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B̃ coupled state spectrum . . . . . . . . . . . . . . . . . . . . . . 158
6.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Summary and future directions 167

Curriculam Vitae: 171

xii



1 Introduction

Theoretical study of interactions between electronic and nuclear degrees of freedom and
their impact on chemical dynamics constitutes the main theme of this thesis. It is well
established that the so-called adiabatic approximation [1] breaks down to deal with
nuclear dynamics of polyatomic molecular systems. While this approximation worked
qualitatively well in the development of the theoretical research in chemical dynamics in
initial years, the modern experiments witnessed its shortcomings to a large extent. The
validity of the approximation relied on the energy gap between electronic states. This is
usually larger than the relevant vibrational quanta of a molecule. Now, if two electronic
states approach energetically very close to each other, this approximation remains no
longer valid. The interaction of two or more electronic states through nuclear motion is
termed as Vibronic coupling (VC) [2–5] in the text. The VC in polyatomic molecules is
an ubiquitous phenomenon because of the availability of more nuclear degrees of free-
dom which goes beyond the well-known non-crossing rule [6,7]. Such coupling introduced
conical intersections (CIs) of electronic potential energy surfaces (PESs) and allows the
nuclei to move concurrently on more than one electronic state. The crossing of elec-
tronic PESs was historically invented in early 1930s [8–10] and an intense research in
this field was started nearly two decades later of this invention. Further monumental
growth on this subject [11–17] predicted a variety of physical phenomena related to
the PES crossings and CIs. The latter play crucial role in various photophysical and
photochemical transitions and known as photochemical funnels in the literature [18,19].
Jahn-Teller (JT) active systems represent a well-known subclass of conically intersect-
ing PESs, where the symmetry-enforced electronic degeneracy is lifted upon distortion
along suitable symmetry reducing nuclear (vibrational) motion [10,12,16]. Another sub-
class of VC, which deals with the interaction between the components of two different
degenerate electronic states or one component of split-degenerate electronic state and
a non-degenerate electronic state is referred as pseudo-Jahn-Teller (PJT) interaction in
the literature [15,20–23]. While the dominating coupling goes first-order in nuclear dis-
placement coordinates in the above case, another type of intersections of glancing type,
which goes second-order or higher-order in nuclear displacement coordinates is known as
Renner-Teller interactions occurs in linear systems with an axial component of electronic
angular momentum [8,9, 24].

1.1 Vibronic coupling

The occurrence of CIs of electronic states can have dramatic effects on the nuclear
dynamics of polyatomic molecules. The electronic spectra become broad and with a
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1 Introduction

huge increase of vibronic line density. The adiabatic PESs have “cusp” like behavior
near the vicinity of the CIs and the adiabatic electronic wavefunction diverges at CIs.
A (quasi)-diabatic approach to transform the singular kinetic coupling of the adiabatic
representation [15, 16, 25, 26] to smooth potential coupling is exercised to deal with this
situation [27–29]. The existence of CIs in multimode system replace the avoided crossing
encountered in a single mode vibronic coupling problem [7, 30]. Let us take a simple
example of a model two-states vibronic coupling problem of two nondegenerate electronic
states |1〉 and |2〉 of different symmetry to elucidate the above mentioned point. The
total molecular Hamiltonian of the above model system can be expresed in the following
form:

H = TN1+

(
V11 V12
V21 V22

)
. (1.1)

Here, TN and Vi (i = 11, 12, 22) are the nuclear kinetic energy operator and the po-
tential energy matrix elements within a diabatic two electronic states representation,
respectively. 1 denotes the 2×2 unit matrix. The adiabatic PESs of the Hamitonian 1.1
can be written as,

V± =
V11 + V22

2
±
[(V11 − V22

2

)2

+ V2
12

] 1
2

(1.2)

If only one coupling vibrational mode is considered, then the adiabatic surfaces (V±)
exhibit an avoided crossing-type of behavior. The totally symmetric modes present in
a polyatomic system and do not mix the electronic states however only modulate the
energy gap V11-V22. The totally symmetric vibrational mode transforms the avoided
crossing of the single-coupling-mode problem to CIs through the modulation (tuning) of
energy gap between the electronic states. This shows the importance of the combined
influence of coupling and tuning vibrational modes on the electronic states. The result-
ing combined effect of coupling and tuning vibrational modes was initially proposed to
explain the characteristic features of photoelectron spectra of C4H4 [4] and HCN [31].
Qualitatively, the strength of nonadiabatic interaction increases with the inclusion of
more vibrational modes in the vibronic coupling, which can be traced by observing
rapidly growing density of vibronic energy levels.

It is observed that even the contribution from individual tuning mode has a minor
influence on the vibronic coupling problem, the combined effect of several tuning modes
may be strong enough to introduce the nonadiabaticity into the dynamics of a molecule.
For example, C-H stretching mode ν1 has been found to nearly decouple from the cou-
pling torsional vibration ν4 in the vibronic structure of C4H

+
4 [4]. It is found that the

indirect tuning effect of ν1, which is mediated by C-C stretching motion ν2, has the
profound impact on the total nonadiabaticity prevailed in the second vibronic band of
C4H

+
4 (cf. Figure 2 of Ref. [4]). It is suggested that great care is necessary to choose

the effective vibrational mode(s) to deal with vibronic coupling problem. Another in-
teresting fact encountered in Ref. [32, 33] is that the nonadiabatic effects can be very

2



1.1 Vibronic coupling

strong even though a large energy separation exists between electronic states within the
FC zone. The energy separation between the ground electronic state (X̃) and second

excited state (B̃) of CH2F
+
2 ∼2.00 eV at the FC zone [32]. It is found that these two

states are coupled through H-C anti-symmetring stretching (ν6) and H-C-H in-plane
anti-symmetric bending (ν7) vibrational motions. The impact of nonadiabatic effect of

the ν7 vibrational mode on the X̃ state of CH2F
+
2 is depicted in Figure 2b in Ref. [33].

Thus it can be concluded that the vibronic structure of well-separated electronic states
can also be perturbed by nonadiabatic coupling effects.

Until now, characteristic features of the totally symmetric vibrational mode(s) on the
nonadiabatic effects in the electronic states have been discussed. The effect of coupling
vibrational mode(s) on the electronic states will be discussed here. The elaborated
form of Eq. 1.2 in terms of vertical excitation energy (Ei, where i=1,2), second-order
intrastate coupling (γi, where i=1,2), first-order interstate coupling (λ), ground state
frequency (ω) of the coupling mode and normal coordinate (Q) along that mode is as
follows:

V±(Q) =
1

2
ωQ2 +

1

2
(γ2 + γ1)Q2 +

1

2
(E1 + E2)

±

√{
(E1 − E2) +

1

2
(γ2 − γ1)Q2

}2

+ 4λ2Q2. (1.3)

A characteristic feature of new minima is observed in lower adiabatic surface V−(Q),
whereas the upper surface becomes steeper. The symmetry of the nuclear geometry at
the new minima is lower than the symmetry of equilibrium geometry of the reference
state, this phenomenon is known as “the breaking of molecular symmetry”. It is known
that the symmetry breaking is simply a consequence of repulsion of the diabatic surfaces
via the vibronic coupling [15, 34, 35]. The value of dimensionless normal coordinate at
the minimum of the lower adiabatic PES is represented by following equation (excluding
the γi):

Q


ω − λ2√(

E2−E1

2

)2
+ λ2Q2


 = 0. (1.4)

In this equation, ∆=E2−E1

2
and x= λ2

ωk∆
and x is a dimensionless quantity. The three

roots of Eq. 1.4 have the following forms:

Q = 0; Q = ± λ

ωk

√
1− 1

x2
. (1.5)

If the value of x < 1, then the second and third roots of Eq. 1.5 become imaginary. So
the validity of second and third roots remain only when x ≥ 1 and when x < 1 first root
Q = 0 is valid. As a result, two equivalent minima form at Q 6= 0 in the lower adiabatic
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1 Introduction

Figure 1.1: Diabatic (dashed lines) and adiabatic (full lines) torsional potential curves
for the two lowest cationic states of ethylene [34] are shown here. Here,
V1 and V2 corresponds to V− and V+ according to Eq. 1.3. In each case the
potential curve V0 represent the neutral ground (reference) state of ethylene,
assuming the same frequency ωo for all the states. E1 and E2 are the vertical
ionization potentials. Vibronic coupling is shown only for the ionic states: a)
a case of zero coupling, λ=O, b) the limit of weak vibronic coupling, x < 1
and c) a case of strong vibronic coupling, x > 1. E is the stabilization energy
in case of strong vibronic coupling problem, depicted in panel c. The figure
is reproduced from Ref. [34].

PES when x > 1 and the previous minimum at Q = 0 is converted to local maximum.

The stabilization energy due to this symmetry breaking phenomenon is Es = ∆( (1−x)2

2x
).

No symmetry breaking occur for x < 1 and molecule does not get any stabilization due to
this phenomenon. Only just above the threshold value of x = 1, the stabilization energy
quadratically increases with x, whereas at the larger value of x, a linear dependence is
observed. The pictorial representation of the above discussion is presented in Fig. 1.1.
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1.2 The Jahn-Teller effect

After inclusion of M number of coupling vibrational modes in Eq. 1.4, the generalized
formula of x becomes:

x =
M∑

k=1

xk. (1.6)

Where, xk is the dimensionless x parameter for kth coupling mode and xk =
λ2
k

ωk∆
. It is

seen from Eq. 1.6 that due to multi-mode effect x is generated from the contribution
(xk) of each coupling vibrational mode. In this way symmetry breaking phenomenon of a
molecule becomes cumulative effect of all coupling vibrational modes. So in order to give
an explanation of Eq. 1.6, one can say that if a single coupling vibrational mode fails to
introduce a minimum at V−(Q) at Q 6= 0, then due to the multi-mode effect of the other
coupling vibrational modes, there is a possibility to form a minimum in the Q sub-space
under the condition of x ≥ 1. The symmetry breaking by a single coupling mode is a
well-known phenomenon and it is discussed several times in the literatures [15, 36–43].

It is found that symmetry breaking occurs at the lower adiabatic coupled Ã-B̃ surfaces
of CH2F

+
2 due to the cumulative effect of F-C antisymmetric stretching (ν8) and H-C-H

out-of-plane symmetric bending (ν9) vibrational motions [35].

1.2 The Jahn-Teller effect

In contrast to the discussion above, yet another type of CIs is formed in JT active
system. This is symmetry enforced in a non-linear system, the electronic degeneracy
is lifted upon distortion along a JT active vibrational mode. The lifting of degeneracy
causes symmetry breaking of molecular system, which develops a reduced symmetry
equilibrium minimum [44–46]. It is established that non-totally symmetric vibrational
modes lift the degeneracy of degenerate electronic states and the JT effect corresponds
to vibronic coupling between these split components of the degenerate electronic states
[2,7,12,47–49]. The two-fold degeneracy (E) of a molecule with three (six) fold symmetry
is lifted by degenerate mode of e symmetry. This is known as E⊗ e JT effect [12,15,16,
50–52]. Likewise, the two fold degeneracy of molecules possessing two or four fold axis of
symmetry, belonging to, C4, C4v, C4h, D4, D2d, D4h, S4, and D4d symmetry point groups,
the vibrational modes of b symmetry lifts the degeneracy and is known as E ⊗ β JT
effect [12, 15, 16,47,53–59].

Let us consider the Hamiltonian of Eq. (1.1). The inclusion of one totally symmetric
vibrational mode along with the coupling mode in the Hamiltonian of Eq. (1.1), makes
it a two-states-two-mode problem. Then the eigen value form of Eq. (1.2) becomes more
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1 Introduction

complicated and it has the following form in linear coupling scheme:

V±(Qg, Qu) =
1

2
ωgQg

2 +
1

2
ωuQu

2 +
1

2
(E1 + E2) +

1

2
κ1Qg +

1

2
κ2Qg

±
√
{(E2 − E1) + (κ2 − κ1)Qg}2 + 4λ2Qu

2. (1.7)

Here, g stands for totally symmetric representation and u stands for non-totally sym-
metric representation. κ is the first-order intra-state coupling parameter for totally
symmetric mode and other parameters are already described in Section 1.1. Now, we
consider a special case of a doubly degenerate electronic state with E1 = E2 = E,
κ2 = −κ1 = λ, Q2

g+Q
2
u=Q

2 and ωg = ωu = ω that correspond to the E ⊗ e-JT case.
With these Eq. (1.7) modifies to

V±(Q) =
1

2
ωQ2 + E ± λQ. (1.8)

Where Q is the dimensionless normal coordinate of one component of the degenerate
vibrational mode. This creates a “Mexican Hat” type PESs in E⊗e Jahn-Teller problem.
In this case curve crossing occurs at the symmetric configuration of the nuclei between
the two components of the degenerate electronic states and at this configuration the
potential gradient with respect to some JT-active vibrational coordinate is nonzero.
This gives rise to linear JT coupling and degeneracy of the electronic state lifts upon
the distortion along that vibrational coordinate. Two symmetric energetic minima form
along the JT-active vibrational coordinate and the molecule stabilizes due to first-order
or linear JT effect. The presence of second-order or higher order JT couplings makes
the situation more complicated by hindering the molecule to pseudorotate around the
potential energy moat. As a result of this, the existence of one local minimum and one
local maximum is observed instead of two symmetric minima in PES and PES becomes
“tricon” in two dimensional subspace. A beautiful pictorial description of the above
discussion is available in the Fig. 1 of Ref. [60] and here it is reproduced in Fig. 1.1.
The details of the figure is described in the figure caption. The pictorial description of
a general CI found in a photochemical reaction and JT CI is reproduced from Ref. [61]
and presented in Fig. 1.2. It is not always necessary to cross PES to observe the JT
activity. Accidental mixing of electronic states through vibronic coupling is named as
pseudo-Jahn-Teller (PJT) effect. As its name implies, it is closely related to Jahn-Teller
effect and there is no necessity of curve crossing or electronic degeneracy to observe the
PJT effect in the molecule. The only requirement is the energetic proximity between
electronic states.

Another important aspect of JT effect, static and dynamic JT effect, is discussed in
this paragraph. A strong JT coupling which distorts the molecule permanently to the
lower symmerty point group is called static JT effect. In this case potential well of the
distorted molecule becomes very deep and vibronic energy levels are mainly localized in
that potential well. That is why, it is suitable to construct Hamiltonian at the point
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1.3 Connection with experiment

Figure 1.2: Examples of conical intersections. (a) A cut through a molecule’s PES
illustrating a conical intersection of two electronic surfaces, such as that
found along the reaction path in many organic photochemical reactions. (b)
An expanded view in three dimensions of the CI illustrated in (a). (c) A cut
through a PES with a JahnTeller CI. (d) The three-dimensional form of the
PES for a JahnTeller CI. The figure is reproduced from the Ref. [61].

group of distorted molecule for the analysis of the vibronic energy levels of this type
of JT activity. On the other hand, in case of dynamic JT effect, the JT coupling
is moderate and an equilibrium exists between the higher symmetric and the lower
symmetric molecular structure. Thus, the Hamiltonian at the higher symmetric point
group of molecule is often used to analyse the dynamic JT effect.

1.3 Connection with experiment

Photoelectron (PE) spectroscopy measurement is one of the direct tool to probe the core
as well as the valence electronic structure of molecules [62, 63]. The Koopmans, theo-
rem [64] is validated by this experiment. Helium (He) discharge lamp is applied to
ionize the molecule and then kinetic energy distribution of the photoelectrons yields
the spectrum. This procedure qualitatively provides the adiabatic ionization energy of
molecules. The conventional PE spectroscopy cannot achieve a resolution more than
800 cm−1 [65]. Consequently, the vibronic energy levels appear as a broad structure
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1 Introduction

Figure 1.3: Slices through the JT PES. Curves (a), (b), and (c) are slices through the
surface that correspond to (i) zero JT coupling, (ii) nonzero linear JT cou-
pling and (iii) nonzero linear and nonzero quadratic JT coupling, respectively.
In curves (b) and (c), the dotted lines correspond to the average potential,
which is a harmonic curve. The figure is reproduced from the Ref. [60].

in this measurement. Recent technique of Zero Kinetic Energy pulsed-field-ionization-
energy (PFI-ZEKE) spectroscopy, developed by Müller-Dethlefs, Schlag, and cowork-
ers [66–70], provides the PE spectrum with a resolution of ∼1 cm−1 or less. The main
difference between the conventional PE spectroscopy and the ZEKE spectroscopy lies
in the basic principles of the respective techniques. In case of conventional PE spec-
troscopy molecules are used to stay at ambient temperature in their ground state. Then
molecules are excited by a single photon, which removes one electron from the occupied
(valence) molecular orbital (MO) and the excess energy of the photon is carried away by
the ejected electron as its kinetic energy. The PE spectrum is defined as the intensity
of the ejected electron as a function of its kinetic energy. The gas-phase PE spectra are
usually measured at ambient or elevated temperatures, vibrational congestion causes
additional overlap between the ionization bands. Thus, it is very difficult to get exact
adiabatic ionization energy of a molecule by conventional PE spectroscopy. To overcome
the drawbacks of conventional PE spectroscopy, Müller-Dethlefs and coworkers [66–70]
developed the PFI-ZEKE experiments, where molecules are excited to their first excited
state by a photon and then a second photon is used to ionize the molecule. A supersonic
jet expansion is applied to keep the molecule vibrationally cold (all νi=0). So in ZEKE
spectroscopy excitation starts from a vibrationless ground state of the molecule with
first photon and then second photon with exactly enough energy is applied to ionize the
molecule to a given vibrational level of the ion. In that way, care is taken to produce the
ejected electrons with zero kinetic energy. A outline of the ZEKE experiment is given
below, where we have taken the example of MCH3 radical cation as discussed in Ref. [65]
to make the discussion lucid. The pictorial comparison between the conventional PE
spectroscopy and ZEKE spectroscopy is shown in Fig. 1.4. The ZEKE spectroscopy

8



1.3 Connection with experiment

Figure 1.4: Qualitative depiction of the difference between (a) conventional photoelec-
tron spectroscopy and (b) ZEKE spectroscopy. In PE spectroscopy, the
relatively low resolution is caused by a combination of several factors: the
ground-state molecule is usually at ambient temperature, the incident radia-
tion is not monochromatic, and the high-energy kinetic electrons (the dashed
arrows) formed upon ionization are kinetic-energy analyzed to produce the
spectrum. In ZEKE spectroscopy, the groundstate molecule is cooled to its
vibrationless level and the ionizing radiation hν2 is nearly monochromatic.
Because only “zero kinetic energy” electrons are detected, the result is much
narrower spectral bands. The figure also shows the principal behind REMPI
spectroscopy, in which hν2 is kept sufficiently high in energy to ionize the
excited state, while hν1 is scanned, producing a REMPI spectrum of the
excited state of the neutral radical. The figure is reproduced from Ref. [65].

of the MCH3 radicals relies on the excitation (by hν1) of the radicals from the ground

electronic state (X̃2A1) to its well-defined first excited state, Ã2E, from which they are
ionized by a second photon. Because the radicals are cooled by supersonic expansion,
nearly all of them exist in the vibrationless (all νi=0) level of the X̃2A1 ground state;
hence, only the ν=0 level is drawn for it in Figure 1.4b. Excitation of the radicals will
occur when the first photon (hν1), is in resonance with a transition from the vibration-
less level of the ground state to a vibronic level of the excited state. The second photon
(hν2), plays the role of the photon used in a normal PE spectroscopy experiment, with
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1 Introduction

the difference being that the ionization is occurring from a resonant excited state of the
radical rather than from the ground state. For the radicals discussed here, both the
Ã2E ← X̃2A1 and the Ĩ+1A1 ← Ã2E transitions are electric-dipole allowed. The excit-
ing frequency hν1 is fixed to be in resonance with one of the levels of the excited-state
of neutral molecule. The ionizing frequency hν2 is then varied. If the second photon
has exactly enough energy to ionize the molecule to a given vibrational level of the ionic
state, but no more, then an ion and an electron with zero kinetic energy will be cre-
ated. Following ionization, any electrons with nonzero kinetic energy drift away from
the ionization volume. The ZEKE electrons have no kinetic energy and remain in the
ionization region. Several microseconds after the ionization, a small negative potential
is applied to force the ZEKE electrons through the time-of-flight (TOF) tube, providing
the signal of the ZEKE experiment. Thus, the ZEKE spectrum records the production
of zero-kinetic energy electrons as a function of hν2, and the spectrum generally consists
of very sharp peaks that correspond to specific vibrational or even rotational levels of
the ion. This description of ZEKE spectroscopy is somewhat simplified, but will suffice
for our purposes here.

The present thesis deals with the vibronic dynamics of different cationic and neutral
molecules in their ground as well as excited electronic states. The theoretical results
are compared to the related available experimental data to validate the developed mod-
els. It is well known that in PE spectroscopy, electron(s) is removed from the occupied
molecular orbital(s) (MOs) and produces a different system with different number of
number of electrons than the parent molecule. We assumed that reference state of the
neutral molecule has the simple harmonic type of potential and we treated ionization
as a perturbation. The electronic potential of the target molecules (ions) is expanded
in a Taylor series. Removal of an electron from the highest occupied molecular orbital
(HOMO), HOMO-1, HOMO-2 ... produces the ground state, first excited state, second
excited state ..., respectively, of the target molecules (ions). Ionization from the op-
timized geometry of the reference state produces the vertical ionization energy (VIE),
which is then compared with the experimental findings. The one dimensional poten-
tial energy surfaces (1-D PESs) are calculated by distorting reference state along each
normal mode and performing single point (SP) energy calculations. All the representa-
tive molecules (anions) in this thesis are nonlinear and polyatomic and hence, coupling
between the electronic states and vibrational modes (vibronic coupling) is ubiquitous.
We constructed diabatic molecular Hamiltonian of the representative molecules (ions)
to deal with the vibronic coupling in those molecules (ions). The adiabatic potential
energies evaluated by different ab initio quantum chemistry methods are equated with
the diabatic to adiabatic transformation in our model Hamiltonian to get the vibronic
coupling parameters. The dynamics of the representative molecules (ions) are studied
by both time-independent and time-dependent quantum mechanical methods. The com-
plex experimental PE spectra of different molecules (ions) are systematically examined
through various reduced dimensional calculations. The multi-states-multi-modes dia-
batic Hamiltonian is split into two-states-two (multi)-modes Hamiltonian to find out
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1.4 Content of the thesis

role of a particular or a set of vibrational mode(s) in the dynamics of different elec-
tronic states . This exercise helped us to find out the role of individual or collective
vibrational motions in the complex structure of PE spectrum. The block-improved re-
laxation calculations [72,73] as implemented in MCTDH programing module [71]. Thus
the different vibrational levels of ZEKE spectrum are assigned by our theoretical calcu-
lations. In this thesis, we have studied the conventional as well as the ZEKE spectrum
of CH2F2 (CD2F2), CH3F and H2B

−
7 (D2B

−
7 ). Among these molecules (ions), CH3F

belongs to C3v point group symmetry at its reference neutral geometry. It possesses
electronic degeneracy in its cationic ground states and is a E ⊗ e JT system. Both
CH2F2 and H2B

−
7 belong to equilibrium C2v point group symmetry in their respective

electronic ground state. We examined the vibronic interactions of four electronic states
of CH2F

+
2 and five electronic states of H2B7.

1.4 Content of the thesis

A detailed theoretical framework of the present work is outlined in Chapter 2. The
fundamental concept of adiabatic and diabatic electronic basis is illustrated. A general
form of diabatic electronic Hamiltonian is presented that can be constructed with tha aid
of symmetry selection rules. An extended symmetry selection rule is exercised to con-
struct a higher-order JT Hamiltonian in three-fold symmetry point group. The strategy
to estimate the parameters of the electronic Hamiltonian is described in each chapter.
Technical details of the first principles quantum dynamics calculations are also discussed.
Calculation of vibronic spectrum by both time-independent and time-dependent meth-
ods is discussed at length.

In Chapter 3, the Jahn-Teller effect in the degenerate X̃2E electronic ground state of
CH3F

+ is discussed in conjunction with the observed high level ZEKE spectrum. The
electronic potential energy surfaces and the coupling surfaces are calculated employing
state-of-the-art ab initio quantum chemistry methods. The vibronic Hamiltonian is con-
structed with the aid of multimode vibronic coupling theory and symmetry selection
rules. It is systematically extended to higher order in the Taylor series expansion and
the parameters are carefully estimated in the present study. First principles quantum
dynamics study is carried out to calculate the vibronic eigenvalue spectrum of this degen-
erate electronic state of CH3F

+. The vibronic energy levels are assigned and compared
with the experimental PFI-ZEKE spectrum and one photon ZEKE spectra of CH3F

+

and also with the earlier theoretical results reported in the literature.

The vibronic coupling in the energetically lowest first four electronic states of CH2F
+
2 and

CD2F
+
2 are discussed in Chapter 4. A model 4×4 Hamiltonian is constructed in a dia-

batic electronic representation employing normal coordinates of vibrational modes and
standard vibronic coupling theory. Extensive ab initio quantum chemistry calculations
are carried out to determine the parameters of the Hamiltonian and energetic ordering
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1 Introduction

of the electronic states. The topographical features of the latter are examined at length
and several conical intersections are established. The effect and consequence of the
inter-state coupling between the two energetically close-lying excited electronic states,
Ã2B2 and B̃2A1, of CH2F

+
2 is discussed in detail. The result shows that the symmetry

breaking and stabilization of lower Ã-B̃ coupled adiabatic surface is not possible through
single mode interaction rather it is possible via cumulative interaction of both coupling
modes.

The vibronic structural envelope and nonradiative decay dynamics of energetically
low-lying electronic states of CH2F

+
2 and its isotopomer (CD2F

+
2 ) are presented and dis-

cussed in Chapter 5. A comparison of the results obtained from the nuclear dynamics on
the electronic states of these isotopomers are also discussed in this chapter. The results
are compared with both broad band as well as high resolution experimental spectroscopy
data available in the literature. The progression of vibrational modes in the spectra is
identified, assigned and discussed in relation to the assignments available in the liter-
ature. Both time-independent and time-dependent quantum mechanical methods are
used to carry out nuclear dynamics calculations.

The vibronic structure of the partially hydrogenated boron cluster, H2B7 is discussed
in Chapter 6. Detailed electronic structures of the first five electronic states of H2B7 are
discussed in this chapter. The topography of the 1-D potential energy surfaces along
the totally symmetric vibrational modes in relation with several static points on these
surfaces are discussed. Primarily, the effect of X̃-Ã, X̃-B̃ and Ã-B̃ interstate coupling
is discussed through X̃-Ã-B̃ coupled states dynamics on H2B7 and the obtained the-
oretical results are compared with the available experimental findings. Latter, on the
basis of some speculations, C̃ and D̃ electronic states are included in the dynamics and
a improved set of theoretical data is obtained. The calculated theoretical findings are
good in acorrd with the available ZEKE spectrum study on this system.

An overall conclusion and future direction of this Ph. D work is made on Chapter 7.

12



References

[1] M. Born and R. Oppenheimer, Ann. Phys. (Paris) 84, 457(1927): M. Born and K.
Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford; 1954).
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2 Theoretical methodology

2.1 Adiabatic electronic representation and breakdown

of Born-Oppenheimer approximation

The molecular Hamiltonian in a time-independent Schrödinger representation can be
expressed as

H(q,Q)Ψ(q,Q) = EΨ(q,Q), (2.1)

where the Hamiltonian (H) and the wavefunction (Ψ) are the simultaneous function
of electronic coordinate (q) and nuclear coordinate (Q). The energy of the molecular
system (E) can be obtained by solving the above eigenvalue equation. The H consists
of kinetic and potential energy terms corresponding to the electrons and nuclei, is given
by

H(q,Q) = Te(q) + TN(Q) + U(q,Q) (2.2)

Te and TN are electronic and nuclear kinetic energy terms, respectively. U(q,Q) is
the total potential energy of the molecule, which includes the electron-electron re-
pulsion (Uee(q)), electron-nuclear attraction (UNe(q,Q)) and nuclear-nuclear repulsion
(UNN(Q)). Spin-orbit coupling, which is the function of electronic coordinates is ex-
cluded from the total potential energy of the molecule [1]

The nonseparability of U(q,Q) in terms of electronic and nuclear motions makes the
solution of Eq. 2.2 cumbersome. The nonseparability of electronic and nuclear motions
can be approximated by considering the fact that nuclei are much heavier than elec-
trons. Hence, electrons move much faster than nuclei, classically, the change of nuclear
configuration is negligible during a complete cycle of electronic motion. Thus TN can
be set as zero by considering the nuclei as fixed. This approximation is know as Born-
Oppenheimer (BO) approximation in quantum chemistry. This is also called clamped
nuclei approximation [1, 2] because at a particular electronic configuration, the nuclear
configuartion is approximated as fixed. So Born-Oppenheimer adiabatic electronic states
are obtained by setting TN = 0 and solving the fixed-nuclei electronic Schrödinger equa-
tion

He(q,Q)ψn(q;Q) = (Te(q) + U(q;Q))ψn(q;Q) = Vn(q;Q)ψn(q;Q) (2.3)

Where, ψn(q;Q) is the BO adiabatic electronic wavefunctions and Vn(q;Q) is the adi-
abatic potential energies, respectively. These quantities depend parametrically on set
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2 Theoretical methodology

of nuclear coordinates Q. The quantity Vn(q;Q) converts to potential energy surfaces
(PESs) by solving the above electronic Schrödinger Eq. 2.3 at different configuration of
nuclei (Q). Now, the total molecular wavefunction ψn(q;Q) can be expanded as a product
of nuclear wavefunction (χn(Q)) and parametrically depended electronic wavefunction
(ψn(q;Q)) as follows:

Ψi(q,Q) =
∑

n

ψn(q;Q)χni(Q). (2.4)

Insertion of Eq. 2.3 and Eq. 2.4 into TISE of Eq. (2.1) provides the following coupled
differential equations of nuclear wavefunction χn(Q)

[TN(Q) + Vn(q;Q)− E ]χn(Q) =
∑

m

Λnm(Q)χm(Q) (2.5)

where ∑

m

Λnm(Q) = −
∫
dqψ∗

n(q;Q) [TN(Q), ψm(q;Q)] (2.6)

Where Λnm defines the coupling between two electronic states n and m through the
nuclear kinetic energy operator. This is known as nonadiabatic coupling in quantum
chemistry. The quantity Λnm(Q) can be expressed in terms of first-order and second-
order derivative coupling as follows [2, 3]

Λnm(Q) = −
∑

i

~
2

Mi

A(i)
nm(Q)

∂

∂Qi

−
∑

i

~
2

2Mi

B(i)
nm(Q), (2.7)

where Mi are nuclear masses and

A(i)
nm(Q) = 〈ψn(q;Q)|∇i|ψm(q;Q)〉, (2.8)

and
B(i)

nm(Q) = 〈ψn(q;Q)|∇2
i , |ψm(q;Q)〉 (2.9)

represents the derivative coupling vector and scalar coupling, respectively. It can be
seen from Eqs. 2.8 and 2.9 that the elements of nonadiabatic matrix Λnm are the deriva-
tive of electronic wavefunctions with respect to the nuclear coordinates and nuclear
kinetic energy operator is non-diagonal, whereas potential energy operator is diagonal,
in adiabatic electronic representation. The off-diagonal element Λnm defines the coupling
between electronic states through nuclear kinetic energy operator. If we set Λnm = 0,
then one can arrive at the well-known BO or adiabatic approximation. In this situation
nuclear movement is confined in one (uncoupled PES) PES only. Considering the nu-
clear movement, total molecular wavefunction and electonic Schrödinger equation can
be now expressed as

[TN(Q) + Vn(q;Q)− E ]χn(Q) = 0
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2.1 Adiabatic electronic representation and breakdown of Born-Oppenheimer approximation

ΨBO
i (q,Q) =

∑

n

ψn(q;Q)χ
BO
ni (Q)

[Te(q) + U(q,Q)− Vn(q;Q)]ψn(q;Q) = 0 (2.10)

This BO approximation holds for energetically widely separated PESs. The above sit-
uation can dramatically change when differenet PESs of molecule closely approach or
intersect with each other. The off-diagonal elements of nonadiabatic coupling matrix
Λnm become extremely large and the electronic states can strongly couple with each
other. In this situation, the nuclear movement can not be confined on a single electronic
state rather it gains the energy (through coupling) to move concurrently on the available
relevent electronic states. In this situation, the classical approximation of large ratio of
nuclear masses to electronic masses is overcome by the large derivative coupling Anm.
Thus BO approximation is no longer valid in this situation. Eq. 2.3 represents the
electronic Schrödinger equation which can be rewritten as

〈ψm(q;Q)|He(q;Q)|ψn(q;Q)〉 = 〈ψm(q;Q)|Vn(q;Q)|ψn(q;Q)〉
〈ψm(q;Q)|He(q;Q)|ψn(q;Q)〉 = Vn(q;Q)δmn

After differentiation with respect to Q, the above equation transforms to

Vn〈
∂

∂Q
ψm|ψn〉+ 〈ψm|

∂He(q;Q)

∂Q
|ψn〉+ Vm〈ψm|

∂

∂Q
ψn〉 = 0 (2.11)

〈ψm|
∂

∂Q
|ψn〉 =

1

(Vn − Vm)
〈ψm|

∂He(q;Q)

∂Q
|ψn〉

Finally, using the above equation, A
(i)
nm(Q) can be expressed as Hellmann-Feynman type

of relation [2, 6, 7]

A(i)
nm(Q) =

〈ψm(q;Q)|∇iHe(q;Q)|ψn(q;Q)〉
Vn(Q)− Vm(Q)

, (2.12)

where He represents the electronic Hamiltonian for fixed nuclear configuration. The
derivative coupling elements of Eq. (2.12) exhibit a singularity at near degeneracy or
degeneracy of the two PESs, as at this situation Vn(Q) ∼ Vm(Q) or Vn(Q) = Vm(Q). In
principle this leads to discontinuity in both the electronic wavefunction and the deriva-
tive of energy. In these circumtances the adiabatic or BO representation is completely
unsuitable for the computational study of the nuclear dynamics. Inelastic atom-atom
collisions and ultrafast radiationless decay of excited electronic states are the typical
examples associated with the violation of the BO approximation [7,8]. To overcome the
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2 Theoretical methodology

problem of singular derivative couplings of the adiabatic representation, the basis func-
tions are replaced with diabatic electronic basis which are smooth and slowly varying
functions of nuclear coordinates [2, 9–15].

2.2 Diabatic electronic representation

In a diabatic electronic representation, the adiabatic electronic wavefunctions, ψ(q;Q), are
replaced by new electronic wavefunctions, φ(q;Q), which are slowly varying functions
of the nuclear coordinates. The corresponding eigenstates of these new diabatic wave-
functions may cross at the avoided crossing of the adiabatic potential energy surfaces.
In this representation, the nuclear kinetic energy operator becomes diagonal and the
coupling between different electronic states is introduced by potential energy operator
in off-diagonal positions of the molecular Hamiltonian. Diabatic basis functions are gen-
erally constructed by a suitable unitary transformation of the adiabatic basis as shown
in Eq. 2.13.

φ(q;Q) = S(Q) ψ(q;Q), (2.13)

where S(Q) is the transformation matrix which reads as

S(Q) =

(
cos θ(Q) − sin θ(Q)
sin θ(Q) cos θ(Q)

)
(2.14)

The matrix S(Q) is called the adiabatic-to-diabatic transformation (ADT) matrix. θ(Q)
represents the transformation angle. The necessary condition for such transformation is
that the first-order derivative couplings of Eq. (2.8) should vanish in the new represen-
tation for all nuclear coordinates [16, 17] i.e.,

∫
dqψ∗

n(q;Q)
∂

∂Qi

ψm(q;Q) = 0. (2.15)

This condition leads to the following differential equations for the transformation matrix
[16, 18, 19]

∂S

∂Qi

+A(i)S = 0, (2.16)

where the elements of the first-order derivative coupling matrix A(i) are given by Eq.
(2.8). A unique solution of the above equation can be obtained only when starting from
a finite subspace of electronic states [17]. Therefore, rigorous diabatic electronic states of
polyatomic molecular systems do not exist [17]. The concept of diabatic electronic basis
was introduced quite early in the literature in the context of describing the electron-
nuclear coupling in atomic collision processes [9–12] as well as in molecular spectroscopy
[13,14]. However, construction of the latter for polyatomic molecular systems is tedious
and difficult since it is a problem depending on multi-coordinates rather than a single
nuclear coordinate. Therefore, various approximate mathematical schemes have been
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2.2 Diabatic electronic representation

proposed in the literature [12, 19–24] to accomplish this task.

2.2.1 The model diabatic Hamiltonian

Vibronic Hamiltonian

Quasi diabatic Hamiltonian method as proposed by Köppel, Domcke and Cederbaum [2]
(KDC approach) is one such approximation. It is assumed in this approximation that
ground state of the reference geometry is well separated from the final (excited/inonized)
states and the molecular Hamiltonian is constructed in a diabatic electronic basis. The
matrix elements of the model diabatic Hamiltonian are constructed by following the
symmetry selection rules. The vibronic Hamiltonian of the final states is constructed
in terms of the dimensionless normal coordinates of the reference (electronic ground
state of the corresponding anion or neutral species) electronic state. The dimensionless
normal coordinates are obtained by performing electronic structure calculations of the
reference state, employing a suitable quantum chemistry software. The mass-weighted
normal coordinates (qi) obtained during the diagonalization of the force field are then
converted into the dimensionless form by following the Eq. 2.17

Qi = (ωi/~)
1
2 qi, (2.17)

where ωi represents the harmonic frequency of the ith vibrational mode. The normal
displacement coordinates Qi represents, the displacement from the equilibrium configu-
ration of the reference state,i.e., Q = 0. The vibronic Hamiltonian of different photoin-
duced molecular process is then given by [2]

H = (TN + V0)1n +∆H. (2.18)

The zeroth-order or unperturbed Hamiltonian of the reference state is represented by
(TN + V0) in Eq. 2.18. The quantity 1n is a (n × n) (where n depends on the number
of electronic states participating in the nuclear dynamics study) unit matrix. ∆H in
Eq. (2.18) describes the change in the electronic energy upon excitation/ionization and
which is treated as perturabation. The nuclear kinetic energy and the potential energy
at the reference state in dimensionless normal coordinate representation is given in the
following equations,

TN = −1

2

∑

i

ωi

[
∂2

∂Q2
i

]
, (2.19)

and

V0 =
1

2

∑

i

ωiQ
2
i , (2.20)

It is assumed that all vibrational motions in this reference state are harmonic. The diag-
onal elements of the electronic Hamiltonian, ∆H, represent the diabatic potential energy
surfaces of the electronic states and the off-diagonal elements represent the coupling be-
tween different diabatic surfaces. Particularly, the non-adiabaticity in the molecules is
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2 Theoretical methodology

taken care by these off-diagonal elements. In this case, different electronic states are
coupled through potential energy operator. The elements of the ∆H matrix can be
expanded in Taylor series in terms of normal displacement coordinates as [2]

Wnn(Q) = En + Σiκ
(n)
i Qi + Σijγ

(n)
ij QiQj + ... (2.21)

and
Wnn′(Q) = Wnn′(0) + Σiλ

(nn′)
i Qi + ..., (2.22)

respectively. The quantities, κ and γ, are termed as intra-state coupling parameters. λ
is the inter-state coupling parameter. These set of coupling parameters are derived by
using the following equations:

κ
(n)
i = (∂Wnn/∂Qi)0 (2.23)

λ
(nn′)
i = (∂Wnn′/∂Qi)0 (2.24)

γ
(n)
ij =

1

2
[(∂2Wnn/∂QiQj)0] (2.25)

Here En denotes the vertical excitation/ionization energy of the nth excited electronic
state from the reference state.

Vibronic Jahn-Teller Hamiltonian

The conversion of the vibronic Hamiltonian to the Jahn-Teller Hamiltonian (special case
of vibronic coupling) is already discussed in Chapter 1. So, instead of details of that
conversion, the representation of the Jahn-Teller Hamiltonian in dimensionless normal
coordinate is discussed here. The matrix elements of the perturbed Hamiltonian is
expanded in a Taylor series to get the fully coupled diabatic potential matrix for general
D3h or C3v, E⊗e system. Particularly, this E⊗e Hamiltonian can be applied to potential
energy surfaces of the degenerate states with pronounced anharmonicity. In case of less
anharmonic surfaces, one can use the reduced order expansion. Following the recipe
given in Ref. [24], a Taylor expansion of the (E⊗e)-JT diabatic electronic Hamiltonian
matrix up to fifth order is carried out. The general form of the Hamiltonian is same as
Eq. 2.18.

H = H01+∆H, (2.26)

with,

H0 = TN + V0.
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2.2 Diabatic electronic representation

A full description of all the terms of the above equations are already given in previous
section.

TN = −1

2

∑

i∈e

ωi

[
∂2

∂Q2
ix

+
∂2

∂Q2
iy

]
, (2.27)

V0 =
1

2

∑

i∈e

ωi(Q
2
ix +Q2

iy). (2.28)

Here, the two components of the degenerate vibrational mode (x,y) can be represented
by Qix and Qiy, respectively. The diabatic electronic Hamiltonian ∆H can be written
as

∆H =

(
W++ W+−

W−+ W−−

)
. (2.29)

Following Ref. [24], the elements of the electronic Hamiltonian matrix of Eq. 2.29 are
expanded in a Taylor series as:

W±± = E0
E +

1

2!

∑

i∈e

a
(2)
i (Q2

ix +Q2
iy) +

1

2!

∑

i∈e

∑

j∈e,i 6=j

aij(QixQjx +QiyQjy)

+
1

3!

∑

i∈e

a
(3)
i (2Q3

ix − 6QixQ
2
iy) +

1

4!

∑

i∈e

a
(4)
i (Q4

ix + 2Q2
ixQ

2
iy +Q4

iy)

+
1

5!

∑

i∈e

a
(5)
i (2Q5

ix − 4Q3
ixQ

2
iy − 6QixQ

4
iy)±

∑

i∈e

λ
(1)
i Qix ±

1

2!

∑

i∈e

λ
(2)
i (Q2

ix −Q2
iy)

± 1

2!

∑

i∈e

∑

j∈e,i 6=j

λij(QixQjx −QiyQjy)±
1

3!

∑

i∈e

λ
(3)
i (Q3

ix +QixQ
2
iy)

± 1

4!

∑

i∈e

λ
(4)
i (Q4

ix − 6Q2
ixQ

2
iy +Q4

iy)±
1

4!

∑

i∈e

λ
(4′)
i (Q4

ix −Q4
iy)

± 1

5!

∑

i∈e

λ
(5)
i (Q5

ix − 10Q3
ixQ

2
iy + 5QixQ

4
iy)±

1

5!

∑

i∈e

λ
(5′)
i (Q5

ix + 2Q3
ixQ

2
iy +QixQ

4
iy),

(2.30)
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W+− =W∗
−+ =

∑

i∈e

λ
(1)
i Qiy −

∑

i∈e

λ
(2)
i QixQiy −

∑

i∈e

∑

j∈e,i 6=j

λijQixQjy

+
1

3!

∑

i∈e

λ
(3)
i (Q2

ixQiy+Q
3
iy)+

1

4!

∑

i∈e

λ
(4)
i (4Q3

ixQiy−4QixQ
3
iy)+

1

4!

∑

i∈e

λ
(4′)
i (−2Q3

ixQiy−2QixQ
3
iy)

+
1

5!

∑

i∈e

λ
(5)
i (−5Q4

ixQiy + 10Q2
ixQ

3
iy −Q5

iy) +
1

5!

∑

i∈e

λ
(5′)
i (Q4

ixQiy + 2Q2
ixQ

3
iy +Q5

iy).

(2.31)

The various parameters introduced in Eqs. 2.30 and 2.31, have the following meaning.
The x and y components of the degenerate vibrational mode in the present nomenclature
are denoted byQix andQiy, respectively. The vertical ionization energy of the degenerate

state is defined as E0
E. The parameter λ

(n)
i is the nth order JT coupling parameter for

the degenerate vibrational modes and λij is the inter-mode JT coupling parameter.

The quantities a
(n)
i are the nth -order intra-state coupling parameter for the degenerate

modes, aij is the inter-mode intra-state coupling parameters for the degenerate modes.

2.2.2 Symmetry selection rule

Symmetry selection rules are then employed to determine the possible coupling between
the states:

Γm ⊗ ΓQi
⊗ Γn ⊃ ΓA, (2.32)

where Γm,Γn and ΓQi
denote the irreducible representations (IREPs) of the electronic

states m,n and the ith vibrational mode, respectively. ΓA denotes the totally symmetric
representation. From above description, it should be noted that the totally symmetric
vibrational modes are always active within a given electronic state. A truncation of the
Taylor series in Eqs. 2.21 2.22 at the first-order term leads to the linear vibronic coupling
(LVC) model [2]. In case of quadratic vibronic coupling (QVC) model, Eq. 2.32 becomes,

Γm ⊗ ΓQi
⊗ ΓQj

⊗ Γn ⊃ ΓA, (2.33)

where, QJ represents the same or other vibrational mode.

Extended symmetry selection rules for JT Hamiltonian

It is well-known that the total Hamiltonian Ĥ must be invariant under the symmetry
operation Ŝ. The derivation of the nonvanishing terms in the Taylor expansion of the
Hamiltonian are identified by this invariance condition. Here, we transform the real
nuclear coordinates (x, y) of the degenerate mode and the degenerate electronic functions
(〈ψx|, 〈ψy|) to their complex representation by the unitary transformation U †,

√
2 U †

(
x
y

)
=

(
1 i
1 −i

)(
x
y

)
=

(
x+ iy
x− iy

)
=

(
Q+

Q−

)
(2.34)
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and

U †

(
〈ψx|
〈ψy|

)
=

1√
2

(
〈ψx|+ i〈ψy|
〈ψx| − i〈ψy|

)
=

(
〈ψ+|
〈ψ−|

)
(2.35)

The coordinates Q+ and Q− and the state functions 〈ψ+| and 〈ψ−| are eigenfunctions

of the symmetry operator Ĉ3 with e
± 2πi

3 . Thus these complex coordinates rotate during
this operation in the following way:

Ĉ3Q+ = e+
2πi
3 Q+ Ĉ3Q− = e−

2πi
3 Q− (2.36)

Ĉ3〈ψ+| = e+
2πi
3 〈ψ+| Ĉ3〈ψ−| = e−

2πi
3 〈ψ−| (2.37)

Ĉ3|ψ+〉 = e−
2πi
3 |ψ+〉 Ĉ3|ψ−〉 = e+

2πi
3 |ψ−〉 (2.38)

The electronic Hamiltonian in (|ψ+〉, |ψ−〉) can be written as,

Ĥe =
∑

i,j

|ψ+〉H+−〈ψ−| (2.39)

where, H+− = 〈ψ+|He〈ψ−| and it is expanded in Taylor series up to fifth-order in Q+,
Q− coordinate space. The diagonal element of this H+− matrix has the following form:

H++ = 〈ψ+|He|ψ+〉 (2.40)

(2.41)

H++ =
5∑

p+q=0

c
(++)
p,q

(p+ q)!
Qp

+Q
q
− (2.42)

Invariance condition under the symmetry operations has to be applied in each term in
Eq. 2.42. Let us first apply Ĉ3 operation on each of the term of Eq. 2.42.

Ĉ3 (|ψ+〉Qp
+Q

q
−〈ψ+|) (2.43)

Where, the constant term
c
(++)
p,q

(p+q)!
is excluded from Eq. 2.43 as symmetry operation does

not have any impact on this constant term. At the end of this operation, Eq. 2.43
transforms in the follwing form:

e(p−q) 2πi
3 (|ψ+〉Qp

+Q
q
−〈ψ+|) (2.44)
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Table 2.1: Nonvanishing terms of the Hamiltonian matrix of Eq. 2.39.

Expansion order Diagonal H++ = H−− Off-diagonal H+− = (H−+)
∗

0 Q0
+ Q0

− -
1 - Q0

+ Q1
−

2 Q1
+ Q1

− Q2
+ Q0

−

3 Q3
+ Q0

− and Q0
+ Q3

− Q1
+ Q2

−

4 Q2
+ Q2

− Q0
+ Q4

− and Q3
+ Q1

−

5 Q4
+ Q1

− and Q1
+ Q4

− Q2
+ Q3

− and Q5
+ Q0

−

or,

(
cos(p− q)2π

3
+ isin(p− q)2π

3

)
(|ψ+〉Qp

+Q
q
−〈ψ+|) (2.45)

The invariance condition is fullfilled by Eq. 2.45, only when, the combined value of
(p, q) follows the relation |p − q| = 0, 3, 6..., because only in this condition Eq. 2.45
becomes unity. The same procedure is followed to find out the other off-diagonal nonva-
nishing terms of Eq. 2.39. It is also verified that this invariance condition is followed at
the other symmetry operations, Ĉ2, σ̂v and σ̂h. To make the analysis more easier a tabu-
lation of nonvanishing terms of Eq. 2.39 is given in Table 2.1. The matrix representation
of Eq. 2.39 can be converted into the real representation by the back transformation.

2.3 Electronic structure calculations

The estimation of the Hamiltonian parameters of the vibronic Hamiltonian (cf. Eqs.
2.21, 2.22, 2.30 and 2.31) is a computationally demanding and time-consuming task.
First, the equilibrium geometry and corresponding vibrational frequencies of the refer-
ence state of the system are obtained through electronic structure calculations by quan-
tum chemistry method (such as, MP2, CCSD, CCSD(T) etc.). In the next step, single
point energy calculations are carried out along normal displacement coordinates. These
single point energy calculations are performed by using for example, OVGF (ROVGF),
EOM-CCSD, MCSCF and MRCI quantum chemistry method. Depending upon the
electronic configuration of the system (total number of electrons, closed or open shell
configuration), the most appropriate quantum chemistry method is chosen for these sin-
gle point calculations. The computed excitation energies are then fit to the adiabatic
Hamiltonian to extract the parameters of the Hamiltonian introduced in Eqs. 2.21,
2.22, 2.30 and 2.31. A non-linear least square fittings method or Levenberg-Marquardt
algorithm [38,39] is for the fit. The ab initio potential enegy surfaces (PESs) relative to
the reference geometry at Q = 0 [29, 30], are calculated by adding the potential energy
of the system at its reference geometry with the calculated excitation energy along each
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2.4 Vibronic eigenvalue spectrum

vibrational mode. In this thesis, we have calculated ab inito excitation points for a large
normal displacement coordinate, -5.0≤Qi≤5.00, along each normal mode. Finally, the
model Hamiltonian constructed is used in the subsequent dynamics calculations.

2.4 Vibronic eigenvalue spectrum

The excitation spectrum of a molecule within the Fermi’s golden rule is given by

P (E) =
∑

v

∣∣∣〈Ψf
v |T̂ |Ψi

0〉
∣∣∣
2

δ(E − Ef
v + Ei

0), (2.46)

where the quantity T̂ represents the transition dipole operator that describes the in-
teraction of the electron with the external radiation of energy E during the photoex-
citation/ionization process. |Ψi

0〉 is the initial vibronic ground state or reference state
with energy Ei

0. |Ψf
v〉 corresponds to the final vibronic state of the photoionized/excited

molecule with energy Ef
v . The reference ground electronic state is approximated to be

vibronically decoupled from the other states and can be written as simple product of
the electronic Φ0 and nuclear (χ0

0) components:

|Ψi
0〉 = |Φ0〉|χ0

0〉, (2.47)

The final vibronic state |Ψf
v〉 in the coupled electronic manifold of n interacting states

is expressed as

|Ψf
v〉 =

∑

n

|Φn〉|χn
v 〉, (2.48)

The superscripts refer to the ground and excited states. Using Eqs. (2.47-2.48), the
excitation function Eq. (2.46) is rewritten as

P (E) =
∑

v

∣∣∣∣∣
∑

n

τn〈χn
v |χ0

0〉
∣∣∣∣∣

2

δ(E − Ef
v + Ei

0), (2.49)

where

τn = 〈Φn|T̂ |Φ0〉 (2.50)

represent the matrix elements of the transition dipole operator of the final electronic
state n. In a diabatic basis, these elements depend very weakly on nuclear coordinates
Q. Hence, in the study of photoinduced processes presented in this thesis, the transition
dipole matrix elements are treated as constants within the Condon approximation [31].
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2.4.1 Time-independent matrix diagonalization approach

The time-independent vibronic Schrödinger equation

H|Ψf
n〉 = En|Ψf

n〉, (2.51)

is solved by expanding the vibronic eigenstates {|Ψf
n〉} in the direct product harmonic

oscillator basis of the electronic ground state [2]

|Ψf
n〉 =

∑

{|Ki〉}

anK1,...,Kl
|K1〉|K2〉...|Kl〉|φn〉 (2.52)

Here Kth level of ith vibrational mode is denoted by |Ki〉. |φm〉 is the electronic wave-
function. For each vibrational mode, the oscillator basis is suitably truncated in the
numerical calculations. In practice, the maximum level of excitation for each mode is
estimated from the convergence behavior of the spectral envelope. The Hamiltonian
matrix expressed in a direct product Harmonic oscillator basis is highly sparse and is
tri-diagonalized by the Lanczos algorithm [32]. The diagonal elements of the resulting
eigenvalue matrix give the position of the vibronic lines and the relative intensities are
obtained from the squared first component of the Lanczos eigenvectors [2,15]. The stick
vibronic lines obtained from the matrix diagonalization calculations are convoluted [2]
with a Lorentzian line shape function of appropriate FWHM Γ to be on par with the
the experimental resolution

L(E) =
1

π

Γ
2

E2 + (Γ
2
)2
. (2.53)

2.4.2 Time-dependent wavepacket propagation approach

In a time-dependent approach the Fourier representation of the Dirac delta function is
used in the Fermi’s golden rule, δ(x) = 1

2π

∫ +∞

−∞
eixt/~, including the delta function, the

golden rule equation transforms Eq. (2.46) to the following useful form, readily utilized
in a time-dependent picture

P (E) ≈ 2Re

∫ ∞

0

eiEt/~〈Ψi(0)|τ †e−iHt/~τ |Ψi(0)〉dt, (2.54)

≈ 2Re

∫ ∞

0

eiEt/~ Ci(t) dt. (2.55)

In the above Eq. 2.54, the elements of the transition dipole matrix τ † is given by,
τ f = 〈φf |T̂ |φi〉. The quantity Cf (t) = 〈Ψf (0)|Ψf (t)〉, is the time autocorrelation func-
tion of the WP initially prepared on the f th electronic state and, Ψf (t) = e−iHt/~ Ψf (0).
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2.4 Vibronic eigenvalue spectrum

The time autocorrelation function is calculated above damped with a suitable time-
dependent function before Fourier transformation. The usual choice has been a function
of type

f(t) = exp[−t/τr] , (2.56)

where τr represents the relaxation time. Multiplying C(t) with f(t) and then Fourier
transforming it is equivalent to convoluting the spectrum with a Lorentzian line shape
function (cf., Eq. (2.53)) of FWHM, Γ = 1.31/τr.

2.4.3 Propagation of wave packet by MCTDH algorithm

The matrix diagonalization approach requires huge computational overheads and is im-
practicable with systems of growing size in terms of the electronic and nuclear degrees
of freedom. Therefore, the matrix diagonalization approach fails for large molecules and
with complex vibronic coupling mechanism. The WP propagation approach within the
MCTDH scheme has emerged as an alternative and very promising tool to circumvent
the computational cost in such situations [33–36]. This is a grid based method which
utilizes DVR basis combined with fast Fourier transformation and powerful integration
schemes. The efficient multiset ansatz of this scheme allows for an effective combination
of vibrational degrees of freedom and thereby reduces the dimensionality problem. In
this ansatz the wavefunction for a nonadiabatic system is expressed as [34–36]

Ψ(Q1, ..., Qf , t) = Ψ(R1, ..., Rp, t) (2.57)

=
σ∑

α=1

n
(α)
1∑

j1=1

...

n
(α)
p∑

jp=1

A
(α)
j1,...,jp

(t)

p∏

k=1

ϕ
(α,k)
jk (Rk, t)|α〉, (2.58)

where, f and p represents the number of vibrational degrees of freedom and MCTDH
particles, which are combined by the vibrational degrees of freedom. α is the electronic
state index, A

(α)
j1,...,jp

denote the MCTDH expansion coefficients and ϕ
(α,k)
jk are the nk SPFs

for each degree of freedom k associated with the electronic state α. In this scheme all
multi-dimensional quantities are expressed in terms of one-dimensional ones employing
the idea of mean-field or Hartree approach. This provides the efficiency of the method
by keeping the size of the basis optimally small. Furthermore, multi-dimensional SPFs
are designed by appropriately choosing the set of system coordinates so as to reduce the
number of particles and hence the computational overheads. The operational princi-
ples, successes and shortcomings of these schemes are detailed in the literature [34–36].
The Heidelberg MCTDH package [33] is employed to propagate WPs in the numerical
simulations for present molecules. The spectral intensity is finally calculated using Eq.
(2.54) from the time-evolved WP.
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Here we provide a brief overview on the memory requirements for the MCTDH method
to understand the efficiency of time-dependent WP calculations. In general, the memory
required by standard method is proportional to N f , where N is the primitive basis
functions/total number of grid points. In contrast, memory needed by the MCTDH
method scales as

memory ∼ fnN + nf (2.59)

where, n represent the SPFs. The memory requirements can however be reduced if
SPFs are used that describe a set of degrees of freedom, termed as multimode SPFs.
By combining few (d) degrees of freedom together to form a set of particles (p=f/d),
the memory requirement changes to

memory ∼ fñNd + ñf (2.60)

where ñ is the number of multimode functions needed for the new particles. If only
single-mode functions are used i.e. d=1, the memory requirement, Eq. (2.60), is dom-
inated by nf . By combining degrees of freedom together this number can be reduced,
but at the expense of longer product grids required to describe the multimode SPFs.
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[6] H. Köppel, L.S. Cederbaum and S. Mahapatra, Theory of the JahnTeller Effect, in
Handbook of high-resolution spectroscopy, John Wiley & Sons, (2011).

[7] S. Mahapatra, Acc. Chem. Res. 42, 1004 (2009).

[8] M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and
conical intersections, John Wiley and Sons, (2006).

[9] W. Lichten, Phys. Rev. 131, 229 (1963).

[10] F. T. Smith, Phys. Rev. 179, 111 (1969).

[11] T. F. O’Malley, Adv. At. Mol. Phys. 7, 223 (1971).

[12] T. Pacher, L. S. Cederbaum and H. Köppel, Adv. Chem. Phys. 84, 293 (1993).
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3 The Jahn-Teller effect in the X̃2E

electronic ground state of CH3F
+

3.1 Introduction

The electronic ground X̃2E state of the methyl fluoride radical cation (CH3F
+) is or-

bitally degenerate at the equlibrium geometry of the neutral molecule (CH3F) belongs
to C3v point group symmetry. This orbital degeneracy is lifted upon distortion along
vibrational modes of e symmetry. This so-called (E⊗e)-Jahn-Teller (JT) effect [1] leads
to a coupling of the electronic and nuclear motion. As a result, the adiabatic Born-
Oppenheimer (BO) approximation remains no longer valid and nuclei move concur-
rently on the JT split component electronic states [2–6]. These component JT states
remain degenerate at the C3v symmetry configuration and form conical intersections
(CIs) [7–9] in multi-dimensional nuclear coordinate space. As discussed in Chapter 1,
the CIs of electronic surfaces are ubiquitous in polyatomic molecular systems [2–15]
and have been proven to be the mechanistic pathway of triggering ultrafast molecular
processes [5, 6, 16, 17]. The associated nonadiabatic effects yield broad and complex
molecular electronic spectra, and an assignment of vibronic energy levels often becomes
a cumbersome task. The theoretical study in this chapter is aimed to elucidate the
nature of the energetically low-lying vibronic structures of the doubly degenerate X̃2E
electronic state of CH3F

+. The motivation behind this exercise stems from recent ex-
perimental studies [18,19] on this subject. In contrast to the other halogenated methane
derivatives (e.g. Cl, Br and I), the spin-orbit (SO) coupling is very weak (discussed later
in the text) as compared to the JT coupling in CH3F

+. Therefore, the SO coupling

is not considered in this study. The first excited Ã2A1 electronic state of CH3F
+ is

energetically well separated (∼3.64 eV) from its electronic ground state at the vertical

configuration. The pseudo-Jahn-Teller (PJT) coupling of the X̃-Ã states was found to
be quite weak and does not influence the vibronic progressions in the low-energy part of
the X̃ band [20,21]. Therefore, X̃-Ã PJT coupling is also not considered in this study.

In earlier works [20, 21], the vibronic structure of the X̃2E state of CH3F
+ was cal-

culated with the aid of ab initio complete active space self consistent field and multi-
reference configuration interaction (CASSCF-MRCI) quantum chemistry and time- in-
dependent quantum dynamics methods. Linear plus quadratic (E⊗e)-JT couplings as

0The subject of this Chapter is published by: Rudraditya Sarkar, S. R. Resddy, S. Mahapatra and H.
Köppel in Chem. Phys.482, 39 (2017).
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3 Jahn-Teller effect on the ground state of CH3F
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well as PJT coupling between X̃2E and Ã2A1 electronic states of CH3F
+ [20, 21], were

considered to understand and interpret the experimental photoelectron (PE) spectrum
of Karlsson et al. [22]. Recent high resolution experimental results of Grütter [18] and
Mo et al. [19] differ from the experimental findings of Karlsson et al. [22], mainly in the
low energy wing of the spectrum.

In the low-energy part of the spectrum, excitation of the vibrational mode ν2 was
not found in the experiment of Grütter [18] which is consistent with earlier experiments
[22,23]. The vibrational line at ∼1300 cm−1 was assigned to the fundamental of ν5 and
ν3 by Karlsson et al. [22] and Locht et al. [23], respectively. The fundamental of ν3 and
first overtone of ν6 was reported at ∼1293 cm−1 and 1267 cm−1, respectively, by Grütter
[18]. While the fundamental of ν6 was not found in the experiment of Grütter [18], it is
tentatively assigned at ∼650 cm−1 in that experiment. The same peak was reported at
∼690 cm−1 by both Karlsson et al. [22] and Locht et al. [23]. While the fundamental of
ν6 was not found in the experiment of Grütter [18], it is reported in the experiment of
Mo et al. [19] in the 101092-101954 cm−1 energy range, at 565 cm−1 from the 000 peak.
In the former experiment this region of the spectrum was attributed due to absorption
of residual H2O in the sample chamber and was designated as a ′′dark′′ region. The
combined experimental and theoretical study of Mo et al. [19] established a tunneling
splitting level at 56 cm−1 (not found in their experimental results) of the origin 000 line
and was attributed due to higher pseudo-rotation barrier along the JT-active modes
ν5 and ν6. However, no clear assignment of this level was available.

The mentioned discrepancies motivated us to undertake this study in order to un-
derstand the origin of the observed discrepancies. In the present study we carry out
new quantum chemistry calculations and critically examine the coupling parameters of
the theoretical model developed in Refs. [20, 21]. As compared to the latter studies, in
the present work, we devised a higher order vibronic coupling model in terms of the
dimensionless normal coordinates of the electronic ground state of neutral CH3F. The
model is based on a large number of potential energy data computed ab initio over
an extended range of nuclear configurations. Both one and two dimensional fittings
of ab initio points are carried out in order to obtain an improved description of the
electronic Hamiltonian. Using this Hamiltonian, nuclear dynamics calculations are car-
ried out by both time-independent and time-dependent quantum mechanical methods.
The results of the nuclear dynamics are compared with the recent experimental high
resolution pulsed-field-ionization zero-electron-kinetic energy (PFI-ZEKE) [18] and one
photon ZEKE spectra [19] as well as available theoretical results.
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3.2 Theoretical framework

3.2 Theoretical framework

3.2.1 The vibronic Hamiltonian

In order to treat the nuclear dynamics in the JT split X̃2E eletronic manifold of CH3F
+,

a vibronic Hamiltonian is constructed in a diabatic electronic basis using dimensionless
normal displacement coordinates (NCs) of the electronic ground state of neutral CH3F
and symmetry selection rules. Following the recipe given in Ref. [24], a Taylor expansion
of the (E⊗e)-JT diabatic electronic Hamiltonian matrix up to fifth order is carried out.
The nine vibrational modes of CH3F transform according to the following irreducible
representations (IREPs) of the C3v equilibrium symmetry point group

Γ = 3a1 ⊕ 3e. (3.1)

The symmetric direct product of two degenerate (E) representations yields

[E ⊗ E]+ = a1 ⊕ e. (3.2)

The IREPs of electronic states and vibrational modes are denoted by the upper and
lower case letters, respectively. With the above description, the vibronic Hamiltonian of
the X̃2E electronic manifold of CH3F

+ can be symbolically represented as

H = H01+∆H, (3.3)

with,

H0 = TN + V0.

In the above, H0 is the unperturbed Hamiltonian of the electronic ground state of neutral
CH3F, taken as a reference and treated within the harmonic approximation in the relm of
standard vibronic coupling theory [2]. The term ∆H represents the change in electronic
energy upon ionization and 1 represents a (2 × 2) unit matrix. With this definition, the
Hamiltonian (H0) for the reference state is given by [2]

TN = −1

2

∑

i∈a1

ωi

(
∂2

∂Q2
i

)
− 1

2

∑

i∈e

ωi

[
∂2

∂Q2
ix

+
∂2

∂Q2
iy

]
, (3.4)

V0 =
1

2

∑

i∈a1

ωiQ
2
i +

1

2

∑

i∈e

ωi(Q
2
ix +Q2

iy). (3.5)

The diabatic electronic Hamiltonian ∆H can be written as

∆H =

(
W++ W+−

W−+ W−−

)
. (3.6)
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Following Ref. [24], the elements of the electronic Hamiltonian matrix of Eq. 3.6 are
expanded in a Taylor series as:

W±± = E0
E+

∑

i∈a1

κ
(1)
i Qi+

1

2!

∑

i∈a1

κ
(2)
i Q2

i+
1

2!

∑

i∈a1

∑

j∈a1,i 6=j

κijQiQj+
1

3!

∑

i∈a1

κ
(3)
i Q3

i+
1

4!

∑

i∈a1

κ
(4)
i Q4

i

+
1

2!

∑

i∈e

a
(2)
i (Q2

ix +Q2
iy) +

1

2!

∑

i∈e

∑

j∈e,i 6=j

aij(QixQjx +QiyQjy)

+
1

3!

∑

i∈e

a
(3)
i (2Q3

ix − 6QixQ
2
iy) +

1

4!

∑

i∈e

a
(4)
i (Q4

ix + 2Q2
ixQ

2
iy +Q4

iy)

+
1

5!

∑

i∈e

a
(5)
i (2Q5

ix − 4Q3
ixQ

2
iy − 6QixQ

4
iy)±

∑

i∈e

λ
(1)
i Qix ±

1

2!

∑

i∈e

λ
(2)
i (Q2

ix −Q2
iy)

± 1

2!

∑

i∈e

∑

j∈e,i 6=j

λij(QixQjx −QiyQjy)±
1

2!

∑

i∈a1

∑

j∈e

bijQiQjx

± 1

3!

∑

i∈e

λ
(3)
i (Q3

ix +QixQ
2
iy)±

1

4!

∑

i∈e

λ
(4)
i (Q4

ix − 6Q2
ixQ

2
iy +Q4

iy)±
1

4!

∑

i∈e

λ
(4′)
i (Q4

ix −Q4
iy)

± 1

5!

∑

i∈e

λ
(5)
i (Q5

ix − 10Q3
ixQ

2
iy + 5QixQ

4
iy)±

1

5!

∑

i∈e

λ
(5′)
i (Q5

ix + 2Q3
ixQ

2
iy +QixQ

4
iy), (3.7)

W+− =W∗
−+ =

∑

i∈e

λ
(1)
i Qiy−

∑

i∈e

λ
(2)
i QixQiy−

∑

i∈e

∑

j∈e,i 6=j

λijQixQjy+
1

2!

∑

i∈a1

∑

j∈e

bijQiQjy

+
1

3!

∑

i∈e

λ
(3)
i (Q2

ixQiy+Q
3
iy)+

1

4!

∑

i∈e

λ
(4)
i (4Q3

ixQiy−4QixQ
3
iy)+

1

4!

∑

i∈e

λ
(4′)
i (−2Q3

ixQiy−2QixQ
3
iy)

+
1

5!

∑

i∈e

λ
(5)
i (−5Q4

ixQiy + 10Q2
ixQ

3
iy −Q5

iy) +
1

5!

∑

i∈e

λ
(5′)
i (Q4

ixQiy + 2Q2
ixQ

3
iy +Q5

iy).

(3.8)

The various parameters introduced in Eqs. 3.7-3.8 have the following meaning. The
x and y components of the degenerate vibrational mode in the present nomenclature
are denoted by Qix and Qiy, respectively. The vertical ionization energy of the X̃2E

state is defined as E0
E, κ

(n)
i is the nth order intra-state coupling constant for the totally

symmetric modes, κij is the inter-mode intra-state coupling constant for the totally sym-

metric modes, λ
(n)
i is the nth order inter-state JT coupling parameter for the degenerate

vibrational modes and λij is the inter-mode inter-state JT coupling parameter. It is
noted that there are two independent coupling terms in 4th and 5th order expansion
with even similarly large coupling constants (see below). The quantities a

(n)
i are the

nth -order intra-state coupling parameter for the degenerate modes, aij is the inter-mode
intra-state coupling parameters for the degenerate modes and bij is the bilinear coupling
parameter between totally symmetric and degenerate modes. The vibronic Hamiltonian
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3.2 Theoretical framework

constructed above is utilized below to examine the static and dynamic aspects of the JT
effects in the X̃2E state of CH3F

+.

3.2.2 Nuclear dynamics

The vibronic energy level structure of the photoionization band of CH3F
+ is calculated

by a time-independent matrix diagonalization approach [2, 25]. The spectral intensity,
P (E), is calculated by Fermi’s golden rule,

P (E) =
∑

n

|<Ψf
n|T̂ |Ψi

0>|
2
δ(E − Ef

n + Ei
0) . (3.9)

In the above equation, |Ψi
0> and |Ψf

n> represent the initial and final vibronic states with
energies Ei

0 and Ef
n, respectively. The operator T̂ is the transition dipole operator, which

describes the transition from the reference neutral state to the cationic state with the
aid of external radiation of energy E. The ground state |Ψi

0> (ground state of neutral
CH3F) is assumed to be vibronically decoupled from the excited electronic states and
can be written as

|Ψi
0〉 = |Φi

0〉|χi
0〉, (3.10)

where |Φi
0〉 and |χi

0〉 represent the electronic and vibrational components of this state,
respectively. This state is assumed to be harmonic and the vibrational component
of the above wavefunction is expressed in terms of the eigenfunctions of the reference
Hamiltonian, TN + V0 [(cf. Eqs. 3.4-3.5] . These are, in practice, taken as the direct
product of one-dimensional harmonic oscillator wavefunctions along the coordinates of
all relevant vibrational modes. The final vibronic state of the X̃2E electronic state of
CH3F

+ can be expressed as

|Ψf
n〉 = |ΦEx〉|χEx

n 〉+ |ΦEy〉|χEy
n 〉, (3.11)

where the superscripts Ex and Ey represent the x/y components of the X̃2E electronic
state of CH3F

+, respectively. With the above definitions the spectral intensity of Eq.
3.9 can be rewritten as

P (E) =
∑

n

|τEx〈χEx
n |χ0〉+ τEy〈χEy

n |χ0〉|2δ(E − Ef
n + Ei

0), (3.12)

where,
τm = 〈Φm|T̂ |Φ0〉, m = Ex, Ey (3.13)

represents the transition dipole matrix elements. These are treated as constants (see
Eqs. 3.12, 3.13) in accordance with the applicability of the Condon approximation
in a diabatic electronic basis [2]. The time-independent Schrödinger equation of the
vibronically coupled states is solved by representing the Hamiltonian (cf. Eqs. 3.4-3.8)
in a direct product harmonic oscillator (HO) basis of the reference state. The final
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vibronic states, |Ψf
n〉, can be expressed as

|Ψf
n〉 =

∑

|Ki〉,m

anki,...,kf ,m|Ki〉...|Kf〉|Φm〉. (3.14)

In the above equation the Kth quantum of the ith vibrational mode is denoted by |Ki〉 and
|Φm〉 denotes the mth electronic state of the interacting electronic manifold of CH3F

+

radical cation. For each vibrational mode, the oscillator basis is suitably truncated in the
numerical calculations. In practice, the maximum level of excitation for each vibrational

mode can be approximately estimated from its excitation strength, (
κ2
i

2ω2
i

) and (
λ2
i

2ω2
i

) for

the symmetric and degenerate modes, respectively. The Hamiltonian matrix expressed
in a direct product HO basis is highly sparse. We tri-diagonalize this sparse Hamiltonian
matrix employing the Lanczos algorithm [26] prior to its diagonalization. The diagonal
elements of the resulting eigenvalue matrix give the positions of the vibronic lines and
the relative intensities are calculated from the squared first components of the Lanczos
eigenvectors [27].

In a time-dependent picture, the spectral intensity described by Eq. 3.12 relates to
the Fourier transform of the time autocorrelation function of the wave packet (WP)
propagating on the final electronic state [28]

P (E) ∼
2∑

m=1

2Re

∫

0

∞

eiEt/~〈χ0|τm†e−iHt/~τm|χ0〉dt, (3.15)

≈
2∑

m=1

2Re

∫

0

∞

eiEt/~Cm(t)dt, (3.16)

where, Cm = 〈Ψm(0)|Ψm(t)〉, represents the time autocorrelation function of the WP,
initially prepared on the electronic state m. The time-dependent WP propagation is
carried out employing the multi-configuration time dependent Hartree (MCTDH) ap-
proach. For the details of this approach the reader is referred to the comprehensive
literature [29–31]. The Heidelberg MCTDH program modules are used for the numeri-
cal calculations [32].

3.2.3 Details of electronic structure calculations

The equilibrium geometry of the reference electronic ground state of CH3F is calculated
by the Møller-Plesset perturbation (MP2) theory employing the cc-pVTZ basis set of
Dunning [33]. The GAUSSIAN-03 suite of programs [34] is used for this purpose. The
optimized equilibrium structure of CH3F belongs to the C3v symmetry point group. The
optimized equilibrium structural parameters are given in Table 3.1 along with recent
literature data. The molecular orbital (MO) sequence of the optimized configuration
of CH3F is, (1a1)

2 (2a1)
2 (3a1)

2 (4a1)
2 (1e)2 (1e)2 (5a1)

2 (2e)2 (2e)2. Ionization of an
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electron from the highest occupied 2e molecular orbital of CH3F leads to CH3F
+ in its

X̃2E electronic ground state.

The harmonic vibrational frequency, ωi, of the vibrational mode i of the X̃1A1 state
of CH3F is calculated by diagonalizing the kinematic and ab initio force constant matrix
obtained at its equilibrium geometry. The harmonic frequencies and descriptions of
all vibrational modes of CH3F are listed in Table 3.2 along with the recent literature
data. Mass weighted normal displacement coordinates (Qi, measured relative to the
equilibrium reference configuration of neutral CH3F at Q=0) of the vibrational modes
are calculated from the resulting eigenvector matrix and after multiplication with

√
ωi,

these are transformed to their dimensionless form. The vertical ionization energy (VIE)

of the X̃2E state of CH3F
+, calculated at the CASSCF-MRCI level of theory employing

the cc-pVTZ basis set, is tabulated in Table 3.3 along with the literature data.

The energy of the X̃2E electronic state of the CH3F
+ is calculated as a function

the of displacement coordinates of the vibrational modes (vide supra) in the range -
5.0≤Qi≤5.0. The calculations are carried out employing CAS(14,11)SCF-MRCI ab
initio quantum chemistry method and the cc-pVTZ basis set. The calculated adiabatic
electronic energies are fitted to the adiabatic form of the diabatic electronic Hamiltonian
to obtain the parameters introduced in Eqs. 3.7-3.8. The CASSCF-MRCI calculations
have been performed by using the MOLPRO suite of programs [37]. Adiabatic electronic
energies are calculated along each vibrational modes and pairs of vibrational modes.
All one-dimensional fits are carried out by a non-linear least squares method and the
Levenberg-Marquardt algorithm [38, 39] as implemented in MATLAB [40] is used to
perform two-dimensional fits. The coupling parameters of the Hamiltonian derived from
these fits are given in Table 3.4. We note that the root mean square deviation calculated
in all the fits is < 16 cm−1.

The spin-orbit (SO) coupling constant of CH3F
+ (X̃2E) at the reference C3v config-

uration is also calculated employing the MOLPRO [37] suite of programs. The MRCI
wavefunction along with the cc-pVTZ basis set is used in this calculation. The SO ma-
trix elements are calculated using the Breit-Pauli operator. The SO coupling constant
is assumed to be independent of the nuclear coordinates. The estimated SO coupling
constant is ∼ 150 cm−1, which is close to the value of ∼155 cm−1 reported by Mo et
al. [19].
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Table 3.1: Minimum energy configuration of CH3F and CH3F
+ in C3v and Cs symmetry, respectively , calculated at MP2/cc-

pVTZ level of theory. Bond lengths and bond angles are given in Å and degrees, respectively. The experimental
data of Ref. [41] are also given in the table.

CH3F CH3F
+

This work Ref. [41] Ref. [19] Ref. [20] This work Ref. [19] Ref. [20]
Level MP2/cc-pVTZ MP2/cc-pVTZ
R(C-F) 1.380 1.383 1.366 1.385 1.274 1.275 1.274
R(C-Ha) 1.087 1.087 1.086 1.087 1.170 1.167 1.172
R(C-Hc) 1.087 1.087 1.086 1.087 1.083 1.081 1.084
∠ Ha-C-F 109.15 108.67 108.66 109.50 111.01 111.0 110.78
∠ Hc-C-F 109.15 108.67 108.66 109.50 118.12 118.3 118.02
∠ Ha-C-Hc 109.79 110.26 110.27 118.23 118.23
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Table 3.2: Description of the normal vibrational modes of the electronic ground state of CH3F. The harmonic frequencies
and the normal coordinates are calculated at the MP2 level of theory employing both aVTZ-aVQZ and cc-pVTZ
basis sets. The fundamental frequencies from Ref. [35] are also given in the table. Frequencies are given in eV
(cm−1).

Symmetry Mode Vibrational Frequency ωi/eV (cm−1) Predominant nature Coordinate
This work/aVTZ-aVQZ This work/cc-pVTZ Ref. [35]

(a1) ν1 0.3824 (3084) 0.3827 (3087) 0.3630 (2928) C-H stretch Q1

(a1) ν2 0.1865 (1504) 0.1876 (1513) 0.1810 (1460) CH3 symmetric bending Q2

(a1) ν3 0.1333 (1075) 0.1365 (1101) 0.1300 (1049) C-F stretch Q3

(e) ν4 0.3952 (3188) 0.3950 (3186) 0.3730 (3008) C-H stretch Q4x Q4y

(e) ν5 0.1893 (1527) 0.1890 (1524) 0.1820 (1468) H-C-H asymmetric bending Q5x Q5y

(e) ν6 0.1502 (1211) 0.1510 (1218) 0.1460 (1178) H-C-F asymmetric bending Q6x Q6y
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3 Jahn-Teller effect on the ground state of CH3F
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Table 3.3: Vertical ionization energy [VIE (in eV)] of the electronic ground X̃2E state
of CH3F

+.

Method VIE (eV)
MRCI/CAS(14,11)/cc-pVTZ 13.270

MR-AQCC/aug-cc-pVTZ(C,H), aug-cc-pVQZ(F) Ref. [20] 13.318
MP4/6-31G∗∗ Ref. [36] 13.283

3.3 Potential energy surfaces

The topography of the adiabatic potential energy surfaces (PESs) of the X̃2E state
of methyl fluoride radical cation is discussed in this section. The adiabatic potential
energies of this state are plotted along the coordinates of the symmetric vibrational
modes ν1, ν2 and ν3 in panels a, b and c of Fig. 3.1, respectively. In this figure the
asterisks represent the adiabatic electronic energies calculated ab initio by the CASSCF-
MRCI method and the solid lines represent the corresponding potential energies obtained
from the vibronic model. As stated above, it can be seen that the calculated ab initio
points are well reproduced by the present theoretical model along ν1, ν2 and ν3. We note
that a fourth-order Taylor expansion of the Hamiltonian along the symmetric vibrational
modes is adequate to represent the ab initio points extremely well. Among the three
symmetric vibrational modes, the Condon activity of mode ν3 is strongest and as a result
the minimum of the X̃2E electronic state along this mode is shifted considerably away
from the minimum of the neutral reference state occuring at Q=0 [cf. Fig. 4.1(c)].

In contrast to the symmetric vibrational modes, the degenerate vibrational modes are
JT active and lift the electronic degeneracy of the X̃2E state of CH3F

+. The potential
energy cuts along one of the components of the JT active degenerate vibrational modes
are shown in panels a, b and c of Fig. 3.2. As in Fig. 3.1, the calculated ab initio
CASSCF-MRCI energies and those obtained from the vibronic model are shown by
asterisks and solid lines, respectively. It can be seen from Fig.3.2 that the calculated
ab initio points are well reproduced by our constructed vibronic model. In this case
fourth-order and fifth-order Taylor expansions are carried out along ν4 and (ν5, ν6),
respectively. It is clear from panels a, b and c of Fig. 3.2, that the extent of splitting
of electronic degeneracy is smallest along ν4 and largest along ν5. Therefore, the overall
JT activity is expected to be weakest and strongest along these modes in that order.
As can be seen from Fig. 3.2, the JT-split lower adiabatic PES develops new minima
at reduced-symmetry configurations. The effect of second-order and other higher-order
JT couplings is predominant along ν6 (cf. Table 3.4), whereas combined effect of first
and second-order JT coupling appears to be even stronger along the vibrational mode
ν5 near the CIs.
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3.3 Potential energy surfaces

Table 3.4: Parameters of the vibronic Hamiltonian of the X̃2E electronic state of CH3F
+

calculated by fitting CASSCF-MRCI energy data. All quantities are given in
cm−1. Parameters of the Refs. [20, 21] are given in parentheses.

κ
(1)
1 = -1498.4 (-1439.1), κ

(2)
1 = -96.3 (-81.8), κ

(3)
1 = -8.5, κ

(4)
1 = 3.6,

κ
(1)
2 = -231.5 (251.7), κ

(2)
2 = -715.4 (-258.7), κ

(3)
2 = 48.4, κ

(4)
2 = 47.6,

κ
(1)
3 = -754.1 (-882.2), κ

(2)
3 = -479.1 (-195.9), κ

(3)
3 = 8.9, κ

(4)
3 = 5.6,

κ12= 170.6 (-107.7), κ13= -193.6 (114.8), κ23= 214.6 (133.3), a
(2)
4 = -68.6 (-104.2),

a
(3)
4 = -0.8, a

(4)
4 = -4.8, a

(2)
5 = -690.9 (-289.8), a

(3)
5 = -13.1,

a
(4)
5 = 60.0, a

(5)
5 =25.5, a

(2)
6 = -620.3 (-89.8), a

(3)
6 = -6.4,

a
(4)
6 = 40.3, a

(5)
6 = 13.2, a45= 35.6 (60.5), a46= 122.2 (-50.8),

a56= -32.0 (14.8), λ
(1)
4 = 1182.4 (1231.9), λ

(2)
4 = -222.6 (-41.1), λ

(3)
4 = -413.0,

λ
(4)
4 = 1.6, λ

(4′)
4 = -344.4, λ

(1)
5 = 1703.4 (1816.0), λ

(2)
5 = 85.6 (107.2),

λ
(3)
5 = 33.4, λ

(4)
5 =228.8, λ

(4′)
5 = -169.0, λ

(5)
5 = 27.6,

λ
(5′)
5 = -37.1, λ

(1)
6 = 970.8 (959.2), λ

(2)
6 = -198.5 (-8.5), λ

(3)
6 = -32.3,

λ
(4)
6 = -323.4, λ

(4′)
6 = 344.0, λ

(5)
6 = 25.2, λ

(5′)
6 = 64.8,

λ45=-72.2 (40.5), λ46= 32.6 (-147.8), λ56= 293.4 (168.0), b14= -148.7 (224.1),

b15= -10.8 (275.7), b16= 8.9 (92.3), b24= 73.5 (228.7), b25= 731.6 (1006.2),

b26= -351.6 (38.7), b34= -100.5 (-352.6), b35= -554.6 (-646.0), b36= -193.7 (-251.0).

Some remarks on the potential energy curves presented in Figs. 3.1 and 3.2 are in order
here. The model energy curves obtained by higher order polynomial fits are expected
to diverge at longer displacements. The ab initio energies obtained within -5.0≤Q≤5.0
are well reproduced by the these curves and as can be seen from Figs. 3.1 and 3.2, the
latter do not show any diverging behaviour for longer displacements for which ab initio
points are not calculated. The potential energy curves are therefore not expected to
contribute any artefacts well within the energy range of the present application. This

43



3 Jahn-Teller effect on the ground state of CH3F
+

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

13

14

15

16

16.5

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

13

14

15

16

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

13

14

15

16

16.5

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

13

14

15

16

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

13

14

15

16

16.5

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

13

14

15

16

(b)

(a)

(c)

ν1

ν2

ν3

Po
te

nt
ia

l e
ne

rg
y 

(e
V

) 

Q

Figure 3.1: Adiabatic potential energy curves of the degenerate X̃2E electronic state
of CH3F

+ along the dimensionless normal coordinates of totally symmetric:
(a) ν1, C-H stretching, (b) ν2, CH3 symmetric bending and (c) ν3, C-F
stretching vibrational modes. Potential energies obtained from the fourth-
order Taylor expansion of the vibronic model and using the CASSCF-MRCI
parameter values of Table 3.4 and calculated ab initio by the same method
are shown by the lines and points in the diagram, respectively. Each curve in
the figure represents one dimensional cut of the multidimensional potential
energy hypersurface of the X̃2E state of CH3F

+.

statement is further confirmed by examining the snapshots of time evolved wave packets.
The wave packet components do not reach beyond, Q=±6.0, during the entire duration
of evolution.
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Figure 3.2: Adiabatic potential energy curves of the degenerate X̃2E electronic state
of CH3F

+ along one component of the dimensionless normal coordinates
of degenerate: (a) ν4, C-H stretching, (b) ν5, H-C-H asymmetric bending,
(c) ν6,H-C-F asymmetric bending vibrational modes. Potential energies ob-
tained from the fourth-order and fifth-order Taylor expansion of the vibronic
model along ν4 and (ν5, ν6), respectively and using the CASSCF-MRCI pa-
rameter values of Table 3.4 and calculated ab initio by the same method are
shown by the lines and points in the diagram, respectively. Each curve in
the figure represents one dimensional cut of the multidimensional potential
energy hypersurface of the X̃2E state of CH3F

+.

It is worthwhile now to examine the energies of various stationary points that appear
on the JT-split electronic surfaces. Within a second-order vibronic coupling model
the new energetic minima and saddle points on the lower adiabatic sheet occur at

(
λ
(1)
i

ωi+a
(2)
i −|λ

(2)
i |

) and (− λ
(1)
i

ωi+a
(2)
i +|λ

(2)
i |

), respectively, along the dimensionless normal coor-

dinates of the JT active vibrational modes. The corresponding energies are given by [20]

V min
− = E0

E −
1

2

∑

i∈a1

(κ
(1)
i )

2

(ωi + κ
(2)
i )
− 1

2

∑

i∈e

(λ
(1)
i )2

(ωi + a
(2)
i − |λ

(2)
i |)

, (3.17)
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V SP
− = E0

E −
1

2

∑

i∈a1

(κ
(1)
i )

2

(ωi + κ
(2)
i )
− 1

2

∑

i∈e

(λ
(1)
i )2

(ωi + a
(2)
i + |λ(2)i |)

(3.18)

The minimum of the seam of CIs occurs at an energy

V min
CI = E0

E −
1

2

∑

i∈a1

(κ
(1)
i )

2

(ωi + κ
(2)
i )

. (3.19)

The JT stabilization energy is given by

EJT =
1

2

∑

i∈e

(λ
(1)
i )2

(ωi + a
(2)
i − |λ

(2)
i |)

. (3.20)

The location of the distorted minima and saddle points along each vibrational mode and
the JT-stabilization (EJT ) energies along each JT active mode are tabulated in Table
3.5. Using the parameters given in Table 3.4, the estimated values of the above energies
are Vmin

− = 12.75 eV, VSP
− = 12.87 eV and Vmin

CI = 13.16 eV. Total JT-stabilization
energy is ∼ 0.42 eV. It is to be noted that the vibrational mode ν5 contributes ∼ 58%,
whereas ν6 contributes ∼ 35% to this stabilization energy.

Unconstrained ab initio calculations were also carried out to estimate the energy of
the minimum of the seam of CIs, minimum and saddle point on the lower adiabatic sheet
of JT split PESs of CH3F

+. The calculations are carried out by multi-configuration-self-
consistent field method using the MOLPRO suite of programme [37]. The results are
given in Table 3.6. In the latter Vmin

− and VSP
− are the energy of the minimum and

saddle point on the JT split lower adiabatic sheet of the CH3F
+ measured relative to

the equilibrium minimum of the electronic ground PES of CH3F. It can be seen that
the ab initio results show good agreement with those calculated from the second-order
vibronic model discussed above. The JT stabilization energy (EJT ) and the pseudo-
rotation barrier height (∆EJT ) are also well reproduced by the second-order model.
The estimate of the latter quantities given in Ref. [19] is also included in the table.

The electronic degeneracy of the X̃2E state is split into two adiabatic surfaces of A
′

and A
′′

symmetry at the distorted geometry (occuring at Cs configuration) from its C3v

equilibrium configuration. The spin-orbit coupling constant between the split A
′

and
A

′′

surfaces of CH3F
+ at C3v symmetry configuration is calculated. The magnitude of

this constant is found to be ∼150 cm−1 (∼0.019 eV). The interplay of JT and spin-orbit

interactions in the X̃2E state of CH3F
+ is shown in Fig. 3.3. The left and right column

of Fig. 3.3 shows the adiabatic PESs plotted along the JT active vibrational modes
without and with spin-orbit coupling, respectively. The inset of each panel shows the
magnified view of the PESs in the neighborhood of C3v equlibrium configuration. It can
be seen from Fig. 3.3 that the spin-orbit coupling removes the electronic degeneracy at
the equilibrium configuration. Owing to a very small value of the spin-orbit coupling
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Table 3.5: Location of the minimum (Cs symmetry) and saddle point on the lower adi-

abatic sheet of the JT split X̃2E state of CH3F
+. Contribution of individual

JT-active mode to the stabilization energy is given in the table. The overall
JT stabilization energy is given in the last row of the table. Calculations
are carried out at the CASSCF-MRCI level of theory employing the cc-pVTZ
basis set. Dimensionless normal displacement coordinates of neutral CH3F
(Q) are used to locate the stationary points.

Normal Mode CASSCF-MRCI

Distorted Distorted JT stabi-
minimum saddle lization

point energy [eV (cm−1)]
Q1 0.50 0.50
Q2 0.29 0.29
Q3 1.21 1.21
Q4x 0.41 -0.35 0.0300 (241.5)
Q5x 2.28 -1.85 0.2406 (1940.8)
Q6x 2.43 -1.22 0.1463 (1180.4)
Total

JT stabil-
ization 0.4169 (3362.52)
energy

constant as compared to the JT coupling (given in Table 3.4), the former is expected
to be of very minor importance in the coupled states nuclear dynamics. The spin-orbit
coupling is therefore not included in the dynamics study below.

3.4 Vibronic structure of the X̃2E state of CH3F
+

The vibronic energy level spectrum of the X̃2E state of CH3F
+ is calculated by solv-

ing the eigenvalue problem of the nuclear motion both by the time-independent and
time-dependent quantum mechanical methods. In the former approach, the vibronic
Hamiltonian constructed in section 3.2.2 is represented in a direct product harmonic os-
cillator basis of the reference state, using parameters of Table 3.4, and diagonalized. The
harmonic oscillator basis functions along each vibrational mode (νi), the dimension of
the corresponding secular matrix and number of Lanczos iterations used in the numerical
calculations are given in Table 3.7 and Table 3.8, respectively. Numerical convergence of
the energy eigenvalues is explicitly checked with respect to the parameters given in these
tables. The wave packet calculations are done using the Heidelberg MCTDH program
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Table 3.6: The energies of C3v minimum of CH3F electronic ground state, Cs minimum
and saddle point on the JT-split lower adiabatic sheet of the CH3F

+ PES and
the minimum of the seam of CIs on the latter surface calculated ab initio at
the MCSCF/cc-pVTZ level of theory are given in the table. The quantities
of Vmin

− , VSP
− , EJT and ∆EJT calculated ab initio and second-order vibronic

coupling model are also given along with the available literature data.

Species Minimum elec- Energy of stationary points (eV)
tronic energy
(Hartree) ab initio Second-order Ref. [19]

calculation vibronic
MCSCF/cc-pVTZ unconstrained coupling

model

CH3F (min/C3v) -139.24803 Vmin
− 12.70 12.75

CH3F
+ (Cs/min/2A

′′

) -138.78131 VSP
− 12.86 12.87

CH3F
+ (Cs/SP/

2A
′

) -138.77550 EJT 0.42 0.42 0.52
CH3F

+ (CIs) -138.76584 ∆EJT 0.16 0.12 0.16

Jahn-Teller stabilization energy EJT= E(CIs)-E(Cs,
2A

′′

) and pseudo-rotation barrier ∆EJT

= E(Cs,
2A

′′

)-E(Cs,
2A

′

)

Table 3.7: Normal mode combinations, sizes of the primitive and single particle bases
used in the MCTDH calculations for the X̃2E electronic state of CH3F

+ .

Normal modes Primitive basis a SPF basis b

ν1 8 [4, 4]
ν2 6 [3, 3]
ν3 12 [6, 6]

ν4x, ν4y 6 [3, 3]
ν5x, ν5y 16 [8, 8]
ν6x, ν6y 10 [5, 5]

a The primitive basis is the number of Harmonic oscillator DVR functions for the
relevant mode. The primitive basis for each particle is the product of the

one-dimensional bases; the full primitive basis consists of a total of 5.31 ×108 functions
to get the vibronic structure of panels (a) and (b) of Figs. 3.4 and 3.10.

b The SPF basis is the number of single-particle functions used.

modules [32] and numerical details of these calculations are included in Table 3.7.

The resulting vibronic band structure of the X̃2E electronic state is shown in Fig.
3.4. Time-independent matrix diagonalization as well as time-dependent wave packet
propagation results are shown in panels a and b, respectively. All calculations are carried
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Figure 3.3: One dimensional cuts of the potential energy hypersurface of X̃2E state of
CH3F

+ plotted along the dimensionless normal coordinates of the degenerate
vibrational modes. Potential energies obtained without and with spin-orbit
coupling are plotted in the left and right columns of the diagram. It is to be
noted that the spin-orbit coupling lifts the electronic degeneracy at the C3v

symmetry configuration at Q=0.

out with the second-order Hamiltonian parameters of Table 3.4. The stick spectrum
of panel a is convoluted with a Lorentzian function of 20 meV FWHM to generate
the corresponding spectral envelope. It can be seen from Fig. 3.4 that the matrix
diagonalization result shown in panel a is in perfect accord with the corresponding wave

packet propagation result shown in panel b. The overall band structure of the X̃2E state
is shown in Fig. 3.4 in order to facilitate comparison with our earlier results [20,21] and
also with the ones available in the literature [18,19,22,23]. In particular, the comparison
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Table 3.8: Convergence behaviour of the vibronic levels of the X̃2E state of CH3F
+. The

convergence of energies (measured relative to the neutral reference state at
zero) with respect to the number of Lanczos iterations as well as wave packet
propagation time is given in the table. The assignment of the energies (cm−1)
are also given.

Assignment Energy
Lanczos iterations Block-improved-relaxation

Number of iterations Propagation time
10000 13000 15000 450fs 500fs 550fs

ν3 864.0346 864.0346 864.0346 864.6544 864.5655 866.5655
ν5 948.7885 948.7885 948.7885 948.6762 948.6762 948.6762
ν2 1133.2100 1133.2100 1133.2100 1133.5987 1133.5987 1133.5561
2ν6 1251.3174 1251.3174 1251.3174 1252.3588 1252.3587 1252.1167

with Ref. [21] (theory) and Ref. [22] (experiment) is favorable.

The low energy part (up to 3000 cm−1 above the band origin) of the vibronic stick
spectrum is shown in Fig. 3.5(a) on an enlarged energy scale. We emphasize that
this stick spectrum is calculated with the complete Hamiltonian and time-independent
matrix diagonalization approach as discussed in section 3.2.1 and 3.2.2. In this figure
the lower and upper abscissa represent the absolute and relative (to 000 line) energy
scale, respectively. It can be seen from the figure that between 178-864 cm−1 of relative
energy no lines are found. The results from the experiment of Grütter (Fig. 7.2 of
Ref. [18]) are reproduced with slight smoothening of the rotational structure in Fig.
3.5(b). The available experimental recording of Mo et al. [19] in the energy range 0-1500
cm−1 is shown in panel c. In the work of Grütter [18], the region ∼200-800 cm−1 (in the
relative energy scale) was obscured by photoionization transition of residual H2O in the
sample chamber. Mo et al. [19] found six sharp peaks corresponding to photoionization
of residual H2O in the energy range of ∼500-750 cm−1. To the best of our belief, no
vibronic levels of CH3F

+ exists in this ′′dark′′ region.

Assignment of the low-energy vibronic levels is carried out in terms of the vibrational
modes given in Table 3.2 and complemented by an analysis of the reduced density of the
vibronic wavefunctions calculated by the block-improved-relaxation method [42, 43] as
implemented in the MCTDH program modules [32]. The vibrational frequencies calcu-
lated at the C3v symmetry configuration of CH3F

+ are given Table 3.10 and compared
with those of Ref. [19]. We also calculated the vibrational frequencies at the minimum of

the JT split lower adiabatic sheet of the X̃2E electronic state of CH3F
+. The calculated

harmonic vibrational frequencies and the normal mode descriptions of the Cs minimum
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Figure 3.4: Vibronic structure of the X̃2E electronic state of CH3F
+ calculated em-

ploying the second-order electronic Hamiltonian as discussed in section 3.2.1
and CASSCF-MRCI energy parameters of Table 3.4. Relative intensity in
arbitary units is plotted as a function of the energy of the final state in eV.
Time-independent matrix diagonalization results and time-dependent wave
packet propagation are shown in panels a and b, respectively.

of CH3F
+ are given in Table 3.11 and compared with those of Ref. [19]. We note that

in the latter work vibronic lines are assigned in terms of these cationic normal modes.
The lower energy part of the vibronic energy level spectrum of the X̃2E electronic state
of CH3F

+ is presented in Table 3.12. In the latter, in addition to the vibronic energy
eigenvalues, their assignments arising from the present analysis are also given. Results
from two recent experiments [18, 19] are included in the table along with the theoret-
ical results obtained by Mo et al. [19]. The vibronic energies presented in Table 3.12
correspond to the whole range of the stick vibronic spectrum shown in Fig. 3.5a. We
point out that the assignments of the vibronic energies were also confirmed through a
series of reduced dimensional calculations. The energies given in Table 3.12 represent
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Figure 3.5: Vibronic energy levels and band structure of the X̃2E electronic manifold of
CH3F

+ in the energy range 0-3000 cm−1 relative to the band origin at zero.
The absolute energy values are given in the abscissa. Theoretical results
of panel a are obtained by employing the full Hamiltonian of section 3.2.1
and time-independent matrix diagonalization approach of section 3.2.2 with
CASSCF-MRCI energy parameters of Table 3.4. In panel b the experimental
recording of Grütter (cf. Fig. 7.2 of Ref. [18]) with some smoothening of
rotational structure is reproduced with permission. In panel c the relevant
part of the experimental recording of Mo et al. (reproduced from Ref. [19]) is
shown. The origin line of the theoretical spectrum is placed at the adiabatic
ionization position of 101092 cm−1 reported by the latter authors.

the location of the vibronic levels relative to the origin (000) peak (zero of energy) and
the latter occurs at the adiabatic ionization energy of ∼ 101092 cm−1 as estimated in
the experiment of Mo et al. [19].

A cursory look at the data given in Table 3.12 reveals that the vibrational modes ν3
(C-F stretching), ν5 (H-C-H bending) and ν6 (C-F bending) are primarily involved in

the spectral progression in the overall band structure of the X̃2E electronic manifold of
CH3F

+. This is consistent with earlier [12,20–22] and the most recent [18,19] studies on
this system. However, the assignment of the spectral peaks seems ambiguous and effort
is made in the following to arrive at a best possible assignment.
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Table 3.9: Vibrational frequencies (in cm−1) of CH3F
+ calculated at the C3v symmetry

configuration.

Harmonic vibrational frequencies of CH3F
+:

ω
′

1 = 3038, ω
′

2= 1099, ω
′

3= 827, ω
′

4= 3152, ω
′

5= 1195, ω
′

6= 866

Vibrational frequencies of CH3F
+ tabulated in Ref. [19]:

ω
′

1 = 2755, ω
′

2= 1236, ω
′

3= 1021, ω
′

4= 2823, ω
′

5= 1196, ω
′

6= 999

Table 3.10: Vibrational frequencies (in cm−1) of CH3F
+ calculated at the C3v symmetry

configuration.

Harmonic vibrational frequencies of CH3F
+:

ω
′

1 = 3038, ω
′

2= 1099, ω
′

3= 827, ω
′

4= 3152, ω
′

5= 1195, ω
′

6= 866

Vibrational frequencies of CH3F
+ tabulated in Ref. [19]:

ω
′

1 = 2755, ω
′

2= 1236, ω
′

3= 1021, ω
′

4= 2823, ω
′

5= 1196, ω
′

6= 999

Table 3.11: Description of the normal vibrational modes of CH3F
+ at the Cs minimum

of the JT split lower adiabatic sheet of the X̃2E electronic state. The fre-
quencies (all given in cm−1) are calculated at the MP2 and CCSD level of
theory employing the cc-pVTZ basis set.

Mode symmetry Frequency Frequency Description
MP2 CCSD Ref. [19]

ν1(a
′

) 3257 3230 3286 C-Ha stretch
ν2(a

′

) 1509 1505 1507 C-Hb stretch
ν3(a

′

) 1383 1373 1340 F-C-Ha bend
ν4(a

′

) 2584 2562 2783 C-F stretch
ν5(a

′

) 1073 1080 1050 Ha-C-F bend
ν6(a

′

) 975 1017 905 Ha-C-Hb bending
ν4(a

′′

) 2252 2178 2274 Anti-sym C-Hb stretch
ν5(a

′′

) 1026 1037 1013 Anti-sym F-C-Hb bend
ν6(a

′′

) 834 819 800 H-pivotal
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The energy data presented in Table 3.12 reveals two levels, one at 19 cm−1 and another
at 178 cm−1 above the origin 000 peak. These frequencies do not correspond to any of the
normal vibrational modes of CH3F

+. In order to understand their origin we carried out a
set of two dimensional calculations (ν6 with either ν4 or ν5) by altering the second-order
JT coupling parameter that modulates the height of the pseudo-rotation barrier on the
lower adiabatic sheet of the JT split X̃2E electronic state of CH3F

+. It is found that the
000 line is split at moderate values of this parameter (as in the present case) for ν6. At
very low or large values of this parameter no splitting is observed. This is depicted in
Fig. 3.6. It can be seen from panel a of this figure that the 000 line splits for λ

(2)
6 = -198.5

cm−1 and a new line appears at ∼19 cm−1 for fixed λ
(2)
4 =-222.6 cm−1. For fixed λ

(2)
5 =85.6

cm−1 a new line at ∼19 cm−1 is also found for λ
(2)
6 = -198.5 cm−1 as shown in panel b.

This indicates this low energy line primarily originates from the tunneling splitting of
000 line along ν6. In order to confirm, the density plots of these levels are examined
and shown in Fig. 3.7. While the probability density of the nuclear wavefunction of
19 cm−1 level is shown in panels a, b and c, the same for the 178 cm−1 level is shown
in panel e, f anf g. It can be seen from these figures that the wavefunction exhibits a
nodal pattern along both ν6 and ν5. Therefore, these levels are related to the tunnelling
splitting of both ν5 and ν6. A reduced-dimensional calculation without ν6 does not yield
any lines at 19 and 178 cm−1. This further confirms that ν6 is the crucial vibrational
mode behind the origin of these lines. We emphasize that except these two, there are
no further lines found between 0-800 cm−1. In an analogous manner the assignment of
the fundamentals of the vibrational modes is carried out.

54



3.4 Vibronic structure of the X̃2E state of CH3F
+

Table 3.12: Energetically low-lying vibronic energy levels (in cm−1) of the JT split X̃2E
electronic state of CH3F

+. The vibronic energy levels caculated in this work
are compared with the recent experimental and theoretical results available
in the literature.

No. This work Grütter [18] Mo et al. [19]

MRCI/cc-pVTZ

Neutral Assign. Energy Prog. Assign. Energy Prog. Prog. Assign.

NCs (Exp.) (Theo.)

1 0.0 0 101109.0 (2.0) 0.0 0-0 101092 0.0 0.0 0

2 19 0 56.4 0

3 178 0

4 101657 565 562.2 6′′

5 (666) ν6 101768 676 673.5 6′′+6′

6 864 ν3 101970.8 (5.0) 861.8 51
0

101954 862 850.9 6
′

+6
′′

7 101972.8 (5.0) 863.8 51
0

8 949 ν5 102053.0 (5.0) 944 51
0

931.3 5′′

9 1023

10 1133 ν2

11 1164

12 1251 2ν6 (102376) 1267 62
0

102361 1269 1296.2 (6
′′

)2

13 1323 102402.3 (5.0) 1293.3 31
0

102405 1313 1336.5 3

14 1332 1392.2 3

15 1410 1393.0 6
′′

6
′

16 1461.7 (6
′′

)3

17 1503.4 2

18 1493 ν3+ν6 102628.4 (5.0) 1519.4 51
0
61
0

102629 1537 1526.3 5
′′

6
′′

19 1575 102698.1 (5.0) 1589.1 51
0
61
0

102696 1604 1604.2 5
′′

6
′′

20 1644 1606.8 (6
′′

)
2

21 1684 1620.0 2

22 1710 2ν3

23 1758 102878.5 (5.0) 1769.8 52
0

102873 1781 1776.0 (6
′

)2

24 1819 2ν5 102935.4 (5.0) 1826.4 52
0

102933 1841 1826.7 5
′

5
′′

25 1869 3ν6 (102969) 1860.0 63
0

102955 1863 1857.9 5
′

6
′′

26 1933 103035.2 (5.0) 1926.2 52
0

103034 1942 1942.5 5
′′

6
′

27 103035.2 (5.0) 1926.2 52
0

28 2008

29 2056 ν2+ν5 103140 2048 3(6
′

+6
′′

)

30 2167 ν5+2ν6 103246 2154 2151.6 4
′′

31 2254 2ν2

32 2337 2329.5

33 2471 ν3+ν5+ν6

– continued in next page
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34 2508 4ν6 (103624) 2515 64
0

35 2563 2ν5+ν6 2641.6 32

36 2586 3ν3

37 2664 2ν3+ν5 2698.3 32

38 2752 ν3+2ν5 103860 (20) 2751 53
0

103845 2753 35
′′

6
′′

39 2785 ν3+2ν5

40 2814 ν5+3ν6 103910 (20) 2801 53
0

103897 2805 35
′′

6
′′

41 2858 3ν5 103975 (20) 2866 53
0

103934 2842 2845.4 4
′

42 2903 104010 (20) 2901 53
0

103998 2906 2877.0 4
′

43 2991 ν1 104090 2998 3(6
′

)2

44 3053 2(ν3+ν6) 104139 3047 3(6
′

)2

45 3077 104169 3077 35
′

5
′′

46 3140 ν4 104233 3141 35
′

6
′′

47 3205 3ν3+ν6 104299 3207 3212.6 1

48 3251 104349 3257 34
′′

49 3315 104400 3308 34
′′

50 3353 104440 3348 3398.4 1

51 3442 4ν3 104533 3441 32(5
′

+5
′′

)

52 3486 3ν5+ν6

53 3556 3ν3+ν5 104649 3557 4(6
′

+6
′′

)

54 3564
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Figure 3.6: Energy of the origin 000 line as a function of the height of the pseudo-rotation
barrier (quadratic JT parameter) for ν6. The results obtained from two mode

calculations (ν4,ν6) with λ
(2)
4 fixed and (ν5,ν6) with λ

(2)
5 fixed are shown in

panel a and b, respectively.
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Figure 3.7: Reduced density plots of the vibronic wavefunctions of 19 cm−1 (panels a, b
and c) and 178 cm−1 (panels d, e and f) levels. These are tunneling splitting
levels (see text for details) formed by JT-active modes ν5 and ν6.

In the coupled states results presented in the above table, the JT spectrum due to
the degenerate vibrational modes forms progressions around the lines of the symmetric
modes. As a result numerous weak lines appear in the resulting spectrum. Some of the
intense lines are therefore retained in the above table and are identified with the exci-
tation of vibrational modes. Extensive reduced-dimensional calculations with different
mode combinations are also carried out by the matrix diagonalization method as well
as by block-improved-relaxation [42,43], to identify and assign the fundamental of each
mode given in Table 3.12. The convergence of these reduced dimensional calculations is
explicitly checked. For illustration, the convergence behaviour of the first few vibronic
level is given in Table 3.8 with corresponding assignments. In this table the results of
matrix diagonalization with varying number of Lanczos iterations and block-improved-
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relaxation calculations with different wave packet propagation times are given. The
vibronic energies are measured relative to the energy of the neutral reference ground
state at zero of energy. It can be seen from the table that the energies are converged
with respect to both the parameters (typically within ∼1 cm−1) as noted above.

The density plots of the vibronic wavefunction of the 864 cm−1 line are shown in
the first row (panels a, b and c) of Fig. 3.8. It can be seen from this figure that the
wavefunction has a node along the mode ν3. Therefore, at 864 cm−1, vibrational mode
ν3 is excited. Hence, this line is assigned to the fundamental of ν3. In the same way, the
density plots of 949 cm−1 and 1133 cm−1 lines, shown in second (panels d, e and f ) and
last row (panels g, h and i) of Fig. 3.8, are assigned to the fundamental of ν5 and ν2,
respectively. Following the assignment of fundamentals, we have assigned also all other
energy levels given in Table 3.12.

Among the symmetric vibrational modes the excitation strength of ν3 is highest,
whereas that of ν1 is lowest. The energetic location of the fundamental of ν1 remains
almost unperturbed in the full dimensional calculations as compared to the reduced
dimensional results. The vibronic line at ∼ 2991 cm−1 is assigned to the fundamental
of this mode. As ν3 is the strongest Condon active mode, many of its overtones appear
in the spectrum. Lines at ∼ 1710, ∼2586 and ∼ 3442 cm−1 are assigned to the first,
second and third overtones of this mode, respectively. For illustration, the density plots
of the first overtone of ν6, ν3 and ν5 occuring at 1251, 1710 and 1819 cm−1, respectively,
are shown in last row (panels j, k and l) of Fig. 3.8.

Further analysis of several possible reduced-dimensional as well as full mode results
seem to confirm the location of the fundamental of JT active modes ν5 at ∼ 949 cm−1.
This peak is observed at ∼ 944 cm−1 in the experiment of Grütter [18], whereas the same
peak is not seen in the experiment of Mo et al. [19]. As stated earlier the fundamental
of ν6 did not show up in the experiment of Grütter [18]. This is proposed to appear at
∼650 cm−1 based on the finding of its overtone at ∼1267 cm−1 [18]. The fundamental
of ν6, on the other hand, was assigned in the ”dark” region in the experiment of Mo et
al. [19]. In our reduced-dimensional calculations, including ν4 and ν6, the fundamental
of ν6 is found at ∼666 cm−1. This however disappears in the full mode calculations. A
systematic analysis reveals that excitation of ν6 fundamental is quenched by the com-
bined effect of the ν2, ν3 and ν5 vibrational modes. Analysis of the first overtone of
ν6 at 1251 cm−1 shows that the most probable position of the fundamental of ν6 would
be around 650 cm−1 above the 000 peak. The wave packet density plots of the ∼666
cm−1 line observed in the reduced-dimensional calculations are shown in Fig. 3.9 in the
supplementary information. These plots confirm this line is due to the fundamental of
ν6. Peaks are found at ∼ 931 cm−1 and ∼ 673 cm−1, respectively, in the theoretical
calculations of Mo et al. [19] were assigned to the fundamental JT-active vibrational
mode ν5 and a combined peak corresponds to the components of ν6, respectively. Ex-
citation of several overtones of ν5 and ν6 and their combination levels reveals that the
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JT activity of these modes is fairly strong. Like ν1, the degenerate vibrational mode ν4
does not have any significant contribution to the dynamics and its fundamental is found
at ∼3140 cm−1. The energy levels in the energy range 0-3500 cm−1 given in Table 3.12
compare well with the recent experimental results [18, 19].

It is clear from the above discussion that the symmetric mode ν3 and the degenerate
modes ν5 and ν6 mainly contribute to the vibronic structure of the JT split X̃2E elec-
tronic manifold of CH3F

+. A similar conclusion can be derived from the earlier and latest
experimental [18,19,22] and theoretical results [19–21]. However, the assignment of the
observed peaks and their energetic locations differ from the results mentioned above.
In our earlier study [20] two main spacings at ∼ 855 and ∼ 1218 cm−1 were observed
and are attributed to the excitation of ν3 and ν6

′′together′′ and to the fundamental of
mode ν5, respectively. In the present study, in particular, a substantial reduction of the
frequency of the vibrational mode ν5 is predicted. A larger value of the second-order
intra-state coupling along both ν5 and ν6 is obtained in this work as compared to our
earlier work [20] (cf. Table 3.4). The energy spacing of ∼ 1315 cm−1 was assigned to
the fundamental of ν5 in the experimental recording of Karlsson et al. [22]. Excitation
of several overtones and combination peaks of this mode was also observed in the low-
energy part of their measurements. This is in accord with the observed large JT splitting
of the X̃2E electronic manifold along ν5. These authors assigned the lines at ∼ 694 and
∼ 879 cm−1 to the fundamentals of mode ν3 and ν6, respectively. This is opposite to
Table 3.12. The degenerate mode ν6 was reported to be weakly excited. Locht et al. [23]
proposed a different assignment of their experimental results. With the aid of ab initio
calculations, these authors assigned the observed long ∼ 1290 cm−1 progression to the
vibrational mode ν3, and ∼ 970 cm−1 and ∼ 660 cm−1 progressions to the JT active
vibrations ν5 and ν6, respectively. The latter agrees well with the assignments made in
Table 3.12.

While the spectra calculated within a second-order coupling model and presented in
Fig. 3.4 facilitated comparisons with the earlier results in the literature, it is felt by us
that it would be worthwhile to look into the details of similar spectra that emerges from
the complete Hamiltonian of Eqs. 3.7-3.8. Motivated by this suggestion we examined
the spectra resulted from the complete Hamiltoninan and present them in Fig. 3.10,
retaining the same format of Fig. 3.4. In Fig. 3.10a, the stick spectrum is convoluted
with a Lorentzian function of 40 meV FWHM and in Fig. 3.10b, the time autocorrelation
function is damped with an exponential function of τr= 33 fs. The essential differences
between the spectra shown in Fig. 3.4 and Fig. 3.10 are the following.
i) In the higher-order coupling model the density of the vibronic lines increases as it
allows more multimode interactions, which makes the spectral envelope much broader
compared to the second-order model.
ii) The energetic location of a given vibronic line shifts to some other energy in the
higher-order coupling model. For example, the fundamental of ν5 occurs at 903 cm−1 in
the second-order model, whereas, it appears at 949 cm−1 in the higher-order model.
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Apart from the mentioned differences, the broad shape of the overall structural envelope
remains identical in the two cases.
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Figure 3.8: Reduced density plot of the vibronic wavefunction corresponding to the
864 cm−1 energy level is shown in first row of the figure. The density is
plotted as a function of normal coordinates of two vibrational modes. The
appearance of the nodal plane along ν3 confirms the assignment of this line
as the fundamental of this mode. Similarly the wavefunction density at 949
cm−1 and 1133 cm−1 energy levels are shown in second and third row of
the figure. These energy lines are assigned to the fundamentals of ν5 and
ν2 vibrational mode. First overtone of ν6,ν3 and ν5 found at 1251, 1710 and
1819 cm−1, respectively, are shown in last row, in panels j, k and l.
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3.4 Vibronic structure of the X̃2E state of CH3F
+

-2-1.5-1-0.5 0 0.5 1 1.5 2 -4 -3 -2 -1  0  1  2  3  4

d
en

si
ty

Q4y

Q6y

d
en

si
ty

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

(a)

-4
-3

-2
-1

 0
 1

-4-3-2-1 0 1 2 3 4

d
en

si
ty

Q5x
Q6y

d
en

si
ty

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16

(b)

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-4-3-2-1 0 1 2 3 4

de
ns

ity

Q2

Q3

de
ns

ity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(c)

-4
-3

-2
-1

 0
 1

 2
 3

 4 -4
-3

-2
-1

 0
 1

 2
 3

 4

de
ns

ity

Q5x
Q5y

de
ns

ity

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

(d)

Figure 3.9: Reduced density plot of the vibronic wavefunction corresponding to the 666
cm−1 energy level. The density is plotted as a function of normal coordi-
nates of two vibrational modes. The appearance of the nodal plane along ν6
confirms the assignment of this line as the fundamental of this mode.
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3 Jahn-Teller effect on the ground state of CH3F
+
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Figure 3.10: Same as in Fig. 3.4, calculated with the complete Hamiltonian of section
3.2.1
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3.5 Summary

3.5 Summary

The theoretical study of the JT effect in the X̃2E ground electronic manifold of CH3F
+

is carried outin this Chapter with a higher-order expansion of the E⊗e-JT Hamiltonian
in terms of the normal coordinates of the electronic ground state of neutral CH3F. We
carried out a detailed analysis of the JT coupling effect in the vibronic dynamics of
CH3F

+ in the past. Revisiting these earlier studies is motivated by the recent experi-
mental and theoretical developments on this subject. Conflicting assignments of vibronic
energy level spacings around the origin peak of the X̃2E band in the earlier and latest
experimental and theoretical results were addressed and discussed in this Chapter.

High-level quantum chemistry calculations of the electronic energy surfaces have been
carried out and extended to larger normal mode displacements. An improved set of
parameters of the vibronic Hamiltonaian was derived from the calculated electronic en-
ergies. The JT-stabilization energy is directly calculated ab initio by optimizing various
stationary points on the JT-split lower adiabatic sheet of X̃2E electronic state of CH3F

+.
It is found that the results obtained from the present model are in well accord with the
unconstrained ab initio data (cf. Table 3.6).

First principles nuclear quantum dynamics calculations were carried out by time-
independent and time-dependent methods. The calculated vibronic energy levels closely
correspond to the measured ones in the recent experiments which is another important
result obtained in the present work. Assignment of vibronic levels are carried out by
carefully examining their locations obtained in various reduced dimensional calculations
as well as by an explicit analysis of the corresponding vibronic wavefunctions. Such
extensive analyses seem to confirm the assignment of fundamentals, various overtones
and combination levels.

A careful analysis reveals that the levels at 19 and 178 cm−1 are due to tunneling
splitting of the 000 level due to vibrational modes ν5 and ν6. This

′′two-mode′′ tunneling
splitting has rarely been discussed before in the literature and deserves further attention.
The fundamental of the symmetric vibrational mode ν3 is excited at ∼864 cm−1 and
forms an extended progression in the spectrum. Similarly, the fundamental JT active
degenerate vibrational mode ν5 excited at ∼949 cm−1 forms an extended progression in
the spectrum. However, this is in contrast to our earlier theoretical results, in which
the fundamental of this mode was reported at 1218 cm−1. While a line at ∼676 cm−1 is
observed in the experiment of Mo et al. [19], this does not show up in the experiment
of Grütter [18] and also in our full-mode calculation. The former authors assigned this
line to the excitation of vibrational mode ν6. We tentatively assigned the excitation of
the fundamental of JT active vibrational mode ν6 at 666 cm−1, following the reduced-
dimensional calculations. The excitation of the symmetric vibrational mode ν2 is weak,
but a combination peak of this mode with mode ν5 is found at ∼2056 cm−1. The
excitation of the symmetric and the degenerate C-H stretching modes ν1 and ν4 is the
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weakest. Overall, the approach adopted and results obtained in this work should prove
useful to unravel complex Jahn-Teller dynamics also in other related molecular systems.
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4 Electronic structure calculations of

first four electronic states of

CH2F
+
2
and its deuterated

isotopomer

4.1 Introduction

Difluoromethane (CH2F2) is one of the hydrofluorocarbon used in refrigerant indus-
try. It has zero ozone depletion potential and is a weak green house gas [1]. The
photophysics of CH2F2 received renewed attention of experimentalists [1–14] and the-
oreticians [15–17] over the past decades. Energetically low-lying electronic states of
CH2F

+
2 have been investigated by photoelectron spectroscopy using HeI [2,3,7,8] as well

as X-ray [5, 6] radiation sources. Electron impact [4] and (e,2e) electron momentum
spectroscopy [13,14] measurements were also carried out. Recently vibronically resolved
pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) measurements were also carried
out by Signorell and co-workers [1].

The observed photoelectron spectrum in the energy range ∼12.7-16.6 eV revealed two
(three) bands. The first one contains resolved vibrational structure and the second one
is mostly structureless and diffuse. The second one is actually a composite vibronic
structure of three electronic states, which is discussed latter in the text with appropriate
scientific justification. Theoretical studies with [17] and without [3, 15] configuration
interactions revealed different energetic ordering of the first four electronic states of
CH2F

+
2 . The Franck-Condon spectrum calculated in theoretical study revealed poor

agreement with experiments [3,8]. The progression of vibrational modes in the electronic
ground state of CH2F

+
2 was not unambiguously resolved. Furthermore, theoretically

calculated Franck-Condon spectrum extended beyond the experimentally measured one
and so far no clear interpretation is available on this.

The resolved progression in the first band was found to have contribution from ν1 (C-
H stretching) and ν3 (C-F stretching) [15] in addition to a major contribution from

0The subject of this Chapter is published by: Rudraditya Sarkar and S. Mahapatra in Molecular
Physics 113, 3073 (2015). and J. Phys. Chem. A. 120, 3504 (2016)
There is also contribution from Rudraditya Sarkar by publishing a part of this work in J. Phys: Con-
ference Series. 759, 012058 (2016).
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ν2 (H-C-H bending) [3, 15]. The vibrational structure in the second band is assigned
to the progression of ν3 and ν4 (F-C-F bending) [3] or ν2 and ν3 vibrational modes
[10]. Analysis of the PFI-ZEKE spectrum of CH2F2 [1] confirms Takeshita’s model
[15] and reavels that the polyad structure arises from the vibrational progression of
ν2 and ν3 vibrational modes.The latter modes are quasi-degenerate. An improved ab
initio calculation with MP2/aug-cc-pVQZ level of theory was perfomed in Ref. [1] to
derive harmonic vibrational wavenumbers and Franck-Condon factors in the context
of photoionization of CH2F2, which was insufficient to describe the resolved vibronic
PFI-ZEKE photoelectron spectrum. Latter fully coupled anharmonic calculations by
the same authors [16] reveal breakdown of the Franck-Condon approximation and the
importance of anharmonicity in the electronic states of CH2F

+
2 . In this paper [16], the

authors could not establish the role of symmetric vibrational mode ν1 in the vibronic
structure, as proposed by Takeshita [15].

An interesting observation of disappearance of the vibrational structure of the ground
state spectrum of CH2F

+
2 upon isotopic deuterium substitution was made in the exper-

imental recording of Brundle et al. [3]. To the best of our knowledge, the latter is the
only experimental measurement of the photoionization spectrum of CD2F2. The loss
of vibrational structure was postulated to be due to: 1) possible excitation of multi-
ple vibrational modes and the existence of accidental degeneracies among them absent
in the deuterated isotopomer and 2) the ease of predissociation in case of deuterated
cation than the normal cation imposing a lifetime broadening of the spectrum [3]. It
is also conjectured that vibrational modes of C-H character rather than C-F character
predominantly contribute to the electronic ground state spectrum of CH2F

+
2 [3]. The

vibrational structure of the overlapping Ã-B̃-C̃ band remains virtually unchanged upon
deuteration, indicating the involvement of vibrational modes of C-F character rather
than C-H character in these electronic states.

Apart from the studies noted above [15], a detailed theoretical study of the eletronic
states of CH2F

+
2 and nuclear dynamics on them is missing in the literature. Availability

of numerous experimental results and existing ambiguity in their interpretation moti-
vated us to undertake such an exercise. An extensive quantum chemistry calculations are
carried out at three different levels of theory, outer-valance Green

′

s function (OVGF),
equation-of-motion couple cluster singles and doubles (EOM-CCSD) and multi-reference
configuration interaction (MRCI), to establish the electronic potential energy surfaces
of the first four electronic states of CH2F

+
2 . The results of the electronic structure calcu-

lations of CH2F
+
2 convinced us to apply preferably the best quantum chemistry method,

MRCI, to study the electronic structure of CD2F
+
2 . So the different parameters of the

electronic structure of CD2F
+
2 correspond to MRCI calculations. It is found that strong

nonadiabatic interactions [18, 19] among the electronic states lead to multiple conical
intersections (CIs) both for CH2F

+
2 and CD2F

+
2 . The energetic ordering of the electronic

states is examined and discussed in relation to the results available in the literature. A
four coupled states parameterized Hamiltonian is constructed in a diabatic electronic
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basis for both CH2F
+
2 and CD2F

+
2 . As the mass weighted normal coordinate representa-

tion is adapted in the construction of the Hamiltonian, the Hamiltonian parameters for
the electronic states of CH2F

+
2 and its isotopomer CD2F

+
2 are different. As a result of

this, the topography of the one dimensional potential energy surfaces are also different
in these two system. The nuclear dynamics study on these potential energy surfaces are
discussed in the next chapter.

4.2 Theoretical framework

4.2.1 Vibronic Hamiltonian

Energetically low-lying first four doublet electronic states of CH2F
+
2 (CD2F

+
2 ) are consid-

ered in this study. A vibronic Hamiltonian is constructed in a diabatic basis using dimen-
sionless normal displacement coordinates of vibrational modes of neutral CH2F2 (CD2F2),
which are considered as reference state, and symmetry selection rules in order to study
nuclear dynamics on these electronic states. Nine vibrational modes of CH2F2 (CD2F2)
transform according to the following irreducible representations (IREPs) of C2v equilib-
rium symmetry point group

Γ = 4a1 ⊕ 2b1 ⊕ 2b2 ⊕ 1a2. (4.1)

Employing elementary symmetry selection rule and standard vibronic coupling theory,
the Hamiltonian can be written in a diabatic electronic basis as [18]

H = H01+∆H, (4.2)

H0 = TN + V0. (4.3)

In the above, H0 is the unperturbed Hamiltonian of the reference electronic ground state
of CH2F2 (CD2F2) and ∆H represents the change in electronic energy upon ionization.
1 represents a (4 × 4) unit matrix. In terms of the dimensionless normal displacement
coordinates of the vibrational modes, the components of the reference Hamiltonian of
Eq.4.3 within the harmonic approximation are given by

TN = −1

2

9∑

i=1

ωi

(
∂2

∂Q2
i

)
, (4.4)

V0 =
1

2

9∑

i=1

ωiQ
2
i . (4.5)

The ground and first three excited electronic states of CH2F
+
2 (CD2F

+
2 ) belong to

the X̃2B1, Ã
2B2, B̃

2A1 and C̃2A2 symmetry species (see the discussion latter in the
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text) of the C2v symmetry point group. They result from ionization from the high-
est occupied molecular orbital (HOMO), HOMO-1, HOMO-2 and HOMO-3 of neutral
CH2F2 (CD2F2). The quantity ∆H in Eq.4.2 can be symbolically written as

∆H =




WXX WXA WXB WXC

WAA WAB WAC

h.c. WBB WBC

WCC


 . (4.6)

The elements of this electronic Hamiltonian matrix are expanded in a second-order
Taylor series around the equilibrium geometry of the reference state (Q=0) as

Wjj = E0
j +

∑

i∈a1

κjiQi +
1

2

∑

i∈a1,a2,b1,b2

γjiQ
2
i ,

(4.7)

and
Wjk =W∗

kj =
∑

i

λj−k
i Qi. (4.8)

In the above, j and k, are the electronic state indices and i reprsents the vibrational
modes. The vertical ionization energy of the jth electronic state is defined as E0

j ,

where, j ∈ X̃, Ã, B̃ and C̃, respectively. The quantity κji defines the linear intra-
state coupling parameter and γji is the diagonal second-order coupling parameter of
vibrational mode i in the jth electronic state. The quantity, λj−k

i is linear inter-state
coupling parameter between the states j and k, coupled through ith vibrational mode.
The vibronic Hamiltonian constructed above is utilized in the next chapter to study
nuclear dynamics in the mentioned electronic states of CH2F

+
2 (CD2F

+
2 ).

4.2.2 Computational details of electronic structure calculations

The optimized equilibrium geometry of the electronic ground state of CH2F2 (CD2F2)
(the reference state) is calculated by using second-order Møller-Plesset perturbation the-
ory (MP2) as well as coupled-cluster singles and doubles (CCSD) method employing the
correlation-consistent polarized valence triple zeta (cc-pVTZ) basis set of Dunning [20].
GAUSSIAN-09 [21] and MOLPRO [22] suite of programs are used for this purpose, re-
spectively. Optimization of geometry of the electronic states of CH2F

+
2 is carried out at

the restricted Hartree-Fock and restricted CCSD (RHF-RCCSD) level of theory with cc-
pVTZ and RHF-RMP2/cc-pVTZ level of theory using MOLPRO [22] suite of program.
All electronic energy calculations are performed with multi-reference configuration inter-
actions (MRCI), outer-valence Green

′

s function (OVGF) and equation-of-motion cou-
pled cluster singles and doubles (EOM-CCSD) methods with cc-pVTZ basis set, using
MOLPRO [22], GAUSSIAN-09 [21] and CFOUR [23] program modules, respectively, for
CH2F

+
2 . Whereas, electronic energy calculations for CD2F

+
2 are performed with MRCI
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Table 4.1: Optimized geometry parameters of the equilibrium minimum of the electronic
ground state of neutral CH2F2 (CD2F2).

State parameters Level of theory Ref. [15]
This Work This work

MP2/cc-pVTZ CCSD/cc-pVTZ SCF Calculation

1A1 C-H(D) (Å) 1.087 (1.087) 1.088 (1.088) 1.087
C-F (Å) 1.354 (1.354 ) 1.350 (1.350) 1.335

∠H(D)-C-H(D) (deg.) 113.05 (113.05) 112.78 (112.78) 112.45
∠H(D)-C-F (deg.) 108.75 (108.75) 108.85 (108.85)
∠F-C-F (deg.) 108.70 (108.70) 108.59 (108.59) 108.47

quantum chemistry method using the same basis set. The CASSCF-MRCI calculations
are carried out with an (14,11) active space, which includes seven valence orbitals and
four virtual orbitals with fourteen electrons for CH2F2 (CD2F2). The cationic states
have open shell configuration and an (13,11) active space is used. We note that many
test calculations are carried out with varying active spaces and the chosen ones yield the
best results.

The optimized equilibrium structure of the CH2F2 (CD2F2) in the electronic ground
state belongs to C2v point group symmetry and leads to 1A1 electronic term for this closed
shell system. The equilibrium harmonic vibrational frequencies of the reference state,
ωi, are calculated by diagonalizing the kinematic and ab initio force constant matrix
at the same level of theory. The eigenvectors of the force constant matrix yield the
mass-weighted normal co-ordinates of the vibrational modes. The latter is transformed
to the dimensionless form Q by multiplying with

√
ωi (in a. u.) [24]. In an analogous

way the geometry of CH2F
+
2 in its first four electronic states are optimized. Since this

radical cation has open shell configuration, RCCSD/cc-pVTZ level of theory is employed
to obtain its optimized structure. The MOLPRO [22] suite of program is used for this
purpose. All the optimized cationic structures belong to the C2v symmetry point group.

4.3 Results and discussion

4.3.1 Electronic structure

The optimized equilibrium geometry parameters of the electronic ground state (X̃1A1)
of CH2F2 (CD2F2) molecule are given in Table 4.1. The results are compared with
the available literature data [15] for CH2F2. It can be seen from the table that the
results obtained at two different theoretical levels are in good accord with each other
and also with the literature data. The description of the normal vibrational modes of
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the electronic ground state of CH2F2 along with their harmonic frequency (ω) is given
in Table 4.2. The frequency values available in the literature are also included in the
table for comparison. The same for the CD2F2 are given in Table 4.3. The optimized
equlibrium structural parameters of the electronic ground states of CH2F2 and CH2F

+
2

and electronic excited states of CH2F
+
2 along with the available literature data are given

in Table 4.4. Comparison of the data given in Table 4.4 reveals that although the
equlibrium symmetry point group of CH2F

+
2 in four electronic states is same as that

of CH2F2 in its electronic ground state, ionization results an appreciable distortion of
geometry in the cationic states. The largest distortion occurs in the X̃2B1 state, where
all the equilibrium geometry parameters noticeably change. Among the cationic states
the equlibrium C-H and C-F bond distances and H-C-H and H-C-F bond angles in the
X̃2B1 state have the largest change, whereas F-C-F bond angle has largest change in
the Ã2B2 state (cf. Table 4.4). In order to understand the mentioned geometry changes,
four valence cannonical SCF molecular orbitals (MOs) of CH2F2 are shown in Fig. 4.1.

Ionization from these MOs result CH2F
+
2 in its X̃, Ã, B̃ and C̃ electronic states. It can

be seen from the figure that the MO of b1 symmetry is predominantly of C-H bonding
type. Removal of electron from this MO results an elongation of the C-H bond. The
Mulliken charge on H atom significantly increases (cf. Table 4.5) and it causes a large
decrease of H-C-H bond angle (cf. Table 4.4). The MOs of b2 and a2 symmetry are
fluorine lone pair MOs. Ionization from these MOs increase the Mulliken charge on F
atom (cf. Table 4.5). As a result, the lone pair-lone pair repulsion decreases, causing a
large reduction of the F-C-F angle and slight increase of C-F bond length (cf. Table 4.4).
The C-H bonding character in the MO of a1 symmetry reduced as compared to that in
the MO of b1 symmetry, due to an antibonding contribution of 2pz orbital of fluorine
atoms. As a result, ionization from this MO has relatively milder effect on the geometry
parameters given in Table 4.4. The vertical ionization energies for CH2F2 (CD2F2) of
each electronic states are also calculated and compared with the literature data in Table
4.6.

First four electronic states of CH2F
+
2 have been identified in various theoretical works

on this subject [2–9]. Following Koopmans, theorem, Brundle et al. [3] assigned these
states to 2B2,

2A1,
2B1, and

2A2 with increasing energy. The configuration interaction
(CI) calculations of Takeshita [15] on the other hand, yield a different energetic ordering
of 2B2,

2B1,
2A1 and 2A2 electronic states. We have perfomed geometry optimization

of CH2F2 and CH2F
+
2 in their respective electronic ground state. The optimized closed

shell structure of CH2F2 (CD2F2) gives rise to, ... (3b2)
2 (1a2)

2 (4b2)
2 (6a1)

2 (2b1)
2

molecular orbital (MO) configuration. Therefore, removal of an electron from HOMO,
HOMO-1, HOMO-2 and HOMO-3 would produce the cation in X̃2B1, Ã

2A1, B̃
2B2 and

C̃2A2 electronic states, respectively. Considering Koopmans, theorem and electron
correlation we have performed single point (SP) calculations of electronic energies of
CH2F

+
2 along the symmetric vibrational modes. Outer valence green function (OVGF)

and multi-reference configuration interaction (MRCI) methods along with the cc-pVTZ
basis set are used in these calculations. To illustrate, these energies are plotted along
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the normal coordinate of vibrational mode ν4 in Fig. 4.2.
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Table 4.2: Symmetry, harmonic frequencies (in cm−1) and description of nine vibrational modes of the electronic ground
state of CH2F2.

Mode Frequency (ω) Description
(Symmetry) cm−1 (eV)

MP2/cc-pVTZ CCSD/cc-pVTZ Ref. [15] Ref. [1]

ν1 (a1) 3119 (0.3867) 3100 3258 3125 H-C symmetric stretching
ν2 (a1) 1571 (0.1948) 1572 1659 1562 H-C-H symmetric bending (in plane)
ν3 (a1) 1146 (0.1421) 1166 1224 1132 F-C symmetric stretching
ν4 (a1) 538 (0.0667) 545 580 533 F-C-F symmetric bending
ν5 (a2) 1303 (0.1616) 1309 1293 H-C-H anti-symmetric bending (out of plane)
ν6 (b1) 3202 (0.3970) 3170 3212 H-C anti-symmetric stretching
ν7 (b1) 1211 (0.1502) 1215 1204 H-C-H anti-symmetric bending (in plane)
ν8 (b2) 1494 (0.1852) 1500 1476 F-C anti-symmetric stretching
ν9 (b2) 1140 (0.1414) 1166 1110 H-C-H symmetric bending (out of plane)
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Table 4.3: Symmetry, harmonic frequency (in cm−1) and description of nine vibrational modes of the electronic ground state
of CD2F2.

Mode Frequency (ω) Description
(Symmetry) cm−1 (eV)

MP2/cc-pVTZ CCSD/cc-pVTZ

ν1 (a1) 2261 (0.2804) 2248 D-C symmetric stretching
ν2 (a1) 1210 (0.1501) 1220 D-C-D symmetric bending (in plane)
ν3 (a1) 1060 (0.1314) 1066 F-C symmetric stretching
ν4 (a1) 531 (0.0658) 538 F-C-F symmetric bending
ν5 (a2) 938 (0.1163) 942 D-C-D anti-symmetric bending (out of plane)
ν6 (b1) 2390 (0.2964) 2366 D-C anti-symmetric stretching
ν7 (b1) 985 (0.1221) 989 D-C-D anti-symmetric bending (in plane)
ν8 (b2) 1213 (0.1504) 1236 F-C anti-symmetric stretching
ν9 (b2) 1036 (0.1285) 1044 D-C-D symmetric bending (out of plane)
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Table 4.4: Optimized geometric parameters of the electronic ground states of CH2F2 and CH2F
+
2 and three energetically

lowest excited electronic states of CH2F
+
2 , calculated at RHF-RCCSD/cc-pVTZ level of theory. The results

available literature are also given in the table. *Structural parameters correspond to this electronic state are
calculated by RHF/cc-pVTZ level of theory.

State C-H (Å) C-F (Å) ∠H-C-H (deg.) ∠H-C-F (deg.) ∠F-C-F (deg.)
This work Ref. [15] This work Ref. [15] This work Ref. [15] This work Ref. [15] This work Ref. [15] This work Ref. [15]

X̃1A1
1A1 1.088 1.087 1.350 1.335 112.78 112.45 108.85 108.59 108.47

X̃2B1
2B2 1.172 1.185 1.265 1.246 83.04 77.66 113.05 116.95 117.00

Ã2B2
2B1 1.083 1.082 1.402 1.382 121.91 121.66 111.17 83.89 83.53

B̃2A1
2A1 1.115 1.119 1.361 1.335 126.48 128.50 103.29 118.62 118.95

C̃2A∗

2

2A2 1.075 1.084 1.388 1.392 118.37 118.74 111.23 95.10 95.10

1
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b! a!

a"b"

Figure 4.1: Cannonical SCF valence MOs of CH2F2.

In the latter, dotted lines represent Koopmans, energies and the full lines represent
the energy including correlation corrections. It can be seen from Fig. 4.2 that the ener-
gies including correlation correction yield X̃2B1, Ã

2B2, B̃
2A1 and C̃

2A2 as the energetic
ordering of electronic states. It is seen that the 2B1 and 2B2 electronic states are in-
terchanged in Ref. [15]. This swaping of states may have occured due to the choice of
different principal plane (xz or yz) by different softwares. It should be mentioned that
the present ordering of electronic states remain unchanged upto Q ≤ 1.35. Whereas,
in the range of Q ∼ 1.35 to 1.69 two electronic states Ã2B2 and B̃2A1 become degen-

Table 4.5: Mulliken charge on the atoms in the X̃1A1 state of CH2F2 and X̃
2B1, Ã

2B2,
B̃2A1 and C̃2A2 states of CH2F

+
2

State Mulliken charge on atoms
Carbon Hydrogen Fluorine

X̃1A1 0.4321 0.0452 -0.2613

X̃2B1 0.4524 0.2876 -0.0138

Ã2B2 0.3747 0.1994 0.1132

B̃2A1 0.4044 0.2268 0.0709

C̃2A2 0.3842 0.1782 0.1297
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Table 4.6: Vertical Ionization energies (eV) of first four electronic states of CH2F
+
2 and

CD2F
+
2 .

This work Ref. [15]
State CAS(14,11)SCF OVGF EOM-CCSD State SCF

MRCI/cc-pVTZ cc-pVTZ cc-pVTZ

X̃2B1 13.58 13.55 13.33 2B2 13.56

Ã2B2 15.34 15.29 14.99 2B1 15.15

B̃2A1 15.74 15.45 15.24 2A1 15.61

C̃2A2 16.02 16.03 15.69 2A2 16.34
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Figure 4.2: Energies of the first four electronic states of CH2F
+
2 plotted along the sym-

metric vibrational mode ν4. The Koopman
′

s and CAS(14,11)SCF-MRCI
results are shown by the dotted and solid lines, respectively.

erate and thereafter these two electronic states interchange their position and follow
the arrangement predicted by Koopmans, theorem. The CASPT2 and CASSCF re-
sults of Huang et al. [17] also yield the same energetic ordering as given by the present
CASSCF-MRCI results.
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4.3 Results and discussion

4.3.2 Hamiltonian parameters for CH2F
+
2

The Hamiltonian parameters introduced in Eqs. 4.7-4.8 are estimated by performing
extensive ab initio calculations of electronic energies along the normal coordinates of the
vibrational modes of the reference state. The calculations are performed with OVGF,
CAS(14,11)SCF-MRCI and EOM-CCSD ab initio quantum chemistry methods employ-
ing the cc-pVTZ basis set. The calculated ab initio electronic energies are then fitted to
the adiabatic form of the diabatic electronic Hamiltonian of Eq. 4.6 to estimate these
parameters. The linear and quadratic intra-state coupling parameters of X̃2B1, Ã

2B2,
B̃2A1 and C̃

2A2 electronic states of CH2F
+
2 are given in Table 4.7. The linear inter-state

coupling parameters are given in Table 4.8.

The coupling parameters of Table 4.7 reveal that the symmetric vibrational mode ν2 is
active in all four electronic states, whereas, ν1 and ν4 vibrational modes are active only in
(X̃2B1 and B̃

2A1) and (Ã2B2 and B̃
2A1) electronic states, repectively, and ν3 is active in

the X̃2B1, Ã
2B2 and C̃2A2 states. The strong inter-state coupling between X̃2B1-Ã

2B2

states along ν5 vibrational mode, X̃2B1-B̃
2A1 states along ν6 and ν7 vibrational modes

and X̃2B1-C̃
2A2 states along ν8 vibrational mode can be found from the data of Table

4.8. On the other hand, mild inter-state coupling between Ã2B2, B̃
2A1 and C̃

2A2 states
is found (cf. Table 4.8). The data in Table 4.7 reveal that the second-order intra-state
coupling parameters of symmetric mode ν2 and non-symmetric mode ν8 is larger in the
X̃2B1 state compared to the other states. This would result into considerable reduction
of frequency of these modes in the X̃2B1 state of the cation as compared to that in the
neutral reference state. Similarly, a reduction of frequency of mode ν9 in the Ã2B2 and
C̃2A2 states and symmetric mode ν4 in the Ã2B2 and C̃2A2 states can be expected.

A regression method is employed to access the correlation between the Hamiltonian
parameters derived from three sets of electronic energy data, given in Tables 4.7-4.8.
Three sets of data are independent of each other and they are plotted in Fig. 4.3. It
is found that three set of data are linearly correlated with each other in the scatter
plots of Fig.4.3. The correlation coefficient (R) and F-statistics (F) are given in each
panels of the figure. All the scatter plots and fittings are performed using the popular
statistical software R [25]. It can be seen from Fig.4.3 that the three sets of data
correlate among each other very well. Highest values of R (0.9919) and F (3461.2) (cf.
panel b) indicates the best quality of correlation between MRCI and EOM-CCSD data
or vice-versa. The latter sets of data are used to further investigate the topography of
the electronic potential energy surfaces and nuclear dynamics.

4.3.3 Electronic structure and Hamiltonian parameters of CD2F
+
2

The geometry of the equilibrium minimum of the reference electronic ground state of
CD2F2 is calculated by the second-order Møller-Plesset perturbation (MP2) as well as
coupled-cluster singles and doubles (CCSD) level of theory employing the cc-pVTZ basis
set of Dunning [20]. The GAUSSIAN-09 suite of programs [21] is used for this purpose.
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The optimized equilibrium structure of CD2F2 belongs to the C2v symmetry point group.
The molecular orbital (MO) configuration of the equilibrium minimum structure is, ...

(3b2)
2 (1a2)

2 (4b2)
2 (6a1)

2 (2b1)
2. The electronic states of X̃2B1, Ã

2B2, B̃
2A1 and

C̃2A2 of the CD2F2 radical cation result from the ionization of an electron from its valence
MO of appropriate symmetry. The energetic ordering of the 2A1 and

2B2 electronic states
of CH2F

+
2 is discussed in previous subsection. The harmonic vibrational frequency ωi

of the vibrational modes i of the X̃1A1 state of CD2F2 is calculated at its equilibrium
geometry. The harmonic frequencies and description of the vibrational modes are given
in Table 4.3. The vertical ionization energy (VIE) of the X̃, Ã, B̃ and C̃ states of
CD2F

+
2 (CH2F

+
2 ), calculated at the CASSCF-MRCI level of theory employing the cc-

pVTZ basis set, is given in Table 4.6. Understandably, the VIE values do not change
upon isotopic substitution. The adiabatic energies of the above electronic states of
CD2F

+
2 are also calculated at the same level of theory in the range -5.0≤Q≤5.0, along all

vibrational modes. The adiabatic electronic energies of CH2F
+
2 and CD2F

+
2 are different

as mass-weighted normal coordinates are employed in this study.

The coupling parameters of the vibronic Hamiltonian (cf. Eqs. 4.7-4.8) are calculated
by fitting the adiabatic form of its diabatic electronic part to the adiabatic electronic
energies calculated ab initio. The linear and quadratic intra-state coupling parameters
of X̃2B1, Ã

2B2, Ã
2A1 and C̃2A2 electronic states of CD2F

+
2 are given in Table 4.9.

The linear inter-state coupling parameters are given in Table 4.10. We note that all the
coupling parameters are estimated by non-linear least squares fitting of adiabatic elec-
tronic energies. We reiterate that the electronic Hamiltonians (of CH2F

+
2 and CD2F

+
2 )

are different because of mass-weighting of the coordinates.

The excitation strength (defined as
κ2
i

2ω2
i

or
(λj−k

i )2

2ω2
i

) given in the parentheses in Table 4.9

reveals that the symmetric vibrational mode ν2 is active in the X̃2B1, Ã
2B2 and C̃2A2

electronic states. The vibrational mode ν4 is expected to be strongly excited in the Ã2B2

and B̃2A1 electronic states. A moderate activity of ν3 is expected in all electronic states
of CD2F

+
2 . The vibrational mode ν1 has the lowest excitation strength in all four states

of CD2F
+
2 . The data in Table 4.10 reveal a strong inter-state coupling between X̃2B1-

Ã2B2 states through ν5 (a2 symmetry) vibrational mode and between X̃2B1-B̃
2A1 states

through ν7 (b1 symmetry) vibrational mode. Despite this, a milder inter-state coupling

between the X̃2B1-B̃
2A1states through ν6 (b1 symmetry) and between the B̃2A1-C̃

2A2

states through ν5 revealed by the data (cf. Table 4.10). An inspection of the data
in Table 4.9 reveal that the second order intra-state coupling parameter of symmetric
mode ν2 and non-totally symmetric mode ν7 is higher in the X̃2B1 state than the other
states. This would cause a drastic reduction of frequencies of these vibrational modes
in the X̃2B1 state. Similarly, a drastic reduction of frequencies of ν8 vibrational mode
in the Ã2B2 and B̃2A1 state is expected. An analogous coupling scheme was found in
case of CH2F

+
2 as discussed previous subsection.
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4.3 Results and discussion

Table 4.7: Linear and second-order coupling parameters (eV) of the Hamiltonian of
CH2F

+
2 (cf. Eq. 4.7), calculated at three different levels of theory.

Mode κ
j

i
γ
j

i

MRCI OVGF EOM-CCSD MRCI OVGF EOM-CCSD

X̃2B1

ν1 -0.3047 -0.3300 -0.2758 -0.0060 -0.0042 -0.0048
ν2 -0.1733 -0.2295 -0.1775 -0.0650 -0.0777 -0.0719
ν3 0.2109 0.2457 0.2158 -0.0199 -0.0149 -0.0183
ν4 -0.0062 0.0025 -0.0053 0.0050 0.0063 0.0054
ν5 - - - -0.0352 -0.0575 -0.0525
ν6 - - - -0.0408 -0.0344 -0.0298
ν7 - - - -0.0494 -0.0507 -0.0535
ν8 - - - -0.0748 -0.0723 -0.0715
ν9 - - - -0.0184 -0.0118 -0.0182

Ã2B2

ν1 0.0582 0.0559 0.0534 0.0061 0.0042 0.0044
ν2 0.1614 0.1288 0.1336 0.0131 0.0002 -0.0002
ν3 -0.2717 -0.2323 -0.2536 0.0070 0.0084 0.0068
ν4 0.1635 0.1783 0.1817 -0.0263 -0.0222 -0.0252
ν5 - - - 0.0254 0.0064 0.0061
ν6 - - - 0.0049 0.0066 0.0065
ν7 - - - -0.0040 -0.0033 -0.0039
ν8 - - - -0.0467 0.0303 -0.0532
ν9 - - - -0.1005 -0.0734 -0.0953

B̃2A1

ν1 -0.1078 -0.1267 -0.1031 -0.0105 -0.0126 -0.0168
ν2 0.2303 0.1964 0.1973 0.0033 0.0024 -0.0180
ν3 -0.0459 0.0130 -0.0183 -0.0236 -0.0205 -0.0402
ν4 -0.1275 -0.1269 -0.1264 0.0014 0.0025 0.0033
ν5 - - - -0.0290 -0.0292 -0.0565
ν6 - - - 0.0245 0.0215 0.0446
ν7 - - - 0.0007 0.0032 0.0085
ν8 - - - -0.0068 -0.0759 0.0138
ν9 - - - 0.0097 -0.0472 0.0009

C̃2A2

ν1 0.0305 0.0358 0.0379 0.0043 0.0037 0.0038
ν2 0.1312 0.0895 0.0971 0.0126 0.0011 0.0003
ν3 -0.2718 -0.2339 -0.2503 0.0049 0.0059 0.0051
ν4 0.0491 0.0659 0.0619 -0.0149 -0.0129 -0.0137
ν5 - - - 0.0048 0.0048 0.0065
ν6 - - - 0.0068 0.0053 0.0055
ν7 - - - -0.0035 -0.0013 -0.0022
ν8 - - - 0.0136 0.0132 0.0181
ν9 - - - -0.0609 -0.0687 -0.0568
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Figure 4.3: Least square fitting of all coupling parameters of CH2F
+
2 derived from three

different quantam mechanical methods by linear regression method.

85



4 Electronic Structures of CH2F
+
2 and CD2F

+
2

Table 4.8: Linear inter-state coupling parameters (λj−k
i ) of the Hamiltonian of

CH2F
+
2 (cf. Eq. 4.8). All parameters are given in eV unit.

Couple states Mode Curve fitting Numerical
MRCI OVGF EOM-CCSD MRCI OVGF EOM-CCSD

X̃Ã ν5 0.2394 0.2439 0.2265 0.2740 0.2401 0.2133

X̃B̃ ν6 0.2726 0.2365 0.2292 0.2594 0.2323 0.2220
ν7 0.2936 0.2902 0.2884 0.2792 0.2887 0.2752

X̃C̃ ν8 0.3410 0.3359 0.3355 0.5873 0.3370 0.3178
ν9

ÃB̃ ν8 0.0983 0.0990 0.0781 0.0974
ν9 0.1487 0.0513 0.1210 0.1505 0.0482 0.1148

ÃC̃ ν6
ν7 0.0273 0.0247 0.0280 0.0285

B̃C̃ ν5 0.0765 0.1051 0.0926 0.1063 0.1019 0.0882

4.4 Adiabatic potential energy surfaces

One dimensional cuts of the adiabatic potential energy surfaces (PESs) of the X̃2B1,

Ã2B2, B̃
2A1 and C̃2A2 electronic states of difluoromethane radical cation are plotted

along normal displacement coordinate of symmetric vibrational modes (ν1-ν4) in Figs.
4.4-4.5. In these figures points represent the calculated ab initio electronic energies by
the CASSCF-MRCI (Fig. 4.4) and EOM-CCSD (Fig. 4.5) methods. The superimposed
solid lines represent the potential energies obtained from the vibronic model using the
respective parameters of Table 4.7. It can be seen from the figures that the calculated
ab initio points are well reproduced by the constructed vibronic model. Among the four
symmetric vibrational modes, the Condon activity of mode ν3 is stronger in the X̃2B1 and
C̃2A2 electronic states. On the other hand, the Condon activity of symmetric mode ν4
and ν2 is stronger in the Ã2B2 and B̃2A1 electronic states, respectively. Strong Condon
activity of a vibrational mode results into a larger shift of the equilibrium minimum
of the given electronic state along its coordinate relative to the reference equilibrium
minimum at Q=0.

Numerous crossings of electronic states can be seen from Figs. 4.4-4.5. These crossings
acquire the topography of conical intersections (CIs) in multi-dimensions. Energetic
minimum of the seam of various CIs and equilibrium minimum of electronic states are
estimated within a linear coupling model using the parameters of Table 4.7 and given in
Table 4.11. In the latter, the diagonal and off-diagonal entries represent the equilibrium
minimum of a state and the minimum of the seam of CIs, respectively. Energetic location
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4.4 Adiabatic potential energy surfaces

Table 4.9: Linear and second-order coupling parameters (in eV) of the Hamiltonian
(cf. Eq. 4.7) of CD2F

+
2 , estimated from the calculated ab initio adiabatic

electronic energies.

Mode κji (
κ2
i

2ω2
i

) γji κji (
κ2
i

2ω2
i

) γji

X̃2B1 Ã2B2

ν1 -0.2773 (0.489) -0.0099 0.0851 (0.046) 0.0084
ν2 0.2677 (1.591) -0.1017 -0.2678 (1.556) 0.0034
ν3 0.0665 (0.128) -0.0413 -0.1317 (0.502) 0.0081
ν4 -0.0050 (0.003) 0.0092 0.1756 (3.560) -0.0527
ν5 - -0.0724 - 0.0101
ν6 - -0.0580 - 0.0079
ν7 - -0.0962 - -0.0121
ν8 - -0.0946 - -0.1387
ν9 - -0.0444 - -0.0260

B̃2A1 C̃2A2

ν1 -0.0933 (0.055) -0.0237 0.0571 (0.021) 0.0057
ν2 -0.1670 (0.619) -0.0185 -0.2430 (1.311) -0.0011
ν3 0.0630 (0.115) -0.0358 -0.1551 (0.697) 0.0082
ν4 -0.1341 (2.076) 0.0030 0.0539 (0.335) -0.0293
ν5 - -0.0399 - 0.0099
ν6 - 0.0415 - 0.0091
ν7 - -0.0050 - -0.0100
ν8 - -0.1332 - -0.0869
ν9 - -0.0228 - -0.0399

of these stationary points on a state governs the mechanistic details of nuclear dynamics
on it. It can be seen from the data given in Table 4.11 that X̃-Ã CIs is quasi-degenerate
with the minimum of the Ã state. Similar quasi-degeneracies can be seen between the
minimum of Ã-B̃ and B̃-C̃ CIs with the minimum of B̃ and C̃ states, respectively.
The X̃-B̃ and X̃-C̃ CIs occur ∼ 0.62 eV and ∼ 0.31 eV above the minimum of B̃ and
C̃ states, respectively. These observations are also well supported by the EOM-CCSD
data (cf. Table 4.11).

The adiabatic electronic energies of the X̃, Ã, B̃ and C̃ electronic states of CD2F
+
2 rad-

ical cation calculated by the CASSCF-MRCI method are plotted as points along the
dimensionless normal coordinates of the totally symmetric vibrational modes, ν1-ν4, in
Fig. 4.6. A fit to these energies to the present vibronic model is also shown in Fig. 4.6
and indicated by the superimposed solid lines. It can be seen from each panel of the
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Table 4.10: Same as in Table 4.9 for the linear inter-state coupling parameters (cf. Eq.
4.8). All parameters are given in eV unit.

Couple states Mode λj−k
i (

(λj−k
i )2

2ω2
i

)

j-k i

X̃ − Ã ν5 0.2144 (1.700)

X̃ − B̃ ν6 0.2434 (0.337)
ν7 0.2463 (2.035)

X̃ − C̃ ν8 -
ν9 0.0530 (0.085)

Ã− B̃ ν8 -
ν9 -

Ã− C̃ ν6 0.0189 (0.002)
ν7 0.0191 (0.012)

B̃ − C̃ ν5 0.0824 (0.251)

Table 4.11: Estimated equilibrium minimum (diagonal entries) and minimum of the
seam of various CIs (off-diagonal entries) of the electronic states of CH2F

+
2 .

All quantities are given in eV.

X̃2B1 Ã2B2 B̃2A1 C̃2A2

CASSCF-MRCI/cc-pVTZ

X̃2B1 13.23 14.81 16.08 16.01

Ã2B2 - 14.81 15.47 17.22

B̃2A1 - - 15.46 15.72

C̃2A2 - - - 15.70
EOM-CCSD/cc-pVTZ

X̃2B1 12.99 14.47 15.62 15.80

Ã2B2 - 14.47 15.05 16.99

B̃2A1 - - 15.00 15.01

C̃2A2 - - - 15.41

figure that the calculated ab initio points correspond well to the analytic form of the
vibronic model discussed in Section 3.2.1. The curves in Fig. 4.6 reveal that the elec-
tronic ground state of the cation is energetically well separated from its excited states
at the Franck-Condon geometry. The larger displacement of the equilibrium minimum
of a given state along a given mode relative to the reference minimum at Q=0, is in
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Figure 4.4: The adiabatic potential energy curves of the X̃, Ã, B̃ and C̃ electronic states
of CH2F

+
2 along the dimensionless normal coordinates of totally symmetric

(a) ν1, (b) ν2, (c) ν3 and (d) ν4 vibrational modes. Each curve in the figure
represents potential energy obtained from the present theoretical model. The
ab initio potential energies with a harmonic contribution from the neutral
ground electronic state are shown by the points on the diagram. The latter
are calculated by the CASSCF-MRCI method employing cc-pVTZ basis set.

accord with its large excitation strength (Condon-activity) discussed above. It can be

seen from Fig. 4.6 that the B̃ state undergoes crossing with both Ã and C̃ states. These
curve crossings transform to conical intersections (CIs) in multi-dimensions. Energy of
the minimum of various CIs and the equilibrium minimum of a state estimated from
the present theoretical model are given in Table 4.12. In the latter, the entries in the
diagonal and off-diagonal position represent the equilibrium minimum of a state and
the minimum of the seam of CIs, respectively. It can be seen from the data given in
Table 4.12 that the minimum of Ã-B̃ CIs is quasi-degenerate with the minimum of
the B̃ state. Similar quasi-degeneracies also exist between the minimum of the seam of
B̃-C̃ CIs with the minimum of the C̃ state. We note that the above stationary points are
calculated with the full second-order vibronic coupling model [26]. In that article [26]
these points were calculated within a linear coupling model. The stationary points ob-
tained for CH2F

+
2 with a second-order model are given in the parentheses of the Table

4.12 for comparison. We reiterate that mass scaling of the coordinates leads to different
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Figure 4.5: Same as Fig. 4.4. The adiabatic electronic energies are calculated by the
EOM-CCSD method employing cc-pVTZ basis set.

Table 4.12: Estimated equilibrium minimum (diagonal entries) and minimum of the
seam of various CIs (off-diagonal entries) of the electronic states of CD2F

+
2 .

The same values for CH2F
+
2 are given in the parentheses. All quantities are

given in eV.

Energy

X̃2B1 Ã2B2 B̃2A1 C̃2A2

X̃2B1 12.673 (13.160) 14.511 (14.705) 16.724 (16.266) 16.122 (16.191)

Ã2B2 - 13.855 (14.695) 15.479 (15.470) 16.381 (19.341)

B̃2A1 - - 15.466 (15.462) 15.736 (15.725)

C̃2A2 - - - 15.690 (15.703)

parameters of the electronic Hamiltonian, which gives rise to different equilibrium and
seam minima of CH2F

+
2 and CD2F

+
2 .
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Figure 4.6: The adiabatic potential energy curves of the X̃, Ã, B̃ and C̃ electronic states
of CD2F

+
2 along dimensionless normal coordinates of totally symmetric (a)

ν1 (D-C symmetric stretching), (b)ν2 (D-C-D symmetric in-plane bending
), (c) ν3 (F-C symmetric stretching) and (d) ν4 (F-C-F symmetric bend-
ing) vibrational modes. The ab initio potential energies calculated by the
CASSCF-MRCI method and fit to these energies to the present vibronic
model are shown by the points and solid lines, respectively.

4.5 Non-adiabatic effects in the Ã2B2 and B̃2A1 states

of CH2F
+
2

The first (Ã2B2) and second (B̃2A1) excited states of difluoromethane radical cation orig-
inate from removal of one electron from the ground state occupied b2 and a1 molecular
orbitals (MOs), respectively, of neutral difluoromethane belonging to C2v equilibrium
symmetry. The selection of these two states are made because of their energetic prox-
imity. As we are dealing with two electronic states of CH2F

+
2 , the constructed model

diabatic vibronic Hamiltonian is represented by a 2⊗2 matrix,

H =

(
H11 H12

H21 H22

)
. (4.9)
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Where the diagonal matrix element (H11/H22) represents the diabatic electronic energy
of the cationic electronic states and the off-diagonal element (H12/H21) represents the
coupling between them. All the elements (Hij) of this matrix are function of the di-
mensionless normal coordinate (NC) of the vibrational modes of neutral reference. The
dimensionless NCs are represented here, as Qg and Qu, for totally symmetric vibrational
modes and coupling vibrational modes, respectively. The nine vibrational modes of
CH2F2 transform according to the following IREPs of C2v symmetry point group

Γ = 4a1 + 1a2 + 2b1 + 2b2. (4.10)

Elementary symmetry selection rule is presented in Eq. 4.11, allows coupling of Ã and
B̃ states (in first order) through the vibrational modes of b2 symmetry

B2 ⊗ b2 ⊗ A1 ⊃ A1. (4.11)

Where the symmetry of electronic states and vibrational modes are denoted by the upper
and lower case letters, respectively. The matrix elements of the vibronic Hamiltonian
(Eq. 4.9) are expanded in a Taylor series as

Hii =
∑

k∈a1

1

2
ωkQ

k
g

2
+

∑

k∈b2

1

2
ωkQ

k
u

2
+ Ei +

∑

k∈a1

κikQ
k
g

+
∑

k∈a1

1

2
γikQ

k
g

2
+

∑

k∈b1,b2,a2

1

2
γikQ

k
u

2
(4.12)

Hij =
∑

k∈b2

λi−j
k Qk

u. (4.13)

The first two terms in Eq. 4.12 describe the harmonic potential energy surface of neutral
molecule in its electronic ground state and corresponding ωk values are the harmonic
frequencies of the vibrational modes. The term Ei represents the vertical ionization en-
ergies of the Ã and B̃ electronic states. The term κk corresponds to the linear intra-state
coupling parameter of the totally symmetric (a1) vibrational modes, whereas the term
γk represents the quadratic intra-state coupling parameters for all vibrational modes.
The off-diagonal coupling term, λi−j

k corresponds to the linear inter-state coupling pa-

rameter between Ã and B̃ through coupling vibrational modes.

The adiabatic potential energy along a coupling vibrational mode is given by

V1,2(Q
k
u) =

1

2
ωkQ

k
u

2
+

1

2
(γ2k + γ1k)Q

k
u

2
+

1

2
(E1 + E2)

∓
√{

(E1 − E2) +
1

2
(γ2k − γ1k)

}+

4λ2Qk
u
2 (4.14)

92



4.5 Non-adiabatic effects in the Ã2B2 and B̃2A1 states of CH2F
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A characteristic feature of new minima is observed in lower adiabatic surface V1(Q
k
u),

whereas the upper surface becomes steeper. The symmetry of the nuclear geometry at
the new minima is lower than the symmetry of equilibrium geometry of the reference
state, this phenomenon is known as ′′the breaking of molecular symmetry′′. It is known
that the symmetry breaking is simply a consequence of repulsion of the diabatic surfaces
via the vibronic coupling [18]. The value of dimensionless normal coordinate at the
minimum of the lower adiabatic PES is represented by following equation (excluding the
γik):

Qk
u


ωk −

λ2√(
E2−E1

2

)2
+ λ2Qk

u
2


 = 0. (4.15)

In this equation, ∆=E2−E1

2
and x= λ2

ωk∆
and x is a dimensionless quantity. The three

roots of Eq. 4.15 have the following forms:

Qk
u = 0; Qk

u = ± λ

ωk

√
1− 1

x2
. (4.16)

If the value of x < 1, then the second and third roots of Eq. 4.16 become imaginary. So
the validity of second and third roots remain only when x ≥ 1 and when x < 1 first root
Qk

u = 0 is valid. As a result, two equivalent minima form at Qk
u 6= 0 in the lower adiabatic

PES when x > 1 and the previous minimum at Qk
u = 0 is converted as local maximum.

The stabilization energy due to this symmetry breaking phenomenon is Es = ∆( (1−x)2

2x
).

No symmetry breaking occur for x < 1 and molecule does not get any stabilization due to
this phenomenon. Only just above the threshold value of x = 1, the stabilization energy
quadratically increases with x, whereas at the larger value of x, a linear dependency is
observed.

After inclusion of M number of coupling vibrational modes in Eq. 4.15, the generalized
formula of x becomes:

x =
M∑

k=1

xk. (4.17)

Where, xk is the dimensionless x parameter for kth coupling mode and xk =
λ2
k

ωk∆
. It is

seen from Eq. 4.17 that due to multi-mode effect x is generated from the contribution
(xk) of each coupling vibrational mode. In this way symmetry breaking phenomenon of
a molecule becomes cumulative effect of all coupling vibrational modes. So in order to
give an explanation of Eq. 4.17, one can say that if a single coupling vibrational mode
fails to introduce a minimum at V1(Q

k
u) at Q

k
u 6= 0, then due to the multi-mode effect of

the other coupling vibrational modes, there will be a possibility to form a minimum in
the Qk

u sub-space under the condition of x ≥ 1.
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Figure 4.7: The effect of inter-state coupling between the Ã2B2 and B̃2A1 electronic
states of CH2F

+
2 through ν8 vibrational mode is shown here. The solid (black

and blue) lines represent the 1-D PESs in absence of inter-state coupling and
the dashed (black and blue) lines represent the 1-D PESs in presence of inter-
state coupling between these two states.

In the previous sections, we established a diabatic vibronic coupling model for the
first four electronic states of CH2F

+
2 by performing extensive electronic structure calcu-

lations. Here, we consider the first (Ã2B2) and second (B̃2A1) excited electronic states
of CH2F

+
2 because of their energetic proximity (∼0.40 eV). It is found that the vibronic

structures of three excited states, Ã2B2, B̃
2A1 and C̃2A2 of CH2F

+
2 are highly overlap-

ping and they form the second photoelectron band of CH2F2 [18, 26, 27]. These three
states are coupled through multiple conical intersections (CIs) and are well separated

from the ground electronic states (X̃2B1) of CH2F
+
2 [26].

The two vibrational modes of b2 symmetry are represented as ν8 and ν9 vibrational
modes.The vibrational frequencies, first-order (κ) and second-order (γ) intra-state cou-
pling parameters of totally-symmetric modes (represented as ν1,ν2, ν3 and ν4) and the
γ value of ν8 and ν9 vibrational modes are given in Tables 4.13 and 4.7. The vertical
ionization energies of the considered states and the inter-state coupling (λ) of ν8 and
ν9 vibrational modes are listed in Tables 4.6 and 4.8. The effect of inter-state cou-
pling through these vibrational modes ν8 and ν9 are presented in Figs. 4.7 and 4.8,
respectively.
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Figure 4.8: The effect of inter-state coupling between the Ã2B2 and B̃2A1 electronic
states of CH2F

+
2 through ν9 vibrational mode is shown here. The solid (black

and blue) lines represent the 1-D PESs in absence of inter-state coupling and
the dashed (black and blue) lines represent the 1-D PESs in presence of inter-
state coupling between these two states.

Table 4.13: The vertical ionization energies of the Ã2B2 and B̃2A1 electronic states of
CH2F

+
2 and the inter-state coupling parameters between these two states are

reproduced here. The dimensionless xk parameters and excitation strength
are tabulated in last two columns in the table, respectively.

Electronic Vertical Vibrational Inter-state Dimensionless Excitation
state ionization mode coupling xk parameter strength

energy (eV) parameter (λ (eV))

Ã2B2 15.34 ν8 0.0983 0.2609 0.14

B̃2A1 15.74 ν9 0.1487 0.7810 0.55

The individual dimensionless xk parameter values for the coupling modes ν8 and ν9 are
calculated by using the parameters from Tables 4.1 and 4.13 and those values are given
in Table 4.13. It is clear from this table that both the values are lower than the threshold
value of xk =1. Thus both these coupling vibrational modes unable to create double
minima at the lower adiabatic surface [V1(Q

k
u)] due to their individual effect on the

coupled-surfaces. The individual vibronic coupling effect of these two coupling vibra-
tional modes is reflected in the curvature of two PESs (cf. Figs. 4.7 and 4.8): one
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without considering the inter-state vibronic coupling (λ) and another with the inclusion
of λ. The upper coupled-surface V2, is steeper near the minimum at Qk

u =0 than the
upper uncoupled-surface, whereas the lower coupled-surface V1 is relatively flat com-
pared to the lower uncoupled-surface. This scenario is depicted in both Figs. 4.7 and
4.8, for the individual effect of ν8 and ν9 coupling vibrational modes, respectively. In
these figures dashed lines reprsent the coupled-surfaces and the solid line represent the
uncoupled surfaces. So it is established that the symmetry breaking and the forma-
tion of double minima at the coupled lower adiabatic surface is not possible due to the
two-states-single-mode interaction. We mentioned in the above that the lowering of
symmetry of the coupled lower surface also occurs due to the cumulative interaction of
all participating coupling vibrational (here, ν8 and ν9) modes. The cumulative dimesion-
less x parameter value (∼1.042) of these two coupling vibrational modes is just above
the threshold value of x =1, which suggests a lowering of symmetry of the lower cou-
pled surface due to the simultaneous distortion along two coupling vibrational modes.
As a result of this two-states-multi-modes interaction, the lower coupled surface gets
stabilization in (Q8

u, Q
9
u) sub-space and the upper coupled surface becomes steeper.

4.6 Summary and conclusions

A theoretical account of vibronic coupling among energetically lowest four electronic
states (X̃2B1, Ã

2B2, B̃
2A1, C̃

2A2) of CH2F
+
2 (CD2F

+
2 ) is presented in this chapter.

The study is motivated by numerous experimental spectroscopy data available on this
system. A model Hamiltonian of the four coupled electronic states is developed in a dia-
batic representation in terms of normal coordinates of vibrational modes using standard
vibronic coupling theory. The parameters of the Hamiltonian are determined by perform-
ing extensive calculations of adiabatic electronic energies using various state-of-the-art
quantum chemistry methods. Among different sets, the parameter set derived from the
CASSCF-MRCI electronic energies is found to yield best results. The calculated elec-
tronic energies including configuration interactions also confirmed the energetic ordering
of electronic states. Detailed topographical analysis of four adiabatic electronic states of
CH2F

+
2 (CD2F

+
2 ) is carried out and multiple conical intersections among them is estab-

lished. It is found that the coupling among Ã-B̃-C̃ electronic states is quite strong and
the minimum of the seam of intersections quasi-degenerate to the equilibrium minimum
of the higher electronic state in a pair.

A theoretical account of vibronic coupling between the two closely lying excited states
(Ã2B2 and B̃

2A1) of CH2F
+
2 is also presented here . A model 2⊗2 vibronic Hamiltonian

is constructed for the purpose. The effect of coupling vibrational modes (ν8 and ν9) on

the coupled Ã2B2- B̃
2A1 surface is studied here by constructing the two-states-single-

mode as well as two-states-multi-modes model Hamiltonian. The result shows that the
symmetry breaking and stabilization of lower coupled adiabatic surface is not possible
through single mode interaction rather it is possible via cummulative interaction of both
coupling modes. The presence of moderate inter-state coupling and the quasi-degeneracy
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between the Ã− B̃ CIs with the minimum of B̃ state facilitates the internal conversion
between these two states.
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5 Vibronic dynamics on the electronic

states of CH2F
+
2
and its deuterated

isotopomer

5.1 Introduction

The photophysics of difluoromethane radical cation (CH2F
+
2 ) and its deuterated iso-

topomer (CD2F
+
2 ) has received renewed attention of experimentalists over the past

decades. Broad band vibronic structures of the electronic ground and excited states
of these radical cations were measured in several photoelectron spectroscopy experi-
ments by using He I and X-ray radiation sources [1–7]. More recently, pulsed-field-
ionization zero-electron-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy mea-
surements were carried out by Forysinki et al. [8], which unveiled the resolved vibronic
fine structure of the electronic ground state of the CH2F

+
2 radical cation.

The experimental He I photoelectron spectrum recorded by Pradeep et al. [5] revealed
four bands in the ∼12.5-17.0 eV energy range. The results show partially resolved vi-
bronic structure of the electronic ground (X̃) state and highly overlapping band stuctures

of the next three excited (Ã, B̃ and C̃) electronic states. Theoretical studies with and
without configuration interactions were carried out [1,9,10]. The results revealed differ-
ent energetic ordering of the electronic states of CH2F

+
2 . Progression of C-H stretching

(ν1), H-C-H bending (ν2) and C-F stretching (ν3) vibrations in the X̃-band was identi-
fied in the theoretical study of Takeshita [9] and these findings were in good agreement

with the He I experiments [1–3]. Analysis of the PFI-ZEKE spectrum [8] of the X̃ state
revealed polyad structures, formed by ν2 and ν3 vibrational modes and the assignments
correspond fairly well to Takeshita’s [9] theoretical results. Harmonic Franck-Condon
calculations at the MP2/aug-cc-pVQZ level of theory revealed poor agreement with
the PFI-ZEKE results [8]. In a later study, the importance of anharmonicity and the
breakdown of Franck-Condon approximation in interpreting the PFI-ZEKE results was
examined by Luckhaus et al. [10].

Brundle et al. [1] and Potts et al. [3] found that the progression in the X̃ band is
formed by ν3 vibrational mode only. Whereas Pullen et al. [2] found the same due to the

0The subject of this Chapter is published by: Rudraditya Sarkar and S. Mahapatra in Molecular
Physics 113, 3073 (2015). and J. Phys. Chem. A. 120, 3504 (2016).
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progression of H-C-H twisting (ν5), H-C-H rocking (ν7), F-C-F antisymmetric stretch-
ing (ν8) and ν2 vibrational modes. In a later study, Pradeep et al. [5] identified the
progression of ν2, ν3 and the first overtone of ν4 vibrational modes. This observation is
in partial contradiction with the prediction of Takeshita [9], who found the progression
of ν1 instead of ν4 vibrational mode. Analysis of the PFI-ZEKE spectrum revealed in
addition to the excitation of symmetric ν2 and ν3 vibrational modes in the polyad struc-
ture, the excitation of non-totally symmetric vibrational modes as well. In case of other
photoionization bands, Brundle et al. [1] observed progression of ν3 and ν4 vibrational

modes in the C̃ band. Potts et al. [3] found progression of ν2 and ν4 vibrational modes,

repectively, in the B̃ and C̃ bands. Pradeep et al. [5] found both these vibrational modes

contribute to the B̃ and C̃ bands and ν2 and ν3 modes form progression in the Ã band
of CH2F

+
2 .

An interesting observation of disappearance of the vibrational structure of the ground
state spectrum of CH2F

+
2 upon isotopic deuterium substitution was made in the exper-

imental recording of Brundle et al. [1]. To the best of our knowledge, the latter is the
only experimental measurement of the photoionization spectrum of CD2F2. The loss
of vibrational structure was postulated to be due to: 1) possible excitation of multi-
ple vibrational modes and the existence of accidental degeneracies among them absent
in the deuterated isotopomer and 2) the ease of predissociation in case of deuterated
cation than the normal cation imposing a lifetime broadening of the spectrum [1]. It
is also conjectured that vibrational modes of C-H character rather than C-F character
predominantly contribute to the electronic ground state spectrum of CH2F

+
2 [1]. The

vibrational structure of the overlapping Ã-B̃-C̃ band remains virtually unchanged upon
deuteration, indicating the involvement of vibrational modes of C-F character rather
than C-H character in these electronic states.

In Cahpter 4 and Ref. [11], we established a diabatic vibronic coupling [12–22] model

for the X̃-Ã-B̃-C̃ electronic states of CH2F
+
2 by performing extensive ab initio quantum

chemistry, complete active space self consistent field multi-reference configuration inter-
action (CASSCF-MRCI) calculations. In addition to a detailed topographical analysis
of the electronic states, various crossings among the potential energy surfaces are dis-
cussed in the Chapter 4. In this Chapter, we set out to study the vibronic structure of
the electronic ground state of CH2F

+
2 at finer resolution, assign the calculated vibronic

levels and compare the results with the PFI-ZEKE experiment and other theoretical
and experimental results available in the literature [1–3, 5, 8–10]. The vibronic band
structures of the CD2F

+
2 are also calculated, assigned and a comparative account with

that of CH2F
+
2 is presented.
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5.2 Nuclear dynamics

The vibronic energy level spectrum of CH2F
+
2 and its deuterated analogue is calculated

by a time-independent matrix diagonalization approach [16] using Fermi’s golden rule
equation for the spectral intensity

P (E) =
∑

n

|<Ψf
n|T̂ |Ψi

0>|
2
δ(E − Ef

n + Ei
0), (5.1)

where, P (E) represents spectral intensity. |Ψi
0> and |Ψf

n> are the initial and final
vibronic states with energy Ei

0 and Ef
n, respectively. The operator T̂ is the transition

dipole operator. The reference electronic ground state |Ψi
0> [ground state of neutral

CH2F2 (CD2F2)] is assumed to be vibronically decoupled from the excited electronic
states and is given by

|Ψi
0〉 = |Φi

0〉|χi
0〉, (5.2)

where |Φi
0〉 and |χi

0〉 represent the electronic and vibrational components of this state,
respectively. This state is assumed to be harmonic and the vibrational component of
the above wavefunction is expressed in terms of the eigenfunctions of reference harmonic
Hamiltonian, TN + V0 (cf. Section 4.2.1 in the Chapter 4). In the normal coordinate
representation of vibrational modes, the vibrational wavefunction is a direct product of
one-dimensional oscillator functions along each mode. The final vibronic state of CH2F

+
2

(CD2F
+
2 ) can be expressed as

|Ψn〉 = |Φm〉|χm
n 〉, (5.3)

where the superscript m represents the X̃2B1, Ã
2B2, B̃

2A1, C̃
2A2 electronic states of

CH2F
+
2 (CD2F

+
2 ), respectively. With the above definitions, the spectral intensity of Eq.

5.1 can be re-written as

P (E) =
∑

n

|τm〈χm
n |χ0〉|2δ(E − Ef

n + Ei
0), (5.4)

where,
τm = 〈Φm|T̂ |Φ0〉, (5.5)

represents the transition dipole matrix elements. These are treated as constant assuming
the general applicability of Condon approximation in a diabatic electronic basis [18].

The time-independent Schrödinger equation of the vibronically coupled states is solved
by representing the Hamiltonian (cf. Section 4.2.1 in the Chapter 4) in the direct product
harmonic oscillator (HO) basis of the reference state. The final vibronic states, |Ψf

n〉,
can be expressed as

|Ψf
n〉 =

∑

|Ki〉,m

anki,...,kf ,m|Ki〉...|Kf〉|Φm〉. (5.6)
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In the above equation, the Kth quantum of the ith vibrational mode is denoted by
|Ki〉 and |Φm〉 denotes the mth electronic state of the interacting electronic manifold of
CH2F

+
2 (CD2F

+
2 ) radical cation. The size of the oscillator basis is chosen based on the

numerical convergence of the vibronic eigenvalue spectrum. The Hamiltonian matrix
expressed in a direct product HO basis is highly sparse, it is tri-diagonalized using
Lanczos algorithm [23,24] prior to diagonalization. The energetic location of the vibronic
levels is given by the resulting diagonal eigenvalue matrix and the relative intensities are
calculated from the squared first component of the Lanczos eigenvectors [25].

In a time-dependent picture, the spectral intensity is calculated by Fourier transform-
ing the time autocorrelation function of the wavepacket (WP) propagating on the final
electronic state [15]

P (E) ≈
2∑

m=1

2Re

∫

0

∞

eiEt/~〈χ0|τ †e−iHT/~τ |χ0〉dt, (5.7)

≈
2∑

m=1

2Re

∫

0

∞

eiEt/~Cm(t)dt, (5.8)

where, Cm = 〈Ψ(0)|Ψ(t)〉, represents the time autocorrelation function of the WP, ini-
tially prepared on the electronic statem. The time-dependent WP propagation is carried
out within the multi-configuration time dependent Hartree (MCTDH) approach devel-
oped by Meyer et al. [26–29].

5.3 Results and discussions

5.3.1 Vibronic band structure of coupled X̃-Ã-B̃-C̃ states of CH2F
+
2

The broad band vibronic structure of the X̃-Ã-B̃-C̃ coupled electronic states of CH2F
+
2 is

calculated and compared with the experimental photoionization spectroscopy results
of Ref. [5]. The vibronic Hamiltonian constructed in section 4.2.1, the parameters of
Tables 4.7 and 4.8 and a WP propagation method within the MCTDH framework [29]
are used in the calculation. Full dimensional calculations are carried out including all
nine vibrational modes, employing the Heidelberg MCTDH program modules [29]. An
initial WP pertinent to the vibronic ground state of CH2F2 is vertically promoted to
the ionic state and then propagated upto 200 fs in the coupled manifold of X̃-Ã-B̃-
C̃ electronic states. Four separate calculations are carried out by initially promoting
the WP to each of the four electronic states of the radical cation. During propagation,
the autocorrelation function of the WP is recorded in time. The numerical details of
the mode combination, sizes of the primitive and single particle bases used in the WP
propagations are given in Table 5.1.
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Table 5.1: Normal mode combinations, sizes of the primitive and single particle bases
used in the MCTDH calculations for the coupled X̃ − Ã − B̃ − C̃ electronic
states of CH2F

+
2 .

Normal modes Primitive basis SPF basis [X̃, Ã, B̃, C̃]
(ν5, ν8, ν2) (8, 20, 20) [3, 3, 5, 6]
(ν4, ν1, ν3) (20, 8, 20) [6, 3, 5, 6]
(ν6, ν7, ν9) (8, 10, 8) [3, 3, 4, 5]

The composite vibronic band structure is generated by combining the autocorrelation
functions obtained from four calculations (vide supra) with equal weightage, damping

with an exponential function, e
−t
τr (with τr=66 fs) and Fourier transforming to the en-

ergy domain. The exponential damping in the time domain corresponds to a convolution
of the energy spectrum with a Lorentzian line-shape function of 20 meV FWHM. The
calculated band structure of the X̃-Ã-B̃-C̃ electronic states of CH2F

+
2 is plotted in Fig.

5.1 along with the experimental results reproduced from Ref. [5], in panel a. The theo-
retical results in panel b and c are obtained by using CASSCF-MRCI and EOM-CCSD
parameter sets of Table 4.7, respectively. In Fig. 5.1 relative intensity (in arbitrary
units) is plotted as a function of energy of the final vibronic levels. A constant energy
shift of ∼0.93 eV is applied along the abscissa in order to account for the zero-point
energy and to reproduce the experimental adiabatic ionization position at ∼12.73 eV.
The latter corresponds well with our theoretically calculated value of ∼12.80 eV by the
RHF-RCCSD method and cc-pVTZ basis set. It can be seen from Fig. 5.1 that the
theoretical results are in good accord with the experimental ones. Although the pa-
rameter sets derived from CASSCF-MRCI and EOM-CCSD energy data exhibit good
correlation, the former parameter set better reproduces (cf. intensity pattern in panel a
and b in Fig. 5.1) the experimental results. The disagreement of the experimental and
theoretical results of panels a and c is reduced when the VIE values calculated by the
CASSCF-MRCI method are used along with the EOM-CCSD coupling parameter set
to calculate the spectrum. The results of such calculations are shown in panel d of Fig.
5.1. It is therefore clear that the CASSCF-MRCI method produces better VIEs than
the EOM-CCSD method for CH2F2.

In Fig. 5.1 the first band corresponds mainly to the vibronic structure of the X̃ state
and the second overlapping band structure is formed by strongly coupled Ã-B̃-C̃ states
of CH2F

+
2 . As stated in chapter 4 that minimum of various CIs is quasi-degenerate to

the equilibrium minimum of states in this coupled electronic manifold. As a result, fast
nonradiative relaxation of the WP through CIs causes the observed huge broadening
of the second band. The energetic separation of the minimum of the X̃ state and its
intersection minimum with the other state is large. As a result the nonadiabatic coupling
effect on this state is very weak. The center-of-gravity of both the bands in Fig. 5.1 shifts
considerably away from the respective origin line supporting large distortion of cationic
geometry with respect to the neutral as discussed in chapter 4. While the broad band

107



5 Quantum dynamics on the electronic states of CH2F
+
2 (CD2F

+
2 )

Figure 5.1: Composite vibronic band structure of the coupled X̃-Ã-B̃-C̃ electronic states
of CH2F

+
2 . The band structures calculated using the CASSCF-MRCI and

EOM-CCSD set of parameters of Tables 4.7-4.8 are shown in panel b and
c, respectively. The experimental result reproduced from Ref. [5] is shown
in panel a. Intensity in arbitary units is plotted along the energy of the
cationic vibronic states. Band structure of panel d is calculated by using
VIEs from CASSCF-MRCI method and coupling parameters from EOM-
CCSD method. The zero of the energy scale corresponds to the energy of
the equilibrium minimum of the electronic ground state of neutral CH2F2.
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vibronic structure is presented in Fig. 5.1 in order to validate the present theoretical
model, a detailed assignment of the spectrum and comparison with resolved PFI-ZEKE
spectrum is presented in next section.

5.3.2 Vibronic energy level structure of the electronic ground state

of CH2F
+
2 and impact of nonadiabatic coupling

In order to understand the details of the progression of vibrational modes in the vibronic
spectrum of the electronic ground X̃2B1 state of CH2F

+
2 and the effect of nonadiabatic

coupling, we systematically carried out several reduced dimensional calculations. We
performed an extensive reduced dimensional calculations to observe the effect of sym-
metric (ν1, ν2, ν3 and ν4) modes and coupling (ν5, ν6, ν7, ν8 and ν9) modes on the first
vibronic band of CH2F

+
2 . The partial spectra obtained with totally symmetric modes

and totally symmetric modes plus one coupling mode are shown in Fig.5.2(a)-(f), the
contributing coupling mode are mentioned in right corner of the each panel. The effect
of only coupling modes and the complete spectra of the ground X̃2B1 electronic state
of CH2F

+
2 are shown in Fig.5.2(g)-(h), respectively. While the spectrum in panel a cal-

culated with X̃ state alone, the spectrum in other panels are calculated by including
its coupling with the Ã, B̃ and C̃ states. The calculations are carried out by the ma-
trix diagonalization approach as discussed in Section 5.2 . The numerical details of the
calculations are given in Table 5.2. The symmetric mode spectrum shown in panel a
reveals dominant excitation of vibrational modes ν2 and ν4. Excitation of ν3 and its
combination peaks with ν2 and ν4 are also found from the spectrum. The excitation of
vibrational mode ν1 is extremely weak. The intensity of the origin 000 peak is extremely

weak in accord with the large geometry change of the cation in the X̃ state relative to
the reference geometry of the neutral as found in Ref. [11]. The effect of coupling modes
ν5, ν6 and ν9 is extremely weak on the symmetric mode spectrum of panel a (cf. panels
b, c and f in Fig. 5.2). On the other hand, the coupling modes ν7 and ν8 have consid-
erable impact on the symmetric mode spectrum shown in panels d and e, respectively.
As can be seen from the latter that the vibrational mode ν8 has stronger effect than ν7.
The fundamental of ν8 and its overtones participate in the spectral progression. The
vibrational mode ν7 is relatively weakly excited.

The vibronic spectrum of the X̃2B1 state of CH2F
+
2 calculated using full Hamiltonian

(given in the section 4.2 in Chapter 4) and the CASSCF-MRCI parameter set given
in Tables 4.7 and 4.8 is shown in Fig. 5.3. In the latter, the experimental result of
Pradeep et al. [5] is shown in panel a. The theoretical results obtained by the WP
propagation method in the MCTDH framework [29] and the matrix diagonalization
method are shown in panels b and c, respectively. It can be seen from Fig. 5.3 that the
results obtained by two different theoretical methods are consistent with each other and
are in excellent accord with the broad band envelope obtained in the experiment. The
numerical details of the matrix diagonalization and WP propagation calculations are
given in Tables 5.2 and 5.3, respectively. The time autocorrelation function calculated
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Table 5.2: Number of harmonic oscillator (HO) basis functions for vibrational mode, the
dimension of the secular matrix and the number of Lanczos iterations used to
calculate the converged theoretical stick spectrum shown in various figures.

Modes (HO basis functions) Dimension of the matrix Lanczos iterations Figure(s)
ν1, ν2, ν3, ν4 ( 20, 20, 20, 20) 160000 3000 Figs. 5.2 (a)
ν1, ν2, ν3, ν4, ν5 ( 20, 20, 20, 20, 16) 2560000 6000 Figs. 5.2 (b)
ν1, ν2, ν3, ν4, ν6 ( 20, 20, 20, 20, 18) 2880000 6000 Fig.5.2 (c)
ν1, ν2, ν3, ν4, ν7 ( 20, 20, 20, 20, 18) 2880000 6000 Figs. 5.2 (d)
ν1, ν2, ν3, ν4, ν8 ( 20, 20, 20, 20, 20) 3200000 8000 Figs. 5.2 (e)
ν1, ν2, ν3, ν4, ν9 ( 20, 20, 20, 20, 10) 1600000 4000 Figs. 5.2 (f)
ν5, ν6, ν7, ν8, ν9 ( 15, 15, 20, 20, 10) 900000 3000 Fig. 5.2 (g)
ν1, ν2, ν3, ν4 ( 10, 20, 15, 20) 60000 3000 Figs. 5.5 (a)
ν1, ν2, ν3, ν4, ν7 ( 10, 20, 15, 20, 20) 1200000 5000 Fig. 5.5 (b)
ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9 17694720 11000 Figs. 5.3 (c)
(2, 12, 12, 12, 2, 4, 8, 10, 8)
ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9 23040000 12000 Fig. 5.6(c)
(6, 10, 10, 10, 10, 4, 6, 4, 4)

Table 5.3: Normal mode combinations, sizes of the primitive and single particle bases
used in the MCTDH calculations for the coupled X̃ − Ã − B̃ − C̃ electronic
states of CH2F

+
2 /CD2F

+
2 .

Normal modes Primitive basis SPF basis [X̃, Ã, B̃, C̃]
Figs. 5.3(b)

(ν5, ν8, ν2) (8, 20, 20) [6, 6, 10, 12]
(ν4, ν1, ν3) (20, 8, 20) [12, 6, 16, 20]
(ν6, ν7, ν9) (8, 10, 8) [12, 12, 20, 24]

Fig. 5.6(b)
(ν5, ν8, ν1) (20, 10, 10) [6, 10, 6, 10]
(ν4, ν2, ν3) (24, 20, 20) [10, 10, 8, 10]
(ν6, ν7, ν9) (14, 24, 10) [6, 6, 7, 8]

during the WP propagation is damped with an exponential function [e(−t/τr), with τr =
33 fs] to generate the spectral envelope shown in panel b. The envelope in panel c is
generated by convoluting the stick line spectrum of panel c with a Lorenzian function
of ∼40 meV full width at the half maximum (FWHM). To facilitate the comparison
with experiment, the origin 000 peak of the spectrum is placed at the adiabatic ionization
energy of ∼102636 cm−1 (12.725 eV) estimated in the experiment of Forysinski et al. [8].
The low-energy part of the stick line spectrum of 5.3c is given in Table 5.4 and compared
with the results available in the literature.

A careful analysis of the data presented in Table 5.4 reveal the following. The vibra-
tional modes ν2 (H-C-H symmetric bending), ν3 (F-C symmetric stretching), ν4 (F-C-
F symmetric bending), ν7 (H-C antisymmetric stretching) and ν8 (F-C antisymmetric

stretching) mainly form the progression in the X̃2B1 band. Weak excitation of ν1 (H-C
symmetric stretching) vibrational mode is also found from the data. The weak line at
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∼345 cm−1 arises from the fundamental of ν8. The fundamental of ν4 appears at ∼572
cm−1 and it forms an extended progression in the spectrum. Several overtones and com-
bination peaks of ν4 are found. The line at ∼1005 cm−1 is assigned to the fundamental
of ν7. The line found at ∼1054 cm−1 in the experiment of Pradeep et al. [5] was as-
signed to the first overtone of ν4. The latter is found at ∼1144 cm−1 in our result. The
fundamental of ν2 is found at ∼1243 cm−1. Brundle el al. [1] assigned the vibrational

structure of the X̃2B1 band to the progression of ν2 vibrational mode only. Potts et
al. [3] also arrived at a similar conclusion as Brundle et al. [1]. The fundamental of
ν5 (H-C-H antisymmetric bending) vibrational mode is also found at ∼1224 cm−1. The
fundamental of ν3 is found at ∼918 cm−1 with a very weak intensity. Weak excitation
of the fundamental of ν1 is found at ∼3036 cm−1. The spectral assignment discussed
above is confirmed by performing block-improved relaxation calculations [31, 32] both
in reduced dimensions and exploring full-dimensions. The probability density of the
vibronic wavefunctions obtained in these calculations is carefully examined in relation
to the assignments discussed above. The reduced density plots of some of the vibronic
wavefunctions along some selected coordinate spaces are given in Fig. 5.4. The calcula-
tions are carried out with the Heidelberg MCTDH suite of programs [29]. The numerical
details of the calculations are same as those of calculation of full-mode coupled state
spectrum (cf. Fig. 5.3) given in Table 5.2.

The density plot of 345 cm−1 vibronic wavefunction shown in Fig. 5.4a reveals one
node along the coordinate of mode ν8, which indicates that the vibrational mode ν8 is
excited in this particular vibronic energy level. This level is therefore assigned to the
fundamental of ν8. Likewise, the density plots of 572 cm−1, 918 cm−1, 1005 cm−1, 1224
cm−1 and 1243 cm−1 vibronic wavefunctions shown in panels b, c, d, e and f of Fig.
5.4 reveal that these levels are due to the fundamental of modes ν4, ν3, ν7, ν5 and
ν2, respectively. The density plots of the first overtone of ν8 and ν4 appearing at 765
cm−1 and 1144 cm−1 are shown in panels g and h of Fig. 5.4, respectively. In Fig. 5.4i
the density of the vibronic wavefunction of a combination peak of ν3 and ν4 is shown.
The wavefunction in Fig. 5.4i reveals one quantum excitation along both these modes.
In a similar way the assignments of remaining energy levels given in Table 5.4 are carried
out. It is clear from the above discussion that the symmetric mode ν2, ν4 and the non-
symmetric modes ν5, ν7 and ν8 mainly contributes to the vibronic structure of the
ground X̃2B1 electronic state of CH2F

+
2 . A similar conclusion can be derived from the

earlier experimental [1, 3, 5, 8] and theoretical results [9, 10]. However, the assignment
of the observed peaks and their energetic locations differ in various results mentioned
above.
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Figure 5.2: Vibrational energy level spectrum of the ground X̃ electronic state of CH2F
+
2

computed with four totally symmetric vibrational modes (panel a) and four
totally symmetric modes along with one coupling mode (panle b-f), using
the Hamiltonian [Eq. (7) of Ref. [11]]. Panel g is computed with all coupling
vibrational mode and panel h is the composite structure of all totally sym-
metric and all coupling modes. The theoretical stick spectrum in each case
is convoluted with a Lorentzian function of 10 meV FWHM to calculate the
spectral envelope (see the text for details).
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Figure 5.3: Vibronic structure of the electronic ground state (X̃2B1) of CH2F
+
2 . The

intensity (in arbitrary units) is plotted as a function of the energy (measured
relative to electronic ground state of CH2F2) of the final vibronic states. The
experimental result (reproduced from Ref. [5]) and the present theoretical
results obtained by the WP propagation and matrix diagonalization methods
are shown in panels a, b and c, respectively.
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Table 5.4: Energetically low-lying vibronic energy levels (in cm−1) of the X̃2B1 electronic
state of CH2F

+
2 . The vibronic energy levels caculated in this work (see text for

details) are compared with the experimental and theoretical results available
in the literature.

This work Experimental and theoretical Ref. [8, 10]

No. Energy Assignmnet Energy Ref. [8] Energy Assignment Ref. [10]

1 0 0 0 0 0

2 345 ν8

3 572 ν4 597 ν4

4 765 2ν8
5 918 ν3

6 1005 ν7 969 959 ν3;2ν7
7 1144 2ν4 1137 1131 2ν7; ν3
8 1224 ν5

9 1243 ν2 1246 1251 ν2;2ν2
10 1336 ν4+ 2ν8
11 1486 ν3+ν4

12 1577 ν4 + ν7 1564 1559 ν3 + ν4;ν4 + 2ν7
13 1669

14 1716 3ν4
15 1748 1734 1732 ν4 + 2ν7;ν3 + ν4

16 1769 ν7+2ν8 1765

17 1790 ν4+ν5

18 1817 ν2+ν4 1817 1809 ν3 + 2ν7;4ν7;2ν3 + ν7

19 1880 ν3+ν4+ν8 1885

20 1907 2(ν4+ν8)

21 1966 ν3+ν7 1933 1936 ν6 + ν7;ν1;2ν5
22 2016 2ν7
23 2144 2ν4+ν7 2100 2078 2ν3;2ν5;4ν7
24 2229 ν2+ν3 2213 2213 ν2 + ν3;ν2 + 2ν7;ν3 + 2ν7
25 2257 2388 ν2 + 2ν7;ν2 + ν3;2ν3
26 2287 4ν4 2281 2494 2ν2;3ν2;ν2 + 2ν7
27 2390 ν2+2ν4 2400

28 2448 2ν5
29 2493 2ν2 2491

In the latest high resolution PFI-ZEKE experiment of Forysinski et al. [8] the first
polyad (near degeneracy levels) structure was observed in the range of 970-1250 cm−1,
which was predicted by Takeshita [9] in the energy range of 1300-1400 cm−1. The same
polyad structure is found in the energy range of 1000-1245 cm−1 in the present study.
Inclusion of non-totally symmetric coupling vibrational modes provides improved results
in the present case than Takeshita’s model [9]. Weak excitation of ν5 vibrational mode
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Figure 5.4: Assignment of fundamental of ν8, ν4, ν3, ν7, ν5 and ν2 vibrational modes,
overtone of ν8 and ν4 vibrational mode and combination band of ν3 and
ν4 are shown, following the reduced dimensional calculations as mentioned
in section 5.3.2

is observed within the first polyad structure. The first peak of this polyad is observed
at ∼969 cm−1 in the experiment of Forysinski et al. [8] and is found at ∼ 1005 cm−1

in the present theoretical results. This peak was assigned by Luckhaus et al. [10] to
an excitation of ν3 (49%) and 2ν7 (32%) vibrational modes and we find it due to the
fundamental of ν7 vibrational mode (cf. Fig. 5.4d). Other two peaks of the first polyad
are found at 1137 cm−1 and 1246 cm−1 in the experiment [8]. The same is found in the
present study at ∼1144 cm−1 and ∼1243 cm−1 and are assigned to the first overtone of
ν4 (cf. Fig. 5.4h) and fundamental of ν2 (cf. Fig. 5.4f) vibrational modes, respectively.
Takeshita [9] assigned these peaks in the polyad as due to the excitation of ν1, ν2 and
ν3 vibrational modes. It is very unlikely that the mode ν1 is excited near the onset of
the spectrum due to its high frequency. Excitation of this mode was not observed in the
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PFI-ZEKE experiment [8]. A second polyad with four intense peaks were recorded in
the latter. We find these peaks in the energy range of ∼2144-2390 cm−1 and assigned
them. The results are given in Table 5.4. To this end, we note that excitation of
non-totally symmetric CF2 anti-symmetric stretch, CH2 rocking and CH2 twist in the
vibronic structure of the X̃2B1 band was predicted by Pullen et al. [2]. This prediction
is in excellent accord with our assignments discussed above.

5.3.3 Vibronic energy level structure of the electronic ground state

of CD2F
+
2 and impact of nonadiabatic coupling

At this point we discuss on the vibronic band structures of the X̃2B1 state of CD2F
+
2 and

compare them with that of CH2F
+
2 . It can be seen from Tables 4.2 and 4.3 that the

frequencies of all vibrational modes (except ν4) are lowered upon deuteration. The quasi-
degeneracy of (ν3, ν9) and (ν2, ν8) vibrational modes is also retained in the deuterated
isotopomer. Lifting of this degeneracy as proposed to be one of the reasons behind
the loss of vibronic structure of the X̃2B1 state of CD2F

+
2 [1] can not be validated.

Furthermore, it is found above that vibrational modes related to both C-H and C-
F motions makes important contribution to the vibronic dynamics of the electronic
ground state of CH2F

+
2 . The latter findings are also supported by various experimental

and theoretical findings in the literature [2, 5, 8, 10].

In order to understand the details of the vibronic structure of the X̃2B1 state of
CD2F

+
2 , we carried out the same systematic analysis as in case of CH2F

+
2 discussed

above. The uncoupled X̃2B1 state spectrum calculated including the symmetric vibra-
tional modes (ν1-ν4) only is shown in Fig. 5.5a. All three ν2, ν3 and ν4 modes form
progression in this spectrum. Only minor change in the spectrum occurs when the cou-
pling vibrational modes ν5, ν6 and ν9 are included in the calculations. However, a huge
change of vibronic line structure occurs (shown in panel b in 5.5) when the coupling

vibrational mode ν7 (through X̃-B̃ coupling) is included. The latter mode strongly

couples X̃ and B̃ states (cf. Table 4.10). The X̃2B1 state spectrum of CD2F
+
2 calculated

with full coupled states Hamiltonian (Section 4.2.1 in Chapter 4) and the parameters of
Tables 4.9 and 4.10 is shown in panels b and c of 5.6. The low-resolution experimen-
tal spectrum recorded by Brundle et al. [1] is reproduced in panel a. The theoretical
results of panels b and c are obtained by WP propagation and matrix diagonalization
methods, respectively. The time-autocorrelation function in the WP result is damped
with an exponential function, e(−t/τr), (with τr= 8 fs) before Fourier transformation to
reproduce the experimental broadening. Likewise, the resolved stick spectrum of the
time-independent result is convoluted with a Lorenzian function of 164 meV FWHM to
reproduced the experimental broadening. It can be seen that overall shape of the broad
band experimental spectrum is well reproduced by the present theoretical results. It
is worth mentioning that the X̃ state spectrum of CD2F

+
2 (5.6) is much broader than

that of CH2F
+
2 (5.3). The frequency reduction (Table 4.3) and energetic proximity of

the electronic states (Table 4.12) in the deuterated isotopomer increase the vibronic line
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Figure 5.5: Same as in 5.2, for the X̃2B1 state of CD2F
+
2 .

density in the X̃ state spectrum of CD2F
+
2 as compared to that of CH2F

+
2 . This causes

relatively more broadening of the CD2F
+
2 spectrum. Furthermore, the experimental [1]

recording of the latter is old and poorly resolved. Resolved vibronic structure of time-
dependent (with τr= 30 fs) and time-independent (with FWHM∼44 meV) calculations
in the ground state of CD2F

+
2 are shown in the inset of the respective panels of Fig.

5.6. The low-energy part of the theoretical stick spectrum of Fig. 5.6c is given in Table
5.5 along with the assignment of the levels. It is found that the vibrational modes ν2,
ν3, ν4, ν5, ν7 and ν9 form progression in the spectrum. While the excitation of modes
ν3 and ν7 is strong, the remaining modes are relatively weakly excited. Although the
excitation strength (cf. Table 4.9) of the vibrational mode ν2 is fairly large, its activity
is quenched upon inclusion of the non-totally symmetric (particularly ν7 and ν9) modes
in the coupled states dynamics. The weak excitation of ν5 vibrational mode found in
reduced dimensional calculation is also quenched in the full-mode calculations.
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Figure 5.6: Vibronic structure of the electronic ground state (X̃2B1) of CD2F
+
2 . The

intensity (in arbitrary units) is plotted as a function of the energy (measured
relative to electronic ground state of CD2F2) of the final vibronic states. The
experimental result (reproduced from Ref. [1]) and the present theoretical
results obtained by the WP propagation and matrix diagonalization methods
are shown in panels a, b and c, respectively. The theoretical calculations
are carried out with the full second-order Hamiltonian (cf. Section 4.2.1 in
Chapter 4) and the coupling parameters given in Tables 4.9 and 4.10.
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Figure 5.7: Assignments of fundamental of ν2, ν3, ν4 and ν7 vibrational modes and
the various combination band between ν3, ν4, ν5 and ν7 vibrational modes
of the ground state dynamics of CD2F

+
2 are shown, following the reduced

dimensional calculations as mentioned in the text.
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Table 5.5: Same as in Table 5.4, for the X̃2B1 electronic state of CD2F
+
2 .

No. Vibronic energy level Assignment
1 0.0 0
2 438 ν7
3 565 ν4
4 825 ν9
5 877 ν3
6 892 2ν7
7 1017 ν4+ν7
8 1044 ν4+ν5
9 1131 2ν4
10 1161 ν2
11 1316 ν3+ν5
12 1325 ν3+ν7
13 1405 ν4+ν9
14 1442 ν3+ν4
15 1456 ν4+2ν7
16 1487 ν4+2ν5
17 1544 2ν4+ν7
18 1600 2ν4+ν5
19 1637 2ν9
20 1660
21 1696 3ν4
22 1702 ν3+ν9
23 1727 ν2+ν4
24 1746
25 1754 2ν3

Reduced density plots of some of the vibronic wavefunctions are shown in Fig. 5.7. The
fundamentals of ν2, ν3 and ν4 vibrational modes appearing at ∼1161, ∼877 and ∼565
cm−1 are shown in panels a, b and c, respectively. Fundamental of ν5 mode appears
at ∼467 cm−1 in the reduced dimensional calculations and it does not show up in the
full-mode results given in Table 5.5. However, it can be seen from the data given in this
table that several of its combination peaks appear in the spectrum. For example, the
peaks appearing at ∼1044, ∼1316 and ∼1600 cm−1 can be assigned to ν4+ν5, ν3+ν5 and
2ν4 + ν5 in accordance with the nodal pattern of the vibronic wavefunctions shown in
panels d,e and f of Fig. 5.7, respectively. The fundamental of ν7 appears at ∼438
cm−1 and the density plot of its wavefunction is shown in Fig. 5.7g. Several overtones
and combination peaks of this mode are also excited in the spectrum. For example, its
one quantum combinations with one quantum of each ν3 and ν4 mode appear at ∼1325
and ∼1017 cm−1, respectively. The reduced density plots of the wavefunction of the
latter vibronic levels are shown in panels h and i of Fig. 5.7, respectively.
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5.3.4 Compasion between the ground state vibronic dynamics of

CH2F
+
2 and CD2F

+
2

We here, reiterate the essential differences between the vibronic dynamics of the elec-
tronic ground state of CH2F

+
2 and CD2F

+
2 . It is seen that the frequency of vibrational

modes decreases and their quasi-degeneracy remains upon deuteration. Because of this,
density of vibronic levels in the X̃ state spectrum of CD2F

+
2 increases as compared to

CH2F
+
2 . This causes a partial demolition of structures in the X̃ band of CD2F

+
2 . Con-

cerning the excitation of vibrational modes, both C-H/D and C-F type of vibrations form

progression in the X̃ band of both the isotopomers. The excitation of vibrational mode
ν3 is quenched in case of CH2F

+
2 . On the other hand, the activity of vibrational mode

ν2 is quenched in case of CD2F
+
2 despite its large excitation strength. Such quenching

arises due to multi-states and multi-modes vibronic coupling effect mainly caused by
nontotally symmetric vibrational modes ν7, ν8 in case of CH2F

+
2 and ν7, ν9 in case of

CD2F
+
2 . Excitation of nontotally symmetric mode ν7 and ν8 is found in the X̃ band

of CH2F
+
2 , in good accrod with the prediction of Pullen et al. [2]. On the other hand,

strong excitation of ν7 and mild excitation of ν9 vibrational modes is found in the X̃ band
of CD2F

+
2 . It therefore emerges from the above discussion that the vibronic dynamics

of the electronic ground state of CH2F
+
2 and CD2F

+
2 is somewhat different. It would

be worthwhile to record PFI-ZEKE spectrum of the X̃ state of CD2F
+
2 to validate the

assignments made above.

5.3.5 Vibronic energy level structure and time-dependent dynamics

of the excited electronic states of CH2F
+
2 and CD2F

+
2

In contrast to the ground state, the structure and the dynamics of excited states of
both the isotopomers is strongly perturbed by the associated nonadiabatic coupling.
As discussed in section 4.4 in Chapter 4, this is due to the energetic proximity of the
minimum of the intersection seam to the equilibrium minimum of a given state. It can
be seen from Table 4.12 that the minimum of the X̃ state is energetically well separated
from that of the Ã, B̃ and C̃ states of CH2F

+
2 . The latter states are energetically close

(occurs within an eV of energy). Therefore, despite a weak coupling between these
states, they form highly overlapping band structures. A similar situation holds in case
of CD2F

+
2 except its Ã state is relatively more separated from its B̃ and C̃ states (cf.

Table 4.12). The X̃ state of both radical cations is relatively strongly coupled with their

respective Ã, B̃ and C̃ states (cf. Table 5.3 and 4.8). However, the minimum of the

X̃ state has large energy separation with the minimum of various intersection seams
as can be seen from the data given in Table 4.12. Because of this the WP can hardly
explore the vicinity of various intersection seams when the dynamics is started on the
X̃ state. This is also confirmed by examining the adiabatic electronic populations (not

shown here). Most of the WP stays on the X̃ state during entire course of evolution.

Therefore, the X̃ state dynamics is dominated by the totally symmetric vibrations, with
mild excitation of non-totally symmetric modes.
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The partial Ã, B̃ and C̃ states spectrum obtained in the X̃-Ã-B̃-C̃ coupled states
dynamics calculations is shown in Figs. 5.8 and 5.9 for CH2F

+
2 and CD2F

+
2 , respectively.

The partial spectra are plotted in different color mentioned in the caption. For com-
pleteness and to facilitate the latter discussion the partial spectrum of the X̃ state is
also included in each figure. It is clear from the spectra plotted in Figs. 5.8 and 5.9
that the vibronic structure of the Ã, B̃ and C̃ states are highly overlapping. A careful
examination reveals that the spectrum of the B̃ state of CH2F

+
2 is strongly perturbed by

both Ã and C̃ states, whereas the spectrum of C̃ state of CD2F
+
2 is mostly perturbed by

its B̃ state and relatively weakly by its Ã state. These observations are in accordance
with the energetic proximity of the equilibrium minimum of a state with the minimum
of its intersection seams with the other states. The associated relatively strong nonadia-
batic interactions cause broadening of these spectra. The symmetric vibrational modes
ν2, ν3 and ν4 form progression in the Ã, B̃ and C̃ electronic states of both the radical
cations. The vibrational mode ν4 is strongly excited in the Ã and B̃ electronic states
in contrast to the ground state. The mode ν3 is also relatively strongly excited in the
Ã and C̃ states as compared to the ground state. Excitation of non-totally symmetric
ν8, ν9 and ν5 is found in the B̃ state of CH2F

+
2 , whereas, ν5, ν6 and ν7 contributes to

the spectral progression in the C̃ state of CD2F
+
2 .

The decay and growth of adiabatic electronic populations in the X̃-Ã-B̃-C̃ coupled
states dynamics is shown in Figs. 5.10 and 5.11 for CH2F

+
2 and CD2F

+
2 , respectively. In

panels a, b and c of Fig. 5.10 the electron population dynamics of CH2F
+
2 is shown when

the WP is initially prepared on the Ã, B̃ and C̃ diabatic state, respectively. Similar plots
are presented for the population dynamics of CD2F

+
2 in panels a, b and c of 5.11. Since,

the initial excitation is to the diabatic state, the adiabatic population of the prepared
state less than 1.0. It can be seen from panel a that the population flows mostly to
the X̃ state when the WP is initially on the Ã state, for both the radical cations.
This is in accord with the data given in Tables 4.8 and 4.12 for CH2F

+
2 and in Tables

4.10 and 4.12 of CD2F
+
2 . In the former case the minimum of the seam of X̃-Ã conical

intersections is quasi-degenerate to the Ã state equilibrium minimum, whereas, they are
separated by∼0.6 eV in the latter case. However, the coupling of these states through the
ν5 vibrational mode is much stronger in the latter case. It is suffice to say here that such
interplay of the coupling strength and energy gap prevails, in general, in nonradiative
electron population dynamics. The population flows mostly to the Ã state when the WP
is initially prepared on the B̃ state (panel b of Figs. 5.10 and 5.11). The minimum of

Ã-B̃ intersection seam is quasidegenerate to the minimum of the B̃ state of CH2F
+
2 (cf.

Table 4.12). In case of CD2F
+
2 electron population flows to the Ã state via C̃ state.

The maximum population initially flows to the B̃ state when dynamics is started on the
C̃ state (panel c of Fig. 5.10 and 5.11). At longer times both Ã and B̃ state populations
reach to the same limit in this case. It follows from the population dynamics that
extremely fast decay of Ã, B̃ and C̃ states of both CH2F

+
2 and CD2F

+
2 takes place and

the WP explores multiple intersection seams. As a result the vibronic band structures
of these states become broad and diffuse.
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Figure 5.8: Vibronic structure of the coupled Ã-B̃-C̃ states of CH2F
+
2 . The intensity

(in arbitrary units) is plotted as a function of the energy (measured rela-
tive to electronic ground state of CH2F2) of the final vibronic states. The
experimental result (reproduced from Ref. [5]) and the present theoretical
results obtained by the matrix diagonalization methods are shown in panels
a and b, respectively. The theoretical calculations are carried out with the
full second-order Hamiltonian (cf. section 4.2.1 in the Cahpter 4) and the
coupling parameters given in Tables 4.7 and 4.8. The partial spectrum of
the X̃ state is also presented in the figure.

5.4 Summary and outlook

Vibronic structure of energetically low-lying first four electronic states of CH2F
+
2 and

CD2F
+
2 is theoretically studied in this article. Four states coupled diabatic Hamilto-

nian is constructed in the dimensionless normal coordinates of the electronic ground
state of the neutral reference molecules and through extensive ab initio calculations of
adiabatic electronic energies. The nuclear dynamics calculations are carried out quan-
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Figure 5.9: Same as in 5.8, for the Ã-B̃-C̃ states of CD2F
+
2 . Experimental spectra in

panel a is reproduced from Ref. [1]

tum mechanically both by time-independent and time-dependent methods. The vibronic
energy level spectrum of the electronic ground state of both CH2F

+
2 and CD2F

+
2 is exam-

ined at length. The energy levels appeared in the low energy part are compared with the
available experimental results. These energy levels are assigned and discussed in relation
to the various assignments reported in the literature. The broad band photo-ionization
spectrum of both the isotopomers compare well with the low-resolution experimental re-
sults. While high-resolution spectroscopy measurements (PFI-ZEKE) are carried out for
CH2F

+
2 , the same is not available for CD2F

+
2 . Our analysis on the vibronic levels of the

X̃ state of CH2F
+
2 shows a close resemblance with the PFI-ZEKE data. The progression

on the X̃ state spectrum of CH2F
+
2 is mainly formed by the ν2, ν4, ν7 and ν8 vibrational

modes. The excitation of the ν3 vibrational mode is quenched by the ν7 and ν8 modes.
The excitation of non-totally symmetric ν7 and ν8 vibrational modes is in good accord
with the prediction of Pullen et al. [2]. In the X̃ state of CD2F

+
2 , on the other hand,

the vibrational modes ν3, ν4, ν7 and ν9 make most of the progression. The excitation
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Figure 5.10: Adiabatic electronic population dynamics in the X̃ − Ã− B̃− C̃ coupled-
electronic states of CH2F

+
2 . The adiabatic population of different electronic

states are shown by preparing the initial WP on the Ã, B̃ and C̃ states, in
panels a, b and c, respectively.

of the ν2 vibrational mode is quenched by the non-totally symmetric vibrational modes
in this case. Vibrations of both C-H/D and C-F characters participate in the spectral

progression in the X̃ state of both radical cations. Substantial reduction of vibrational
frequencies (except ν4) upon deuteration, increases the density of vibronic levels in the
spectrum of CD2F

+
2 . This causes the spectral broadening in case of CD2F

+
2 . It would be

worthwhile to carry out PFI-ZEKE measurements for the X̃ state of CD2F
+
2 in order

to validate the proposed assignments of its vibronic levels.

In contrast to the dynamics of the X̃ state, the nonadiabatic coupling has much
stronger effect on the dynamics of the Ã, B̃ and C̃ states of both CH2F

+
2 and CD2F

+
2 .

The WP explores multiple intersection seams and quickly relaxes when dynamics is
started in any of the three states. Such a fast nonradiative decay of the excited states
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Figure 5.11: Same as in 5.10, in the X̃− Ã− B̃− C̃ coupled electronic states of CD2F
+
2 .

causes a huge broadening of their vibronic structure as observed in the experiments.
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[29] G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer, The mctdh package, Version
8.4, (2007), University of Heidelberg, Heidelberg, Geramny. See: http://mctdh.uni-
hd.de.

[30] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.
A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.
Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc. Wallingford CT,
2010.

[31] Q. Meng and H. -D. Meyer, J. Chem. Phys. 139, 164709 (2013).

128



References
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6 Photodetachment spectroscopy of

Hydrogenated Boron Cluster anion

H2B
−
7

6.1 Introduction

Boron is electron deficient semi-metal type and is well-known in structural chemistry
to form different types pure atomic boron clusters [1–18], as well as the cluster with
heteroatoms, like hydrogen [19, 20] and gold [21]. The unusual three-centred two elec-
tron bonding property of boron makes ab initio quantum chemistry calculations more
difficult to elucidate the structural properties of these clusters. In this context, pure-
boron clusters have received much attention in theoretical research [1,4,22–31] over the
past few decades. The major breakthrough in this regard is the joint experimental and
theoretical findings of quasi-planar and planar structures of small boron clusters []. High
level ab initio calculations in conjunction with the photoelectron spectroscopy mesure-
ment emerged as a powerful tool to demostrate the complex structural properties of
these atomic clusters. Chemical bonding analysis of these clusters revealed that σ and
π aromaticity/anti-aromaticity [32] plays a pivotal role in their stability. Among the
smaller boron clusters, B−

7 is the most interesting and complex cluster as it exists in
three energetically close isomeric forms: i) doubly aromatic (σ and π aromatic) triplet
C6v quasi-planar wheel-type, ii) σ-aromatic and π-antiaromatic singlet C2v quasi-planar
form and iii) doubly antiaromatic C2v planar from [33]. Among these isomers, isomer
(i) possess global minimum structure of B−

7 due to the presence of double aromaticity,
whereas, only the presence of σ-aromaticity in the isomer (ii) makes it less stable than
isomer (i) and more stable than isomer (iii). An inversion of these stabilities are observed
upon partial hydrogenation of these isomers [19]. The rearrangement of relative stabil-
ity of B−

7 occurs upon addition of two hydrogen atoms due to the gain of σ-aromaticity
and loss of antibonding character in σ-type of molecular orbitals (MOs) in the planar
B−

7 cluster [isomer (iii)] [19]. Wheras, isomer (i) loses its double aromaticity upon hy-
drogenation. So in case of hydrogenated B−

7 cluster, H2B
−
7 , planar C2v

1A1 structure has
the global minimum configuration. In addition to the interesting structural and bonding
properties of H2B

−
7 , it plays an important role as a hydrogen-storage material [20]. First

experimental characterization of this hydrogenated boron cluster was done by Wang and
coworkers [20], through photoelectron spectroscopy. They found a ladderlike elongated
structure with two terminal hydrogen atoms and chemical bonding analysis by them
revealed π bonding pattern of this dihydride boron cluster similar to cojugated alkenes
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

and termed as polyboroene. Similar type of polyboroenes and their auroanalogues with
conjugated π bonding form a new class of molecular wires [20]. The pictorial diagram of
this hydrogenated boron cluster is depicted in panel a of Fig. 6.1. We follow the same
ordering of atoms as indicated in Ref. [19].

The photodetachment spectra of hydorgenated B−
7 cluster recorded by Wang and

coworker [20] reveals a much simpler structure than the very complex and congested
band structure of pure B−

7 cluster recorded by the same group [8]. The reason behind
the simpler band structure of H2B

−
7 cluster is the absence of energetically close isomers in

the vicinity of the global minimum structure. The photodetachment spectrum of anionic
H2B7 was recorded at two different energy resolution using 193 nm and 266 nm laser
sources. The spectra recorded at 266 nm reveals a well resolved vibronic structure of
X̃ state of neutral H2B7 and a band of much lower intensity corresponding to the Ã state
of neutral H2B7. These bands are reproduced from Ref. [20] and shown in Fig. 6.7. In the

193 nm recording much broader envelopes of the X̃ and Ã states were obtained. These
band structures are also reproduced from Ref. [20] and shown in Fig. 6.7. In the 193

nm recording much higher intensity of the Ã band as compared to the 266 nm recording
was obtained. This is because in this case the laser has sufficient energy to ionize
electrons from HOMO-1 orbital of H2B

−
7 . The origin of the X̃ band is identified with

the theoretically calculated adiabatic and vertical detachment energies (ADE/VDE).
It is noted that the photodetachment spectrum of H2B

−
7 was measured in Ref. [20] by

preparing D2B
−
7 in the plasma reaction between the laser-vaporised boron and D2 for

better mass separation. Theoretical calculations for both H2B
−
7 and D2B

−
7 performed

by the same group [20] indicates that, except the vibrational frequencies, the structures
and electron binding energies of these isotopomers are same.

It is clear from the above disscussion that a large amount of structural data of boron
clusters is available in the literature. At the same time, a detailed quantum dynamical
study to elucidate the vibronic structure of the detachment spectrum is largely missing
in the literatue. In the recent past we carried out detailed quantum dynamics studies of
bare boron clusters upto B7. It was found that in addition to the structural complexity,
electronic nonadiabatic interactions play significant role on the vibronic structure of
the detachment spectra [34, 35]. A careful look at the two spectra of (D)H2B

−
7 (cf.

panel A of Figure 1 and Figure S1 in Ref. [20]), indicate the change of band shape
upon photodetachment of (D)H2B

−
7 at two different laser sources, 266 nm and 193 nm.

This is a clear indication of a significant role of nonadiabatic effect which is arised
from the closely lying electronic states of (D)H2B7. On the other hand, the diffuse and
broad second experimental band of (D)H2B

−
7 (cf. Figure S1 in Ref. [20]) indicates that

the broadness of the spectrum is not solely dependent on the contribution from the
Ã state. We find that the Ã and B̃ electronic states of (D)H2B

−
7 are energetically very

close (occurs vertically to within ∼0.1 eV). Therefore nonadiabatic interactions between
these states would play crucial role in the detail structure of the detachment spectrum.
Furthermore, Ã and B̃ states of (D)H2B7 possess same spatial symmetry 2A1. Thus in the
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coupled Ã-B̃ state dynamics, the totally symmetric vibrational modes (a1) would play a
dual role of tunning and coupling mode, which is very rare in the literature. Because of
same spatial symmetry of these states, they will also participate in the direct electronic
coupling. The pure electronic coupling between the Ã and B̃ states is calculated by
applying the diabatization scheme and muticonfiguration quasi-degenerate perturbation
theory (MCQDPT). In this way understanding of seemingly simple looking detachment
spectrum of (D)H2B

−
7 becomes quite a challenging task in theoretical study.

In the present chapter, we therefore set out to study the structure and dynamics
of the first five electronic states of the neutral H2B7 cluster. Detailed ab initio elec-
tronic structure calculations are performed to establish a parametrized quasi-diabatic
electronic Hamiltonian of these five states. Using this Hamiltonian quantum nuclear
dynamics calculations are performed subsequently to understand the details of exper-
imental detachment spectrum [20]. The theoretical results are examined in detail to
assess the contribution of vibrational modes and electronic states in the spectrum and
discussed at length in relation to the experimental findings.

6.2 Theoretical framework

6.2.1 The vibronic Hamiltonian

Enenergetically low-lying five electronic states of H2B7 are considered in this study. A
model 5⊗5 vibronic Hamiltonian is constructed in a diabatic electronic basis using di-
mensionaless normal displacement coordinates of the vibrational modes of anionic H2B7.
The equilibrium configuration of the ground state of H2B

−
7 is treated as a reference in

this study. The non-vanishing elements of the 5⊗5 matrix Hamiltonian is determined
by the elementary symmetry selection of the vibronic coupling theory. The equilibrium
ground state geometry of H2B

−
7 belongs to C2v symmetry point group and its twenty

one vibrational modes belong to the follwing irreducible representations (IREPs):

Γ = 8a1 ⊕ 3b1 ⊕ 7b2 ⊕ 3a2. (6.1)

The non-vanishing terms in the matrix Hamiltonian is determined in the linear vibronic
coupling (LVC) scheme by following the symmetry selection rule

Γi ⊗ Γk ⊗ Γj ⊃ ΓA1, (6.2)

where i, j represent the initial and final electronic states, respectively, and k represents
the coupling vibrational mode νi. The non-vanishing quadratic terms are determined by
the following symmetry selection rule:

Γi ⊗ Γk ⊗ Γk
′ ⊗ Γj ⊃ ΓA1, (6.3)
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

where, k and k
′

represent the same or different vibrational modes. Employing above
rules (cf. Eqs. 6.2-6.3) and standard vibronic coupling theory, vibronic Hamiltonian can
be written in a diabatic electronic basis as [39]

H = H01+∆H, (6.4)

where, H0 is the unperturbed Hamiltonian of the reference electronic ground state of
H2B

−
7 and ∆H represents the change in electronic energy upon electron detachment. 1

represents a (5 × 5) unit matrix. The unperturbed Hamiltonian of Eq. 6.4 consists
of kinetic energy part, TN , and potential energy part, V0, of the reference state. The
kinetic energy part can be written in dimensionless normal displacement coordinate rep-
resentation as follows:

TN = −1

2

21∑

i=1

ωi

(
∂2

∂Q2
i

)
, (6.5)

whereas, potential energy part in dimensionless normal displacement coordinate repre-
sentation within the harmonic approximation can be written as:

V0 =
1

2

21∑

i=1

ωiQ
2
i . (6.6)

The ground and first four excited electronic states of H2B7 belong to the X̃2A2, Ã
2A1,

B̃2A1, C̃
2B2 and D̃

2B1 term of the C2v symmetry point group. They result from electron
detachment from the last five occupied molecular orbitals, ... b21, b

2
2, a

2
1, a

2
1, a

2
2 of H2B

−
7 .

The electronic Hamiltonian ∆H can be represented as in Eq. 6.4,

∆H =




WXX WXA WXB WXC WXD

W∗
XA WAA WAB WAC WAD

W∗
XB W∗

AB WBB WBC WBD

W∗
XC W∗

AC W∗
BC WCC WCD

W∗
XD W∗

AD W∗
BD W∗

CD WDD



. (6.7)

The elements of the electronic Hamiltonaian matrix of Eq. 6.7 are expanded in a second-
order Taylor series around the reference equilibrium geometry of Q = 0, as follows:

Wjj = E0
j +

∑

i=a1

κjiQi +
1

2

∑

i=a1,a2,b1,b2

γjiQ
2
i

(6.8)
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and,

Wjk =W∗
kj =

∑

i

λj−k
i Qi, (6.9)

where, j and k, are the electronic state indices and i reprsents the coupling vibrational
modes introduced in Eq. 6.2 (ν1 to ν21). Various Hamiltonian parameters introduced
in Eqs. 6.8-6.9 have the following definitions. The vertical electron detachment energy
of the X̃2A2, Ã

2A1, B̃
2A1, C̃

2B2 and D̃2B1 states are defined by E0
j , where, j= X̃,

Ã, B̃, C̃ and D̃ respecvtively. The quantity κji represents the linear intra-state cou-
pling parameter and γji is the diagonal second-order intra-state coupling parameter of
vibrational mode i in the jth electronic state. The quantity, λj−k

i is linear inter-state
coupling parameter between jth and kth state coupled through ith vibrational mode. The
vibronic Hamiltonian constructed above is utilized below to study vibronic dynamics on
the mentioned electronic states of H2B7. It is noted that the Ã and B̃ electronic states
of H2B7 possess A1 state symmetry. Following the electronic selection rule, it is found
that both these states are also coupled via electronic correlation [54]. So in case of

Ã-B̃ inter-state coupling, the Eq. 6.9 has the following form

Wjk =W∗
kj = R +

∑

i

λj−k
i Qi, (6.10)

where, R is a constant at distorted geometries in Ã-B̃ coupled surface.

6.2.2 Nuclear dynamics

The vibronic energy level spectrum of H2B7 is calculated by a time-independent matrix
diagonalization approach [40] using Fermi’s golden rule equation for the spectral intensity

P (E) =
∑

n

|<Ψf
n|T̂ |Ψi

0>|
2
δ(E − Ef

n + Ei
0), (6.11)

where, P (E) represents spectral intensity. |Ψi
0> and Ψf

n> are the initial and final vi-
bronic states with energy Ei

0 and Ef
n, respectively. The operator T̂ is the transition

dipole operator. The reference electronic ground state |Ψi
0> [ground state of anionic

H2B7] is assumed to be vibronically decoupled from its excited electronic states and is
given by

|Ψi
0〉 = |Φi

0〉|χi
0〉, (6.12)

where |Φi
0〉 and |χi

0〉 represent the electronic and vibrational components of this state,
respectively. This state is assumed to be harmonic and the vibrational component of
the above wavefunction is expressed in terms of the eigenfunctions of reference harmonic
Hamiltonian, TN + V0 (cf. Eqs. 6.5-6.6 ). In the normal coordinate representation of
vibrational modes, the vibrational wavefunction is a direct product of one-dimensional
oscillator function along each mode. The final vibronic state of H2B7 can be expressed
as

|Ψn〉 = |Φm〉|χm
n 〉, (6.13)
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

where the superscriptm represents the X̃2A2, Ã
2A1, B̃

2A1, C̃
2B2, D̃

2B1 electronic states
of H2B7, respectively. With the above definitions the spectral intensity of Eq. 6.11 can
be rewritten as

P (E) =
∑

n

|τm〈χm
n |χ0〉|2δ(E − Ef

n + Ei
0), (6.14)

where,
τm = 〈Φm|T̂ |Φ0〉, (6.15)

represents the transition dipole matrix elements. These are treated as constant assuming
the general applicability of Condon approximation in a diabatic electronic basis [39].

The time-independent Schrödinger equation of the vibronically coupled states is solved
by representing the Hamiltonian (cf. Eq. 6.2) in the direct product harmonic oscillator
(HO) basis of the reference state. The final vibronic states, |Ψf

n〉, can be expressed as

|Ψf
n〉 =

∑

|Ki〉,m

anki,...,kf ,m|Ki〉...|Kf〉|Φm〉. (6.16)

In the above equation the Kth level of the ith vibrational mode is denoted by |Ki〉 and
|Φm〉 denotes the mth electronic state of the interacting electronic manifold of H2B7.
The size of the oscillator basis is chosen based on the numerical convergence of the
vibronic eigenvalue spectrum. The Hamiltonian matrix expressed in a direct product
HO basis is highly sparse, it is tri-diagonalized using Lanczos algorithm [41,42] prior to
the diagonalization. The energetic location of the vibronic levels is given by the resulting
diagonal eigenvalue matrix and the relative intensities are calculated from the squared
first component of the Lanczos eigenvectors [43].

In a time-dependent picture, the spectral intensity is calculated by Fourier transform-
ing the time autocorrelation function of the WP propagating on the final electronic
state [44]

P (E) ≈
2∑

m=1

2Re

∫

0

∞

eiEt/~〈χ0|τ †e−iHT/~τ |χ0〉dt, (6.17)

≈
2∑

m=1

2Re

∫

0

∞

eiEt/~Cm(t)dt, (6.18)

where, Cm = 〈Ψ(0)|Ψ(t)〉, represents the time autocorrelation function of the WP, ini-
tially prepared on the electronic statem. The time-dependent WP propagation is carried
out within the multi-configuration time dependent Hartree (MCTDH) approach devel-
oped by Meyer and coworkers [45–48].
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6.3 Results and discussion

6.2.3 Computational details of electronic structure calculations

The optimized equilibrium geometry of the electronic ground state of H2B
−
7 (the ref-

erence state) is calculated by using second-order Møller-Plesset perturbation theory
(MP2) as well as coupled-cluster singles and doubles (CCSD) method employing the
correlation-consistent polarized valence triple zeta (cc-pVTZ) basis set of Dunning [49].
GAUSSIAN-09 [50] and MOLPRO [51] suite of programs are used for this purpose,
respectively. Rest of the single point electronic energy calculations are performed with
multi-reference configuration interactions (MRCI) method with cc-pVTZ basis set, using
MOLPRO [50] program modules. We performed CASSCF-MRCI vertical detachment
energy (VDE) calculations at the energy minimized structure of H2B

−
7 with (16,13),

(16,12), (14,11), (12,12), (12,11) and (12,10) active spaces to find out the nearest VDE
with the experiment [20]. Among these chosen active spaces, (14,11), (12,11) and (12,10)
active spaces provide the same VDE of ∼3.27 eV, which is in good agreement with the
experimental value [20]. We chose (12,10) active space among these three active spaces
as it is computationally less expensive. The chosen active space includes six valence
orbitals and four virtual orbitals with twelve electrons for H2B

−
7 . The neutral states

have open shell configuration and a (11,10) active space is used to calculate the single
point electronic energies at various distorted geometrices.

The optimized equilibrium structure of the H2B
−
7 in the electronic ground state belongs

to C2v point symmetry group and leads to 1A1 electronic term for this closed shell system.
The equilibrium harmonic vibrational frequencies of the reference state, ωi, are calculated
by diagonalizing the kinematic and ab initio force constant matrix at the same level of
theory. The eigenvectors of the force constant matrix yield the mass-weighted normal
coordinates of the vibrational modes. The latter is transformed to the dimensionless
form Q by multiplying with

√
ωi (in a.u.) [52]. In an analogous way the geometry of

neutral H2B7 in its ground electronic state is optimized. Since this neutral molecule
has open shell configuration, UMP2/cc-pVTZ level of theory is employed to obtain its
optimized structure. The optimized neutral ground state structure of H2B7 also belongs
to the C2v symmetry point group.

6.3 Results and discussion

6.3.1 Ground state electronic structure of anionic and neutral H2B7

The optimized structure of anionic H2B7 and the diagram of highest occupied molecular
orbital (HOMO), HOMO-1, HOMO-2, HOMO-3, HOMO-4 are shown in panels a, b, c,
d, e and f of Fig. 6.1, respectively. We followed the same numbering of atoms of the
optimized structure as depicted in Fig. 2 of Ref. [19]. The results of the equilibrium
geometry of H2B

−
7 , calculated by MP2 and CCSD levels of theory are compared in Table

6.1, along with the available literature data. The molecular orbital (MO) sequence of
H2B

−
7 is ... (2b2)

2, (3b2)
2, (2b1)

2, (9a1)
2, (10a1)

2, (1a2)
2. It can be seen from the MO
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

Table 6.1: Equilibrium configuration of H2B
−
7 at its ground electronic state (1A1) in

C2v point group. Bond length and bond angle are indicated by R and ∠,
respectively and their respective units are Å and degree. The numbering of
atoms are followed from Ref. [19].

Parameter This work Ref. [19]

MP2/cc-pVTZ CCSD/cc-pVTZ B3LYP/6-311++G** CASSCF(4,4)/6-311++G**
CCSD(T)/6-
311++G**

R(B1-B2,3) 1.739 1.760 1.750 1.786 1.773
R(B1-B4,5) 1.606 1.602 1.595 1.597 1.618
R(B4,5-B6,7) 1.533 1.523 1.517 1.509 1.543
R(B2-B3) 1.611 1.603 1.597 1.615 1.620
R(B2-B6) 1.679 1.677 1.673 1.694 1.688
R(B6-H) 1.184 1.186 1.183 1.181 1.190
R(B4-B2) 1.679 1.684 1.676 1.691 1.707
∠B4 − B6 − H 163.102 162.953 162.895 163.756 162.245

diagram of Fig. 6.1 that HOMO-1 (cf. panel c of Fig. 6.1) is the only delocalized σ-MO,
produces σ-aromaticity in the H2B

−
7 . On the other hand, π-MOs of the H2B

−
7 cluster give

rise to π-antiaromaticity on the system. The frequency values of the vibrational modes
(within harmonic approximation) at the MP2/cc-pVTZ and CCSD/cc-pVTZ level of
theory, are given in Table 6.2. Available literature data are also included in the table.
The latter results are in very good agreement with the present results. In an analogous
way the geometry of neutral H2B7 in its ground electronic states is optimized. The
optimized structure of H2B7 also belongs to C2v symmetry point group. The optimized
equlibrium structural parameters of the anionic and neutral ground state of H2B7 com-
puted at (U)MP2/cc-pVTZ level of theory are given in Table 6.3 to make the comparison
easier. After removal of one electron from HOMO, HOMO-1, HOMO-2, HOMO-3 and
HOMO-4, produces X̃2A2, Ã

2A1, B̃
2A1, C̃

2B1 and D̃2B2 electronic states of H2B7. A
careful look at the panel b of Fig. 6.1 indicates that the HOMO of H2B

−
7 is a π-bonding

type of MO and (B4, B6, B2) and (B5, B3, B7) atoms are involved to make this MO.
Therfore, removal of one electron from this MO alters the geometry parameters com-
pared to those of the anionic equilibrium structure. The overall bonding character of the
ground state of the neutral H2B7 decreases compared to the anion as revealed by increase
of bond lengths (cf. Table 6.3). The calculated VDEs of the above mentioned electronic
states of H2B7 are given in Table 6.4 and compared with the reported literature data.

6.3.2 Hamiltonian parameters

All the Hamiltonian parameters defined in Eqs. 6.8-6.9 are derived by performing ex-
tensive ab initio calculations of electronic energies by taking H2B

−
7 energy minmized

ground state configuration [cf. Fig. 6.1(a)] as a reference. As mentioned earlier that the
calculations are carried out by CASSCF-MRCI ab initio quantum chemistry methods
employing the cc-pVTZ basis set. The calculated ab initio electronic energies are then
fit to the adiabatic form of the diabatic electronic Hamiltonian of Eq. 6.7 to estimate
these parameters. The linear and quadratic intra-state coupling parameters of totally
symmetric (a1) vibrational modes of X̃2A2, Ã

2A1, B̃
2A1, C̃

2B2 and D̃2B1 electronic
states of H2B7 are given in Table 6.5. The quadratic intra-state coupling parameters
of non-totally symmetric vibrational modes (a2, b1 and b2) are given in Table 6.6. The
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(a) C2v (1A1)

(b) HOMO (1a2)

(c) HOMO-1 (10a1)
(d) HOMO-2 (9a1)

(e) HOMO-3 (3b2) (f) HOMO-4 (2b1)

Figure 6.1: Equilibrium geometry of the optimized electronic ground state of H2B
−
7 is

shown in panel a. The highest occupied molecular orbital (HOMO), HOMO-
1, HOMO-2, HOMO-3 and HOMO-4 are shown in panels b, c, d, e and f,
respectively.

linear inter-state coupling parameters are tabulated in Table 6.7. We note that the
construction of several two-states model through the coupling vibrational modes are
performed to evaluate the inter-state coupling parameters.
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

Table 6.2: Symmetry and harmonic frequencies (in cm−1) of vibrational modes of the
ground electronic state of H2B

−
7 .

Vibrational This work Ref. [19]
mode MP2/cc-pVTZ CCSD/cc-pVTZ B3LYP/ CASSCF(4,4)
(symmetry) cm−1 (eV) 6-311++G** 6-311-G**
ν1 (a1) 2721 (0.3374) 2698 2686 2766
ν2 (a1) 1298 (0.1609) 1336 1312 2042
ν3 (a1) 1199 (0.1486) 1239 1210 932
ν4 (a1) 873 (0.1082) 867 858 794
ν5 (a1) 754 (0.0934) 769 754 726
ν6 (a1) 691 (0.0856) 696 683 642
ν7 (a1) 582 (0.0722) 584 566 567
ν8 (a1) 373 (0.0462) 386 381 398

ν9 (a2) 713 (0.0884) 731 731 809
ν10 (a2) 456 (0.0566) 473 471 480
ν11 (a2) 250 (0.0310) 248 258 174

ν12 (b1) 707 (0.0876) 708 705 764
ν13 (b1) 449 (0.0556) 464 469 485
ν14 (b1) 161 (0.0199) 165 168 166

ν15 (b2) 2718 (0.3370) 2694 2684 2762
ν16 (b2) 1322 (0.1639) 1320 1314 1381
ν17 (b2) 1123 (0.1393) 1140 1128 1362
ν18 (b2) 903 (0.1120) 917 897 1151
ν19 (b2) 779 (0.0965) 783 767 882
ν20 (b2) 644 (0.0799) 650 641 809
ν21 (b2) 531 (0.0659) 527 521 523

According to the symmetry selection rule of Eq. 6.2, only the totally symmteic
modes are allowed for the intra-state vibronic coupling and the Huang-Rhys param-

eter,
(

κ2
i

2ω2
i

)
defines a measure of the strength of this coupling in first-order. The value of

these parameters are given in the parentheses in the Table 6.5. The coupling parameters
of Table 6.5 reveal that the symmetric vibrational mode ν4 is active in all electronic
states, excluding Ã2A1 state. Whereas, ν7 vibrational modes is active in Ã2A1 and
B̃2A1 electronic states. The moderate to higher activity of ν2 is found in C̃2B2 and
X̃2A2 electronic states, respectively. The vibrational mode ν8 is active in the X̃2A2,
C̃2B2 and D̃

2B1 states. Although a moderate activity of ν1 is found in all five electronic
states, it is expected that this mode has less impact on the dynamics at the low-energy
region due its higher frequency. The vibrational modes, ν2, ν7, ν7, ν4 and ν4 possess the
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6.3 Results and discussion

Table 6.3: Equilibrium configuration of H2B
−
7 and H2B7 at their electronic ground state

(1A1 and 2A2 , respectively). They belong to the C2v symmetry point group.
Bond length and bond angle are indicated by R and ∠, respectively, and their
respective units are Å and degree. The numbering of atoms is given in Fig.
6.1(a).

Parameter This work
MP2/cc-pVTZ UMP2/cc-pVTZ

R(B1-B2,3) 1.739 1.767
R(B1-B4,5) 1.606 1.590
R(B4,5-B6,7) 1.533 1.561
R(B2-B3) 1.611 1.710
R(B2-B6) 1.679 1.175
R(B6-H) 1.184 1.186
R(B4-B2) 1.679 1.729
∠B4− B6−H 163.102 161.790

Table 6.4: Vertical electron detachment energies of first five electronic states of H2B7

evaluated by CAS(12,10)SCF/MRCI/cc-pVTZ level of theory. Units are given
in eV.

State This work Ref. [20]
H2B7 Experiment Theory

X̃2A2 3.27 3.49 3.47

Ã2A1 4.50

B̃2A1 4.56

C̃2B2 5.46

D̃2B1 5.63

highest activity in the X̃2A2, Ã
2A1, B̃

2A1, C̃
2B2 and D̃2B1 electronic states of H2B7,

respectively. So, it can be concluded from this discussion that ν2, ν4, ν7 nad ν8 vibra-
tional modes may have the major contribution in the dynamics of the H2B7 than the
other totally symmetric vibrational modes.

The quadratic intra-state coupling parameters are related with the curvature of the
PESs. Hence, the frequencies of the electronic states of H2B7 depend on these quadratic
coupling paramters. The negative sign of the parameter indicates the frequency reduc-
tion and positive sign of the parameter indiactes an increase in frequency of a vibrational
mode in a given electronic state. The quadratic intra-mode intra-state coupling param-
eters (γji ) for five electronic states ae given in Table 6.5 and Table 6.6, respectively, for
totally symmetric and non-totally symmetric vibrational modes. The data presented in
Table 6.5 reveal an increase in frequency of toatlly symmetric vibrational modes in the
vibronic dynamics of X̃2A2, B̃

2A1 and D̃
2B1 (except ν6) states and both an increase and
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

Table 6.5: Linear intra-state vibronic coupling parameters (κji ) and quadratic intra-
state vibronic coupling parameters (γji ) of the totally symmetric vibrational
modes (ν1-ν8) in X̃2A2, Ã

2A1, B̃
2A1, C̃

2B2 and D̃2B1 electronic states of
H2B7 derived at CAS(12,10)SCF/MRCI quantum mechanical methods with
the cc-pVTZ basis set. All parameters are given in eV unit.

Mode κji

(
(κj

i)
2

2ω2
i

)
γji κji

(
(κj

i)
2

2ω2
i

)
γji

X̃2A2 Ã2A1

ν1 0.1806 (0.143) 0.1320 0.1456 (0.093) 0.1241
ν2 0.1836 (0.651) 0.0162 -0.0324 (0.020) -0.0235
ν3 -0.0350 (0.028) 0.0133 0.0101 (0.002) -0.0123
ν4 0.1036 (0.458) 0.0124 0.0014 (0.000) -0.0138
ν5 0.0228 (0.030) 0.0748 0.0063 (0.003) -0.0197
ν6 -0.0353 (0.085) 0.0097 -0.0125 (0.011) -0.0557
ν7 0.0192 (0.035) 0.0031 -0.0863 (0.714) -0.0107
ν8 -0.0250 (0.146) 0.0035 -0.0204 (0.097) 0.0036

B̃2A1 C̃2B2

ν1 0.1902 (0.159) 0.0275 0.1924 (0.163) 0.0199
ν2 0.0136 (0.004) 0.0505 0.1219 (0.287) 0.0056
ν3 0.0501 (0.057) 0.0356 0.0237 (0.013) -0.0049
ν4 -0.0492 (0.103) 0.0246 -0.1088 (0.506) 0.0148
ν5 0.0144 (0.012) 0.1025 0.0552 (0.175) 0.0212
ν6 0.0131 (0.012) 0.1103 -0.0452 (0.139) -0.0006
ν7 -0.0482 (0.223) 0.0176 -0.0033 (0.001) -0.0040
ν8 -0.0054 (0.007) 0.0079 0.0329 (0.253) 0.0030

D̃2B1

ν1 0.1662 (0.121) 0.0180
ν2 0.0414 (0.033) 0.0015
ν3 -0.0740 (0.124) 0.0005
ν4 0.1935 (1.599) 0.0167
ν5 0.0424 (0.103) 0.0699
ν6 -0.1197 (0.978) -0.0040
ν7 -0.0155 (0.023) 0.0045
ν8 0.0261 (0.160) 0.0017
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6.3 Results and discussion

Table 6.6: Quadratic intra-state vibronic coupling parameters (γji ) along the coupling
vibrational modes (ν9-ν21) in the X̃2A2, Ã

2A1, B̃
2A1, C̃

2B2 and D̃2B1 elec-
tronic states of H2B7 derived at CAS(12,10)SCF/MRCI quantum mechanical
methods with the cc-pVTZ basis set. All parameters are given in eV unit.

Vibrational
modes

Electronic states

(symmetry) X̃2A2 Ã2A1 B̃2A1 C̃2B2 D̃2B1

ν9 (a2) 0.0735 0.0713 0.0980 0.0912 0.0898
ν10 (a2) -0.0090 -0.0075 0.0133 -0.0201 -0.0114
ν11 (a2) 0.0147 0.0116 0.0079 0.0068 0.0104
ν12 (b1) 0.0988 0.0958 0.1001 0.0985 0.0914
ν13 (b1) 0.0034 -0.0113 0.0021 0.0032 0.0029
ν14 (b1) -0.0131 0.0125 0.0209 0.0174 -0.0096
ν15 (b2) 0.1397 0.1384 0.1386 0.1405 0.1356
ν16 (b2) 0.0124 -0.0093 -0.0015 0.0249 0.0124
ν17 (b2) -0.0065 -0.0014 -0.0076 -0.0035 0.0074
ν18 (b2) 0.0102 -0.0325 -0.0168 0.0134 -0.0002
ν19 (b2) 0.0379 0.0194 0.0230 0.0284 0.0336
ν20 (b2) 0.0336 0.0044 0.0464 0.0406 0.0338
ν21 (b2) 0.0141 0.0043 0.0125 0.0136 0.0149

decrease of these frequencies in the dynamics of Ã2A1 and C̃2B2 states. A similar anal-
ogy follows from the data given in Table 6.6, for the non-totally symmetric vibrational
modes.

The linear inter-state coupling
(
λj−k
i

)
between two different states via vibrational

modes are governed by the symmetry selection rule presented in Eq. 6.2. The inter-state

coupling values along with their symmetry and excitation strength

(
(λi−j

i )
2

2ω2
i

)
are pre-

sented in Table 6.7. The data presented in Table 6.7 reveal a strong inter-state coupling
between X̃2A2-Ã

2A1 states through ν11 vibrational mode, whereas, X̃2A2-B̃
2A1 states

are moderately coupled via ν10 vibrational mode. A strong coupling between Ã2A1-
B̃2A1 states is observed through symmetric vibrational modes ν5, ν6 and ν8. The VDEs
presented in Table 6.4 reveal that these states are energetically close. The coupling be-
tween the Ã2A1 and B̃

2A1 states with the C̃2B2 state via b2 symmetric vibrational modes
is also strong, while the same with the D̃2B1 state via b1 symmetric vibrational mode is
weak. Although C̃2B2 and D̃2B1 states are energetically very close (cf. Table 6.4), the
coupling between these two states are weakly coupled via ν10 vibrational mode. We note
that inter-state coupling between the X̃2A2-Ã

2A1, X̃
2A2-B̃

2A1 and Ã
2A1-B̃

2A1 coupled
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

states are discussed in detail below.

6.3.3 Adiabatic potential energy surfaces

One dimensional cuts of the adiabatic potential energy surfaces (PESs) of the X̃2A2,

Ã2A1, B̃
2A1, C̃

2B2 and D̃2B1 electronic states of H2B7 are plotted along normal dis-
placement co-ordinate of symmetric vibrational modes (ν1-ν8) in Fig. 6.2. In this fig-
ure, points represent the calculated ab initio electronic energies by the CASSCF-MRCI
method. The superimposed solid lines represent the potential energies obtain from the
vibronic model using the respective parameters of Tables 6.4-6.5. It can be seen from the
figure that the calculated ab initio points are well reproduced by the constructed vibronic
model presented in section 6.2.1. The ab initio adiabatic energies of the above electronic
states of H2B7 are calculated at the CASSCF-MRCI level of theory in the coordinate
range -5.0≤Q≤5.0, along all vibrational mode. Among eight symmetric vibrational
modes, the Condon activity of ν2 and ν4 are stronger in the X̃2A2 electronic state and
in Ã2A1 electronic state, ν7 vibrational mode has the strongest Condon activity. A mild
Condon activity of ν7, ν1 and ν4 vibrational modes is found in the B̃2A1 state, while
a stong Condon activity of ν4 vibrational mode is found in both C̃2B2 and D̃2B1 elec-
tronic states. A comparable Condon activity of ν6 with the ν4 vibrational mode is also
found in the D̃2B1 electronic state. Analysis of the results of Table 6.5 indicates that
the coupling strength ν4 vibrational mode is moderate to high in all electronic states of
H2B7, except in Ã

2A1 electronic state. The strong Condon activity of a vibrational mode
results into a larger shift of the equilibrium minimum of the given electronic state along
its co-ordinate relative to the reference equilibrium minimum at Q=0 and the direction
of shift of the energy minima depends on the sign of the first-order intra-state coupling
(κi), which defines the slope of the curve at Q=0. For example, the shift of the energy

minimum of the X̃2A2 and D̃2B1 electronic states occur in the negative direction from
the reference equilibrium minimum at Q=0 along Q4 dimensionless normal coordinate
(cf. panel d in Fig. 6.2), whereas the same for C̃2B2 occurs in the positive direction (cf.
panel d in Fig. 6.2).

It is clear from Fig. 6.2 that the ground electronic state of H2B7 is well separated
from the other electronic states at the Franck-Condon region, while beyond the Franck-
Condon zone, at larger distance it bcomes energetically very close (sometimes crosses)

with both Ã2A1 and B̃2A1 states. On the other hand, Ã2A1 and B̃2A1, C̃
2B2 and

D̃2B1 electronic states are vertically very close with each other (cf. Table 6.4) and
the crossing of each pair of states are observed near the Franck-Condon region. These
crossings acquire the topography of conical intersection (CI) in the multi-dimensions.
Energetic minimum of the seam of various CIs and equilibrium minimum of electronic
states are estimated within a quadratic vibronic coupling model using the parameters
of Tables 6.4-6.5 and given in Table 6.8. In the latter, diagonal and off-diagonal entries
represent the equilibrium minimum of a state and the minimum of the seam of CIs,
respectively. We note that a constrained minimization by Lagrangian multiplier methods
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6.3 Results and discussion

Table 6.7: Linear interstate coupling parameters (λj−k
i ) of the relevant electronic states

of the H2B7 derived at at CAS(12,10)SCF/MRCI quantum mechanical meth-
ods with the cc-pVTZ basis set. All parameters are given in eV unit.

Coupled Vibrational

states mode (symmetry) λ
j−k
i

(

λj−k
i

)2

2ω2
i

X̃Ã ν9 (a2) 0.0707 0.3198

ν10 (a2) 0.0571 0.5089
ν11 (a2) 0.0680 2.4058

X̃B̃ ν10 (a2) 0.0906 1.2811

X̃C̃ ν12 (b1) 0.1065 0.7390

ν14 (b1) 0.1637 33.8346

X̃D̃ ν20 (b2) 0.0527 0.2175

ÃB̃ ν1 (a1) 0.0832 0.0304

ν2 (a1) 0.1119 0.2418
ν3 (a1) 0.0888 0.1785
ν4 (a1) 0.0780 0.2598
ν5 (a1) 0.1193 0.8157
ν6 (a1) 0.1074 0.7870
ν7 (a1) 0.0669 0.4290
ν8 (a1) 0.0573 0.7690

ÃC̃ ν15 (b2) 0.3780 0.6290

ν16 (b2) 0.3770 2.6454
ν17 (b2) 0.3307 2.8180
ν18 (b2) 0.3984 6.3266
ν19 (b2) 0.3872 8.0498
ν20 (b2) 0.3331 8.6901
ν21 (b2) 0.2131 5.2284

ÃD̃ ν13 (b1) 0.3211 16.6763

B̃C̃ ν15 (b2) 0.1711 0.1289

ν16 (b2) 0.2069 0.7968
ν17 (b2) 0.1588 0.6498
ν18 (b2) 0.2292 2.0939
ν19 (b2) 0.1857 1.8516
ν21 (b2) 0.0722 0.6002

C̃D̃ ν10 (a2) 0.0420 0.2753
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster
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Figure 6.2: Adiabatic potential energy curves of the X̃2A2, Ã
2A1, B̃

2A1, C̃
2B2 and

D̃2B1 electronic states of H2B7 along the dimensionless normal coordinates
of totally symmetric vibrational modes. Potential energies obtained from the
present vibronic model using the CASSCF-MRCI parameter values of Tables
6.4-6.5 and calculated ab initio points by the same method are shown by the
solid lines and points in the diagram, respectively.

as implemented in Mathematica software [53] is used to derived the minimum energy
and positions of the seams of CIs. Energetic location of these stationary points on a
state governs the mechanistic details of nuclear dynamics on it. It can be seen from
the stationary points given in Table 6.8 that X̃-Ã CI (∼4.80 eV) is quite close to the

minimum of the Ã (∼4.40 eV) state. A quasi-degeneracy can be seen between the
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6.3 Results and discussion

Table 6.8: Estimated equilibrium minimum (diagonal entries) and minimum of the seam
of various CIs (off-diagonal entries) of the electronic states of H2B7 quadratic
vibronic coupling model. All quantities are given in eV.

X̃2A2 Ã2A1 B̃2A1 C̃2B2 D̃2B1

X̃2A2
3.075 4.796 6.391 7.638 8.739

Ã2A1 - 4.405 4.482 5.932 6.038

B̃2A1 - - 4.480 5.503 5.335

C̃2B2 - - - 5.277 5.412

D̃2B1 - - - - 5.316

minimum of Ã-B̃ CI (∼4.48 eV) with the minimum of B̃ (∼4.48 eV) state. The minimum

of the C̃-D̃ CIs is ∼0.096 eV above the minimum of the and D̃ state. On the other hand,
a quasi-degeneracy exists between the B̃-D̃ CIs (∼5.33 eV) and the energy minimum of

D̃ (∼5.32 eV) state. From the data presented in Tables 6.4, 6.7 and 6.8, it is expected

that there will be some impact of the X̃-Ã and X̃-B̃ coupling on the nuclear dynamics
of the X̃ state, despite X̃ is vertically >1.0 eV below compare to Ã and B̃ states. The
quasi-degeneracy between the Ã-B̃ CIs and energy minimum of B̃ state and the near
degenerate VDEs of Ã (∼4.50 eV) and B̃ (∼4.56 eV) states would have strong coupling
effects on the dynamics of both these states.

6.3.4 Vibronic dynamics on the coupled X̃-Ã-B̃ states of H2B7 and

the effect of nonadiabatic coupling

Effect of X̃-Ã and X̃-B̃ inter-state coupling on the uncoupled X̃ state dynamics

In order to understand the detailed vibronic dynamics on the X̃2A2-Ã
2A1-B̃

2A1 coupled
states of H2B7 and the effect of nonadiabatic coupling on the uncoupled states, we
systematically carried out several reduced dimensional calculations. The two bands in
the recorded detachment spectrum of (D)H2B

−
7 [20] are assigned to X̃ and Ã electronic

states of H2B7 only. However, it will be seen below that the second band is a composite
of Ã and B̃ states and as discussed above the nonadiabatic effect is particularly strong
between these states (cf. Table 6.7). The effect nonadiabatic interaction between the X̃-

Ã and X̃-B̃ electronic states on the uncoupled spectra of these states are shown in Fig.
6.3. The uncoupled spectra calculated with totally symmetric modes (ν1-ν8) is shown in

panel a of Fig. 6.3, whereas parital X̃-Ã coupled states spectra with totally symmetric
modes plus one coupling mode ν10 and ν11 are shown in panels b and c, respectively,
in the same figure. The partial X̃-B̃ coupled states spectra with totally symmetric
modes plus coupling mode ν10 is shown in panel d of Fig. 6.3. The calculations are
carried out by the matrix diagonalization approach as discussed in section 6.2.2. The
numerical details of these calculation are given in Table 6.9. The symmetric mode
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

Table 6.9: Normal mode combinations, sizes of the primitive and single particle bases
used in the MCTDH calculations for the coupled X̃ − Ã− B̃ electronic states
of H2B7 .

Normal modes Primitive basis SPF basis [X̃, Ã, B̃, C̃]
(ν1, ν2, ν7, ν8, ν11) (12, 14, 12, 12, 16) [8, 7, 7]

(ν4, ν10) (10, 10) [6, 5, 5]
(ν3, ν5, ν6, ν9) (6, 6, 8, 8) [4, 4, 4]

spectrum shown in panel a reveals dominant excitation of vibrational modes ν2 and
ν4. A moderate excitation of ν8 and ν6 vibrational modes is also found from the
spectrum of panel a. Excitation of ν3, ν5 and ν7 vibrational modes is weak in the
ground state spectrum of H2B7. Despite, a moderate excitation strength (Huang-Rhys
factor, cf. Table 6.5), excitation of ν1 vibrational mode is not found in the low energy
of part of the spectrum. The excitation of various totally symmetric modes is on par
with the Huang-Rhys parameters presented in Table 6.5. Analysis of the uncoupled
ground state spectrum of H2B7 (cf. panel a of Fig. 6.3) and block-improved relaxation
calculations [36–38] reveal the location of the fundamental of ν8, ν7, ν6, ν4, ν5, ν3 and
ν2 at ∼386 cm−1, ∼595 cm−1, ∼728 cm−1, ∼921 cm−1, ∼1011 cm−1, ∼1251 cm−1 and
∼1361 cm−1, respectively, from the 000 line. The vibronic wavefunction density plots of
these fundamental progressions are shown in panels a, b, c, e, f, h and k of Fig. 6.4. In
these panels a nodal plane is observed along the respective normal coordinate, which
indicates the fundamental of that particular mode. The excitation of first overtone of
ν8, ν7 and ν6 is obtained within ∼1500 cm−1 from the 000 line due to their low frequency
values in the reference ground electronic state of H2B

−
7 . The relative intensity of the

overtones of ν8 and ν6 vibrational modes is higher compared to ν7. This is in good
agreement with Huang-Rhys parameters presented in Table 6.5. The first overtone of
ν8 and ν6 is found at ∼773 cm−1 and ∼1457 cm−1, respectively. The wavefunction
density plots othese overtones are shown in panel d and l of Fig. 6.4. Combination
levels of ν8 with ν6 and ν4 are also found from this spectrum at ∼1115 cm−1 and ∼1308
cm−1. The corresponding wavefunction density plots are shown in panels g and i of Fig.
6.4. The combination peak of ν6 and ν7 is found at ∼1323 cm−1 (cf. panel j of Fig.
6.4). The fundamental of ν1 is found at ∼3210 cm−1.

The effect of X̃-Ã and X̃-B̃ coupling via ν10 and ν11 modes of a2 symmetry is shown
in panels b, c and d in Fig. 6.3. The immediate effects of these couplings are reduction
of peak intensities and the increase of number of stick lines, which makes the spectra of
panels b, c and d more diffuse and broader than the spectrum of panel a (totally symmet-
ric mode spectrum) in Fig. 6.3. This is the consequence of nonadiabatic coupling due to
a2 vibrational modes. As a result of this, the relative intensity of the totally symmetric
vibrational modes decrease compared to the uncoupled spectra shown in panel a of Fig.
6.3. We note that realtive intensity of each panel has same initial and final value. The
reduced dimensional results of Fig. 6.3b indicate fundamental progression of ν10 at ∼399
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Figure 6.3: Vibrational energy level spectrum of the electronic ground X̃2A2 state and
excited Ã2A1 and B̃

2A1 states of H2B7 calculated with eight totally symmet-
ric vibrational modes (panel a) and eight totally symmetric modes along with

one coupling mode, via X̃-Ã in panels b, and c, and via X̃-B̃ coupling in
panel d, respectively. The coupled Ã-B̃ states spectrum is shown in panel e.
The theoretical stick spectrum in each case is convoluted with a Lorentzian
function of 20 meV FWHM to calculate the spectral envelope (see the text
for details). The intensity in arbitary units is plotted as a function of the

energy of the vibronic levels of X̃2A2 state. The zero of energy corresponds
to the equilibrium minimum of the ground state of the neutral molecule.
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

cm−1 and it forms combination peaks with ν4 and ν2 at ∼1322 cm−1 and ∼1760 cm−1,
respectively. The wavefunction density plots of these vibronic energy levels are shown
in panels a, b and c of Fig. 6.5. A quenching of the excitation of ν8 vibrational mode
is found here due to the inter-state (X̃-Ã) coupling via ν10 vibrational mode. Similarly,
the reduced dimensional results of Fig. 6.3c indicates the excitation of ν11 fundamental
at ∼282 cm−1 and its combination with ν4 and ν2 vibrational modes at ∼1205 cm−1 and
∼1643 cm−1, respectively. One quantum excitation of both ν6 and ν11 vibrational modes
(a combination peak) is also observed at ∼1015 cm−1. The wavefunction density plots
of the excited levels of vibrational modes of ν11, ν6 and ν2 are shown in panels d, e and
f of Fig. 6.5, respectively. These reduced dimensional calculations indicate quenching
of the excitation of ν8 vibrational mode upon inclusion X̃-Ã coupling. In case of X̃-
B̃ coupled states only ν10 vibrational mode is active and the effect of X̃-B̃ coupling via
this mode on both X̃ and B̃ states is shown in panel d of Fig. 6.3. The fundamentals of
ν10, ν7, ν4, ν3 and ν2 vibrational modes in spectrum Fig. 6.3d are found at ∼375 cm−1,
∼595 cm−1, ∼923 cm−1, ∼1247 cm−1 and ∼1361 cm−1, respectively. This vibrational
mode (ν10) forms combination peaks with ν7, ν4, ν3 and ν4 vibrational modes at ∼970
cm−1, ∼1298 cm−1, ∼1623 cm−1 and ∼1737 cm−1. The wavefuntion density plots of
the combination peaks of ν10 with the ν7, ν3 and ν2 are shown in panels j, k and l of
Fig. 6.5, respectively. In conclusion, one can say that the effect of totally symetric
modes on the X̃ state dynamics are reduced by the coupling vibrational modes. The
coupling modes form combination peaks mainly with the ν2 and ν4 totally symmetric
modes. In some cases, these coupling modes also form combination peaks with the ν3,
ν6 and ν7 totally symmetric modes. The activity of ν8 vibrational mode is quenched by
all coupling vibrational mode.

Effect of X̃-Ã, X̃-B̃ and Ã-B̃ inter-state coupling on the uncoupled Ã and

B̃ state dynamics

The uncoupled state spectra of Ã and B̃ states of H2B7 shown in panel a of Fig. 6.3
reveal that the location of the fundamental of ν8, ν6, ν7, ν5, ν4, ν3, ν2 and ν1 at ∼387
cm−1, ∼408 cm−1, ∼537 cm−1, ∼669 cm−1, ∼815 cm−1, ∼1148 cm−1, ∼1199 cm−1 and
∼3183 cm−1, respectively in the Ã state spectrum. The 000 line of the Ã state occurs
at its adiabatic detachment position at ∼4.56 eV. Whereas, the fundamental of ν8, ν7,
ν4, ν6, ν5, ν3, ν2 and ν1 appears at ∼403 cm−1, ∼649 cm−1, ∼967 cm−1, ∼1044 cm−1,
∼1091 cm−1, ∼1334 cm−1, ∼1487 cm−1 and ∼2830 cm−1, respectively, in the B̃ state
spectrum. The assignment of these vibrational progressions are confirmed by block-
improved releaxation calculations [36–38] of the vibronic wavefunctions. A dominant
progression of ν7 vibrational mode is observed in the both the states, which is in good
agreement with the Huang-Rhys parameters given in Table 6.5. On the other hand,
a moderate exciation of ν8, ν6 and ν1 vibrational modes in Ã state and ν4, ν3 and
ν1 vibrational modes in B̃ state is observed. The vibronic wavefunction density plots of
the first overtone of ν8 and ν7, combination peaks between ν7-ν8, ν6-ν7 and ν5-ν8 and the
fundamental of ν2 are found in the uncoupled Ã state dynamics at ∼773 cm−1, ∼1076
cm−1, ∼924 cm−1, ∼945 cm−1, ∼1056 cm−1 and ∼1199 cm−1, respectively, are shown in
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Figure 6.4: Assignments of fundamental of ν8, ν7, ν6, ν4, ν5, ν3 and ν2 vibrational modes
on the ground state dynamics of H2B7 are shown in panels a, b, c, e, f, h
and k, respectively. First overtone of ν8 and ν6 vibrational modes and the
combination band between ν6-ν8, ν4-ν8 and ν6-ν7 vibrational modes on the
ground state dynamics of H2B7 are also shown in panels d, l, g, i and j,
respectively, following the reduced dimensional calculations as mentioned in
section 6.3.4.
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

panels a, e, b, c, d and f of Fig. 6.6. Similarly in the uncoupled B̃ state dynamcs, the
first overtone of ν7 and ν4, fundamental of ν3 and combination peaks between ν4-ν7, ν3-
ν7 and ν3-ν4 are found at ∼1299 cm−1, ∼1934 cm−1, ∼1334 cm−1, ∼1616 cm−1, ∼1984
cm−1 and ∼2301 cm−1, respectively. The wavefunction desity plots of these vibrational
progressions are shown in panels g, j, h, i, k and l, respectively, in Fig. 6.6.
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Figure 6.5: Assignments of fundamental of ν10 and its combination peaks with ν4 and
ν2 vibrational modes on the X̃ state dynamics coupled with Ã state (through
ν10 vibrational mode) are shown in panels a, b and c, respectively. Similarly
the assignment of the fundamental of ν11 and its combination peaks with
ν6 and ν2 vibrational modes on the X̃ state dynamics coupled with Ã state
(through ν11 vibrational mode) are shown in panels d, e and f, respectively.

The combination peaks between ν10 and ν7, ν3 and ν2 on the X̃ state dy-
namics coupled with B̃ state (through ν10 vibrational mode) are shown in
panels j, k and l, respectively.
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Figure 6.6: Assignments of first overtone of ν8 and ν7, combnation peaks between ν7-ν8,
ν6-ν7 and ν5-ν8 and fundamental of ν2 vibrational modes on the uncoupled
Ã dynamics of H2B7 are shown in panels a, e, b, c, d and f respectively.
Assignments of first overtone of ν7 and ν4, fundamental of ν3 and combnation
peaks between ν4-ν7, ν3-ν7 and ν3-ν4 vibrational modes on the uncoupled
B̃ dynamics of H2B7 are shown in panels g, j, h, i, k and l respectively.
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

The effect of X̃-Ã interstate coupling through ν10 and ν11 vibrational modes on the
Ã state dynamics is shown in panels b and c of Fig. 6.3. The consequences of this
interstate coupling on the spectra is already discussed in the previous section. Now,
we only focus on the results of these calculations. The fundamental excitation of the
participated coupling vibrational modes, ν10 and ν11, are found at ∼399 cm−1 and ∼282
cm−1 in panels b and c of Fig. 6.3. The relative intensities of the ν5, ν4 and ν2 mode is
decreased, whereas the excitation of the ν8 and ν6 vibrational modes are quenched due to
the interstate coupling between X̃ and Ã electronic states via ν10 vibrational mode. On
the other hand, a noticeable excitation of ν7 and ν3 vibrational modes is observed and
these modes form combination peaks with the coupling ν10 vibrational mode in the X̃-
Ã coupled state dynamics. Similar analysis with ν11 vibrational mode shows a quenching
of the excitation of ν8 vibrational mode and combination peaks of ν11 vibrational mode
with the other totally symmetric modes. Previously it is noticed that the excitation of
ν8 vibrational mode is quenched in both X̃ and Ã state in the coupled states results. In
case of X̃-B̃ coupled states dynamics via ν10 vibrational mode, a noticeable excitation of
ν8 vibrational mode is observed in the B̃ state. The other totally symmetric vibrational
modes are also active in the B̃ state in the X̃-B̃ coupled states dynamics. Both the Ã and
B̃ states possess same spatial symmtery 2A1. As a result of this a pure electronic coupling
between these two states exists, which is very rare in the literature. We calculated
this electronic coupling by using multiconfiguration quasidegenerate perterbation theory
(MCQDPT) with cc-pVTZ basis set. Gamess programing package [55] is used for this
purpose. The value of this electronic coupling is ∼67 cm−1 (0.0084 eV). As both states
has the same spacial symmetry, totally symmetric vibrational modes (ν1-ν8) take part
in the interstate coupling. The fundamental progression of the ν8, ν7, ν4, ν3, and ν2 are
found at ∼396 cm−1, ∼706 cm−1, ∼856 cm−1, ∼1211 cm−1 and ∼1276 cm−1 in the
Ã-B̃ coupled state dynamics. The fundamentals of the ν5 and ν6 vibrational modes are
found with very less intensity, which is in accordance with their intrastate excitation
strength (cf. Table 6.5), whereas due to their higher interstate coupling activity (cf.
Table 6.7), a frequency shift of the other vibrational modes is observed compared to the
uncoupled spectrum. Several combination peaks correspond simultaneous excitations of
ν7-ν8, ν4-ν8, ν4-ν7, ν3-ν8, ν3-ν2, ν3-ν7, ν2-ν7, ν3-ν4, ν2-ν4 and ν2-ν3 are found at ∼1103
cm−1, ∼1250 cm−1, ∼1561 cm−1, ∼1606 cm−1, ∼1670 cm−1, ∼1916 cm−1, ∼1982 cm−1,
∼2069 cm−1, ∼2129 cm−1 and ∼2481 cm−1.

Overall X̃-Ã-B̃ coupled states spectra

The vibronic spectrum of the X̃2A2-Ã
2A1-B̃

2A1 coupled states of H2B7 is calculated us-
ing three-states Hamiltonian (given in the section 6.2.1) with relevant vibrational modes
(ν1-ν11) and the CASSCF-MRCI parameter set given in Tables 6.5,6.6 and 6.7 is shown
in Fig. 6.7. In the latter, the experimental result of Wang and coworkers [20] is shown
in panel a. Both the experimental recording at 193 nm and 266 nm photon are shown
in panel a with little smoothening. The theoretical results obtained by the wavepacket
propagation method in the MCTDH framework [48] and the matrix diagonalization
method are shown in panels b and c, respectively. It can be seen from Fig. 6.7 that the
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Figure 6.7: Spectrum generated due to the X̃-Ã-B̃ coupled surface dynamics by time-
dependent and time-independent quantum chemistry methods are shown in
panel b and c, respectively. The experimental photoelectron spectrum of
H2B

−
7 is regenerated from Ref. [20] is shown in panel a. The relative intensity

(in arbitary units) is plotted as a function of the energy (relative to the
ground state of H2B

−
7 ) of the final vibronic states.

results obtained by two different theoretical methods are consistent with each other and
are in well accord with the envelopes recorded in the experiment. The numerical details
of the matrix diagonalization and wavepacket propagation calculations are given in Table
6.9. The time autocorrelation function calculated during the wavepacket propagation is
damped with an exponential function [e(−t/τr), with τr = 33 fs] to generate the spectral
envelope shown in panel b. The envelope in panel c is generated by convoluting the stick
line spectrum of panel c with a Lorenzian function of ∼40 meV full width at the half
maximum (FWHM). To facilitate the comparison with experiment, the origin 000 peak
of the spectrum is placed at the adiabatic ionization energy of ∼3.49 eV estimated in
the experiment of Wang et al. [20].
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6 Quantum dynamics on the ground and electronically excited states of H2B7 cluster

The low-energy part of the stick line spectrum of Fig. 6.7c corresponding to the
vibronic structure of the X̃ state is given in Table 6.10. Among the numerous stick
lines, the assignments of some of intense lines are made in Table 6.10. The values
of vibronic energy lines in Table 6.10 indicates that a little shift of energy locations
of previously assigned peaks occured compared to uncoupled and reduce dimensional
calculations (two-states-multi-modes) due to the incorporation of multi-states-multi-
modes interaction. Several new energy lines are formed and some of the old energy lines
are also diminished due this effect. As we discussed previously that the intensity of the
fundamental of ν8 is quenched by the coupling vibrational modes ν10 and ν11. The near
degenerate frequency values at the X̃ state of H2B7 of ν8 (∼386 cm−1), ν10 (∼419 cm−1)
and ν11 (∼304 cm−1) and the inter-mode interaction between them may be the cause
behind the quenching of fundamental intensity of ν8 vibrational mode. On the other
hand, when the frequency difference between the overtones of ν8 and ν11 vibrational
mode is increased, an intense peak of the first overtone of ν8 is found at ∼770 cm−1.
Not only that, ν8 forms the combination peaks with ν11 and ν10 at 1044 cm−1 and
1147 cm−1 from the 000 line. It can be seen from Table 6.10 that a little change of
locations of the fundamental vibronic energy lines of totally symmetric modes (ν1-ν7)
occurs compared to the uncoupled and two-states spectra (cf. panels a, b, c and d og
Fig. 6.3) due to the multi-states-multi-modes effect. The most probable reason behind
this is that the totally symmetric modes do not partcipate in the inter-state coupling
between X̃-Ã and X̃-B̃ states. Whereas, a noticeable change of vibronic energy locations
of the fundamentals of ν10 and ν11 vibrational modes compared to two-states spectra
shown in panels b, c and d of Fig. 6.3 are observed in Fig. 6.7c and those lines are
given in Table 6.10. The participation of these vibrational modes in inter-state, X̃-
Ã and X̃-B̃, coupling is the reason behind the complex vibrational progression of these
vibrational modes. It can be seen from Table 6.10 that the coupling vibrational modes
ν10 and ν11 form combination peaks among themselves at ∼677 cm−1, as well as with the
fundamental and first over tone of totally symmetric modes at ∼865 cm−1, ∼980 cm−1,
... . The totally symmetric vibrational modes also form combination peaks among
themselves. All the probable assignments of fundamental, overtone and combination
peaks in the energy range 0-2750 cm−1 of the coupled X̃-Ã-B̃ states spectrum are given
in Table 6.10. The spectral assignment discussed above is confirmed by performing block-
improved relaxation calculations [36–38] both in reduced dimensions and exploring the
full-dimensions.

6.3.5 Adiabatic state population analysis on X̃-Ã-B̃ coupled state

dynamics

The decay and growth of adiabatic state populations on X̃-Ã-B̃ coupled state dynamics
are shown in Fig. 6.8. In panel a of Fig. 6.8, the electronic populations of X̃, Ã and
B̃ states of H2B7 is shown, when the wavepacket is initially prepared on the Ã state.
Whereas in panel b, the initial wavepacket is prepared on the B̃ state. Since, the initial
excitation occurs in diabatic states, that causes the starting diabatic population of the
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6.3 Results and discussion

Table 6.10: Energetically low-lying vibronic energy levels (in cm−1) for the X̃2A2 elec-
tronic state of H2B7.

No.
Vibronic energy
level

Assignment No.
Vibronic energy
level

Assignment

1 0.0 0 24 1361 ν2
2 276 ν11 25 1408 ν5+ν10
3 401 ν10 26 1450 2ν6
4 553 2ν11 27 1517 ν4+ν7
5 594 ν7 28 1588 2ν7+ν10
6 677 ν10+ν11 29 1600 ν5+ν7
7 727 ν6 30 1650 ν4+ν6
8 770 2ν8 31 1683 ν6+ν9
9 804 2ν10 32 1727 ν5+ν6; 2ν6+ν11
10 865 ν7+ν11 33 1825 2ν4
11 923 ν4 34 1841 ν3+ν7
12 955 ν9 35 1930 ν4+ν5
13 980 ν7+ν10 36 1955 ν2+ν7
14 1008 ν5 37 1975 ν3+ν6
15 1044 2ν8+ν11 38 2014 2ν5
16 1106 ν6+ν10 39 2088 ν2+ν6
17 1147 2ν8+ν10 40 2253 ν3+ν5
18 1189 2ν7 41 2370 ν2+ν5
19 1232 ν9+ν11 42 2485 2ν3
20 1247 ν3 43 2608 ν2+ν3
21 1285 ν5+ν11 44 2722 2ν2
22 1322 ν4+ν10; ν6+ν7 45 3210 ν1
23 1355 ν9+ν10

prepared state is 1.0. While, an adiabatic state is the admixture of diabatic states, that
is why the initial adiabatic population of the prepared state is less than 1.0. An initial
increase of population of the Ã state when the initial wavepacket is prepared in the
Ã state can be seen from panel a. The data given in Table 6.8 reveal that the minimum
of the Ã-B̃ CI is lower than the minmum of the X̃-Ã CI and the Ã-B̃ CI and minimum of
B̃ state is energetically quasi-degenerate. This drives the transfer of B̃ state population
to the Ã state before initiating the transfer of Ã state population to X̃ state via X̃-
Ã CI. After a certain induction period (∼15 fs), the wavepacket prepared on Ã state

accesses the X̃-Ã CIs, which leads to an increase of electronic population of the X̃ state.
The non accessibility of the X̃ state via X̃-Ã CI, when the wavepacket is prepared
in Ã state yields a structured envelope of the X̃ state spectrum. Similarly, when the
initial wavepacket is prepared on the B̃ state, an instantaneous decrease of electronic
population from B̃ state to Ã state is observed. The reason behind this is the existance
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Figure 6.8: Adiabatic electronic population dynamics on the X̃-Ã-B̃ coupled electronic
states of H2B7. The adiabatic population of different states are shown by
preparing the initial wave packet on the Ã and B̃ states, in panel a and b,
respectively.

of quasi-degeneracy between the Ã-B̃ CI (∼4.482 eV ) and the energy minimum of the

B̃ state (∼4.480 eV). This quasi-degeneracy makes the radiationless transition from B̃ to

Ã state faster and the structure of the second band of H2B7 becomes broad.

6.3.6 The combined effect of C̃ and D̃ electronic states on the the

Ã-B̃ coupled state spectrum

The above discussion mainly deals with the X̃-Ã-B̃-coupled states dynamics and the
theoretical results nicely reproduce the experimental spectra of Ref. [20]. The study

becomes incomplete without the discussion of the effect of C̃ and D̃ states on the X̃-
Ã-B̃ coupled states dynamics of H2B7. A slight disagreement regarding the width and
kincks (at ∼4.39 eV and ∼4.48 eV) of the second photoelectron band of H2B

−
7 is found
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in panels a and b of Fig. 6.7. This indicates that a certain impact of Ã-C̃, Ã-D̃, B̃-
C̃ and B̃-D̃ interstate coupling might be present in the X̃-Ã-B̃-coupled states dynamics
of H2B7. The VDEs presented in Table 6.4 and the PESs presented in Fig. 6.2 indicate
that the ground state (X̃) is well separated from the C̃ (vertically ∼2.19 eV) and D̃ (ver-

tically ∼2.36 eV) electronic states. As a result, the energetic location of the X̃-C̃ and

X̃-D̃ CIs (cf. Table 6.8) is far above from the energy minimum of C̃ and D̃ state, respec-

tively. Therefore, it is expected that the X̃-C̃ and X̃-D̃ interstate couplings have very
less impact on the X̃ state dynamics of H2B7. On the other hand, energetic proximity
between the Ã, B̃, C̃ and D̃ electronic states is found (cf. Table 6.4 and Fig. 6.2) and

the energetic location of the Ã-C̃, B̃-C̃ and Ã-D̃, B̃-D̃ CIs (cf. Table 6.8) is near to

the energy minimum of C̃ and D̃ state, respectively. A vetting of Table 6.8 indicates
the presence of quasi-degeneracy between the B̃-D̃ CI (∼5.335 eV) and the energy min-

imum of D̃ state (∼5.316 eV), which induces a electronic population flow from D̃ state

to B̃ state. Hence, an increment of natural band width of the seond photoelectron band
of H2B

−
7 is expected in this section compared to the X̃-Ã-B̃-coupled states dynamics

described in Section 6.3.4. The result of time-dependent nuclear dynamics calculations
on the X̃-Ã-B̃-C̃-D̃ coupled surfaces of H2B7 considering the above speculation is pre-
sented in Fig. 6.9. It is found that theoretical result (mainly second band) presented in
Fig. 6.9 reproduces a better experimental [20] finding presented in panel a of Fig. 6.7
compared to the theoretical result presented in panel b of Fig. 6.7. The ground state
spectrum presented in Fig. 6.9 indicates no structural change compared to the panel
b of Fig. 6.7. This validate our speculation regarding the interstate effect between X̃-
C̃ and X̃-D̃ states discussed in the earlier part of this section. Whereas, the second band
structure of the Fig. 6.9 indicates clear knicks at ∼4.39 eV and ∼4.48 eV energy levels,
which are improper in the second band of panel b of Fig. 6.7. A little increment of the
width of the second band is also encountered by the inclusion of Ã-C̃, Ã-D̃, B̃-C̃ and
B̃-D̃ interstate couplings in the X̃-Ã-B̃-C̃-D̃ coupled state dynamics of H2B7. Overall,
the X̃-Ã-B̃-C̃-D̃ coupled state dynamics (cf. Fig. 6.9) provides better explanation of

the experimental observations [20] than the X̃-Ã-B̃ coupled state dynamics presented
in the panel b of Fig. 6.7.
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Figure 6.9: Spectrum generated due to the X̃-Ã-B̃-C̃-D̃ coupled surface dynamics by
time-dependent quantum chemistry method is shown. The relative intensity
(in arbitary units) is plotted as a function of the energy (relative to the
ground state of H2B7) of the final vibronic states. The combined effect of

C̃ and D̃ electronic states on the Ã-B̃ coupled state spectrum is shown by
the enlarge view of the spectrum in the inset of the figure.
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6.4 Summary and Conclusions

A detailed theoretical study of photodetachment spectroscopy of H2B
−
7 cluster is pre-

sented in this chapter. The study is motivated by the non availability of the detailed
quantum dynamical study on this system. The topography of the PESs are analized by
examining the various stationary points on them and quantum dynamics on the coupled
electronic states are performed based on the estimated Hamiltonian parameters (cf. Ta-
bles 6.5, 6.6, 6.7). The block-improved relaxation method is employed to find out the
role of vibrational modes onto the coupled-states dynamics. All these calculations are
based on the extensive ab initio quantum chemistry calculations of the relevant electronic
potential energy surfaces of the neutral H2B7 cluster in the normal coordinate range of -
5.0≤Q≤5.0 and time-dependent and time-independent quantum dynamical calculations.
A 5×5 diabatic Hamiltonian is constructed in normal coordinate representation and the
Hamiltonian parameters are estimated by fitting the adiabatic form of this Hamiltonian
to the ab initio calculated energy values. Analysis shows that the nuclear dynamics
on the X̃, Ã and B̃ states of H2B

−
7 are correlated with each other. The intensity of

the totally symmetric vibrational modes are reduced by the incorporation of coupling
vibrational modes via X̃-Ã and X̃-B̃ inter-state coupling and spectrum of X̃ becomes
broader than the uncoupled spectrum of X̃ due to this nonadiabatic effects. It is also
found that coupling modes (ν10 and ν11) form combination peaks with ν2, ν3, ν4, ν6 and

ν7 totally symmetric vibrational modes in the X̃ state dynamics of H2B7. On the other
hand, the activity of ν8 vibrational mode is quenched in the X̃ state dynamics of H2B7.
The structure of the second band of photodetachment spectrum of H2B

−
7 represents a

composite vibronic structure of the Ã and B̃ states. A near degenerate VDEs of Ã and
B̃ and a quasi-degeneracy between the Ã-B̃ CI and minimum of B̃ state makes the
second band of H2B

−
7 more diffuse and broader compared to its first band. A detailed

analysis indicates that the actvity of ν6 and ν8 totally symmetric vibrational modes is
quenched in the dynamics of the Ã state via X̃-Ã inter-state coupling through ν10 vibra-
tional mode. A noticeable excitation of ν8 vibrational mode is observed in the B̃ state
dynamics via X̃-B̃ inter-state coupling through same vibrational mode. In case of Ã-
B̃ inter-state coupling, a constant pure electronic coupling arises, which is very rare
in the literature. We have calculated this coupling (∼67 cm−1) by using diabatization
scheme and multiconfiguration quasidegenerate perturabation theory. The totally sym-
metric vibrational modes play a dual role of tunning and coupling vibrational modes on
the Ã-B̃ coupled state dynamics. As a result, a frequency shift of the fundamentals,
overtones and combination peaks of these modes is observed when compared with the
uncoupled spectrum of Ã and B̃ states. The overall theoretical spectra, generated in the
X̃-Ã-B̃ coupled state dynamics via time-dependent (cf. panel b of Fig. 6.7) and time-
independent (cf. panel c of Fig. 6.7) quantum mechanical approaches, nicely reproduce
the experimental photodetachment spectrum of H2B

−
7 (shown in panel a of Fig. 6.7).
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7 Summary and future directions

A detailed theoretical investigation of the interaction between electronic and nuclear
degrees of freedom and their impact on the quantum dynamics of the ground and ex-
cited electronic states of radical cations (CH3F

+, CH2F
+
2 , CD2F

+
2 ) and molecular cluster

(H2B7) is mainly exemplified in this thesis. Thesis contents detailed account of vibronic
coupling theory, mainly the nonadiabatic interactions in a C2v point group symme-
try. While the extention of vibronic coupling theory is studied to the higher symmetry
molecules (in this thesis within C3v point group symmetry) by considering the special
case of Jahn-Teller effect in the ground degenerate state of CH3F

+. The theoretical
studies are based on construction of vibronic Hamiltonian in a diabatic electronic repre-
sentation and the dimension of the Hamiltonian depends upon the number of considered
electronic states for a particular system. A quasi-diabatic approach is used to derive the
various Hamiltonian parameters. A special care has been taken to calculate the interstate
couplings in the Ã and B̃ states of H2B7 in Chapter 6. The same spatial symmetry of
these states enforces us to use direct diabatization scheme in stead of quasi-diabatization
approach. A 2-D potential energy fits of the calculated ab initio points are performed by
following Levenberg-Marquardt algoritm for the simultaneous distortion of the two com-
ponents of Jahn-Teller actvie modes in Chapter 3. This approach provides more accurate
evaluation of the Jahn-Teller Hamiltonian parameters. The Hamiltonian constructed in
each Chapter are applied for the nuclear dynamics study, both by time-independent and
time-dependent quantum mechanical approach. Theoretically calculated vibronic struc-
tures of the photoelectron/photodetachment bands are reported and compared with the
available experimental recordings. The theoretical results are found to be in good accord
with the experiment. Latter, block-improved relaxation calculations are performed to
assign the vibronic energy levels obtained from the time-independent quantum dynam-
ical calculations. The important findings of this thesis are given below.

Chapter 3.

A nuclear dynamics study on the electronic states of relative higher symmetry radical
cation, CH3F

+ is studied in this chapter. Both the diagonal and off-diagonal terms of the
constructed JT Hamiltonian are expanded by following higher-order Taylor series and
ab initio quantum chemistry calculations are carried out in a large range of normal dis-
placement coordinate. This expanded model of JT Hamiltonian provides more accurate
description of the different stationary points of ground state PES of CH3F

+ and latter,
these stationary points are varified by unconstrained direct ab initio calculations. A first
principles nuclear quantum dynamics calculations are carried out by time-independent
and time-dependent methods and the results of these studies are closely correspond to
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the measured ones in the recent experiments. Assignment of vibronic levels are carried
out by carefully examining their locations obtained in various reduced dimensional cal-
culations as well as by an explicit analysis of the corresponding vibronic wavefunctions.
Such extensive analyses seem to confirm the assignment of fundamentals, various over-
tones and combination levels.

Chapter 4.

The electronic structure calculations of the CH2F
+
2 and its deuterated isotopomer are

perfomed in this chapter. The constructed Hamiltonian belongs to C2v symmetry and it
consists with four electronic states. The expansion of the Hamiltonian matrix are car-
ried out upto second-order in diagonal elements and for off-diagonal elements first-order
Taylor series approximation is considered. The ab initio energy points for CH2F

+
2 are

calculated by three different (CASSCF-MRCI, EOMIP and OVGF) quantum chem-
istry methods and a comparative account of the obtained data by three different levels
of theory is made by following linear regression anlysis. The parameter set derived
from the CASSCF-MRCI electronic energies is found to yield best results. Latter, the
CASSCF-MRCI level of theory is utilized to perform the electronic structure calculations
for CD2F

+
2 . A detailed topographical analysis of the four adiabatic electronic states of

both CH2F
+
2 and CD2F

+
2 is carried out and multiple conical intersections among them

are established. A different topography of the potential energy surfaces are found for
CH2F

+
2 and its deuterated analogue, due to the cosideration of mass-weighted normal

coordinate representation. The vibronic coupling between the two closely lying excited
states, Ã2B2 and B̃

2A1, of CH2F
+
2 is elaborately discussed in this chapter on the basis of

two-states-single-mode model formalism. The result shows that the symmetry breaking
and stabilization of lower coupled adiabatic surface is not possible through single mode
interaction, rather it is possible via cummulative interaction of both coupling modes,
ν8 and ν9.

Chapter 5.

The nuclear dynamics calculations of CH2F
+
2 and its isotopomer (CD2F

+
2 ) are carried

out quantum mechanically both by time-independent and time-dependent methods in
this chapter. The vibronic energy level spectrum of the electronic ground state of both
CH2F

+
2 and CD2F

+
2 is examined at length. The energy levels appeared in the low en-

ergy part are compared with the available experimental results. These energy levels are
assigned and discussed in relation to the various assignments reported in the literature.
The wavepacket density plots at different eigen values are shwon by using block-improved
relaxation method to ensure the fundamentals, overtones and combination peaks of dif-
ferent vibrational modes. The broad band photo-ionization spectrum of both the iso-
topomers compare well with the low-resolution experimental results. Our analysis on
the vibronic levels of the X̃ state of CH2F

+
2 shows a close resemblance with the PFI-
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ZEKE data. The progression on the X̃ state spectrum of CH2F
+
2 is mainly formed by

the ν2, ν4, ν7 and ν8 vibrational modes and the excitation of the ν3 vibrational mode is
quenched by the ν7 and ν8 modes. In the X̃ state of CD2F

+
2 , the vibrational modes ν3,

ν4, ν7 and ν9 make most of the progressions. The excitation of the ν2 vibrational mode
is quenched by the non-totally symmetric vibrational modes in this case. Vibrations of
both C-H/D and C-F characters participate in the spectral progression in the X̃ state of
both radical cations. Substantial reduction of vibrational frequencies (except ν4) upon
deuteration, increases the density of vibronic levels in the spectrum of CD2F

+
2 . This

causes the spectral broadening in case of CD2F
+
2 . In contrast to the dynamics of the

X̃ state, the nonadiabatic coupling has much stronger effect on the dynamics of the Ã,
B̃ and C̃ states of both CH2F

+
2 and CD2F

+
2 . The WP explores multiple intersection

seams and quickly relaxes when dynamics is started in any of the three states. Such a
fast nonradiative decay of the excited states causes a huge broadening of their vibronic
structure as observed in the experiments.

Chapter 6.

The vibronic Hamiltonian constructed in this chapter, has the same form of the con-
structed Hamiltonian in Chapter 4. As five electronic states of H2B7 are considered in
this study, the dimesion of the Hamiltonian is differnt from the Hamitonian constructed
in Chapter 4. The present Hamiltonian differs from the Hamiltonian in Chapter 4, in the
term corresponds to the Ã-B̃ interstate coupling, because of the availability of the same
spatial symmtery between these states. An additional constant term is added to account
the direct electronic coupling between these states. A detailed topography of 1-D PESs
along totally symmetric vibrational modes and energetic location of different stationary
points on the potential hypersurface of H2B7 are examined in this chapter. Analysis
shows that the photodetachment bands are obtained due to the nuclear dynamics on
the X̃, Ã and B̃ states. The intensity of the totally symmetric vibrational modes are
reduced by the inclusion of coupling vibrational modes via X̃-Ã and X̃-B̃ inter-state
coupling and spectrum of X̃ becomes broader than the uncoupled spectrum of X̃ due
to this nonadiabatic effects. It is also found that coupling modes (ν10 and ν11) pre-
fer to form combination peaks with ν2, ν3, ν4, ν6 and ν7 totally symmetric vibrational
modes in the X̃ state dynamics of H2B7. The second band of the experimental record-
ing of H2B

−
7 is not solely correspond to the Ã state dynamics. A profound impact of

B̃ state dynamics is also found in this band. A near degenerate VDEs of Ã and B̃ and
a quasi-degeneracy between the Ã-B̃ CI and minimum of B̃ state makes the second
photodetachment band of H2B

−
7 more diffuse and broader comparative to the first band.

A constant pure electronic coupling is found during the consideration of Ã-B̃ interstate
coupling. The calculated value of this constant ia ∼67 cm−1.

The main advantage of this thesis is the availability of modifications of vibronic Hamil-
tonian, which can be used for same type of system. The higher-order Jahn-Teller Hamil-
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tonian constructed in Chapter 3 can be used for same type of molecule or molecular ion
with C3 principal axis of symmetry for more accurate describtion of Jahn-Teller activity.
The study of two-modes tunneling splitting of the vibronic energy level, which is very
rare in the literature, needs further attention. A detailed topographical features of the
electronic states in presence of nonadiabaticity is elaborately examined in Chapter 4 and
phenomenon of “symmetry breaking” is also discussed. This phenomenon has immense
impact on the nonadiabatic decay dynamics of the optically bright electronic state in
presence of a close lying optically dark state. So this aspect can ne further exemplied
in this regard. The series of vibronic dynamics study of partially hydrogenated boron
clusters, which is initiated in Chapter 6 has immense impact on the boron chemistry
and its electronic structure. Among these partially hydrogenated boron clusters, some
of them have an open shell electronic configuration (e.g. H2B

−
8 ). The removal of one

electron from α and β molecular orbital produces a singlet and a triplet electronic states,
respectively. The application of vibronic coupling theory in the singlet-triplet coupling
may find new insight in the inter system crossing mechanism.
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