lorentzian line shape function of 110 meV FWHM. It

can be seen from Figs. 5.19-5.22 that the theoretical results are in satisfactory

agreement with the low-resolution experimental data. While all the coupling

parameters of the Hamiltonian presented in Tables 5.8-5.11 are used without any

adjustments in the present study, it was necessary to adjust some of the VEE

values within the error limit of the EOM-CCSD method of average accuracy ∼0.2

eV and maximum deviation of ∼0.4 eV [164] to reproduce the adiabatic excitation

positions at their experimental values. Apart from this, no other parameters are

adjusted in our theoretical calculations. The VEE values are adjusted in the

∼0.1-0.34 eV range. The adjusted VEE values (in eV) of the concerned electronic

states of four fluorobenzene molecules are given below (in the parentheses) along

with their ab initio calculated values.
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State MFBz o-DFBz m-DFBz PFBz

S1
1B2 5.055 (5.055) 1A1 5.075 (5.075) 1B2 5.084 (5.084) 1B2 5.111 (5.211)

S2
1A1 6.469 (6.469) 1B2 6.503 (6.503) 1A1 6.492 (6.492) 1B1 6.314 (6.010)

S3
1B1 6.724 (6.553) 1B1 6.796 (6.579) 1A1 7.272 (7.102) 1A1 6.579 (6.420)

S4
1B2 7.288 (7.088) 1B2 7.323 (7.163) 1B2 7.382 (7.212) 1A1 7.475 (7.135)

S5
1A1 7.317 (7.117) 1A1 7.378 (7.080) —– 1B2 7.509 (7.561)

It is now clear that various CIs between the excited electronic states of the

fluorinated benzene molecules play crucial role in the detailed shape of the sec-

ond and third absorption bands. The associated nonadiabatic coupling causes

a demolition of discrete line structure by increasing the vibronic line density.

The energetic proximity of CIs to the equilibrium minimum of a state (see Table

5.12 causes the individual bands (as presented in Figs. (5.15-5.18) to overlap

strongly. For MFBz, o-DFBz and m-DFBz weak vibronic structures embedded

in a continuum background have been observed in the experiment. In case of

PFBz these weak structures are no longer seen and an additional broad band

appears at ∼5.85 eV near the onset of the second band. This additional band is

absent in the parent benzene and also in the lower fluoroderivatives. Supported

by the electronic structure data given above it is certain that this new band orig-

inates from the πσ∗ state with σ∗ orbital localized on the C-F bond. Because of

the perfluoro effect this state comes down in energy and becomes S2 in PFBz,

whereas, it is located beyond 8 eV in the lower fluoroderivatives and is absent in

benzene. The adjusted VEE of this state is ∼6.01 eV which is very close to the

estimated experimental location of this state. These findings are also in accord

with the suggestions made by Philis et al. [85] on the origin of this band in PFBz.

The electronic structure data reveal strong coupling between S1 and S2 state via

the a2 vibrational modes in PFBz (cf., Table 5.11). The minimum of the seam of
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S1-S2 CIs located only ∼0.73 eV above the S2 equilibrium minimum. In addition,

the minimum of S2-S3 CIs also located ∼0.28 eV above the S2 minimum. The

S2 and S3 states are also strongly coupled through the vibrational modes of b1

symmetry. These considerations explain the observed diffuse band structure of

the S2 state of πσ∗ origin in PFBz.

Nonadiabatic transition to the neighboring electronic states also contributes

to the low quantum yield of fluorescence emission of this state. Another novel

observation made in the experimental second photoabsorption band of MFBz and

o-DFBz is the following. A new peak (not observed for the remaining fluoroben-

zene molecules) appeared in their absorption band. This peak disappears when

the spectrum of MFBz recorded in the nitrogen matrix and in the pure solid

state [85]. This observation favored an assignment of this peak to the 3s member

(marked 3s in the panel a of Fig. 5.19 and 5.20) of the 1E1g Rydberg series of the

parent benzene molecule. Based on the electronic structure data presented in the

Fig. 5.10, we propose that this ”extra” peak in these two molecules originates

from a transition to their πσ∗ state (with σ∗ localized on the C-C bond). The

corresponding oscillator strength is nonzero only for MFBz and o-DFBz. Also

in case of o-DFBz the experimental peak located at ∼6.37 eV, quite close to our

adjusted theoretical VEE value of ∼6.58 eV. Further analysis reveal large values

of the second moment of electronic charge, ∼125.74 (vs. the ground state value

of ∼90.31) for MFBz and ∼135.2 (vs. ground state value of ∼100.58) for o-DFBz

(cf., Table 5.20) supporting a 3s Rydberg character of this πσ∗ state.

Table 5.20: One electron properties (a.u) for gorund and lowest πσ∗ excited
singlet state of MFBz and o-DFBz at their equilibrium geometries.

Molecule Electronic state 〈z〉 〈x〉 〈y〉 〈x2〉 〈y2〉 〈z2〉 〈r2〉
MFBz Ground state -0.65 4.41 5.56 1.45 90.31

πσ∗ 1.58 3.93 1.86 5.79 125.74

o-DFBz Ground state 1.08 -3.10 3.87 -0.77 -100.58
πσ∗ -0.98 8.55 7.36 -15.91 -135.19
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5.7 Internal conversion dynamics

Nonradiative transfer of electronic populations in the coupled states dynamics

of fluorobenzene molecules discussed in the previous section is examined here.

Dynamics of excited electronic states in terms of variation of diabatic electronic

populations in time is portrayed in Figs. 5.23-5.26, for MFBz, o-DFBz, m-DFBz

and PFBz molecules, respectively. The panels in a given figure differ in terms of

the initial location of the WP. The initial location can be immediately identified

from the population value 1.0 of the prepared state at t=0. The population

curves in all figures are marked with the appropriate state label. Interesting

observations on the dynamical mechanism can be obtained from these population

curves in conjunction with the coupling parameters and the stationary points on

the potential energy surfaces detailed section 5.4.

Excited state electronic populations displayed in Fig. 5.23 for MFBz reveal

minor population flow to the other states when the WP is located initially on the

S1 state (cf., panel a). This state is essentially decoupled from the rest and the

minimum of all CIs with others is located at very high energies. The minimum of

the S1-S3 CIs occurring at ∼12.03 eV, is the lowest among them. Also, the S1-S3

coupling via the a2 vibrational modes is moderately strong (see Tables 5.8 and

5.12). This enables the high energy tail of the WP to move to the S3 state which

can be seen from the small growth of population of this state in time. Significant

population flows to the S3 and S5 states when the S2 state is initially populated

(cf., Fig. 5.23(b)). The minimum of S2-S3 CIs located ∼0.36 eV and ∼0.11 eV

above the minimum of S2 and S3 state, respectively. The S2-S5 CIs occur at

much higher energies and are not accessible to the WP during its evolution in

the present time scale. The minimum of the S3-S5 CIs occurs at ∼ 1.06 eV and

∼0.49 eV above the minimum of S3 and S5 state, respectively. These electronic

states are strongly coupled by the vibrational modes of b1 symmetry. Therefore,

the WP initially prepared on the S2 state flows into the S3 state in time and
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Figure 5.23: Time-dependence of diabatic electronic populations in the S1-S2-
S3-S4-S5 coupled state nuclear dynamics of MFBz. The results obtained for five
different initial locations of the WP are given in panels a-e, respectively.
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Figure 5.24: Same as in Fig 5.23, for o-DFBz.



5.7. Internal conversion dynamics 170

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
t (fs.)

D
ia

ba
tic

 e
le

ct
ro

ni
c 

po
pu

la
tio

n

S
1

S
2

S
3

S
4

S
3

S
4

S
2

S
4

S
2

S
3

(a) (b)

(c) (d)

Figure 5.25: Same as in Fig 5.23, for S1-S2-S3-S4 coupled state dynamics of m-
DFBz.
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Figure 5.26: Same as in Fig 5.23, for PFBz.
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subsequently moves to the S5 state via S3-S5 CIs. The initial fast decay of the

population relates to a decay rate of ∼79 fs for the S2 state. Similar situation

arises when the WP is initially located on the S3 (panel c) and S5 (panel e) state.

In these cases the S4 state is also populated via the low-lying S3-S4 and S4-S5 CIs.

The minimum of the latter CIs located nearly at the minimum of the S5 state.

Nonradiative decay rate of ∼23 fs can be estimated for both the S3 and S5 states

from the population curves. S4 state is weakly coupled with the other states.

Therefore, no significant population transfer takes place to the other states when

the WP is initially located on the S4 state as can be seen from panel d of Fig.

5.23.

Electron population dynamics of o-DFBz shown in Fig. 5.24 reveals analo-

gous characteristics as that of MFBz when the WP is initially located on the S1

state (panel a). In this case owing to a lowering of the minimum of the S1-S3 CIs

somewhat more population (when compared to MFBz) flows to the S3 state. Al-

though the minimum of the S2-S3 CIs in o-DFBz located only ∼0.36 eV above the

minimum of the S2 state, because of weak coupling (cf., Table 5.9), no significant

population transfer takes place to the S3 state when the WP is initially prepared

on the S2 state (panel b). Similarly, because of weak coupling of S4 state with

the others, small population flows to the other states when the WP is initially

prepared on it (panel d). The minimum of the S2-S3 CIs occurs nearly at the

minimum of the S3 state, owing to this quasi-degeneracy, significant population

flows to the S2 state when the WP is initially prepared on the S3 state (panel

c). The initial decrease of S3 population relates to a decay rate of ∼42 fs of this

state. Similar quasi-degeneracy exists between the minimum of S4-S5 CIs and the

equilibrium minimum of S5 state. As a result, significant population flows to the

S4 state during the evolution of the WP on the S5 state (panel e). A nonradiative

decay rate of ∼43 fs can be estimated from the initial decrease of the population

of the S5 state.

The CIs of S1 state of m-DFBz with other states occur at very high energies.



5.7. Internal conversion dynamics 173

Therefore, as can be seen from panel a of Fig. 5.25, that these CIs are not

accessible to the WP prepared on the S1 state. Small population transfer takes

place to the S4 and also to the S2 state during the evolution of the WP on the S2

and S3 state (panel b and c). The WP initially prepared on the S3 state moves to

the S4 state via S3-S4 CIs, which subsequently flows to the S2 state via S2-S4 CIs.

The minimum of the S3-S4 CIs is quasi-degenerate with the equilibrium minimum

of the S3 and S4 state. WP initially launched on the S4 state (panel d) therefore

moves to the S3 state in time. The WP from the latter state subsequently flows

to the S2 state as the minimum of the S2-S3 CIs located only ∼0.57 eV above the

equilibrium minimum of the S3 state. The initial sharp decay of the population

in Fig. 5.25(d) relates to a nonradiative decay rate of ∼34 fs of the S4 state of

m-DFBz.

Finally, the electron population dynamics of PFBz molecule is displayed in

Fig. 5.26. As found in section 5.4 that the minimum of S1-S2 CIs comes down in

energy and therefore it becomes accessible for the WP moving on the S1 state in

the energy range of the present investigations. As can be seen from Fig. 5.26(a)

that both the S2 and S4 states are populated in this case, in contrast to the

situation in MFBz and o-DFBz in which the S3 state is populated [cf., Fig 5.23(a)

and 5.24(a)]. Like in m-DFBz the S1-S3 CIs occur at high energies in PFBz. The

minimum of the S1-S4 CIs also occurs at a very high energy in this case. However,

some population flows to the S4 state via relatively low-lying S2-S4 CIs. It is

discussed above that the S1-S2 CIs are the bottleneck underlying the broadening

of the S1 ← S0 absorption band in PFBz. We repeat that the S2 state in PFBz

is of πσ∗ origin, with σ∗ MO localized on the C-F bond. The corresponding state

in the other fluorobenzene molecules discussed here occurs beyond 8.0 eV. The

unique feature of the S2 state in PFBz is that it forms energetically low-lying CIs

(cf., Table 5.12) with all other states. Therefore, the S2 state is populated for

all five different initial locations of the WP shown in Fig. 5.26. A nonradiative

decay rate of ∼69 fs can be estimated from the population curve of S2 state
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given in panel b. Similarly, decay rate of ∼52 fs can be estimated for the S3 and

S5 state. Like other fluorobenzene molecules, the S4-S5 intersection minimum is

quasi-degenerate with the equilibrium minimum of S4 and S5 state. Overall, it

appears that the nonadiabatic coupling effect in the electronically excited PFBz

molecule is relatively greater compared to others. This leads to the appearance

of much broader and diffuse electronic absorption bands in PFBz.

5.8 summary and outlook

The structure of the electronic ground and low-lying excited singlet states of

MFBz, o-DFBz, m-DFBz and PFBz is theoretically studied by EOM-CCSD

method. Detail topography of these electronic states is examined and diabatic

electronic states are derived from the calculated adiabatic energies. The diabatic

coupling surfaces among various electronic states are also derived along the rel-

evant vibrational modes in accordance with the symmetry selection rules. The

electronic structure data establish multiple CIs in the excited electronic states of

all four molecules. The energetic minimum of these CIs and also the equilibrium

minimum of electronic states are estimated and are related to the observed spec-

tral features of these molecules. Vibronic eigenvalue spectra and time-dependent

dynamics of the excited electronic states are calculated from first principles. The

theoretical results are found to be in very good accord with the available experi-

mental results [85].

The important outcomes of this study are the following. The S0 ground elec-

tronic state of all four molecules is energetically well separated from the excited

states. The nature of their S1 state (LUMO) is ππ∗ localized on the C-C bond.

While the nature of the S2 state is ππ∗ (localized on the C-C bond) type up to

tetrafluorobenzene, this state is of πσ∗ type (with σ∗ localized on the C-F bond)

in PFBz and HFBz. The latter state occurs at high energy for fluoroderivatives

with four or less fluorine atoms. Owing to the perfluoro effect this state comes



5.8. summary and outlook 175

down in energy and becomes S2 in PFBz and HFBz. Low-energy CIs between

the S1 and S2 states of PFBz have been found. These intersections will have

crucial roles in the observed absorption and fluorescence spectra of PFBz, which

are different from other three molecules treated here. The further higher excited

states S3 , S4 and S5 are energetically close (often quasi-degenerate) in all four

molecules (except the S5 state of m-DFBz which occurs beyond 8 eV) and they

form numerous CIs. The vibronic energy level structure of these electronic states

of all four molecules is systematically investigated through reduced dimensional

matrix diagonalization calculations. The final theoretical simulations using the

full Hamiltonian of Eqs. (5.2-5.3d) are carried out by propagating the WPs using

the MCTDH algorithm [118–123]. The structured S1 ← S0 electronic absorption

bands of MFBz, o-DFBz and m-DFBz are in good agreement with the experi-

mental results. This band in PFBz is blurred due to the occurrence of low-energy

S1(ππ∗)−S2(πσ∗) CIs. The coupling between these states is also very strong and

the resulting nonadiabatic effects cause a huge increase of the spectral line density.

A biexponential decay of fluorescence emission originates from this coupling. The

second and third absorption bands are formed by energetically close-lying S2, S3,

S4 and S5 electronic states of these molecules (except for m-DFBz for which states

up to S4 are relevant). Because of energetic proximity these bands strongly over-

lap and occurrence of numerous CIs between these electronic states contributes

significantly to the complex structureless pattern of these bands. While weak

vibronic structures embedded in a continuum background have been found in

MFBz, o-DFBz and m-DFBz, such structures are absent in PFBz because of

relatively stronger surface coupling effects. In contrast to the other fluoroderiva-

tives (considered here) and the parent benzene, an additional band observed near

the onset of the second absorption band is attributed to originate from the S2

(πσ∗) state of PFBz. It bears an evidence of the effect due to increasing fluorine

substitution and is discussed in detail in the text. The strong coupling between

the S1 − S2 and S2 − S3 states contributes to the observed diffused and broad
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structure of this additional band in PFBz. Another novel finding of this paper

is related to the experimental findings of a new peak in the band structures of

MFBz and o-DFBz. This peak is not observed in the remaining fluoroderivatives.

This is assigned to be due to the 3s member of the 1E1g Rydberg series of the

parent benzene molecule. We find that this peak originates from the πσ∗ (with

σ∗ MO localized on the C-C bond) state of these two molecules. The oscillator

strength for this transition is nonzero for this two molecules only and supports

this assignment. In addition, the Rydberg character of this πσ∗ state in these two

molecules is confirmed by examining the second moment of the electronic charge.



Chapter 6

Conclusions and future directions

A detailed description of the photoinduced quantum nonadiabatic dynamics of

the low lying electronic states of organic fluorinated hydrocarbons and radical

cations is presented in this thesis. The investigations are carried out with the

aid of ab initio electronic structure calculations and quantum dynamical simula-

tions of underlying nuclear motion. Clearly, the study of multimode molecular

dynamics on the coupled electronic surfaces reveals a challenging theoretical and

computational problem. The success of the present theoretical approach lies

on the adoption of simple VC model Hamiltonian. The essential simplifications

are the assumptions of harmonic diabatic potentials and truncation of Taylor

series (around the equilibrium geometry of the neutral molecule and along the

dimensionless nuclear coordinates) in low-order. We, in the present thesis, have

concentrated on the systems where the interplay of the nontotally symmetric

coupling mode(s) with the totally symmetric tunning mode(s) leads to a CI of

the adiabatic PESs. The advantages of this approach are its conceptual and

technical simplicity. It also allow the exact numerical solution of the Scrödinger

equation via diagonalization of large sparse matrices. This technique therefore

enabled us to carry out intensive and thorough investigation into a new regime

of non-BO phenomena i.e. strong VC involving several nonseparable vibrational

modes. The results reveal a wealth of the interesting physical phenomena. The

177



Chapter 6. Conclusions and future directions 178

typical spectroscopic effects of CIs have been identified and more or less quanti-

tatively reproduced in the photoelectron spectra of CF3CN and C6H3F3, and the

absorption spectra of MFBz, o-DFBz, m-DFBz and PFBz.

The basic concept of the VC leading to the crossings of the electronic PESs

is discussed. The theoretical treatment of VC employing state-of-the art quan-

tum chemistry and first principles quantum dynamical methods is presented at

length. The complexity in the assignment of these vibronic spectra of polyatomic

molecules is addressed by showing the recent results of the representative ex-

amples mentioned above. The calculated high density vibronic levels have been

interpreted for a typical CI situation and with associated intersecting adiabatic

PESs. The mechanistic details of the ultrafast nonradiative dynamics of the

excited states is studied. These dynamical observables are compared with the

available experimental data to validate the established theoretical model. The

discussions in this thesis reveal the need of understanding the complex VC mech-

anisms while dealing with the electronically excited molecules in particular, and

the recent advent in the experimental and theoretical techniques to observe and

treat them.

The main findings of the present work are given below.

1. (a) The symmetric vibrational modes C-N stretching (ν1) and C-C stretching

(ν2) are crucial and strongly excited in the X̃ -Ã -B̃ -C̃ -D̃ electronic manifold of

CF3CN. Whereas the former leads to low-energy crossings of the X̃ -Ã electronic

states, the latter and umbrella bending (ν4) are both important for the low-energy

B̃ -C̃ -D̃ electronic states.

(b) The JT effects in the X̃ electronic states is far weaker compared to that

in the D̃ state. The JT stabilization energy of ∼4.6 × 10−3 and ∼0.48 eV are

estimated, respectively, for these electronic states.

(c) The JT and PJT interactions of the X̃ -Ã electronic states mostly con-

tribute to the overall vibronic structure of the first photoelectron band. The

PJT coupling due to ν8 vibrational mode is found to be the strongest, and the
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vibrational modes ν2, ν7 and ν8 are found to make progressions in this band.

(d) Energetically close lying B̃ -C̃ -D̃ electronic states are found to be re-

sponsible for the highly overlapping structure of the second photoelectron band.

The relatively stronger JT coupling within the D̃ electronic state and appreciable

PJT coupling due to ν5 and ν6 vibrational modes among these electronic states

contributes to the diffuse vibronic structure of this band. The vibrational modes

ν2, ν4, ν5 and ν7 form the major progressions in this band.

(e) An ultrafast nonradiative decay rate of ∼ 21 fs for the D̃ state is estimated

from the decay of electronic population in the coupled electronic manifold.

2. (a) The vibronic spectrum of coupled X̃ -Ã -B̃ -C̃ electronic manifold of

TFBz+ is calculated including 23 relevant vibrational modes by employing the

MCTDH WP propagation method. The resulting spectrum is found to be in ex-

cellent accord with broad band photoelectron spectroscopy results certifying the

reliability of the present theoretical model.

(b) The vibrational energy level spectrum of the X̃ state of TFBz+ is simulated

by performing reduced dimensional calculations employing the matrix diagonal-

ization scheme. The precise locations and assignments of the vibrational levels are

compared with the highly resolved MATI, LIF and (2+1) REMPI spectroscopy

results. Results are found to be in very good agreement with the experimental

data.

(c) Symmetric vibrational modes ν2 and ν3 are strongly excited in the vibronic

bands of the X̃ -Ã -B̃ -C̃ electronic manifold. While ν3 causes low-energy crossings

of the Ã -B̃ electronic states, all three symmetric vibrational modes (ν2-ν4) are

important for the low-energy crossings of B̃ -C̃ electronic states.

(d) The JT effect in the X̃ electronic state is far weaker compared to that in

the B̃ state. The JT stabilization energies of ∼ 0.142 eV and ∼ 0.346 eV are

estimated, respectively, for these electronic states.

(e) The vibronic structure of the X̃ state is mostly dominated by progressions

due to the symmetric ν2 and degenerate ν9 and ν13 vibrational modes. This state
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is energetically well separated from others and impact of PJT coupling on its

vibronic structure is not significant.

(f) Among the Ã , B̃ and C̃ states, the B̃ and C̃ states undergo fast internal

conversions in 51 fs and 7 fs, respectively. The coupling of the Ã state with either

X̃ or the B̃ state is weak and occurs at higher energies. Therefore, the low-

amplitude nuclear motion in the Ã state remains unaffected by these couplings.

This leads to a long-lived nature of the Ã state and triggers fluorescence emission

in TFBz+ .

3. (a) The optical absorption spectrum of the electronic ground and low-lying

excited singlet states of MFBz, o-DFBz, m-DFBz and PFBz is theoretically cal-

culated by employing WP propagation approach. The theoretical results are in

excellent agreement with the available experimental data.

(b) The S0 ground electronic state of all four molecules is energetically well

separated from the excited states. The nature of their S1 state (LUMO) is ππ∗

localized on the C-C bond.

(c) While the nature of the S2 state is ππ∗ (localized on the C-C bond) type

up to tetrafluorobenzene, this state is of πσ∗ type (with σ∗ localized on the C-F

bond) in PFBz and HFBz.

(d) This π − σ∗ state occurs at high energy for fluoroderivatives with four

or less fluorine atoms. Owing to the perfluoro effect this state comes down in

energy and becomes S2 in PFBz and HFBz. Low-energy CIs between the S1 and

S2 states of PFBz have been found. These intersections will have crucial roles

in the observed absorption and fluorescence spectra of PFBz, which are different

from other three molecules treated here.

(e) The structured S1 ← S0 electronic absorption bands of MFBz, o-DFBz

and m-DFBz are in good agreement with the experimental results. This band in

PFBz is blurred due to the occurrence of low-energy S1(ππ∗)− S2(πσ∗) CIs.

(f) The coupling between S1 and S2 states of PFBz is very strong and the

resulting nonadiabatic effects cause a huge increase of the spectral line density.
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A biexponential decay of fluorescence emission originates from this coupling.

(g) The complex structureless pattern of the second and third absorption

bands are formed by the occurrence of numerous CIs between energetically close-

lying S2, S3, S4 and S5 electronic states of these molecules (except for m-DFBz

for which states up to S4 are relevant).

(h) In contrast to the other fluoroderivatives (considered here) and the parent

benzene, an additional band observed near the onset of the second absorption

band is attributed to originate from the S2 (πσ∗) state of PFBz which bears an

evidence of the effect due to increasing fluorine substitution.

(i) The strong coupling between the S1− S2 and S2− S3 states contributes to

the observed diffused and broad structure of this additional band in PFBz.

(j) Another novel finding of this work is related to the experimental findings

of a new peak in the band structures of MFBz and o-DFBz.

In conclusion, the present study clearly indicates the out most importance

of electronic nonadiabatic interactions in the broad and diffuse nature of the

observed vibronic bands, ultrafast nonradiative decay and low quantum yield

of fluorescence of electronically excited fluorinated hydrocarbons. The chemical

impact of increasing fluorine substitution on the electronic structure and nuclear

dynamics is established. The study also highlights the difficulty involved in full

quantum mechanical solutions of problems in which a large number of electronic

and nuclear degrees of freedom are relevant (like in the present case) and opens

the doorway for further research in this important area of chemical physics.

To this end we mention that the present work is restricted to the VC of

electronic states with same spin multiplicities (e.g., singlet-singlet VC for op-

tical absorption spectra). This study can be further extended to the system-

atic investigation of VC for electronic states of different spin multiplicities (e.g.,

singlet-triplet VC). In addition, further refinements of the potential energy curves

particularly along low-frequency modes is highly desirable. This is because our

previous experience (in case of TFBz+ ) shows that the potential energy curves
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of the lower adiabatic sheet of the JT split B̃ state are extremely flat along ν9

and ν10 vibrational modes, which leads to a convergence problem in the spectrum

calculation. Therefore, although the present potential energy curves reproduces

the low resolution photoelectron spectrum very well, further refinements of the

potential energy curves are necessary for high resolution spectroscopic applica-

tion. Another possible extension of this work is the inclusion of rotational degrees

of freedom in the present model VC Hamiltonian to obtain information on rovi-

bronic levels of isolated molecules.

Furthermore, a recent recording of vibronic structures of the Rydberg series

converging to the first ionization threshold of HFBz and 1,3,5-TFBz through

(2+1) REMPI experiment [158] have left the ambiguity over the justification of

vibrational assignments given by Kwon et al. [173]. It appears from the work done

by Kwon et al. [173] that for HFBz, the linear JT coupling parameters of ν17 (C-

C-C bend, ∼488 cm−1) vibration is about three times larger than ν18 (C-F bend,

∼286 cm−1) vibration. Both these modes have considerable quadratic coupling

strength [173]. Therefore, the overtones and combination levels of these modes

are expected to be excited in the spectrum. The peak at ∼326 cm−1 in the work

done by Philis et al. has been observed at ∼321 cm−1 in MATI [173] spectrum

and at ∼326 cm−1 or ∼335 cm−1 in the B2A2u → X2E1g emission spectrum of

HFBz+ [174]. This is assigned to 171
0(3/2) by Kwon and Kim [173]. However in

the experimental measurement of Philis et al. [158], the intensity of this peak is

higher than the ∼286 cm−1 peak and both are reduced when circularly polarized

light is used. The 171
0(3/2) level has E2g symmetry in the d1e1g Rydberg state

(see Fig. 4 of ref [175] for the case of Bz) and therefore it cannot be attenuated

under circular polarized excitation. The attenuation of the peak at ∼326 cm−1,

under the circular excitation, suggests that it cannot be a j=3/2 level. It has to

be a level with an overall A1g symmetry. Therefore, extensive theoretical studies

are required to assign this and other observed peaks unambiguously.



Appendix A

Adiabatic potential energy

surfaces and conical intersections

The concept of adiabatic electronic potential energy surfaces (PESs) is important

for the interpretation and understanding of all kinds of phenomena in molecular

physics and chemistry. Therefore, we shall consider in some detail of the adiabatic

PESs. To start with, let us consider a 2×2 model diabatic Hamiltonian containing

N tuning modes (totally symmetric, Qgi) and M coupling (non-totally symmetric,

Quj) vibrational modes and is given as

H = (TN + V0)1 +


E1 +

∑N
i=1 κ

(1)
i Qgi

∑M
i=1 λjQuj

∑M
i=1 λjQuj E2 +

∑N
i=1 κ

(2)
i Qgi


 , (A.1a)

Where

TN = −1

2

N∑

i=1

ωi

(
∂2

∂Q2
gi

)
− 1

2

M∑

j=1

ωj

(
∂2

∂Q2
uj

)
, (A.1b)
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V0 =
1

2

N∑

i=1

ωiQ
2
gi +

1

2

M∑

j=1

ωjQ
2
uj, (A.1c)

The quantities κ and λ represents the intrastate and interstate coupling param-

eters. Here E1 and E2 (assuming E1 < E2) are the ionization or excitation

energies of the coupled electronic states at the reference geometry Q=0, where Q

represents collectively the set of nuclear coordinates (Qg, Qu). TN is the nuclear

kinetic energy operator and V0 is the potential energy operator.

The adiabatic PESs are obtained by diagonalizing the above Hamiltonian in

the fixed-nuclei limit, TN→0, as follows [4].

S†(H− TN1)S = V (A.1d)

V =


V1(Q) 0

0 V2(Q)


 (A.1e)

Here S is a 2×2 unitary matrix which describes the diabatic to adiabatic trans-

formation. V1 (Q) and V2 (Q) are the adiabatic PESs of Hamiltonian (A. 1a).

For detail discussion of the static aspects of the adiabatic PESs, it is conve-

nient to rewrite H of Eq. (A.1a) in the following general form:

H = H01 +


−d c

c d


 (A.1f)

where
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H = TN + V0 + Σ + σQg (A.1g)

Σ = (E1 + E2)/2 (A.1h)

∆ = (E2 − E1)/2 (A.1i)

σi = (κ
(1)
i + κ

(2)
i )/2 (A.1j)

δi = (κ
(2)
i − κ

(1)
i )/2 (A.1k)

d = ∆ +
N∑

i=1

δiQgi (A.1l)

c =
∑

i=

λjQuj (A.1m)

The expression of adiabatic potentials within the linear vibronic coupling (LVC)

model are then read

V1,2(Q) = V0(Q) + Σ +
N∑

i=1

σiQgi ∓W (A.1n)

W =
√

d2 + c2 (A.1o)
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Now the conditions for the occurrence of a CI of the adiabatic PESs of the above

Hamiltonian are simply d = 0 and c = 0. These conditions define a hypersurface

of dimension N + M − 2 in the N + M dimensional coordinate space i.e in case

of one coupling mode and two tuning modes, for example, we obtain a line of CIs

in three dimensional space.

The minimum of the seam of CIs within LVC scheme is given by

V
(c)
min = Σ +

(F −∆)2

2D
− 1

2

N∑

i=1

σ2
i /wgi (A.2)

The position of the minimum in the space of the tuning mode within LVC scheme

is

(Q
(c)
gi )min =

(δi/ωgi)(F −∆)

D
− σi

wgi

, i = 1, · · · , N (A.3)

The minimum of the seam of the CIs relative to the minimum of the upper

adiabatic PES is given by

V
(c)
min − (V2)min =

1

2D
(∆−D − F )2 (A.4)

where

D =
N∑

i=1

δ2
i

wgi

(A.5)

F =
N∑

i=1

δiσi

wgi

(A.6)

Next we shall examine the CI of two diabatic surfaces (j = 1,2) described

by diabatic potentials containing both linear (κ
(j)
i ) and quadratic (γ

(j)
i ) coupling

term (cf. Eq. A.1f) i.e. within QVC scheme
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Vj(Q) = Ej +
N∑

i=1

κ
(j)
i Qi + [

ωi

2
+ γ

(j)
i ]Q2

i . (A.7)

Since V1(Q) = V2(Q) at CI, one immediately obtains the equation of the conical

intersection in the Q-space as

∆ +
N∑

i=1

(δiQi + γiQ
2
i ) = 0, (A.8)

where γi = (g
(2)
i − g

(1)
i )/2. We mention that inclusion of quadratic coupling term

in the diabatic potential, as obtained in the l.h.s. of Eq. (A.8), making the

hypersurface to differ from a hyperline as encountered in the LVC case.

The energies at the conical intersection seam are given by V2(Q) (or V1(Q)),

with Q subjected to the constraint (A.8). To obtained the minimum of the seam

of the CI, one has to consider the functional F (Q) ≡ V2(Q) + µG(Q), where µ

is a Lagrange multiplier and G(Q) is a shorthand for the l.h.s. of Eq. (A.8). By

imposing ∂F (Q)
∂Qi

= 0 one straightforwardly gets [160]

Qi = − κ
(2)
i + µδi

ωi + 2g
(2)
i + 2µγi

. (A.9)

The insertion of the above expressions for Qi into Eq. (A.8) yields

∆ +
N∑

i=1

[
− δi

κ
(2)
i + µδi

ωi + 2g
(2)
i + 2µγi

+ γi

(
κ

(2)
i + µδi

ωi + 2g
(2)
i + 2µγi

)2]
= 0. (A.10)

To find the seam minimum, we have to solve the above equation for the Lagrange

multiplier µ. Within the LVC model (γi = 0), Eq. (A.10) is linear in µ, possessing
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therefore exactly one root. Putting this root value in Eq. (A.9), one can get an

unique solution of the minimization problem irrespective of the number of the

tuning modes. In contrast to this, within QVC model we are lead to the problem

of solving an algebraic equation of order 2N+1, where N is the number of tuning

modes possessing nonvanishing quadratic couplings (γi 6= 0). In general, out of

the total number 2N+1 of its roots, there are several real roots. To determine the

energy Es of the minimum of the seam of the CI, one has to select thereof that root

for µ, which, inserted into Eq. (A.9), leads to the smallest value of V2(Q)(= Es).

To solve the minimization problem along the approach described above, we used

the MATHEMATICA package version 5.1. Fortunately, it succeeded to find the

roots of the highly nonlinear equation (A.10) for fluorobenzene molecules where

upto 7 tuning modes were accounted for.
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