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Chapter 1

Introduction

Most of the discussions on chemical reaction dynamics starts with the Born-

Oppenheimer (BO) adiabatic approximation. The large mass of a nucleus com-

pared to that of an electron permits an approximate separation of the electronic

and nuclear motion. This approximation, a classic work of Born and Oppen-

heimer [1] and later extended by Born and Huang [2], have laid the foundation

for the modern theory of electronically adiabatic processes and the nonadiabatic

coupling effects. Still today, many chemical process can be rationalized in terms

of the nuclear dynamics on a single BO potential energy surface (PES) and with-

out this approximation the introduction of nonadiabatic processes in quantum

reaction dynamics will be fairly incomplete.

The examples of nonadiabatic processes are plenty in nature. For example,

the isomerization processes of polyatomic molecules, radiationless relaxation of

the excited electronic states, photoinduced unimolecular decay, etc. all are guided

by nonadiabatic interactions [3]. Many photochemical reactions including some

of the most basic processes in photosynthesis [4] and the initiation process of

vision are also nonadiabatic in nature [5]. In nonadiabatic processes, the nuclear

1



Chapter 1. Introduction 2

dynamics involve more than one BO PES and they cannot be rationalized within

the BO approximation. The BO approximation rests on few boundary conditions:

(1) the electronic state of the system in question must be well separated from the

rest of the states; (2) the rearrangement of the electron cloud should be gradual

along with the change of nuclear positions; and (3) the velocities of the nuclei

must be sufficiently small to permit the electrons to adjust completely to their

motions. But for polyatomic molecules standard BO approximation often fails

due to the availability of large number of energetically close-lying electronic states

and many nuclear degrees of freedom [6]. In such situations, it is often necessary

to monitor the nuclear motions simultaneously on more than one electronic PES.

A typical scenario in polyatomic molecules in this context is the coupling

between nuclei and electrons, known as vibronic or electronic coupling. For close-

lying electronic states often there is a conical intersection between the electronic

states [7–12]. Conical intersections, also called as photochemical funnels [13, 14]

serve as the ”bottleneck” in many photophysical and photochemical transitions

and provide pathways for ultrafast internal conversion dynamics. For open-shell

systems, the spin of the unpaired electrons often leads to the so-called spin-

orbit (SO) coupling (a weak magnetic interaction of the electronic spin with

its orbital motion around the atomic nuclei) [15]. Due to this coupling, the spin

degrees of freedom respond to the orbital angular momentum of the molecule and

separate the energy of the spin-degenerate states [16]. Apart from this electronic

and SO coupling, nonadiabatic effects due to the conically intersecting potential

energy surfaces (PESs) represented by the Jahn-Teller (JT) active systems is also

well known [17–20]. In this case, the symmetry-enforced electronic degeneracy

becomes unstable for nonlinear configurations. Another subclass deals with the

interaction between the degenerate and nondegenerate electronic states. These
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are referred to as pseudo-Jahn-Teller (PJT) systems in the literature [10,21–23].

Linear molecules are exceptions of the JT and PJT interactions but instabilities

in their degenerate electronic states lead to Renner-Teller (RT) or glancing-type

intersections [24,25].

In an adiabatic electronic representation, the coupling between the electronic

states is caused by the off-diagonal nonadiabatic coupling (NAC) elements of the

nuclear kinetic energy operator. These NAC elements, which are the derivative of

the electronic wavefunction with respect to the nuclear coordinates, are diverging

in nature and become singular when two electronic states are degenerate [10]. As

a result, both the electronic wavefunction and energy become discontinuous at

the seam of CIs making the adiabatic representation unsuitable for dynamical cal-

culations. In order to deal with this situation, one resorts to a diabatic electronic

representations in which the coupling between the states are represented by non-

singular off-diagonal elements fo the electronic Hamiltonian [26–28]. The NAC

terms of the adiabatic representation are therefore transformed to smooth po-

tential energy coupling in the diabatic representation [29]. Various approximate

schemes have been proposed for this adiabatic-to-diabatic transformation [30–32].

One of them is through a suitable unitary transformation of the adiabatic elec-

tronic states defined in terms of the adiabatic-to-diabatic mixing angle [33]. How-

ever, the construction of the diabatic electronic states for a realistic molecular

systems is still a challenging problem and different approximate mathematical

schemes have been proposed to accomplish this [34].

One generally follows either a time-independent or a time-dependent quantum

mechanical approach for the nuclear dynamical simulation. In time-independent

method, the time-independent Schrödinger equation (TISE) is solved by repre-

senting the nuclear Hamiltonian in a suitable basis.In time-dependent approach,
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an initial wave packet (WP) corresponding to the ground vibrational level is pre-

pared which is subject to a Franck-Condon (FC) transition to the final electronic

state(s), where it is propagated with the aid of time-dependent Schrödinger equa-

tion (TDSE) in an spectroscopic study. In a reactive scattering study, the initial

WP is located in the reagent asymptote of the PES and propagated it by solving

the TDSE. After the propagation, the dynamical observables are calculated. To

calculate the eigenvalue spectrum the time autocorrelation function of the WP in

the final electronic state(s) is calculated and Fourier transformed to the energy

domain [35,36]. The reaction attributes are obtained by calculating the reaction

probabilities with the aid of a quantum flux operator [37]. the time autocorre-

lation function to the energy domain [35, 36]. The fingerprints of the ultrafast

relaxation dynamics are extracted from the time behavior of the electronic pop-

ulations and probability density of the nuclear wavefunction.

1.1 Halogen-Hydrogen reactions

The reaction between the halogen atoms (X = F, Cl, Br, I) and the hydrogen

molecule, X (2P ) + H2 → HX + H, have been of fundamental importance in

the development of chemical kinetics and the reaction dynamics. In particular,

F (2P ) + H2 [38–52], and Cl (2P ) + H2 [53–65] reactions and their isotopic

variants have been studied extensively as benchmark systems in the processes of

understanding the nonadiabatic coupling effects in chemical reaction dynamics.

In contrast, the number of quantum dynamical calculations appeared for Br +

H2 [66–69] and I + H2 systems [70] are far less. This may be because of the

difficulty in calculating accurate PESs for these reactions due to more number of

electrons and much heavier mass of Br and I atoms. A large number of quantum



1.1. Halogen-Hydrogen reactions 5

scattering [38–45, 47] and quasiclassical trajectory [40, 46]calculation have been

done on F(2P ) + H2 reaction using the high-quality ab initio PESs [48] available

for this system. These theoretical calculations have successfully reproduced the

major features seen in the molecular-beam scattering studies carried out on the

F(2P ) + H2 (D2 and HD) reaction [44, 49, 50], as well as the photodetachment

experiment on FH−
2 [39, 51, 52]. Similarly, a large number of experimental and

theoretical studies have been done on the Cl(2P ) + H2 reactive system and its

isotopic variants [53–65].

The reverse reaction, H + HX → H2 + X, has also motivated a lot of exper-

imental and theoretical studies [70]. Valentini and coworkers [70] have studied

extensive state-to-state dynamics of these hydrogen abstraction reactions. Schatz

and coworkers [71–73] have performed time-independent quantum scattering cal-

culations to study the effect of electronic, Coriolis and SO coupling effects on the

symmetric Cl(2P ) + HCl → ClH + Cl(2P ) exchange reaction. Apart form these

studies, many reseach papers and reviews have appeared on the experimental and

theoretical investigations of different halogen-hydrogen reactions [see for example

Ref. [74] and references therein]. The Cl(2P ) + H2 (HD) reaction dynamics is

examined in the present thesis. Therefore, in the following we briefly outline the

importance and the recent advances on this system.

1.1.1 Cl(2P ) + H2 (HD) reactions

The simplest Cl atom reaction, Cl + H2 (HD) → HCl (DCl) + H (D) has been

a subject of research for over a century [53]. Way back in 1936, Eyring and

coworkers [54] have studied the chlorine-hydrogen reactions as prototypical mod-

els to establish the transition state theory. Latter on Weston Jr. proposed the

bimolecular reaction rate theory modeling the same reactions in 1979 [55]. Us-
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ing a semiempirical PES combined with the trajectory calculations he found a

reasonable agreement between the calculated rate constant and available experi-

mental results. The study on the isotopic substitution of hydrogen in the Cl(2P )

+ H2 reaction has established the theory of kinetic isotopic effects [56]. Other

than these theoretical applications, the reaction between chlorine and hydrogen

forms an elementary step in the H2-Cl2 reaction system, important in atmospheric

chemistry and photochemical air pollution.

In most of the previous dynamical calculations on the reaction cross sections

and thermal rate constants [60, 61], it was assumed that the reaction occurs

adiabatically on the single ground state of the Cl + H2 system. But recent

experimental results of Liu and coworkers [62,63] on the reactivity of the ground

and excited SO states of Cl (2P ) unfolds the role of open-shell character of Cl

atom and such a single-surface theoretical study appears to be inadequate. For

a full-dimensional dynamical calculation we need to consider all the interacting

electronic states which correlate with the Cl(2P ) + H2 reagent asymptote, as

well as the nonadiabatic couplings between them.

In absence of any coupling, the six asymptotic states of Cl(2P ) + H2 are

degenerate. With the approach of the H2 molecule the degeneracy of the 2P state

of Cl atom is lifted and it splits into three doubly degenerate PESs [75]. Two

electronic states (12A′ and 12A′′; 2Σ and 2Π in the linear geometry) correlate

adiabatically to the ground-state Cl (2P3/2) while the third state (22A′; 2Π in

the linear geometry) correlates adiabatically with excited state Cl?(2P1/2). Of

these only the lowest, which corresponds to the lower state of A′ symmetry in

Cs geometry, correlates with the electronic ground state of the products [HCl

(X1Σ+) + H (2S)]. The PESs of the two other states (the higher state of A′

symmetry and the unique state of A′′ symmetry) correlate with the products in



1.1. Halogen-Hydrogen reactions 7

-7.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 5.0
Reaction coordinate [(R1 - R2)] [bohr]

-0.05

0.00

0.10

0.20

0.30

0.40

0.50

0.55

En
er

gy
 [e

V
]

Cl H H
R1R2

Cl (2
P3/2) + H2

Cl*(2
P1/2) + H2

HCl (X1Σ+) + Η (2
S)

0.109 eV

2Π1/2

2Π3/2

2Σ1/2

HCl ( 3Π) + Η (2
S)

Figure 1.1: Schematic representation of the adiabatic potential energy surfaces
[75] of the Cl(2P ) + H2 system for the collinear arrangements of the three nuclei.
Shown are the two SO states and their energetic splitting ∼ 0.109 eV. The reagent
and product asymptotes (see text) are also marked in the figure. The curves are
labeled by the Hund’s Case (a). The minimum of the van der Waals well in the
reagent asymptote occurs at the T shaped arrangement of the nuclei.

the electronic excited state, HCl (3Π) + H(2S) [76–79]. This splitting has been

schematically shown in Fig. 1.1. In this figure the adiabatic potential energies of

the SO states of the Cl(2P ) + H2 system is plotted along the collinear reaction

path. The two states of 2A′ symmetry are strongly coupled and form a conical

intersection in the entrance channel of the PESs [75]. The excited SO state

of Cl atom (2P1/2), which lies 880 cm−1 (2.52 kcal/mol) above the ground SO

state (2P3/2), is considerably high in energy and inaccessible at low and moderate

collision energies. This excited SO state can yield products in their electronic

ground state via nonadiabatic transitions (Born-Oppenheimer forbidden) to the

2Σ1/2 electronic state [80]. According to the results of Liu and coworkers [62,63]

the SO excited Cl?(2P1/2) is more reactive than the SO ground state Cl (2P3/2).

This is in apparent contradiction to conventional theoretical wisdom as the excited
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state should have a higher energy barrier than the ground state [60,63,80,81]. For

the chemically similar F + H2 reaction, both theory [47] and experiment [51, 52]

agree that the reactivity of the excited SO state is, at most, 10% of that of the

ground state. But in case of Cl(2P ) + H2 , where the SO coupling is about two

times larger than that of F + H2, nonadiabaticity might be more important to

overcome the higher barrier hight of the reaction.

1.2 Potential Energy Surfaces of Cl(2P ) + H2 re-

action

For accurate quantum mechanical calculations availability of accurate PESs is

very important. There has been a considerable progress towards the construction

of the accurate global PESs for Cl(2P ) + H2 (HD) over the years. Histori-

cally, the first semiempirical PES of the electronic ground state of the Cl(2P ) +

H2 system was constructed by Eyring and his coworkers [54]. It was later modi-

fied by Sato in 1955 [82] and was applied extensively. In 1973, Stern, Persky and

Klein [83] produced three semiempirical PESs (called GSW surface) that yield

good agreement with the experimental rate constants of the Cl(2P ) + H2 ab-

straction reaction but were not satisfactory for the exchange reactions [84]. A

more successful surface, called GQQ [84], based on some new ab initio data near

the vicinity of the saddle point region, along with the previous semiempirical

results of GSW surface [83], was developed by Schwenke et al. in 1989. Some

exact three-dimensional quantum scattering calculations were performed on this

surface [85,86].

The best among all the semiempirical PESs known as G3 PES was presented

by Allison et al. [87] in 1996. The G3 PES was developed by modifying the
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GQQ bending potential in the Cl-H-H saddle point region by adding some ab

initio data obtained by fourth-order Møller-Plesset perturbation theory (MP4).

Detailed quasiclassical trajectory (QCT) [88], variational-transition-state-theory

(VTST) [87] and quantum mechanical reactive scattering [89] calculations on G3

PES were found to be in excellent agreement with the experimental results. De-

spite a good success of the G3 PES in describing the Cl(2P ) + H2 reaction

dynamics [88], the recent theoretical studies of Skouteris and Manolopoulos [60]

on this surface revealed two strong disagreements with the molecular beam re-

sults of Lai and Liu [62, 63]: (i) it failed to reproduce the preference of the DCl

product over the HCl product for Cl + HD as observed in the experiment and

(ii) the rotational excitation of the reagent H2 has been found to hinder the

reaction in contrast to the experimental results [60]. Motivated by these find-

ings, Bian and Werner developed two (BW1 and BW2) three-dimensional PESs

based on internally contracted multireference configuration interaction (MRCI)

calculations [90]. The BW1 is the original ab initio PES without any modifica-

tion. The BW2 includes some corrections to reproduce the dissociation energies

of the diatomic fragments more accurately. The experimental product rotational

distribution for HCl shows excellent agreement when compared with the exact

quantum mechanical and quasiclassical trajectory calculations using BW PESs.

Both the BW1 and BW2 PESs are obtained by diagonalizing only the electronic

Hamiltonian, without the inclusion of the SO Hamiltonian [90]. Most recently,

Capecchi and Werner (CW) [75] extended the calculation of Bian and Werner [90]

including the relativistic SO coupling effects. This CW PES is used in the present

study. We will discuss below a few important and relevant aspects of this PES.
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Figure 1.2: The center-of-mass coordinates for the Cl + H2 collisions used in
the space-fixed and the body-fixed frame are represented as XYZ (blue) and xyz
(black) axes, respectively. The coordinate origin is the center of mass of the
atom-diatom system.

1.2.1 Adiabatic and Diabatic representations of the PESs

In the following, we first describe the triatomic Cl + H2 system in Jacobi co-

ordinates (shown in Fig. 1.2), both in the space-fixed (SF) [91] and body-fixed

(BF) [92] frames. ~R corresponds to the distance between Cl and the center of

mass of H2 and ~r corresponds to the internuclear distance of H2. γ is the angle

between ~R and ~r in the BF frame. We assume that, the vector R lies on the BF

z-axis and y axis is perpendicular to the triatomic plane. The space-fixed (X, Y ,

Z) coordinate system is the usual laboratory frame, which is stationary and the

orientation of its axis are fixed. On the other hand, the BF coordinate system is

rigidly fixed in the body and its axes rotate during the course of time so as to

maintain a fixed orientation relative to the particles making up the system [93].

To represent the PESs, we use the compact Cartesian notation, |Πx〉, |Πy〉 and

|Σ〉 correlated with the Px, Py and Pz asymptotes of the Cl atom, respectively, in
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collinear arrangement. The two adiabatic states of A′ symmetry, to a very good

approximation, correspond to a mixture of |Πx〉 and |Σ〉 diabatic states.

|1A′〉 = |Σ〉 cos θ + |Πx〉 sin θ

|2A′〉 = −|Σ〉 sin θ + |Πx〉 cos θ

|1A′′〉 = |Πy〉

θ ∼ θ(R, r, γ), the mixing angle, is a function of all three internal coordinates.

Since, there is no coupling between the |Πy〉 state of A′′ symmetry with the |Πx〉
and |Σ〉 states of A′ symmetry, the adiabatic and diabatic states of A′′ reflection

symmetry becomes identical.

If SO coupling is taken into account, in addition to the three doubly degenerate

PESs, there are five non-zero SO matrix elements in the adiabatic electronic

representation [75]. In diabatic representation, however, two distinct SO matrix

elements are sufficient. One of these (denoted as A) describes the splitting of

the 2Π state, and the other one (B) is the coupling of the 2Π and 2Σ. Thus, the

matrix elements of the electronic Hamiltonian in the 6 × 6 diabatic basis can

be described in terms of three diagonal diabatic PESs, Vxx, Vyy, Vzz, as well as a

fourth PES, Vxz, which is the coupling between the two states of A′ symmetry and

the two SO coupling matrix elements (A and B). The diabatic electronic states

are expressed in terms of the adiabatic energies Ei in the following way [75]:

Vzz = 〈Σ|Ĥ|Σ〉 = E1 cos2 θ + E2 sin2 θ

Vxx = 〈Πx|Ĥ|Πx〉 = E2 cos2 θ + E1 sin2 θ

Vyy = 〈Πy|Ĥ|Πy〉 = E3

Vxz = 〈Σ|Ĥ|Π〉 = 1/2(E1 − E2) sin 2θ (1.1)
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In this case also, for symmetry reasons the coupling potential vanishes for linear

(γ = 0) and the T-shaped geometries (γ = 90), making the adiabatic and diabatic

states identical for this two arrangements.

For the convenience of the expansion of the scattering wavefunctions in the

dynamical calculations (described in details in Chapter 2), the PESs in diabatic

Cartesian states are transformed to the signed-λ basis in terms of the projection

of the electronic orbital angular momentum along ~R: VΣ = Vzz, VΠ = (Vxx +

Vyy)/2, V2 = (Vyy - Vxx)/2 and V1 = Vxz/21/2. In terms of the four diabatic PESs,

the matrix of the interaction potential in the signed-λ basis is block diagonal in

the spin projection quantum number and is given by

v̂ =




|Σ〉 |Σ〉 |Π1〉 |Π1〉 |Π−1〉 |Π−1〉
|Σ〉 VΣ 0 −V1 0 V1 0

|Σ〉 0 VΣ 0 −V1 0 V1

|Π1〉 −V1 0 VΠ 0 V2 0

|Π1〉 0 −V1 0 VΠ 0 V2

|Π−1〉 V1 0 V2 0 VΠ 0

|Π−1〉 0 V1 0 V2 0 VΠ




(1.2)

The SO coupling matrix elements can be written as

A(R, r, γ) = i〈Πy|Hso|Πx〉, B(R, r, γ) = 〈Πx|Hso|Σ〉, (1.3)

with limR→∞B = limR→∞A.

In terms of these two functions A and B the SO interaction potential matrix
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can be written as:

V̂ so =




|Σ〉 |Σ〉 |Π1〉 |Π1〉 |Π−1〉 |Π−1〉
|Σ〉 0 0 0 −

√
2B 0 0

|Σ〉 0 0 0 0 −
√

2B 0

|Π1〉 0 0 −A 0 0 0

|Π1〉 −
√

2B 0 0 A 0 0

|Π−1〉 0 −
√

2B 0 0 A 0

|Π−1〉 0 0 0 0 0 −A




(1.4)

where the bar over the states represent the second spin component.

1.2.2 Topography of the PESs

The lowest adiabatic states 1A′, 2A′ and 1A′′ of Cl(2P ) + H2 system have been

computed by means of internally-contracted multireference configuration interac-

tion method (IC-MRCI) by Chapecchi and Werner [75] recently using MOLPRO

package of ab initio programs [94]. The six resulting potentials have been fitted

to analytical functions.

The barrier on the ground state potential of Cl(2P ) + H2 reaction appears in

the linear geometry of the three nuclei. The location and the height of the barrier

are found to be almost identical without and with SO coupling, as demonstrated

in Table. 1.1. Since at the barrier the 2Π state is already very high in energy

(see Fig. 1.1), the effect of SO coupling between the 2Π and 2Σ states becomes

negligible. Thus, at the barrier the energy of the 2Σ state is hardly affected by

the SO coupling, while the Cl(2P ) + H2 asymptote is lowered by 1/3 of the SO

splitting of the Cl-atom. This effectively leads to an increase of the barrier height

by the same amount (0.84 kcal/mol).
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Figure 1.3: One dimensional cuts of the diabatic potential energy surfaces of the
Cl(2P ) + H2 system for the collinear geometries (r = 1.4 a0) in the absence
(panel a) and presence (panel b) of SO coupling reproduced from Ref. [75]
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Table 1.1: Comparison of barrier properties for the Cl(2P ) + H2 reaction

Surface R r γ E ωi ωb ωs

(a0) (a0) (rad) (eV) - cm−1 cm−1

CW 3.631 1.854 0.0 7.60 1296i 541 1361
BW2 3.631 1.854 0.0 7.61 1294i 540 1360

In the absence of SO coupling, the potential energy cuts of 2Σ and 2Π adia-

batic electronic states as a function of R, are shown in Fig. 1.3(a) for collinear

arrangement of Cl(2P ) + H2 at the equilibrium distance of H2 (r = 1.4 a0).

As shown in the figure 1.3(a), there is an avoided-crossing of the 2Σ and 2Π

potentials at an intermediate distance (about at R = 6.1 a0) which leads to a

conical intersections in non-collinear geometries. The effect of SO coupling in

2Σ and 2Π adiabatic electronic states are shown in Fig. 1.3(b). The 2Σ1/2 ,

2Π3/2 and 2Π1/2 electronic states are plotted as a function of R. The 2Σ state is

hardly affected by SO coupling while the splitting of the 2Π3/2 and 2Π1/2 state

corresponds to the SO coupling constant of Cl-atom (882 cm−1).

We present in Figs 1.4(a-b), the contour plots of the diabatic Σ and Π poten-

tials as a function of R and r for the collinear geometry of the three nuclei. The

Σ potential, shown in Fig. 1.4(a), is most attractive in perpendicular geometries

(γ = 900). There are wells in the entrance and exit channels, separated by the

central barrier. The minimum occurs at R = 5.78 a0 , r = 1.403 a0 and the

well depth amounts 0.51 kcal/mol [90]. At collinear geometries the potential is

also attractive, but the well depth is only 0.3 kcal/mol. On the contrary, the

VΠ potentials (the average of the two 2Π potentials) shown in Fig. 1.4(b), is

repulsive at small values of R. The above features are in sharp contrast with the

semiempirical G3 PES [87]. G3 PES has no minimum and it is most repulsive for

γ = 90◦ and these differences lead to completely different dynamical behavior at
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Figure 1.4: Contour plot of the adiabatic 2Σ (panel a) and 2Π (panel b) CW PES
of Cl(2P ) + H2 for the collinear arrangement of the three nuclei. The contour
levels are plotted in the range of 0 - 3 eV with a increment of 0.3 eV for each
contour lines.
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Figure 1.5: Same as 1.4, for the diabatic coupling potential V1 (panel a) and
diabatic difference potential V2 (panel b) as a function of R and γ. The dotted
lines correspond to negative energies.
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low collision energies [60].

The diabatic coupling potentials are shown in Figs. 1.5(a-b). The V1 potential,

shown in Fig. 1.5(a) is zero for γ = 0, 90, 1800 and changes sign at these angles.

The V2 potential which describes the splitting of the two diabatic 2Π potentials is

shown in Fig. 1.5(b). This potential is zero for γ = 0 and 1800 and has a maximum

at 900. The splitting between the two Π states increase with decreasing R.

1.3 Current state of research and the aim of the

present work

Recently, Taatjes [57] have carried out infrared frequency-modulation measure-

ments of absolute rate constants for the Cl + HD reaction. The angular distribu-

tion and time-of flight spectra for Cl + H2 and Cl + D2 reactions were measured

in a crossed molecular beam apparatus by Alagia et al. [58]. Employing a pho-

toinitiated reaction technique Kandel et al. [59] measured the vibrationally state-

resolved differential cross sections and product rotational distributions for the Cl

+ HD reaction. But, in light of the new measurements on the reactivity of the

ground Cl (2P3/2) and excited Cl?(2P1/2) SO states by Liu and coworkers, [62,63],

this reaction has received a renewed interest for theoretical study.

The reactivity of the excited SO electronic states of Cl(2P ) is explored by

Alexander and coworkers [80, 95]. by a time-independent wave packet approach.

They found that the Coriolis coupling has a considerably weaker effect and SO

coupling is responsible for the major nonadiabatic effects. With a direct contrast

with the experimental results, they predict that the BO-allowed reaction of the

ground state will be much more efficient that the BO-forbidden reaction of the

excited SO state. Differential cross sections (DCS) on the coupled electronic
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PESs have been calculated by Balucani et al. . [81]. Their calculations suggest

that the magnitude of the DCSs for the SO excited state reaction are much

smaller than the ground state and the excited SO state plays a minor role in

the reaction. Thermal rate constants including the SO coupling in the dynamics

is calculated by Manthe [96] by the multi-configuration time-dependent Hatree

(MCTDH) approach [97]. A detailed comparison with previous results based on

non-relativistic PES is also given along with the experimental results.

The aim of the present work is to study the the effect of the nonadiabatic cou-

pling on some dynamical observables viz., the initial state-selected reaction prob-

abilities, integral reaction cross sections, thermal rate constants etc. of Cl(2P ) +

H2 (HD) → HCl (DCl) + D (H) reactions with the aid of a time-dependent wave

packet (TDWP) approach. The photodetachment spectrum of ClH−
2 (ClD−

2 ) are

recorded by Neumark and coworkers [64,65]. We simulate this spectrum theoret-

ically by propagating wave packets on the coupled multi-sheeted reactive PESs of

Cl + H2 (D2) and compared the results with the experimental findings. The cal-

culated photodetachment spectrum reveals resolved structures of low-frequency

van der Waals resonances. These dynamical resonances in Cl(2P ) + H2 scat-

tering are identified and characterized, subsequently. Finally, the dissociation

dynamics of Cl···HD van der Waals complex following the electron detachment

of Cl−–HD anion is studied and the effect of the nonadiabatic coupling on the

channel-specific dissociation probabilities are analyzed.
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1.4 Overview of the Thesis

In Chapter 2, we present a detailed theoretical framework to deal with the nu-

clear dynamics in the coupled-state situation by a TDWP approach. The nuclear

dynamics is treated with a two-state model Hamiltonian considering the elec-

tronic coupling effects only and with a three-state model Hamiltonian when the

electronic and SO coupling are included in the calculations. The flux operator

is represented both in the adiabatic as well as diabatic electronic representations

to calculate the initial state-selected and energy resolved reaction probabilities.

Preparation of the initial WP, its propagation and the final analysis - each of

these topics are discussed at length in this chapter. The reaction probabilities

depending on the total angular momentum J are summed up using the coupled-

state (CS) approximation to calculate the integral reaction cross sections and the

averaging of the latter over the collision energies at a given temperature yields

the thermal rate constants.

In chapter 3, we discuss the reaction probability results of Cl(2P ) + H2 (HD)

obtained with the formalism outlined in chapter 2. The reaction probability ob-

tained including electronic coupling alone and including both the electronic and

SO coupling are calculated both in adiabatic and diabatic electronic representa-

tions. The coupled state results with the inclusion of only electronic coupling do

not differ much from the uncoupled ones but the SO coupling has a significant

impact on the dynamics. The reactivity of the different SO states of Cl(2P ) +

H2 reaction is also examined. The Π states are nonreactive in the adiabatic limit.

But these states can yield product in their electronic ground state via the nona-

diabatic transition to the 2Σ1/2 state. The time-dependence of the electronic

population in the adiabatic and diabatic electronic representations and the prob-

ability density of the WP in different times are also discussed in details in this
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chapter.

The channel specific reaction probability of the Cl(2P ) + H2 (HD) reaction for

J > 0 is studied thereafter. We have calculated the reaction probabilities with

partial-wave contribution upto total angular momentum J = 58 for Cl(2P ) +

H2 and J = 69 for the Cl(2P ) + HD reactions. The channel specific integral re-

action cross sections for the uncoupled and coupled state situations are compared

with the available experimental results. The thermal rate constants are obtained

by statistically averaging over the rotational states j = 0 - 2. Compared to the

uncoupled state results, we find that the theoretical rate constants including the

electronic and SO coupling are closer to the available experimental results for

both the Cl(2P ) + H2 and Cl(2P ) + HD reactions.

In chapter 4, the photodetachment spectrum of ClH−
2 (ClD−

2 ) is theoreti-

cally calculated probing the pre-reactive van der Waals region of the Cl(2P ) +

H2 asymptote. We consider a Franck-Condon (FC) transition from the ClH−
2

(ClD−
2 ) anion to the three coupled electronic states of neutral ClH2 (ClD2). A

time-dependent version of the Fermi-Golden rule expression is used to calcu-

late the spectral intensity. The final theoretical result obtained with the initial

of ClH−
2 are in good accord with the experimental recording of Neumark and

coworkers [64, 65]. An examination of the fine structures of the theoretical spec-

trum revealed van der Waals progression (motion along the Cl ···H2 coordinate)

as well as progression along the ClH2 bending vibration and H2 vibration. This

is illustrated by plotting the probability density contours (|Ψ|2) of the eigen-

functions. The effect of nonadiabatic coupling is also analyzed on the energy

eigenvalue spectra of few representative peaks.

In chapter 5, we study the dissociation dynamics of the Cl···HD van der Waals

complex following the electron detachment of Cl−–HD anion. The Cl−–HD anion
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is promoted to the reactive PES of neutral Cl···HD upon photodetachment. A

FC transition is assumed for this step and the subsequent reaction dynamics is

simulated by means of quantum WP propagation. The channel specific, HCl +

D or DCl + H or Cl + HD, dissociation probabilities are calculated both for the

uncoupled and coupled state situations. It is found that the dissociation to the

Cl + HD nonreactive channel is dominated followed by the HCl + D and DCl +

H reactive channels, respectively, in both uncoupled and coupled state situations.

Finally, the summarizing remarks including the future direction are provided

in Chapter 6.

In Appendix 1, a theoretical study of the photoelectron spectrum of F2O per-

taining to an ionization to the ground (X̃ 2B1 ) and low-lying excited electronic

states (Ã 2B2 , B̃ 2A1 and C̃ 2A2 ) of F2O
+ were presented. The vibronic interac-

tions between the Ã 2B2 and B̃ 2A1 electronic states of F2O
+ are treated within

a linear coupling approach and the strength of the vibronic coupling parameter is

calculated by ab initio method. The nuclear dynamics is simulated both by time-

independent and time-dependent quantum mechanical wave packet approaches.

While the first photoelectron band exhibit resolved vibrational progression along

the symmetric stretching mode the second one is highly overlapping. The latter is

attributed to the nonadiabatic interactions among the energetically close Ã 2B2 ,

B̃ 2A1 and C̃ 2A2 electronic states of F2O
+. The theoretical findings are in good

accord with the available experimental results.



Chapter 2

Reactive Scattering Dynamics on

the Coupled Electronic manifold

2.1 Introduction

In the following we describe the formalism to study the reactive scattering dy-

namics of a bimolecular collision occurring on a coupled manifold of electronic

states. The nuclear dynamics is studied with a two-state model considering only

the electronic coupling in the dynamics. A three-state model is used when both

the electronic and SO coupling are included in the dynamics. The flux operator

is represented both in an adiabatic as well as in a diabatic electronic represen-

tation in the two-state model, whereas, only a diabatic electronic representa-

tion is employed throughout in the three-state model. In a reactive scattering

study, ideally the reaction is initiated in an adiabatic electronic representation

and then transformed to a diabatic electronic representation for propagation in

which, the diverging kinetic coupling terms of the adiabatic representation change

into smooth potential energy coupling terms as stated in Chapter 1 [10]. Due to

23
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the associated complexity (and uncertainty) in defining a suitable adiabatic-to-

diabatic transformation angle, it often becomes cumbersome when the number of

participating electronic state increased. However, one can use a numerical diago-

nalization method to approximately calculate the adiabatic-to-diabatic transfor-

mation matrix elements. The final scattering attributes can be analyzed both in

the adiabatic as well as in the diabatic electronic representations and one finally

arrives at identical results in either way.

2.2 A general scheme to solve the TDSE

The molecular collisions generally take place in the position-momentum and the

time-energy space. In order to model the collision process, a discrete Hilbert

space [98, 99] is constructed in the from of a grid. The discrete grid is usually

constructed in the coordinate space, with each grid point being characterized by

a finite value of interaction potential. The coordinate space, (x), is divided into

a set of N discrete points with a spacing of ∆x between two successive points.

The eigenvalues of the position operator x̂ at each grid points are given by [99]:

xi = (i− 1)∆x, i = 1, ..., N (2.1)

The corresponding eigenvectors |xi〉, are given by the orthogonality and com-

pleteness relations and the wavefunctions for an arbitrary physical state can be

represented as φ(xi) = 〈xi|φ〉. Wavefunctions are normalized on the grid and

the normalization integral becomes
∫ +∞

−∞
φ?(x)φ(x)dx = 1. The maximum length

of the grid (L = N∆x) along the spatial coordinate x, determines the spacing
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between two successive points in the momentum space (k):

∆k =
2π

N∆x
. (2.2)

In the momentum space, the grid is centered at zero and all other points are

distributed symmetrically on either side of it. If the maximum momentum is

represented by pmax (=~kmax) in the k space, then the total momentum ranges

from −pmax to +pmax.

Once the grid is set up, the nuclear motion on the electronic PESs is monitored

by solving the time-dependent Schrödinger equation:

i~
∂Ψ

∂t
= ĤΨ (2.3)

where, Ĥ (=T̂ + V̂ ) defines the Hamiltonian operator of the system. T̂ is the

nuclear kinetic energy part of the Hamiltonian and V̂ defines the potential energy

part. For a general A+BC atom-diatom reaction, represented in ordinary Jacobi

coordinates (see Sec. 1.2.1 for details) the Hamiltonian operator is given by

Ĥ = − ~
2

2µ

∂2

∂R2
− ~

2

2µ′

∂2

∂r2
− ~

2

2I

1

sin γ

∂

∂γ

(
sin γ

∂

∂γ

)
+ V (R, r, γ). (2.4)

The first two terms in the right hand side of the above equation represent the

radial kinetic energy operators along R and r, respectively, and the third term

represents the rotational kinetic energy operator. The quantity, µ = mA(mB +

mC)/(mA+mB+mC), is the A+BC three-body reduced mass, µ′ =mBmC/(mB+

mC), is the BC reduced mass where mA, mB and mC are the masses of A, B and

C nuclei, respectively. The quantity I represents the moments of inertia of the

collisional system, 1
I

= 1
µR2 + 1

µ′r2 .
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For this explicitly time-independent Hamiltonian, the solution of the TDSE

reads

|Ψ(t)〉 = exp

[
−iĤt

~

]
|Ψ(t = 0)〉, (2.5)

where, |Ψ(t = 0)〉 and |Ψ(t)〉 are the wavefunctions of the reacting system at time

0 and t, respectively.

In order to solve this equation numerically, we need to evaluate the action

of the kinetic (T̂ ) and potential (V̂ ) energy operators on the Hamiltonian sepa-

rately. Since T̂ and V̂ do not commute with each other as T̂ is a function of the

momentum space (p), and V̂ is a function of position (x) only. The operator V̂

being local in the coordinate space, its action on Ψ is only a multiplication of its

magnitude with the value of Ψ at each grid point xi:

V̂ (x)Ψ(xi) = V (xi)Ψ(xi) (2.6)

But the kinetic energy operator (T̂ = p̂2

2m
= ~

2k2

2µ
) is nonlocal in the coordinate

space and the evaluation of the T̂Ψ can not be done by a simple multiplication.

This operation can be done through a suitable collocation technique [100,101] by

utilizing the concept of the discrete Hilbert space.

The basic idea behind the collocation method is to use two different represen-

tations of the function: (i) A grid representation; where the function is known

by its value at the grid points {xi}, e.g. V̂ , and (ii) A basis set representation

{gn(x)}; where the continuous functions are approximated at each point by a

discrete sum in terms of a finite basis set. The basis functions {gn(x)} at various

grid points xi are connected through appropriate expansion coefficients (an) at
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the grid points:

Ψ(xi) ≡ Ψ(xi) =
N−1∑

n=0

angn(xi) (2.7)

where N is the size of the basis set. This method is adapted for the evaluation

of a nonlocal operator, e.g. T̂ such that

T̂Ψ(x) =
~

2k2

2µ
Ψ(k) =

~
2k2

2µ
ak, (2.8)

This technique is also known as a pseudospectral approximation.

A special case of the collocation technique is the Fourier method [100–103].

With the use of Fourier transform one can switch back and forth between the

two reciprocal Hilbert spaces (e.g. position and momentum or the time and

frequency). As a result, Fourier transform is generally used to evaluate the action

of T̂ on Ψ.

In this method, the wavefunction Ψ(x) is expanded in terms of the orthogonal

plane wave basis functions:

Ψ(x) ≈
N/2∑

k=−(N/2−1)

ak exp [i2πkx/L] , (2.9)

where, ak is becomes the Fourier expansion coefficient and it represents the am-

plitude of the wavefunction in momentum space. Using the orthogonality relation

between the Fourier functions, one can obtain these coefficients by inverting the

relation with a set of equidistant sampling points {xi}

ak =
1

N

N∑

i=1

Ψ(xi) exp [−i2πkxi/L] . (2.10)

These are discrete Fourier transforms.
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The use of fast Fourier transform (FFT) method for computing the action of

the kinetic energy part of the Hamiltonian on the wavefunction was first intro-

duced by Feit et al. [104] and Kosloff and Kosloff [102] In this method, the action

of the kinetic energy operator on Ψ(x) involves transforming the coordinate space

wave function to momentum space by forward FFT (FT), multiplying by the ki-

netic energy T (k), and then transforming it back to the coordinate space by an

inverse FFT (FT−1). In general, the continuous FFT can be represented as:

FT [Ψ(x)] = Ψ(k) =
1√
2π

∫ ∞

−∞

Ψ(x)e−ikxdx. (2.11)

FT−1[Ψ(k)] = Ψ(x) =
1√
2π

∫ ∞

−∞

Ψ(k)eikxdk (2.12)

This method requires the wave function to satisfy periodic boundary conditions

and for band-limited functions this transformation is exact [102]. Functions un-

der these potentials remain localized in the phase space box where the amplitude

of the function becomes zero at the boundary of the box. Otherwise, as time

progresses the WP gradually reaches the grid edges and undergoes spurious re-

flections resulting interference between the outgoing and reflected components.

But wave functions (except the semilocalized wave functions) can not be con-

fined simultaneously both in coordinate and momentum spaces. This boundary

conditions for the wave packets can be met by using absorbing boundaries, e.g.

a negative imaginary potential (NIP) of the form −iV0, in addition to the real

potential of the system at the last few points near the grid edges [105]. They pro-

vide a convenient way to damp the WP components to reduce their amplitude to

zero at the grid boundaries and thereby prevent the unphysical reflections. One

more attractive feature of the FFT method [106] is that it scales as O(N logN)

with the number of grid points N . Thus this method becomes especially suitable
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for large-scale problems as the computational effort increases slowly with the grid

size.

But this FFT scheme is numerically inefficient to calculate the rotational part

of the kinetic energy operator. This is because the rotational kinetic energy

operator contains a (1/sin2 γ) term which leads to singularity in the discrete

angle space for γ = 0 and π. One can deal with this situation by using a discrete

variable representation (DVR) and finite basis representation (FBR). The DVR-

FBR transformation is an example of another orthogonal collocation method

which uses specific basis functions and points on the grid [107,108]. This method

uses an orthogonal transformation between the DVR and the FBR and vice versa.

The DVR is a basis consisting N discrete points, whereas the FBR is a basis

consisting of N square-integrable functions appropriate to the DVR coordinates.

In the DVR, the continuous eigenvalues of the coordinate operator is discretized

[109] by diagonalizing the relevant Hamiltonian matrix. The matrix elements

are determined by orthogonal transformation relation between the points and

the basis functions. Both the basis are designed to evaluate the action of the

operators in their respective local representations.

It has been shown by Light and coworkers [110–112], in the framework of

DVR representation, the collocation method is much more efficient when the two

representations are related through some quadrature scheme. Following the work

of Harris et al. [107], Dickinson and Certain [108] proposed the use of orthog-

onal polynomial basis functions (e.g. the Hermite polynomials), corresponding

to the Gaussian quadrature to carry out an orthogonal transformation between

the N quadrature points and N basis functions. The γk grid points have been

taken as the abscissas of a Gauss-Legendre quadrature, such that the rotational

kinetic energy operator is diagonal in the associated Legendre polynomial basis
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set {PΩ
l (cos γ)}.

In summary, all the operations involving in the ĤΨ are represented schemat-

ically in the following.

If Ψ = {Ψijk = Ψ(Ri, rj, θk)} is the grid representation of the wave function, and

χ is the corresponding momentum representation, the total Hamiltonian of Eq.

2.4 will be acted on ψ in the following way:

(i) Kinetic energy ∂2/∂R2 term,

Ψ → FFT (R) → {χ(R)
mjk} →

×
[
−K(R)

m

]

→ {χ′′(R)
mjk } → FFT−1(R) → Ψ(1).

(ii) Kinetic energy ∂2/∂r2 term,

Ψ → FFT (r) → {χ(r)
ink} →

×
[
−K(r)

n

]

→ {χ′′(r)
ink } → FFT−1(r) → Ψ(2).

(iii) Kinetic energy (1/2I sin θ)(∂/∂θ)[sin θ(∂/∂θ)] term,

Ψ → τ(θ) → {χ(θ)
ijl } →

×
[
− 1

2I(Ri,rj)
l(l + 1)

]

→ {χ′′(θ)
ijl } → τ−1(θ) → Ψ(3).

(iv) Potential energy term V (R, r, θ),

Ψ → V̂ → {V (Ri, rj, θk)ψijk} ≡ Ψ(4).

Finally,

ĤΨ = − ~
2

2µ
Ψ(1) − ~

2

2µ′
Ψ(2) − ~

2Ψ(3) + Ψ(4)
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2.3 The Hamiltonian

The Hamiltonian describing the vibronic and SO interactions of the electronic

states and the nuclear motion in Cl(2P ) + H2 collisions is most conveniently

written in a diabatic electronic representation. In this representation the coupling

between the surfaces is caused by the off-diagonal elements of the electronic part

of the Hamiltonian and the nuclear part is diagonal [26]. It is conveniant to use

the mass-scaled reactant channel Jacobi Coordinates R, r and γ in the body-

fixed frame in order to describe the collision process. The mass-scaled Jacobi

coordinates can be defined in terms of the ordinary Jacobi coordinate as:

R′ = Rλ and r′ = r/λ,

where, λ =
√

µ
µ′

, is the scaling factor. For a general A + BC system, the scaled

three body reduced mass, µ, and the diatomic reduced mass, µ′, are given by

µ′ =
mBmC

mB +mC

(2.13)

µ =

√
mAmBmC

mA +mB +mC

, (2.14)

where, mA, mB and mC are the masses of the atom A, B and C, respectively.

The Jacobi angle (angle between ~R and ~r) is denoted by γ. The body-fixed z

axis is defined to be parallel to ~R and H2 lies in the xz plane.

In the following, the schemes outlined by Rebentrost and Lester [113], Schatz

and coworkers [114] and Alexander and coworkers [47] we denote the various

angular momentum terms of the Hamiltonian. The electronic orbital angular

momentum vector of the atom is denoted by l with l [=1 for Cl(2P )] being the

corresponding quantum number, the electronic spin angular momentum vector
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of the atom is denoted by s where s [= ±1/2 for Cl(2P)] is the corresponding

quantum number. L = l + s, describes the electronic total angular momentum

of the atom and L is the corresponding quantum number with values L=1/2 or

3/2. The nuclear rotational angular momentum vector of the diatom is denoted

by j, the nuclear orbital angular momentum vector of the atom relative to the

diatom is denoted by N with corresponding quantum numbers being j and N

respectively. The total (electronic plus nuclear) angular momentum is denoted

by J [=L + j + N ] where the corresponding quantum number J can have half

integer values. The body-fixed projection quantum number associated with j, L,

and J are denoted as Ωj, ΩL and Ω, respectively. With the choice of the present

body-fixed z axis, we have Ω = Ωj + ΩL.

The general form of the diabatic multi-state Hamiltonian for the Cl(2P ) +

H2 reactive system can be written as:

H = HNu + Hel + Hso (2.15)

where HNu is the nuclear part of the Hamiltonian, Hel represents the nonrela-

tivistic electronic Hamiltonian and Hso is the relativistic SO Hamiltonian. With

the set of mass-scaled Jacobi coordinates (R, r and γ) as described above, the

(diagonal) nuclear part of the Hamiltonian can be written as:

HNu =
1

2µ

[
P 2

R + P 2
r

]
+

j2

2µr2
+

N 2

2µR2
(2.16)

Here PR and Pr are the momentum operators corresponding to the two Jacobi dis-

tances R and r, respectively. Hel represents the nonrelativistic electronic Hamil-

tonian and Hso is the relativistic SO Hamiltonian. The centrifugal term in Eq.
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(2.16) can further be expressed by substituting N = J − L − j as [114]

N 2

2µR2
=

(J2 + L2 + j2)

2µR2
− (2J .L + 2J .j − 2j.L)

2µR2

=
(J2 + L2 + j2)

2µR2
− JzLz + Jzjz − jzLz

µR2

1

2µR2
[(J+L− + J−L+) + (J+j− + J−j+) − (L+j− + L−j+)](2.17)

The terms arising from the coupling between the J , L and l operators, in terms of

the raising and lowering operators, appears in the off-diagonal part of the nuclear

Hamiltonian and are known as Coriolis coupling terms. By neglecting these Cori-

olis coupling terms one arrives at the well known coupled-states or centrifugal

Sudden (CS) Approximation [93, 115]. Within this approximation, Ω becomes

a good quantum number and it is conserved in the BF frame. This approxi-

mation greatly simplifies the J 6= 0 calculations by reducing the computational

dimensionality of the problem and provides reasonably accurate results for many

bimolecular reactions [116–120].

We utilize this general form of the Hamiltonian in our subsequent study of

the electronic and SO coupling effects in Cl(2P) + H2 reaction.

2.3.1 A two-state model Hamiltonian to study the elec-

tronic coupling effect

It is noted before that, when SO couplings are not considered in the dynamics,

the 2Σ and 2Π electronic states of Cl(2P) + H2 system forms a conical intersection

at the collinear arrangements of the three nuclei. The nuclear dynamics is studied

with a two-state nonrelativistic model in this case. The diabatic Hamiltonian for

the total angular momentum J 6= 0, [Eqs (A.1-2.17)] for the 2Σ-2Π interacting
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electronic manifold can then be expressed as

Hd = HNu + Hel

= TN


1 0

0 1


+


 HΣ HΣΠ

HΠΣ HΠ


 , (2.18)

where TN represents the nuclear kinetic energy operator

TN =
1

2µ

[
P 2

R + P 2
r

]
+

j2

2I
+

J2

2µR2

= − ~
2

2µ

[
∂2

∂R2
+

∂2

∂r2

]
− ~

2

2I

1

sin γ

∂

∂γ

(
sin γ

∂

∂γ
− Ω2

sin2 γ

)
. (2.19)

The quantity I represents the three-body moment of inertia, I = µR2r2/(R2+r2).

HΣ and HΠ in Eq. (2.18) are the energies of the ‘ 2Σ -like’and ‘ 2Π -like’diabatic

electronic states, respectively and HΣΠ = HΠΣ is the Σ-Π electronic coupling

potential.

The electronic part of the Hamiltonian is diagonal in the adiabatic electronic

representation and the off-diagonal elements of the nuclear part describe the

nonadiabatic coupling between the two states. The adiabatic Hamiltonian can

be obtained from diabatic one of Eq. (2.18) through a similarity transformation

as

Had = S†HdS,

= TN1 + S† [TN ,S] +


VΣ 0

0 VΠ


 , (2.20)

where TN represents the nuclear kinetic energy operator of Eq (2.19). The nonadi-

abatic coupling matrix is given by, Λ = −S†[TN ,S]. The quantity VΣ(Π) denotes
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adiabatic potential energy of the 2Σ(2Π) state. In terms of the diabatic potentials

of Eq. (2.18) the latter is given by

VΣ(Π) =
HΣ +HΠ

2


1 0

0 1


∓

√(
HΣ −HΠ

2

)2

+H2
ΣΠ. (2.21)

The quantity S in Eq. (2.20) defines an orthogonal transformation matrix. For

the present 2×2 Hamiltonian S is given by

S =


 cosα sinα

− sinα cosα


 , (2.22)

where α represents the coordinate dependent adiabatic-to-diabatic transforma-

tion angle. Using the diabatic Hamiltonian of Eq. (2.18) and the rotation matrix

of Eq. (2.22) one arrives at the following expression of the adiabatic Hamilto-

nian [33,34,121]

Had = TN


1 0

0 1


 +


VΣ 0

0 VΠ


 +

[
~

2

2µ
(α′2

R + α′2
r ) +

~
2

2I
α′2

γ

]
1 0

0 1


 +

[
~

2

2µ
(α′′

R + 2α′
R

∂

∂R
+ α′′

r + 2α′
r

∂

∂r
) +

~
2

2I
(α′′

γ + 2α′
γ

∂

∂γ
+ α′

γ cot γ)

]
0 −1

1 0


 ,

(2.23)

where α′
x = ∂α/∂x and α′′

x = ∂2α/∂x2. The third term in the right hand side of

Eq. (2.23) corresponds to the diagonal Born-Huang term [2] and the fourth term

corresponds to the off-diagonal derivative coupling term.
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2.3.2 A three-state Hamiltonian with electronic and rela-

tivistic spin-orbit coupling

The 2Σ and 2Π states of ClH2 transform as 1A′, 1A′′ and 2A′ species, respectively,

in the noncollinear geometry. These states correlate to the 2Σ1/2,
2Π3/2 and

2Π1/2 species at the linear geometry when the SO coupling is considered. In the

Cartesian notation of Alexander and coworkers [47] these states can be designated

as |Σ〉, |Πy〉 and |Πx〉 and in terms of the projection of the electronic orbital

angular momentum (signed) along ~R they can be denoted as |Σ〉, |Π−1〉 and

|Π1〉 states, respectively. As described in details in Sec. 1.2.1 the matrix of the

electronic interaction potential, in a 6×6 basis defined by the three Cartesian

diabatic states and the two possible spin projections can be described in terms of

three diagonal, electronically diabatic PESs, as well as a forth PES, which is the

coupling between the two states of A′ symmetry. In terms of the four diabatic

PESs and two SO coupling elements, the matrix of the interaction potential in

the signed-λ basis is given by:

Hel + Hso =




|Σ〉 |Σ〉 |Π1〉 |Π1〉 |Π−1〉 |Π−1〉
|Σ〉 VΣ 0 −V1 −

√
2B V1 0

|Σ〉 0 VΣ 0 −V1 −
√

2B V1

|Π1〉 −V1 0 VΠ − A 0 V2 0

|Π1〉 −
√

2B −V1 0 VΠ + A 0 V2

|Π−1〉 V1 −
√

2B V2 0 VΠ + A 0

|Π−1〉 0 V1 0 V2 0 VΠ − A




(2.24)

where the bar over the states represent the second spin component.

Since the spin states occur in degenerate pairs (Kramer’s degeneracy), it is

shown that the above Hamiltonian can be decoupled into two 3×3 blocks, in a
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complex basis invariant to the time reversal [47]

|Σε〉 =
1√
2

[ε|Σ〉 + i|Σ〉], (2.25a)

|Π±ε〉 =
1√
2

[ε|Π±1〉 + i|Π±1〉], (2.25b)

where ε = ±1. The matrix of the Hel + Hso then decouples as [47]

Hel + Hso =


H 0

0 H†


 (2.26)

where H is a 3×3 Hermitian matrix in the basis of the three states with ε = ±1:

H =




|Σ〉 |Π1〉 |Π−1〉
|Σ〉 VΣ −V1 − i

√
2B V1

|Π1〉 −V1 + i
√

2B VΠ + A V2

|Π−1〉 V1 V2 VΠ − A




(2.27)

H† is the Hermitian adjoint of H. All the elements of the above Hamiltonian

matrix are provided by the CW PES [75]. We use this Hamiltonian in the dy-

namical simulations discussed below. At this point we note that it is cumbersome

to formulate a unique adiabatic-to-diabatic transformation matrix pertinent to

the above 3×3 diabatic Hamiltonian. The S matrix, in this case, can be calcu-

lated by numerical diagonalizing the Hel + Hso matrix for each node of the grid.

We restrict ourselves to treat the entire dynamics in the diabatic electronic basis.

A detailed study on the dynamics in the adiabatic electronic representation is

presently under progress.
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2.4 Preparation of the initial wave packet

In the reactive scattering study the initial wavefunction is prepared in the asymp-

totic reagent channel (i.e. R → ∞) where there is no influence of the interaction

potential. In the coupled 3× 3 situation, the initial wavefunction can be located

in any of the three diabatic PESs. In vector notation, for a particular total

angular momentum J , the initial wavefunction is given by:

|ΨJ
Ω(R, r, γ, 0)〉 = ΨJ

Ω1
(R, r, γ)




1

0

0


+ ΨJ

Ω2
(R, r, γ)




0

1

0


+ ΨJ

Ω3
(R, r, γ)




0

0

1


 ,

(2.28)

where,




1

0

0


,




0

1

0


 and




0

0

1


 denotes the 2Σ1/2 , 2Π3/2 and 2Π1/2 diabatic

electronic states, respectively.

The nuclear wave functions for the respective electronic states Ψi (i=1,2,3) can

be written in terms of the product of the translational wavefunction F (R) for the

motion along R, the ro-vibrational wavefunction Φvj(r) of the H2 molecule and

L2-normalized associated Legendre polynomial P̃Ω
j (cos γ) to describe the motion

along the approach angle γ,

|ΨJ
Ωi

(R, r, γ, 0)〉 = F (R)Φvj(r)P̃
K
j (cos γn) (2.29)

We choose a minimum uncertainty Gaussian wave packet (GWP) for F (R):

F (R) =

(
1

2πδ2

) 1

4

exp

[
−(R−R0)

2

4δ2
− ik0(R−R0)

]
. (2.30)
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The quantity δ is the width parameter of the GWP, and R0 and k0 correspond

to the location of its maximum in the coordinate and momentum space, respec-

tively. The functions Φvj(r) along with the normalized Legendre polynomials

(
√

(2j + 1)/2Pj(cos γ)) represents the ro-vibrational eigenfunction correspond-

ing to a (v, j) state of the H2 molecule. The function Φvj(r) are obtained by

solving the eigenvalue equation of the free H2 molecule:

[
− ~

2

2µ′

d2

dr′2
+ V (r′) +

j(j + 1)~2

2µ′r′2

]
Φvj(r

′) = εvjΦvj(r
′). (2.31)

Here µ′ is the reduced mass, εvj the energy eigenvalue and r′[= r(µ/µ′)1/2] the

unscaled internuclear distance of H2 molecule. The potential energy of the H2

molecule V (r′) is obtained from the CW PES by setting R → ∞. We used

the sine-DVR approach of Colbert and Miller [122] to solve the above eigenvalue

equation. The L2-normalized associated Legendre polynomials are given by

P̃K
j (cos γ) =

√
2j + 1

2

(j −K)!

(j +K)!
PK

j (cos γ) (2.32)

which are the eigenfunctions of the ĵ2 operator.

The coordinate grid consists of equally spaced points Rl and rm along the

Jacobi distances R and r, respectively, and the Jacobi angle is chosen as the

node of a n-point Gaussian quadrature. The initial wavefunction at each node

(Rl, rm, γn) of this grid is given by

|ΨJ
K(Rl, rm, γn, t = 0)〉 = |Ψlmn〉 =

√
wnF (Rl)φvj(rm)P̃K

j (cos γn). (2.33)

where,wn is the weight of the Gaussian guadrature associated with the grid point

n.
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2.5 Time evolution of the WP

The general solution of the TDSE [Eq. (2.3)] is given by

Ψ(t) = P̂ exp

[
−i~

∫ T

0

Ĥ(t′)dt′
]

Ψ(0) (2.34)

where, Ψ(0) and Ψ(t) are the wavefunctions at time 0 and t, respectively. P̂ is

the time ordering operator. For an explicitly time-independent Hamiltonian, the

solution reads as in Eq. (2.5). The exponential operator in the above forms a

continuous dynamical group where time t is a parameter, and is known as the

time-evolution operator denoted by Û(t, t0) [123]. For t0 = 0, Û(t, t0) = e−iĤt/~.

Time t is sliced in smaller steps of length ∆t and the time-evolution for the entire

range of time is accomplished through:

Û(t) = ΠNt−1
n=0 Û((n+ 1)∆t, n∆t) (2.35)

where, Nt is the total number of time-evolution steps and ∆t = t/Nt.

In quantum molecular dynamics, there are several approximate methods to

propagate the WP in time. Some of these methods are the split-operator method

[103,104], Chebyshev polynomials (CP) scheme [124,125], second-order differenc-

ing (SOD) [98, 126], symplectic integrator (SI) [127] and real WP [128] method.

Short-iterative Lanczos (SIL) [129] method is also used explicitly for the time-

independent Hamiltonians. All these methods vary in terms of their performance

and accuracy. For the present problem, we have used the second order split-

operator method [104] for the time propagation of the initial WP.

In the application of the evoluation operator to solve Schrödinger Equation

(c.f. Eq. 2.5), there is an error arising from the fact that kinetic and potential
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energy operators do not commute. However, by splitting the time evoluation

operator symmetrically the commutator error is reduced to third order. Such

an approach is known as the second-order split-operator scheme [130]. It can

be either potential referenced or kinetic referenced. The potential referenced

second-order split-operator scheme is given by:

e−iĤ∆t/~ = e−iT̂∆t/2~e−iV̂ ∆t/~e−iT̂∆t/2~ +O(∆t3). (2.36)

In the kinetic-referenced split-operator scheme the exponential containing the

potential-energy operator is symmetrically split and the kinetic-energy is sand-

wiched in between. The time evolution of the WP in the potential-referenced

scheme is given by

Ψ(t+ ∆t) = e−iT̂∆t/2~e−iV̂ ∆t/~e−iT̂∆t/2~Ψ(t)

= QΨ(t) (2.37)

The norm conservation of the state leads to the probability conservation dur-

ing time-evolution, which demands the operator Û is linear and unitary:

Û Û † = Û †Û = 1. (2.38)

It is clear from the above expression that the split-operator scheme is unitary and

the norm of WP is therefore conserved. However, the energy conservation fails

in this scheme due to the noncommutability of the potential and kinetic energy

operators. To obtain comparatively accurate results, an optimum time step is
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selected based on the maximum potential energy on the grid [98,104].

∆t <
π

3∆Vmax

, ∆Vmax = Vmax − Vmin. (2.39)

In the present case, the exponential operator with the 3×3 Hamiltonian [c.f.

Eq. 2.27], can be expanded as:

exp

[−iHd∆t

~

]
= exp

[−iH∆t

2~

]
exp

[−ij2∆t

4I~
1

]
exp

[−iT (R, r)∆t

~
1

]

× exp

[−ij2∆t

4I~
1

]
exp

[−iH∆t

2~

]
+O[(∆t)3], (2.40)

where T (R, r) = (P 2
R + P 2

r )/2µ is the total radial kinetic energy operator. 1

represents a 3×3 unit matrix. The relativistic electronic Hamiltonian H [ Eq.

(2.27) ] can be decomposed as

H =




VΣ 0 0

0 VΠ + A 0

0 0 VΠ − A


− V1




0 1 0

1 0 0

0 0 0


+

√
2B




0 −i 0

i 0 0

0 0 0


+ V1




0 0 1

0 0 0

1 0 0


+ V2




0 0 0

0 0 1

0 1 0


 (2.41)

Since the diagonal and the off-diagonal parts of the above electronic Hamiltonian

do not commute with each other the propagator containing it in Eq. (2.40) is
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further splitted as

exp

[
−iH

∆t

2~

]
= exp


−i




VΣ 0 0

0 VΠ + A 0

0 0 VΠ − A




∆t

4~


 exp


iV1




0 1 0

1 0 0

0 0 0




∆t

2~




× exp


−i

√
2B




0 −i 0

i 0 0

0 0 0




∆t

2~


 exp


−iV1




0 0 1

0 0 0

1 0 0




∆t

2~


×

exp


−iV2




0 0 0

0 0 1

0 1 0




∆t

2~


 exp


−i




VΣ 0 0

0 VΠ + A 0

0 0 VΠ − A




∆t

4~




The exponent containing the off-diagonal matrix elements is now expressed in

terms of the Pauli matrices [131]

exp


−i(−V1)




0 1 0

1 0 0

0 0 0




∆t

2~


 =




cos(−V1∆t/2~) −i sin(−V1∆t/2~) 0

−i sin(−V1∆t/2~) cos(−V1∆t/2~) 0

0 0 0


 ,

exp


−i

√
2B




0 −i 0

i 0 0

0 0 0




∆t

2~


 =




cos(
√

2B∆t/2~) − sin(
√

2B∆t/2~) 0

− sin(
√

2B∆t/2~) cos(
√

2B∆t/2~) 0

0 0 0


 ,

exp


−iV1




0 0 1

0 0 0

1 0 0




∆t

2~


 =




cos(V1∆t/2~) 0 −i sin(V1∆t/2~)

0 0 0

−i sin(V1∆t/2~) 0 cos(V1∆t/2~)


 and

exp


−iV2




0 0 0

0 0 1

0 1 0




∆t

2~


 =




0 0 0

0 cos(V2∆t/2~) −i sin(V2∆t/2~)

0 −i sin(V2∆t/2~) cos(V2∆t/2~)


 .
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The Eq. (2.40) is used in conjunction with the fast Fourier transform method

[102] to evaluate the action of the exponential containing the radial kinetic en-

ergy operator. The action of the rotational kinetic energy operator is carried

out by transforming the DVR wavefunction, |Ψlmn〉, [Eq. (2.33)] to the angular

momentum space (FBR), multiplying it by the diagonal value of the operator

(e−ij(j+1)∆t~/4I), and transforming it back to the DVR representation [112]. Nu-

merically this is accomplished in a single step [132,133]:

exp

[−ij2∆t

4I~

]
|Ψlmn′〉 =

∑

n

{
∑

j

T
†
n′,je

−ij(j+1)∆t~/4ITj,n

}
|Ψlmn〉, (2.42)

where, j is the rotational quantum number of the H2 molecule. The coefficients

Tj,n are the elements of the DVR-FBR transformation matrix, constructed in

terms of Legendre polynomials (eigenfunctions of the j2 operator for J = 0)

[109,110,132]:

Tj,n =
√
w(n)

√
2j + 1

2
Pj(cos γn), (2.43)

and T
†
n,j are the elements of the inverse transformation matrix, i.e., the Hermitian

conjugate to Tj,n.

As the WP moves forward in time, its fast moving components approach the

grid boundaries and are no longer relevant for the rest of the dynamics [134].

Therefore, to avoid unphysical reflections or wrap around of these components

from the boundaries of a finite sized grid, the WP at each time step is multiplied

by a damping function [135]

f(Xi) = sin

[
π

2

(Xmask + ∆Xmask −Xi)

∆Xmask

]
, Xi ≥ Xmask (2.44)

which is activated outside the dividing line in the product channel and also in the



2.6. Final analysis (Flux Operator approach) 45

asymptotic reactant channel. Xmask is the point at which the damping function is

initiated and ∆Xmask(= Xmax−Xmask) is the width of X over which the function

decays from 1 to 0, with Xmax being the maximum value of X in that direction,

in a particular channel.

2.6 Final analysis (Flux Operator approach)

The flux operator F̂ is most generally defined in terms of a dividing surface Θ,

which is a function of the reaction coordinate x that separates the products from

the reactants [136]

F̂ =
i

~

[
Hd,Θ

]
. (2.45)

In the present case the obvious choice for Θ is given by Θ = h(x−xd), where h is

the Heaviside step function which equals to unity for positive argument and zero

otherwise. xd is the dividing surface which is to be chosen far out in the product

channel to ensure the asymptotic motion for all x ≥ xd. Since Θ depends only

on coordinates it commutes with the electronic part of the Hamiltonian and Eq.

(2.45) becomes

F̂ =
i

~
[TN ,Θ] . (2.46)

The quantity TN represents the nuclear kinetic energy part of the Hamiltonian.

The quantum flux operator [Eq. (2.46)] is diagonal in the diabatic electronic

representation. Taking the value of Θ as, Θ = h(r − rd), the non-zero diagonal

elements of the flux operator take the form [33,136,137]

f̂ii =
−i~
2µ

[
∂

∂r
δ(r − rd) + δ(r − rd)

∂

∂r

]
. (2.47)

In order to calculate the reaction probability in the two-state adiabatic elec-
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tronic basis, the flux operator needs to be represented in this basis. As the

quantity Θ in the Flux operator depends only on the reaction coordinate (r), the

r-dependent part of the nuclear kinetic energy operator is of only relevance in

Eq. (2.45). The latter is non-diagonal in the adiabatic basis and is given by

T ad
r =

−~
2

2µ




∂2

∂r2 − α′2
r (α′′

r + 2α′
r

∂
∂r

)

−(α′′
r + 2α′

r
∂
∂r

) ∂2

∂r2 − α′2
r


 . (2.48)

One arrives at the same expression as in Eq. (2.47) for the diagonal elements of

the flux operator and its off-diagonal elements take the following form [33]

f̂12 = −f̂21 =
−i~α′

r

µ
δ(r − rd). (2.49)

The reaction probability is obtained from the expectation value of this flux oper-

ator in the basis of the energy normalized time-independent wavefunction [136].

2.6.1 Calculation of reaction probability

The reaction probability is defined as the expectation value of this flux operator in

the basis of energy normalized time-independent reactive scattering wavefunction

at the dividing surface. In the diabatic basis, the initial state i (corresponding

to a specific vibrational ν and rotational j state of the reagent H2) selected and

energy resolved reaction probability (summed over final states f(v ′, j′) of the

product HCl) is given by

PR
i (E) =

∑

f

|SR
fi|2 =

〈
Φd(R, rd, γ, E)|F̂ |Φd(R, rd, γ, E)

〉
, (2.50)
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where SR
fi is the reactive scattering matrix from an initial state (i) of the reactant

to a final state (f) of the product. In the two state model, where only the elec-

tronic coupling is considered in the dynamics, the wave function in the diabatic

basis can be written as the components of the two electronic states,

|Φd(R, rd, γ, E)〉 =


|φd

1(R, rd, γ, E)〉
|φd

2(R, rd, γ, E)〉


 , (2.51)

where φd
1 and φd

2 correspond to the wavefunction components on the diabatic state

HΣ and HΠ, respectively. The function |φd
k(R, rd, γ, E)〉 is obtained by Fourier

transforming the time-evolved wave packet |ψd
k(R, r, γ, t)〉 along the dividing sur-

face at r = rd followed by the energy normalization as

|φd
k(R, rd, γ, E)〉 =

1√
2π

1

κE

∫ +∞

−∞

eiEt/~|ψd
k(R, r, γ, t)〉dt|r=rd

. (2.52)

For a given total energy E the quantity κE is the weight of the translational

component, F (R), of the initial wave packet,

κE =
( µ

2π~k

)1/2
∫ +∞

−∞

F (R)eikRdR, (2.53)

where, k =
√

2µ(E − ε)/~, with εvj being the initial ro-vibrational energy of the

H2 molecule.

In terms of φd
1 and φd

2 the above expression can be rewritten as [33]

PR
i (E) ≈

2∑

k=1

〈
φd

k(R, rd, γ, E)|f̂kk|φd
k(R, rd, γ, E)

〉
,

≈ ~

µ

2∑

k=1

Im

[〈
φd

k(R, rd, γ, E)|∂φ
d
k(R, rd, γ, E)

∂r

〉]
|r=rd

. (2.54)
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The quantity in the right hand side of the above equation is integrated over the

entire range of R and γ in order to obtain the reaction probability.

Contrary to the analogous expression [Eq. (2.54)] in the diabatic basis, the

result in the adiabatic basis contains also off-diagonal electronic contributions.

The reaction probability in this basis is given by [33]

PR
i (E) =

~

µ

[
Im〈φad

1 (R, rd, γ, E)|∂φ
ad
1 (R, rd, γ, E)

∂r
〉
]

+
~

µ

[
Im〈φad

2 (R, rd, γ, E)|∂φ
ad
2 (R, rd, γ, E)

∂r
〉
]

+ 2Im〈φad
1 (R, rd, γ, E)|α′

r|φad
2 (R, rd, γ, E)〉. (2.55)

These off-diagonal terms in the reaction probability expression are expected to

play an important role when both channels, corresponding to VΣ and VΠ are

open. If only VΣ is open, then the first of the three terms on the right hand

side of Eq. (2.55) contributes to the reaction probability only. Even in this case,

however, both terms in the diabatic analogue of Eq. (2.55) may play a role,

because adiabatic and diabatic states need not coincide asymptotically.

We restrict ourselves to the diabatic electronic basis in the three-state model

when both electronic and SO coupling are considered in the dynamics. Defining

the energy normalized time-independent diabatic wavefunction in this basis as

|Φd(R, rd, γ, E)〉 =




|φd
1(R, rd, γ, E)〉

|φd
2(R, rd, γ, E)〉

|φd
3(R, rd, γ, E)〉


 , (2.56)
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the reaction probability is given by [33,34]

PR
i (E) ≈

3∑

k=1

〈
φd

k(R, rd, γ, E)|f̂kk|φd
k(R, rd, γ, E)

〉
,

≈ ~

µ

3∑

k=1

Im

[〈
φd

k(R, rd, γ, E)|∂φ
d
k(R, rd, γ, E)

∂r

〉]
|r=rd

. (2.57)

where, φd
1, φd

2 and φd
3 represent the wavefunction components on the |Σ〉, |Π3/2〉

and |Π1/2〉 state, respectively.

2.6.2 Calculation of integral reaction cross section and

thermal rate constant

The reaction probabilities depending upon J and Ω values [cf. Eq. (2.54 or 2.55)]

are summed up to calculate the integral reaction cross section for a specified

initial (v, j) state of ClHD.

σvj(E) =
π

k2
vj

j∑

Ω=0

1

(2j + 1)

Jmax∑

J≥Ω

(2J + 1)P JΩ
vj (E). (2.58)

The initial state-selected thermal rate constant is calculated from the total inte-

gral reaction cross section [138],

Kvj(T ) =

√
8KBT

πµ

1

(KBT )2

∫ ∞

0

Eσvj(E)e−E/KBTdE, (2.59)

where KB is the Boltzmann constant. Finally, the rotationally averaged thermal

rate constants can be obtained by averaging over a Boltzmann distribution of
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such states

Kv(T ) =
∑

j

Kvj(E)

Qrot

(2j + 1)e−Bj(j+1)hc/KBT , (2.60)

where B is the rotational constant of the reagent and

Qrot (=
∑

j(2j + 1)e−Bj(j+1)hc/KBT ) is the rotational partition function.



Chapter 3

Quantum wave packet dynamics

of Cl + H2 (HD) reaction

3.1 Introduction

Quantum dynamical results of Cl(2P ) + H2 (HD) reaction obtained with the

formalism outlined in Chapter 2 are presented and discussed in this Chapter.

The total reaction probabilities obtained on the uncoupled 2Σ adiabatic electronic

state of the Cl(2P ) + H2 reaction is shown first as a function of the total energy

E (atom-diatom translational + diatomic rovibrational). The effect of electronic

coupling on the reaction attributes is considered thereafter. Here the role of

conical intersections between the 2Σ and 2Π electronic states is examined with a

two-state model considering electronic coupling in the dynamics, as detailed in

Sec. 2.3.1. Following the earlier literature, [79,139,140] we neglect the electronic

angular momentum in the two-state approximation and also in the uncoupled

surface calculations. Therefore, these calculations correspond to the lowest value

of the total angular momentum J = 0. In the couple state model, the initial WP

51
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is prepared in the adiabatic electronic state and then transformed to the diabatic

electronic representation before propagation. The final reaction probability is

calculated both in the adiabatic as well as diabatic electronic representation. The

electronic population dynamics and the probability of density of the WP during

the course of propagation is also studied in order to understand the mechanistic

details of the nuclear dynamics on the coupled manifold of electronic states.

This study is extended to a coupled three-state model (c.f. Chapter 2) by

including the relativistic SO interactions in the dynamics along with the electronic

coupling. We resort to a diabatic electronic representation throughout this model.

The dynamics is investigated for the lowest value of the total angular momentum,

J = 0.5, employing six diabatic electronic PESs as discussed in Sec 2.3.2. The

reactivity of the different SO states of Cl(2P ) + H2 reaction obtained by initiating

the reaction on the 2Σ1/2 , 2Π3/2 and 2Π1/2 diabatic states separately including

both electronic and SO coupling in the dynamics.

Finally, the reaction probabilities of Cl(2P ) + H2 and Cl(2P ) + HD reactions

for J 6= 0 are calculated. The preliminary results obtained on the channel specific

integral reaction cross sections in the uncoupled and coupled states situations are

shown and compared with the available experimental results. The Boltzmann

averaged thermal rate constants are also shown and compared with the available

experimental results. We note that in the coupled three states model, the initial

WP in the reactive scattering process ideally needs to be prepared in the adia-

batic electronic representation. This requires the suitable adiabatic-to-diabatic

transformation matrix. We have recently designed such matrices by numerically

diagonalizing the diabatic electronic Hamiltonian. The effect of the diabatic to

adiabatic transformation on the reaction dynamics is presently being examined.
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3.2 Computational Details

The detailed theoretical framework and computational methodology to treat the

reaction dynamics by the TDQM approach is outlined in Chapter 2. We describe

below the details of the numerical parameters used in the calculations.

A coordinate grid consisting of 128×64×48 points in the R, r and γ space

with R ranging between 0.10 a0 and 14.0 a0 and r between 0.10 a0 and 8.0 a0

is constructed. The grid along γ is taken as the nodes of a 48-point Gauss-

Legendre quadrature (GLQ) [141]. The initial WP is prepared at R0=10.0 a0

and the width parameter of the GWP, δ is chosen to be 0.18 a0. The WP is time

propagated with a step size ∆t of 0.1347 fs for a total time of 204.8 fs. In order

to avoid unphysical reflections or wrap arounds of the fast moving components

of the WP at the grid boundaries, it is multiplied by a damping function [135]

at each time step which is activated outside the dividing line at r=5.14 a0 in the

product channel and also in the asymptotic reactant channel at R=10.51 a0. The

convergence of the calculations is explicitly checked by performing several test

calculations by varying the grid parameters noted above. Particularly, the results

show some variation of a smaller grid (0 < 48 points) is used along the angle

γ. The oscillations in the reaction probability curves increase at high energies on

reducing the number of angular grid points. We noticed that increasing the width

of the absorbing region by a factor of two in either direction does not alter the

final results. In the section below, we present and discuss the dynamical results

obtained on the Cl(2P ) + H2 reaction using the numerical parameters described

above.
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Figure 3.1: Total reaction probability (summed over the product vibrational and
rotational states) of the Cl(2P ) + H2 (v=0, j=0) = HCl (X1Σg) + H (2S) reaction
on the uncoupled 2Σ adiabat (solid line) and diabat (dashed line) of the CW
potential energy surface (Ref [80, 81]), for the total angular momentum J =
0. The reaction probability is plotted as a function of total energy E (Cl, H2

translational + H2 ro-vibrational). The energy E is measured relative to H2

potential minimum. The energy distribution of the initial translational GWP is
shown in the inset.
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3.3 Result and Discussion

3.3.1 Reaction Probability for total angular momentum

J = 0

The total probability [summed over all open vibrational (v ′) and rotational (j ′)

states of the product HCl at a given energy] of Cl(2P ) + H2 (v=0, j=0) reaction

on the uncoupled 2Σ PES, as a function of the total energy E ( Cl-H2 trans-

lational plus H2 ro-vibrational) is shown in Fig. 3.1. The 2Σ PES correlates

with the products, HCl (X̃2Σ+
g ) + H (2S), in their electronic ground state. The

reaction probabilities obtained on the uncoupled adiabatic and diabatic 2Σ PES

are shown by the solid and dashed lines, respectively. The energy distribution

of the initial translational GWP is shown in the inset. It can be seen that the

translational components of the initial WP cover the range of energies being in-

vestigated here and one may expect to reliably obtain the reaction probabilities

in this energy range. Both the uncoupled adiabatic and diabatic probabilities

reveal the signature of quasibound resonance formation in the reaction. Some

of these resonances are identified and characterized in terms of their eigenvalue,

eigenfunction and lifetime and are discussed in detail in Chapter 4. The adi-

abatic and diabatic surfaces coincide at the collinear arrangement of the three

nuclei, however, the two reaction probabilities differ due to some differences of

these surfaces at the non-collinear geometries. Single surface dynamics on the 2Π

adiabat as well as 2Π diabat revealed no reaction in this energy range. The 2Π

state correlates with the electronically excited products HCl (a3Π) + H(2S) at

very high energies [c.f. Fig. 1.1]. Therefore, the 2Σ PES is expected to be the

main contributor to the adiabatic dynamics of Cl(2P ) + H2 reaction at low and

moderate collision energies.
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Figure 3.2: Same as Fig. 3.1. The solid line indicates the reaction probability
obtained in the coupled (2Σ - 2Π electronic) two-state picture. In the coupled
state calculations the initial WP is prepared on the 2Σ adiabat. The reaction
probabilities obtained by analyzing the reactive flux on the adiabatic (Eq. 2.55)
and the diabatic (Eq. 2.54) electronic representation are shown by the solid line
and the crosses, respectively. The uncoupled 2Σ adiabatic and diabatic state
results of Fig. 3.1 are included as dotted and dashed lines, respectively, for
comparison.
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As discussed in the preceding sections that there are two important surface

coupling mechanisms, viz. the Σ-Π electronic coupling and the Σ-Π and Π-

Π SO couplings, expected to contribute to the reactivity of the 2Π surface via

nonadiabatic transition to the 2Σ electronic state. In the following, we first focus

on the effect of Σ-Π electronic coupling on the Cl(2P ) + H2 reaction dynamics.

3.3.2 Nonadiabatic effects due to Electronic Coupling

The coupled two-state model described in section 2.3.1 has been utilized for this

purpose. In Fig. 3.2, we show the probability of the Cl(2P ) + H2 (v = 0, j = 0)

→ HCl (Σv′,Σj ′)+ H reaction obtained in this coupled state picture by the solid

line. The coupled state results are obtained by preparing the initial WP in the

asymptotic reagent channel of the 2Σ electronic state in the adiabatic represen-

tation. This initial WP is then transformed to the diabatic electronic basis using

the transformation matrix of Eq. (2.22). The adiabatic-to-diabatic mixing angle

φ is defined with the aid of a two-state diabatic electronic Hamiltonian [cf. Eq.

(2.18)] as

tan(2φ) =
2HΣΠ

(HΣΣ −HΠΠ)
. (3.1)

The propagation of the WP is carried out in the diabatic electronic representation

and the reaction probability is calculated both in the adiabatic [cf. Eq. (2.55)]

as well as in the diabatic [cf. Eq. (2.54)] electronic representation. The final

reaction probability results calculated in either representations must be identical

for a given initial WP. In order to verify this we show in Fig. 3.2 the reaction

probability calculated using Eq. (2.55) as solid line and those calculated using

Eq. (2.54) as crosses. We find that only the first term of either Eq. (2.55) or

Eq. (2.54) contributes to the reaction probability. This is in accord with the
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nonreactive nature of the 2Π surface in the energy range of the present investi-

gations. In order to clearly reveal the impact of the Σ-Π conical intersections

on the reaction probability, we also include the uncoupled adiabatic and diabatic

results of Fig. 3.1 in Fig. 3.2 and show them by long and short-dashed lines,

respectively. It can be seen from Fig. 3.2 that the resonance structures and their

energetic locations in the uncoupled and coupled-state results remain nearly the

same. At low energies, the uncoupled and coupled-state results show only mi-

nor differences. This statement is more appropriate when the uncoupled state

results with the diabatic initial packet is considered. The difference between the

two results becomes prominent beyond ∼ 0.7 eV only. The onset of the reaction

remains at ∼ 0.43 eV in both the uncoupled and coupled state results. We note

that we find the coupled state results with a diabatic initial packet is exactly

identical to the uncoupled diabatic results.

3.3.3 Time-dependent dynamics

In order to better understand the uncoupled and coupled state results of Fig. 3.2,

we show in Fig. 3.3 the time evolution of the adiabatic and diabatic electronic

populations in the coupled state situation. The adiabatic electronic populations

can be calculated either by using the S matrix of Eq. (2.22) or by defining

suitable adiabatic projection operators. The S matrix is a double valued function

of the coordinate and possesses a branch point at the conical intersection [29–

31]. This is circumvented by using adiabatic projectors in the diabatic electronic
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Figure 3.3: Time dependence of the electronic populations in the Σ-Π coupled
two-state dynamics of Fig. 3.2. The initial WP is located on the 2Σ adiabat. The
adiabatic and diabatic electronic populations are shown by the dashed and solid
lines, respectively. The upper two curves represent populations of the 2Σ state
where as the lower ones to that of the 2Π state.

representation [121]

P ad
Σ = S


1 0

0 0


S†

=
1

2
− 1

2(∆2 + H2
ΣΠ)1/2


−∆ HΣΠ

HΣΠ ∆




P ad
Π = 1 − P ad

Σ (3.2)

where the quantity ∆ is half of the energy gap between the two diabatic

surfaces. The expectation values of the above projectors define the electronic

populations in the respective electronic states. The two curves in the upper

part of Fig. 3.3 represent the adiabatic (dashed-line) and diabatic (solid-line)

population of the 2Σ electronic state. Since the initial WP is located in the
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Figure 3.4: The total probability of the Cl(2P ) + H2 → HCl( Σv′, Σj ′) + H
reaction calculated with the coupled two-state model by locating the wave packet
initially on the 2Π adiabat (solid line) and diabat (dashed line).
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Figure 3.5: Time dependence of the electronic populations in the coupled state
dynamics of Fig. 3.4. The initial WP is located on the 2Π adiabat. The adiabatic
and diabatic electronic populations are shown by the dashed and solid lines,
respectively. The upper two curves represent the populations of the 2Π state
where as the lower ones to that of the 2Σ state.
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asymptotic reagent channel of the 2Σ adiabat, the population of this state is 1.0

and that of 2Π adiabat is 0.0 at t=0. These populations represent the fractional

electronic populations. An initial sharp decay of the 2Σ adiabatic population to

within ∼ 10 fs is followed by quasi-periodic recurrences can be seen from the

figure. The population of the 2Π adiabat, on the other hand, reveals an initial

growth followed by quasi-periodic recurrences. It is evident from Fig. 3.3 that

upto a maximum of ∼ 25% of the WP flux flows to the 2Π adiabat, a part of

which moves back and forth between the two states during the reaction, which

results into the appearance of beat-like structures in the population curves. The

initial location of the WP corresponds to an admixture of the two diabatic states.

Therefore, a 83% (17%) population of the 2Σ (2Π) diabatic state is obtained at

t=0. In about 100 fs a major fraction of the WP flux on the 2Π diabat flows

back to the 2Σ diabat through the seam of conical intersections. The population

of the 2Π diabat grows again due to recrossing of the WP through the conical

intersection. The damping of recurrences in the diabatic population curves is

caused by the dephasing of the WP which seems to result from the anharmonicity

originating from the ”cusp” like behavior of the adiabatic PESs at the conical

intersection as well as from the interference effects due to recrossing of the WP

through the conical intersection in the diabatic picture.

The 2Π state of Cl(2P ) + H2 is nonreactive in the adiabatic limit. However, the

nonadiabatic effects associated with the Σ-Π electronic coupling induces reactivity

of the 2Π surface via an indirect mechanism. In order to examine this we show

in Fig. 3.4 the probability of Cl(2P ) + H2(v=0,j=0) reaction initiating on the

2Π electronic state. The results obtained with the adiabatic and diabatic initial

WP are shown by solid and dashed lines, respectively. The WP prepared on the

2Π state first transits to the 2Σ state (driven by the nonadiabatic effects due to
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Figure 3.6: Probability density (|Ψ|2) of the WP evolving on the 2Σ adiabat in
the coupled two-state dynamics of the Cl(2P ) + H2 (v=0, j=0) → HCl( Σv′, Σj ′)
+ H reaction at different times (indicated in each panel) for the case of the WP
initially being on the 2Σ adiabat. The potential energy contours of the 2Σ and
2Π diabatic electronic states for the collinear arrangement of the three nuclei are
included as brown and green solid lines, respectively in the upper panel of the
right column. The seam of conical intersections of these states is indicated by a
solid red line.
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Σ-Π electronic coupling) and the reactivity of the 2Π state solely arises from the

fraction of the WP flux reaching the product channel on the 2Σ surface. When

compared with the coupled state results of Fig. 3.4, it can be seen that the

reactivity of the 2Π state is much less than that of the 2Σ state. The onset of the

reaction occurs at ∼ 0.43 eV as in Fig. 3.2. Furthermore, it can be seen from Fig.

3.4 that an adiabatic initial WP yields more product than a diabatic one. This

is because the adiabatic initial WP represents an admixture of the two diabatic

states. However, this situation does not arise when the reaction is monitored

throughout in a diabatic representation.

The time-dependence of the adiabatic and diabatic electronic populations in

the coupled state dynamics with the initial WP on the 2Π adiabat is shown in

Fig. 3.5. The adiabatic and diabatic populations are indicated by the dashed

and solid lines, respectively. The upper two curves represent the adiabatic and

diabatic electronic populations of the 2Π state, whereas, the lower ones represent

those of the 2Σ state. When compared with the population dynamics of Fig. 3.3,

it can be seen that the nonadiabatic effects are much stronger when the reaction

is initiated on the 2Π state. Since the initial WP is located on the 2Π adiabat,

the population of this state is 1.0 and that of 2Σ adiabat is 0.0 at t=0. The

population of the 2Π adiabat exhibits an initial sharp decrease to a value of ∼ 0.3

within ∼ 200 fs followed by quasi-periodic recurrences fluctuating statistically

around a value of ∼ 0.5 at longer times. The initial sharp decrease of the 2Π

adiabatic population relates to a nonadiabatic relaxation time of ∼ 170 fs of this

state. The population of the 2Σ adiabat reveals a complementary initial growth

followed by quasi-periodic recurrences. The diabatic electronic populations of the

2Π and 2Σ states are 85% and 15%, respectively, at t=0. The recurrences seen

in the adiabatic population curves are heavily damped in the diabatic ones and
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Figure 3.7: Same as Fig. 3.6. The initial WP being located on the 2Π adiabat.
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indicates a more prominent recrossing of the WP through the conical intersection.

In order to better reveal the vibronic coupling effects on the nuclear dynamics,

we show snapshots of the WP probability density (|Ψ|2) evolving on the 2Σ/2Π

electronic states at different times in Fig. 3.6 and 3.7 when the reaction is initiated

on the 2Σ and 2Π adiabat, respectively. The probability density of the time

evolved WP on the 2Σ and 2Π states are shown in the left and right columns

of each figure. The probability density of the WP averaged over the angular

coordinate γ. The WP initially located on the 2Σ adiabat [cf. Fig. 3.6] approach

the interaction region and a part of it transits to the 2Π state within ∼ 16.2

fs. This is because the seam of 2Σ-2Π conical intersections lies in the reagent

channel [see the upper panel of the right column of Fig. 3.6]. The WP on the

2Σ state spreads into the product channel at longer times (cf. 30.3, 40.4 and

77.4 fs) and leads to the formation of the product, HCl (X1Σ+
g ) + H (2S). The

WP on the 2Π surface on the otherhand, moves back to the reagent channel at

longer times and is damped by the absorbing boundary. The motion of the WP

on both the 2Σ and 2Π states at longer times reveals several recrossings through

the intersection seam, which is also reflected in the damping of the recurrences

in the diabatic population curves in Fig. 3.3. The WP dynamics for the reaction

initiated on the 2Π adiabat (cf. Fig. 3.7) reveals interesting effects of the conical

intersection. Here the reactivity is solely governed by the nonadiabatic coupling

effects. It can be seen from the time evolution of the WP that the fraction of

the WP flux that transits to the 2Σ surface only leads to reaction in the energy

range considered here. The seam of conical intersections is more closer to the

interaction region of the 2Π surface [cf. Fig. 3.6, upper panel of the right column]

and the nonadiabatic effects are relatively stronger on the WP dynamics on this

state. A significant fraction of the WP flux moves to the 2Σ surface within ∼ 20
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Figure 3.8: Effect of vibrational (in panel (a) and (b)) and rotational (in panel
(c) and (d)) excitation of reagent H2 on the Cl(2P ) + H2 reaction dynamics on
2Σ PES. The uncoupled adiabatic results are shown in the panel (a) and (c). The
result obtained in the coupled two-state picture by initiating the reaction on the
2Σ adiabat are shown in the panel (b) and (d). The vibrational (v) and rotational
(j) quantum states of H2 are indicated in each panel.
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fs, a part of it leads to reaction and the remaining part exhibits several recrossings

through the intersection seam, and finally gets absorbed in the reagent channel.

3.3.4 The effect of reagent vibrational and rotational ex-

citation on the reactivity

We now discuss on the effect of vibrational and rotational excitation on the reac-

tion dynamics of the uncoupled and coupled 2Σ state. In Fig. 3.8(a) the reaction

probabilities of the Cl(2P ) + H2 (v=0-3, j=0) on the uncoupled 2Σ adiabat are

shown. When compared with the H2 (v=0, j=0) reaction probability, it can be

seen that the reagent vibration in general promotes the reaction. Understandably,

the reaction threshold shifts to the higher total energy on vibrational excitation of

the reagent H2. We note that, the translational energy threshold has been found

to shift to a lower value on vibrational excitation. For example, for the probability

curves for the uncoupled situation shown in Fig. 3.8(a), this threshold occurs at

Etr ∼ 0.155, 0.004, -0.039 and -0.051 eV for v=0, 1, 2 and 3, respectively. In the

coupled states results of Fig. 3.8(b), the translational threshold further decreases

slightly and occurs at Etr ∼ 0.142, -0.015, -0.028 and -0.034 eV respectively, in

that order. The resonance features become more prominent in the reaction with

vibrationally excited reagent. The reaction probabilities of Cl(2P ) + H2 (v=0-3,

j=0) on the coupled 2Σ state are shown in Fig. 3.8(b). The reaction is started on

the uncoupled 2Σ adiabat. When compared with the uncoupled state results of

Fig. 3.8(a), it can be seen that the nonadiabatic coupling with the 2Π state leads

to a decrease of the reaction probability. This is partly because the fraction of

the WP flux reaching the 2Π state moves into the asymptotic reagent channel of

this state and gets absorbed there. The sharp resonance features in the coupled

state reaction probabilities of Fig. 3.8(b) remain as prominent as the uncoupled
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Figure 3.9: Total probability of the Cl(2P ) + H2 (v=0, j=0) → HCl( Σv′, Σj ′) +
H reaction calculated with the coupled three-state model of Sec. II.C for J = 0.5.
The WP is initially located on the 2Σ diabat. The reaction probability obtained
by considering the vibronic and SO coupling together in the dynamics is shown
by the solid line. The dots superimposed on it represent the probability obtained
with the SO coupling alone in the dynamics. For comparison the probability
obtained with vibronic coupling alone (and shown in Fig. 3.2) for J = 0 is
included as dashed lines.
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state results of Fig. 3.8(a).

The effect of reagent rotation on the reaction on the uncoupled and coupled 2Σ

state is shown in Figs. 3.8(c) and 3.8(d), respectively. The translational energy

threshold also decreases with increasing rotational excitation. This threshold

occurs at Etr ∼ 0.155, 0.113, 0.082 and 0.045 eV in the uncoupled state results

(cf. Fig. 3.8(c)) and at Etr ∼ 0.142, 0.097, 0.072 and 0.041 eV in the coupled

state results (cf. Fig. 3.8(d)) for j = 0, 1, 2 and 3, respectively. It can be seen

from Fig. 3.8(c) that, the rotational excitation of the reagent H2 facilitates the

reaction at low energies. The resonance features are not as sharp as that obtained

with the vibrationally excited reagent (cf. Fig. 3.8(a)). Inclusion of the coupling

to the 2Π state decreases the overall reaction probabilities (cf. Fig. 3.8(b)) when

compared with the uncoupled state results of Fig. 3.8(c). The overall variation

of the coupled state reaction probabilities (cf. Fig. 3.8(d)) with energy and the

resonance features are similar to that of the uncoupled state results of Fig. 3.8(c).

3.3.5 Nonadiabatic effects due to Electronic and

Spin-Orbit Coupling

We now examine the combined vibronic and SO coupling effects on the Cl(2P ) +

H2 (v=0, j=0) → HCl( Σv′, Σj ′) + H reaction employing the coupled three-state

model described in Section 2.3.2. In Fig. 3.9, we show the energy dependence of

the total reaction probability for the case of the WP initially on the 2Σ1/2 diabat.

The results obtained by considering the vibronic and SO coupling together for J =

0.5 are plotted with the solid red line. The black dots superimposed on it indicate

the results obtained by considering the SO coupling alone in the dynamics. For

comparison, we also include the results obtained with the vibronic coupling alone

(cf. Fig. 3.2) as blue dashed lines in Fig. 3.9. It can be seen that the SO
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Figure 3.10: Probability density (|Ψ|2) of the WP on the 2Σ1/2 (left panel), 2Π3/2

(middle panel) and 2Π1/2 (right panel) diabats at different times (indicated in
each panel) in the coupled three-state dynamics of Cl(2P ) + H2 (v=0, j=0) →
HCl( Σv′, Σj ′) + H reaction. The WP is initially located on the 2Σ1/2 diabat and
both the vibronic and SO coupling effects are considered.
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coupling have significant impact on the reaction dynamics with H2 (v=0, j=0) as

compared to the electronic coupling. It is shown above that the uncoupled and

coupled (vibronic) results for the 2Σ diabat do not differ. It can be seen from Fig.

3.9 that the results obtained with the vibronic and SO coupling together and the

SO coupling alone are nearly identical. The reactivity of the 2Σ state significantly

decreases when SO coupling is considered. A close look at the oscillations in the

reaction probability curves in Fig. 3.9 reveals that some of the fine oscillations

observed with the vibronic coupling alone are absent in the probability curve

with the SO coupling. These fine oscillations (although are not very prominent)

may arise from the Stueckelberg type of interference effects between the 2Σ and

2Π like amplitudes for reactive scattering. The existence of such oscillations is

demonstrated for the first time in the Cl(2P ) + HCl reaction [73]. The present

system has some commonality with it, however, the SO coupling effects in the

present case appears to be stronger. The remaining oscillations are due to the

resonances in the system.

The time evolution of the WP in the coupled three-state picture is shown in

Fig. 3.10. The WP densities on the 2Σ1/2,
2Π3/2 and 2Π1/2 diabatic states at

different times (indicated in the panel) are shown in the left, middle and right

column of Fig. 3.10, respectively. Since the reaction is started on the 2Σ1/2

diabat, the WP density on the other two states is 0.0 at t=0. It is already

noted above that the vibronic coupling does not affect the reaction probability

in this case. The nonadiabatic transition in this case is mainly caused by the SO

interactions. The latter drive considerable fraction of WP flux to the 2Π3/2 and

2Π1/2 diabats already within ∼ 16 fs. The amount of the WP flux flowing to the

latter state is significantly lower than to the former one. It can be seen that the

WP flux on the 2Σ1/2 diabat only leads to the reaction. The WP flux on the other
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state dynamics of Fig. 8. The WP is initially located on 2Σ1/2 diabat.
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Figure 3.12: Total probability of the Cl(2P ) + H2 (v=0, j=0) → HCl( Σv′, Σj ′) +
H reaction obtained by initially preparing the WP in the 2Σ1/2 (solid line), 2Π3/2

(dashed line) and 2Π1/2 (dot-dashed line) diabat. The probabilities are calculated
with coupled three-state model of Sec. II.C and for J = 0.5.
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two states finally gets absorbed by the absorbing potential in their asymptotic

reagent channel. These observations are also supported by the time dependence

of the diabatic electronic populations plotted in Fig. 3.11. The populations of

the 2Σ1/2, 2Π3/2 and 2Π1/2 diabat are shown by the solid, dashed and dot-dashed

lines, respectively. It can be seen that there is significant exchange of WP flux

between the 2Σ1/2 and 2Π3/2 states, the flux flow to the 2Π1/2 state on the other

hand is significantly less which is also indicated by the WP densities in Fig. 3.10.

The initial sharp decrease of the WP flux of the 2Σ1/2 state and its flow to the

2Π3/2 state reveals a considerable strength of SO coupling between these states.

3.3.5.1 Reactivity of different Spin-Orbit States

The reactivity of the different SO states of Cl(2P ) + H2 (v=0, j=0) is presented

in Fig. 3.12. Here the probability results are obtained by initiating the reac-

tion on the 2Σ1/2,
2Π3/2 and 2Π1/2 diabat separately in the coupled three-state

picture for J = 0.5. The resulting probability results are shown by the solid,

dashed and dot-dashed lines, respectively, in that order. The Π state reacts via

nonadiabatic transitions to the 2Σ1/2 state. This is solely mediated by the Σ-Π

SO coupling. It can be seen from Fig. 3.12 that the SO excited state of Cl

atom is less reactive compared to its SO ground state. This is in agreement with

the available theoretical results [80, 81] but in apparent contradiction with the

experiment [62,63].
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Figure 3.13: Weighted partial wave contribution to the total integral reaction
cross sections in the coupled-state situation for Cl(2P ) + H2 (panel a) and
Cl(2P ) + HD reaction (panel b) at various values of the total energy (indicated
in each panel) for the lowest value of v and j.
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3.3.6 Reactive Scattering for J 6= 0

In this section, we present and discuss the preliminary results on the reaction

probability (J 6= 0), reaction cross section and thermal rate constant obtained for

Cl(2P ) + H2 and Cl(2P ) + HD reactions within the CS approximation employing

the theoretical methodology discussed in Sec. 2.6.1. All the WP calculations are

carried out by treating Ω as a fixed parameter and appropriate eigenvector matrix

is used corresponding to a given Ω value to setup the DVR-FBR transformation

matrix. The reaction probabilities are calculated upto a total energy of 1.4 eV

and inclusion of partial-wave contribution upto J = 58 is found to be necessary

to obtain a converged reaction cross section for the Cl(2P ) + H2 reaction in

this energy range. This has been verified in Fig. 3.13(a) by plotting the J

dependence of the degeneracy weighed coupled reaction probability with four

representative values of the total energy. The weighed probability values for a

given energy initially increases with J due to the degeneracy factor (2J + 1)

and then decreases at higher J values, due to the shift of the reaction threshold

caused by the centrifugal barrier. Similar exercise has been undertaken for the

isotopic Cl(2P ) + HD reaction. Partial wave contribution upto J = 69 is found

to be necessary in this case [c.f. 3.13(b)].

The total reaction probabilities for few selected values of total angular mo-

mentum J = 10, 20, 40 and 50 and Ω = 0, of the Cl(2P ) + H2 reaction on the

uncoupled 2Σ surface are plotted in Fig. 3.14 as a function of the total energy E.

The J = 0 reaction probability reproduced form Fig. 3.1 is also shown for com-

parison. It can be seen that the reaction onset shifts to higher energies with the

increase of the total angular momentum, J . The sharp resonance structures in

the reaction probability for J = 0 are found to be less pronounced as the J value

increases revealing a more direct nature of the reaction. But on the average the
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reaction probabilities for higher values of J are smaller than the corresponding J

= 0 results, indicating substantial nonreactive scattering for J 6= 0 collisions.

In order to see the effect of electronic and SO coupling on the J 6= 0 reaction

probabilities, we show the energy dependence of the total reaction probability

of the Cl(2P ) + H2 reaction for J = 10.5, 20.5, 40.5 and 50.5 and Ω = 0.5 in

the coupled state situation initially locating the WP on the 2Σ1/2 diabat, as

dashed lines in Fig. 3.14. The results obtained by considering both electronic

and SO coupling in the dynamics. We also include the result obtained with J

= 0.5 for comparison. The reaction probability significantly decreases with the

inclusion of the electronic and SO coupling as we have already discussed in Sec.

3.3.5 for J = 0.5. The reaction probability continues to decreases with increasing

J and the difference between the uncoupled and coupled surface results also

gradually decreases as J increases. Here we note that, the results obtained with

the electronic coupling alone do not differ much form the uncoupled state results

[see Fig. 3.10], hence we do not consider them here. It can be seen in Fig. 3.14

that, the reaction onset in the coupled state situation shifts towards higher energy

compared to the uncoupled one and this shift increases with the increase of the

total angular momentum, J . This is because of the higher centrifugal potential

due to the SO coupling that adds up with the effective potential energy in coupled

state situation [see Eq. 2.17]. The resonance structures also gradually disappear

with increasing J in the coupled state situation.

Now we discuss the reaction probabilities calculated for the isotopic Cl(2P )

+ HD reaction. This reaction yields either DCl + H (channel R1) or HCl + D

(channel R2) products, therefore, in the following, we report the channel specific

reaction probabilities. The reaction probabilities of channel R1 and R2 for Cl(2P )

+ HD (v = 0, j = 0) reaction as a function of the total energy are plotted in
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Fig. 3.15(a-b). We show in Fig. 3.15(a), the reaction probabilities for few

representative values of J = 0, 10, 20, 30, 40, 50 and 60 (indicated in the panel)

and for Ω = 0, by treating the nuclear dynamics on the lower adiabatic surface

of the Cl(2P ) + HD reaction without including any nonadiabatic coupling in the

dynamics. For the lowest vibrational and rotational state of the reagent HD (v

= 0 and j = 0), the reaction probability results for channel R1 (DCl + H) and

channel R2 (HCl +D) are shown by solid and dashed lines, respectively. It can

be seen that, the reaction probabilities of R2 channel is very low compared to R1

and formation of DCl + H (R1) is always favored over the the formation of HCl +

D (R2) for all values of J . The probability values in both the channels reveal the

signature of resonances. However, the resonances are found to be less pronounced

for the R2 channel (HCl + D) and gradually vanishes for higher values of J .

In Fig. 3.15(b) we plot the reaction probabilities of Cl(2P ) + HD reaction for

J = 0.5, 10.5, 20.5, 30.5, 40.5, 50.5 and 60.5, Ω = 0.5 including both electronic

and SO coupling in the dynamics. The reaction is studied in the coupled state

situations in this case, initially preparing the WP on the asymptotic reagent

channel of the ground 2Σ1/2 diabatic PES of the Cl(2P ) + HD reaction. As

we have seen for Cl(2P ) + H2 reaction, the reactivity of both the channels

significantly decreases when the coupling is activated. Some of the fine oscillations

in the coupled state reaction probability also become absent when compared with

the uncoupled state results. Similar to Cl(2P ) + H2 reaction, the electronic

coupling has a negligible impact on the dynamics of the Cl(2P ) + HD reaction

and the SO coupling is mainly responsible for the reduced reaction probability

in the coupled state situation. Here, we like to note that, all the coupled state

results presented here includes both electronic and SO coupling and the dynamics

is treated throughout in a diabatic electronic representations.
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Figure 3.16: Initial state-selected integral reaction cross sections of the Cl(2P ) +
H2 (v = 0, j = 0, 1, 2) as a function of the total energy E. The cross sections
in the uncoupled and coupled state situation are represented by solid and dashed
lines, respectively.

Figure 3.17: Same as Fig. 3.16 for the Cl2P + HD (v = 0, j = 0) collision for
channel R1 (solid line) and channel R2 (dashed line) in the uncoupled and coupled
state situation of Cl(2P ) + HD reaction are plotted along with the experimental
recording of Liu et. al. [60].
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3.3.7 Initial state-selected integral Reaction Cross Sec-

tions

The initial state-selected and energy resolved integral reaction cross sections, as

a function of the total energy in the Cl(2P ) + H2 collisions are shown in Fig.

3.16. These cross sections are calculated by summing up different partial wave

contributions with appropriate weights to the reaction probability using Eq. 2.58.

The results considering electronic and SO coupling and without considering any

coupling in the dynamics are shown by dashed and solid lines, respectively. The

reaction cross sections for both the uncoupled and coupled state situations ob-

tained with rotationally excited reagent H2 (j = 0 - 2, indicated in different colors)

in its vibrational ground level (v =0) are also shown. The cross section results

for j > 0 includes contributions form Ω > 0, with maximum Ωmax = min(j, J),

within the CS approximation. The reaction cross section value increases with in-

creasing j and for a given value of j the reaction cross section increases gradually

with the total energy in both the uncoupled and coupled state situations. The

difference between the uncoupled and coupled state results for a given value of

j, is small at low collision energies and increases gradually as the total energy

increases. This difference becomes more significant with increasing value of j.

The initial state-selected and energy resolved integral reaction cross sections,

as a function of collision energy (total energy - the rovibrational energy of the

diatom) of the Cl(2P ) + HD reaction are shown in Fig. 3.17 with the reagent HD

in its lowest vibrational and rotational level. The uncoupled and coupled state

results are shown in the first two panels, respectively, along with the experimental

results of Liu et. al. [60] in the last panel. The overall shape of the theoretical

reaction cross sections matches well with the experimental results. But there is a

very little difference between the calculated uncoupled and coupled state reaction
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Figure 3.19: Same as Fig. 3.18 for Cl(2P ) + HD reaction.
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cross sections. This is because, the entire experimental collision energy range is

very low (3 - 7 kcal/mol) and the onset of the reaction probabilities are almost

same for both the uncoupled and coupled state situations.

3.3.8 Thermal Rate Constants: Comparison with the ex-

periment

The thermal rate constants obtained by statistically averaging over the rotational

states j = 0 - 2 are shown in Fig. 3.18 for the Cl(2P ) + H2 (v = 0) reaction.

The result obtained by considering electronic and SO coupling in the dynamics

is shown by the solid line and the same without considering any coupling are

represented by the dashed line. The available experimental [142–145] and re-

cent theoretical results [96] are shown as different points on the diagram. The

experimental results of Kita and Stedman [142], Lee et al. [143] and Kumaran

et al. [144] are represented by unfilled circle, square and triangle, respectively.

Recent quantum calculations result on the Cl(2P ) + H2 thermal rate constant

by Manthe et al. [96] is also presented as filled diamonds in Fig. 3.18. It can be

seen that the thermal rate constants calculated without including any coupling in

the dynamics is far from the experimental results whereas the results considering

the electronic and SO coupling in the dynamics matches well with the experi-

ment. Manthe et al. [96] calculated the thermal rate constants by using MCTDH

method on the single 2Σ1/2 adiabatic CW PES by explicitly including the SO

coupling in the dynamics. Thus, it can be inferred that, the inclusion of SO cou-

pling in the dynamics is necessary to understand the experimental thermal rate

constant of Cl(2P ) + H2 reaction.

The experimental rate constants for the Cl(2P ) + HD reaction recorded by

Taatjes et. al. [57] are shown as different points and compared with our theoretical
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results in Fig. 3.19. Similar to the Cl(2P ) + H2 reaction, the theoretical results

including the electronic and SO coupling is closer to the experimental one. The

rate constants match well in the high temperature region, but the difference

becomes significant as one moves towards the lower temperature.

3.4 Summary

We have presented a theoretical account of the reactive scattering occurring on

three electronic states with two different coupling mechanisms. We then apply

this to investigate the dynamics of Cl(2P ) + H2 → HCl (X1Σ+
g ) + H (2S) reac-

tion. The vibronic and SO coupling of the PESs are considered and the nuclear

dynamics is studied with the aid of a time-dependent WP approach. We first

focus on the role of the vibronic coupling of the 2Σ-2Π surfaces in the reaction

dynamics. These two surfaces form a conical intersection for the collinear ar-

rangement of the three nuclei. With the aid of a coupled two-state model we

studied the effects of this conical intersection on the initial state-selected reac-

tion probabilities of this system. Our findings revel a decrease in the probability

(when compared with the uncoupled state probability results) when reaction is

started on the 2Σ adiabat in the coupled state picture. Initiation of the reaction

on the 2Σ diabat on the other hand has ‘no impact ’of vibronic coupling - it

leads to the same reaction probability as obtained on the uncoupled 2Σ diabat.

The reagent vibration in general promotes the reaction and resonances become

more prominent when reagent H2 is vibrationally excited. The reagent rotation

also promotes the reaction at low energies. The 2Π surface is non-reactive (adi-

abatically) in the energy range considered in the present paper. However, in the

coupled state picture it reacts via the conical intersection and leads to the re-
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action. Here also initiating the reaction on the 2Π adiabat /2Π diabat leads to

significant differences in the probability results.

The impact of the vibronic and SO coupling effects in the reaction dynamics is

examined next. To the best of our knowledge this situation is rigorously treated

for the first time in a time-dependent picture using coupled three-states consisting

of six diabatic surfaces. Our analysis reveled a huge impact of SO coupling on the

Cl(2P ) + H2 (v=0, j=0) reaction dynamics. The reactivity of the 2Σ1/2 decreases

significantly (from that of uncoupled surface results) when the SO coupling is

considered. The reactivity of the SO excited Cl (2P1/2) is found to be less than

the SO ground Cl (2P3/2), in accord with the available theoretical results [80,81].

We presented a preliminary theoretical results on the channel specific reac-

tion cross sections and thermal rate constants for the Cl(2P ) + H2 and Cl(2P )

+ HD reactions. The quantum dynamical simulations are carried out by a time-

dependent WP approach within the CS approximations. Calculations of initial

state-selected energy resolved reaction probabilities, integral reaction cross sec-

tions and thermal rate constants are carried out both in the uncoupled and cou-

pled surface situations in order to examine the effect of the surface coupling on the

reaction dynamics. The theoretical results of the integral reaction cross sections

and the thermal rate constants are in good accord with the available experimental

findings.



Chapter 4

Photodetachment Spectroscopy

of ClH−
2

(ClD−
2
)

4.1 Introduction

In this chapter, the photodetachment spectrum of ClH−
2 is theoretically studied.

Detachment of one electron probes the van der Waals well region of the reagent

asymptote of the reactive Cl + H2 PESs. The reaction Cl(2P ) + H2 is slightly

endothermic (endothermicity ∼ 0.045 eV) and proceeds on a late barrier type

of surface (barrier hight ∼ 0.366 eV) [81]. Unlike the exothermic F(2P ) + H2

reaction which proceeds on an early barrier surface and the geometry of FH−
2

is close to this barrier (so that the photodetachment spectroscopy could probe

the transition state region of the F + H2 PES [146]), the geometry of ClH−
2

is much stretched [147] and is far away from the configuration at the barrier.

The geometry of ClH−
2 is close to the van der Waals well region of the Cl(2P ) +

H2 asymptote and therefore the photodetachment spectroscopy could successfully

probe this delicate region of the PES [64,65].

86
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Figure 4.1: Schematic representation of the adiabatic potential energy surfaces of
the ground electronic state of ClH−

2 (solid line in the lower part) and the 2Σ1/2 ,
2Π3/2 and 2Π1/2 SO states of Cl(2P ) + H2 (in the upper part) along R for r
= 1.402 a0 and γ = 0◦. The initial ab initio WP calculated by relaxation scheme
and the initial GWP are included in the lower part of the diagram and shown as
dashed and dotted lines, respectively. The zero-point vibrational level of ClH−

2 is
also shown as a solid line in the lower potential curve. The arrow in the diagram
indicates the FC transition.
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Figure 4.2: Experimental photoelectron spectra of ClH−
2 (top) and ClD−

2 (bottom)
at 299 nm (4.154 eV) reproduced form Ref. [64]
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The photodetachment process of ClH−
2 is schematically described in Fig. 4.1.

The adiabatic potential energy surfaces of the ground electronic state of ClH−
2

and the SO states of ClH2 are plotted as a function of R for r = 1.402 a0 and

γ = 0◦. The ClH−
2 potential energies are obtained from the PES reported by

Alexander [148] and plotted as a solid line in the lower part of the diagram.

The ClH−
2 ion is reported to have a linear equilibrium geometry with R = 5.714

a0 [148]. Using the PES of Alexander the wavefunction for the ground vibrational

level of ClH−
2 is calculated by a Lanczos based relaxation scheme [149] where the

time propagation of the wavefunction is carried out by the short iterative Lanczos

procedure with variable time steps. This yields a zero-point energy of ∼ -0.097

eV for the anionic ground state. The ground vibrational wavefunction of the

anion obtained by this method is superimposed on the anionic potential curve in

Fig. 4.1 and shown by the pink line. The zero-point energy level of the anion

is indicated by the horizontal line in the diagram. The initial GWP used in this

study is also shown as a blue line in the diagram. The FC transition of the anion

to the coupled Σ − Π electronic states of the neutral is indicated by the vertical

arrow. In the upper part of the diagram the 2Σ1/2,
2Π3/2 and 2Π1/2 adiabatic SO

states of ClH2 [for r = 1.402 a0 and γ = 0◦] are shown. The minimum of the van

der Waals well occurs at the C2v geometry of ClH2 at Re ∼ 5.78 a0. It can be

seen from the figure that this value lies well within the range of the anion radical

wavefunction. Despite a large difference between the equilibrium geometry of

ClH−
2 and the location of the van der Waals minimum on the ClH2 PES along

the angle γ, the ground anionic wavefunction is delocalized along the angle and

its amplitude covers a substantial range of γ.

This is the first example of a reactive system where the reagent van der Waals

well could be probed through the photodetachment spectroscopy and thereby
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providing new spectroscopic evidence of the existence of van der Waals well on

a reactive PES. Our theoretical investigations reported herein are motivated by

the experimental findings of Neumark and coworkers [64,65]. Their experimental

photodetachment spectrum of ClH−
2 shown in Fig. 4.2, is measured at 299 nm

(4.154 eV). It revealed two dominant peaks (A and B) at 3.683 eV and 3.793

eV with of 26 and 23 meV widths, respectively. In case of ClD−
2 , the two peak

maxima (A′ and B′) were estimated at 3.697 eV and 3.806 eV. Even though the

seperation between the peaks are almost same for these two isotopomers, the

photodetachment spectrum of ClD−
2 spectrum are much broader than that of the

ClH−
2 spectrum. These two major peaks are attributed to be arising from tran-

sitions to the van der Waals wells of the ground and SO excited electronic states

of the neutral Cl(2P ) + H2 system. The separation between the peak maxima

of ∼ 0.111 eV for ClH−
2 and ∼ 0.109 eV for ClD−

2 compares well with the Cl SO

splitting of ∼ 0.109 eV. Our theoretical approach is based on a time-dependent

WP formalism of the Franck-Condon (FC) transition of the ClH−
2 anion to the

three coupled electronic states of neutral ClH2 [150,151]. The diabatic potential

energy surfaces for the 2Σ1/2,
2Π3/2 and 2Π1/2 states of the neutral ClH2 and

their vibronic and SO coupling surfaces reported by Werner and coworkers [75]

are employed in our dynamical study. We also use the ab initio PES of the ClH−
2

ground electronic state reported by Alexander [148].

4.2 Methodology and Computational Details

In this section we briefly discuss on the theoretical approach employed to describe

the photodetachment process. The nuclear dynamics on the coupled diabatic

electronic states is followed by a time-dependent WP approach. Since the details
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of such an approach are documented in Chapter 2, we will concentrate only on

the essentials here. In the time-dependent formalism, the golden rule expression

for the spectral intensity pertinent to the Franck-Condon transition of the anion

from its vibrational and electronic ground state to the final electronic manifold

of the neutral is given by [35]

I(E) ∼ Re

∫ ∞

0

eiEt/~〈Ψ(0)|e−iHt/~|Ψ(0)〉dt, (4.1)

where,

|Ψ(0)〉 = |Ψ(t = 0)〉 =




τ1

τ2

τ3


 |Ψanion〉, (4.2)

plays the role of initial anionic wavefunction prepared on the final coupled mani-

fold of three electronic states of the neutral by photodetachment. The quantities

τ1, τ2 and τ3 are the matrix elements of the transition operators for these three

electronic states. |Ψanion〉 corresponds to the nuclear wave function of the elec-

tronic and vibrational ground state of ClH−
2 . H is the 3×3 diabatic Hamiltonian

matrix of the final electronic manifold of neutral ClH2, which is written below in

a diabatic signed-λ basis as introduced by Alexander and Manolopolous [47]. In

contrast to the adiabatic electronic basis, the matrix elements of the transition

operator; τ1, τ2 and τ3 are slowly varying functions of the nuclear coordinates in

a diabatic electronic basis [26]. This enables one to utilize the generalized Con-

don approximation in the photodetachment process. The choice of the diabatic

electronic basis has yet another advantage that the states are coupled through

the electronic part of the Hamiltonian matrix rather than the nuclear kinetic en-

ergy part as in the adiabatic electronic basis. In the latter case the nonadiabatic
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coupling elements exhibit a singularity at the point of degeneracy.

The diabatic Hamiltonian of the Σ − Π coupled electronic manifold of the

Cl(2P ) + H2 has already been discussed in Chapter 2. Here, we will discuss

about the initial wavefunction |Ψanion〉 corresponding to the ground vibrational

level of the ground electronic state of ClH−
2 . It is prepared in the following two

ways:

(1) It is approximated to a stationary Gaussian WP (GWP) written in terms

of the reagent channel Jacobi coordinates

|Ψanion〉 = N exp

[
(R−R0)

2

2σ2
R

]
exp

[
(r − r0)

2

2σ2
r

]

×
{

exp

[
(γ − γ0)

2

2σ2
γ

]
+ exp

[
(γ − π + γ0)

2

2σ2
γ

]}
(4.3)

and located initially in the vicinity of the equilibrium geometry of ClH−
2 reported

by Bieske et. al [147] at R0 = 6.04 a0, r0 = 1.4 a0 and γ0 = 0 with width

parameters σR = 0.25 a0, σr = 0.25 a0, and σγ = 0.2 radian along R, r and γ,

respectively. The quantity N is the normalization constant. Hereafter, we refer

to this WP as ”initial GWP”.

(2) It is calculated with the aid of a Lanczos based relaxation scheme using

the vibrationally averaged potential energy surface of ClH−
2 reported by Alexan-

der [148] at the coupled-cluster with all single and double excitation and quasiper-

turbative treatment of triples [CCSD(T)] level of theory. Hereafter, we refer to

this WP as the ”initial ab initio WP”.

The action of the exponential operator exp[−iHt/~] on the initial wavefunc-

tion |Ψ(0)〉 in Eq. (4.1) is carried out by dividing the time axis into N segments of

length ∆t each. The exponential operator at each time step is then approximated

by the split-operator method [130]. The the fast Fourier transform method [102]
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is used to evaluate the action of the exponential containing the radial kinetic

energy operator and the discrete variable representation method [112] is used to

evaluate the exponential containing the rotational kinetic energy operator j2/2I

on the wavefunction.

The numerical calculations are carried out on a grid consisting of equally

spaced points along the Jacobi distances R and r. The grid along γ is chosen as

the nodes of a n-point Gauss-Legendre quadrature (GLQ) [141]. A 128×64 gird

is used in the R × r plane with 0.1 a0 ≤ R ≤ 18.007 a0 and 0.1 a0 ≤ r ≤ 9.991

a0. The grid along the Jacobi angle γ is chosen as the nodes of a 49-point GLQ.

The calculations are carried out for the total angular momentum J=0.5 and the

cross terms of the centrifugal part of the Hamiltonian are not considered in this

study. The WP is time evolved for a total of ∼ 2 ps with a time step ∆t = 0.06

fs. In order to avoid any unphysical reflection or wraparounds, the high energy

components of the WP reaching the grid edges at longer times are absorbed by

activating a damping potentials [135] at R = 13.49 a0 and r = 6.38 a0.

4.3 Results and Discussion

In order to understand the origin of the two broad peaks in the experimental

photodetachment spectrum of ClH−
2 , we have thoroughly examined the spectra

calculated by considering all possible transitions of ClH−
2 to the uncoupled (adi-

abatic/diabatic) and coupled (diabatic) electronic states of ClH2. The photode-

tachment spectra obtained for transitions of ClH−
2 to the uncoupled adiabatic

2Σ1/2 , 2Π3/2 and 2Π1/2 SO states of ClH2 are shown in Figs. 4.3(a-c), respec-

tively. The spectra in Figs. 4.3(a-c) are obtained with the initial GWP of Eq.

4.1 with parameters as stated above. The intensity in arbitrary units is plotted
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Figure 4.3: The photodetachment spectrum of ClH−
2 for a transition of the initial

GWP to the uncoupled (a) 2Σ1/2 , (b) 2Π3/2 , and (c) 2Π1/2 adiabatic SO states
of Cl(2P ) + H2 . The intensity in arbitrary units is plotted as a function of the
energy of the final electronic state E. The zero of the energy scale corresponds to
the asymptotically separated Cl + H2 on the 2Σ1/2 state.
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Figure 4.4: Same as Fig. 4.3. The photodetachment spectrum of ClH−
2 for a

transition of the inital GWP to the coupled diabatic (a) 2Σ1/2 , (b) 2Π3/2 , and
(c) 2Π1/2 SO states of Cl(2P ) + H2 .
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as a function of the energy of the final vibronic state. The zero of the energy

scale corresponds to the asymptotically separated Cl(2P ) + H2 fragments on the

2Σ1/2 state. Each spectrum in Figs. 4.3(a-c) revels progression of bands sepa-

rated in energy by an amount nearly equivalent to the SO splitting of the Cl atom

(∼ 0.1 eV). Each band consists of numerous resolved peaks presumably arising

from the van der Waals progression as well as form a transition to the Cl(2P ) +

H2 continuum states. It can be seen that the origin of the spectral progression

shifts to the higher energy in going from 2Σ1/2 to 2Π3/2 to 2Π1/2 states. This

shift for the 2Π3/2 state is ∼ 0.015 eV relative to the 2Σ1/2 sate and that for the

2Π1/2 state ∼ 0.106 eV relative to the 2Π3/2 state. These shifts can be attributed

to the asymptotic splittings caused by the Σ-Π and Π-Π SO interactions in ClH2.

Subsequently, we carried out three coupled state calculations by initially lo-

cating the WP in each of the three diabatic electronic states. The spectrum

obtained for the transition to the coupled diabatic 2Σ1/2 , 2Π3/2 and 2Π1/2 SO

states of ClH2 are shown in Figs. 4.4(a-c), respectively. The resulting three cou-

pled state spectra are then combined together to generate the final results. The

spectra obtained in that way with the initial GWP and the initial ab initio WP

are shown in Figs. 4.5(a-b), respectively. Despite a broad structure of the spec-

trum with the initial GWP (cf. Fig. 4.5(a)) the energetic locations of the major

peaks nicely correlate with those from the initial ab initio WP (cf. Fig. 4.5(b)).

We note that the initial ab initio WP is more localized in the van der Waals well

region compared to the initial GWP (cf. Fig. 4.1). Therefore, the contribution

from the Cl(2P ) + H2 continuum states is relatively reduced in the spectrum in

Fig. 4.5(b). The transition to each of the three SO states of ClH2 contributes to

the complex band structures in Figs. 4.5(a-b).

In order to better understand the coupled state results, we examined the
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Figure 4.5: The final theoretical photodetachment spectrum of ClH−
2 obtained

with (a) an initial GWP and (b) the initial ab initio WP. The spectrum in each
panel is obtained by adding three coupled state spectra pertinent to the initial
transition to each of the three SO states of Cl(2P ) + H2 shown in Fig. 4.4.
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Figure 4.6: Time dependence of the electronic populations of the 2Σ1/2 (solid line),
2Π3/2 (dashed line) and 2Π1/2 (dot-dashed line) diabats in the coupled three-state
dynamics of Fig. 8. The WP is initially located on 2Σ1/2 diabat.
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Figure 4.7: The 299 nm experimental photodetachment spectrum of ClH−
2 (panel

a) reproduced form Ref. [64]. The theoretical results obtained with an initial
GWP and an ab initio initial WP are shown in panel b and c, respectively.
The intensity in arbitrary units is plotted as a function of energy of the final
electronic state. The zero of energy corresponds to the Cl + H2 asymptote of the
2Σ1/2 state.
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three partial spectra shown in Fig. 4.4 obtained in the coupled state calculations.

We found that the partial spectra for the 2Σ1/2 and 2Π3/2 states from nearly

identical progressions. The group of lines are separated by ∼ 0.05 eV in energy.

The peak at the origin of the coupled states results in Figs. 4.5(a-b) mostly

originates from the 2Σ1/2 state. The spectra for the 2Π1/2 state forms quite a

different progression, and here the group of lines are separated by ∼ 0.10 eV in

energy. For an initial transition to either the 2Σ1/2 or the 2Π3/2 state, the partial

spectra for the 2Σ1/2 and the 2Π3/2 states reveal nearly comparable intensities.

The intensity of the 2Π1/2 partial spectra on the other hand, is found to be a

factor of ∼ 20 less than the other two. Similarly, the intensity of the 2Σ1/2 and

2Π3/2 spectra is found to be a factor of ∼ 20 less than the 2Π1/2 spectra for an

initial transition to the 2Π1/2 state. Similar observations follow when the time-

dependence of the diabatic electronic populations are examined (Fig. 4.6). The

diabatic populations of the 2Σ1/2 and 2Π3/2 revel quasiperiodic recurrences ∼ 36

fs spaced in time. A considerable exchange of population between the 2Σ1/2 and

2Π3/2 states is observed. The population exchange with the 2Π1/2 state on the

other hand, is significantly smaller. This indicates that the coupling between the

2Σ1/2 and 2Π3/2 states is much stronger than their coupling with the 2Π1/2 state.

We find that the Σ-Π Vibronic coupling has essentially no effect on the spectrum.

Each of the coupled state spectra revels broadening of the bands when compared

with the uncoupled diabatic results (not shown here). This broadening solely

arises from an increase in the line density in the coupled state spectra caused by

the nonadiabatic effects due to SO coupling.
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4.3.1 Photodetachment spectra: Comparison with the Ex-

periment

In order to compare with the broad band experimental envelope of Ref. [64] the

theoretical spectra shown in Figs. 4.5(a) and 4.5(b) are convoluted separately

with a Lorentzian function of 20 meV full width at the half maximum (FWHM).

The two convoluted spectra thus obtained with the initial GWP and the initial

ab initio WP are shown in Figs. 4.7(b-c), respectively, along with the experi-

mental results [64] in Fig. 4.7(a). The relative hight of the two major peaks in

the theoretical spectra are adjusted according to the experimental results. This

adjustment was necessary as we have assumed constant values for the transition

dipole matrix elements in our study.

In the experimental results of Neumark and coworkers [64] the first small peak

is attributed to a detachment due to the Cl− and that between the two large peaks

is due to the Cl(H2)
−
2 . The two large peaks are spaced ∼ 0.111 eV in energy

which is nearly identical to the Cl SO splitting of ∼ 0.109 eV. The theoretical

peak widths of ... meV and ... meV compare well with the experimental results

of 26 meV and 23 meV, respectively. The peaks obtained with the initial GWP

(cf. panel b) are slightly broader than those with the ab initio WP (cf. panel

c) which is also indicated by the spectra presented in Figs. 4.5(a-b). The two

shoulder peaks (one at low energy and the other in between the large peaks)

are found to get intensity mostly from the transition to the 2Π1/2 state. The

individual peak structures are very complex and each peak originates from highly

overlapping transitions to all the SO states of ClH2. As stated above, the two

shoulder peaks have major contributions from the SO excited 2Π1/2 state of

ClH2. The major contribution to the first large peak comes from transitions to

the 2Σ1/2 and 2Π3/2 states. The contribution from the transition to the 2Π1/2 SO
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Figure 4.8: The photodetachment spectrum of ClD−
2 . The 299-nm experimental

results are reproduced from Ref. [64] and shown in the top panel. The time-
dependent WP results at low and high resolution are shown in the bottom panel.
The relative intensity is plotted in arbitrary units as a function of the energy of
the final electronic state. The zero of energy corresponds to the asymptotically
separated Cl + D2 fragments on the 2Σ1/2 adiabatic state.
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states is negligible in this peak. On the other hand, the major contribution to

the second large peak comes from the transition to the 2Π3/2 SO state and

the contributions from the transitions to the 2Σ1/2 and 2Π1/2 SO states are of

comparable magnitude in this case.

The calculated photodetachment spectrum of ClD−
2 along with the experi-

mental results of Neumark and coworkers [64] is shown in Fig. 4.8(a-b). The

relative intensity in arbitrary units is plotted as a function of the energy of the

final electronic manifold in electron volts. The theoretical spectrum is obtained

in the same way as in the case of ClH−
2 . The spectra pertinent to a transition to

each of the 2Σ1/2 , 2Π3/2 ans 2Π1/2 diabatic electronic states in the coupled state

situation are calculated. The resulting three partial spectra are then combined

together and convoluted with a Lorentzian function of 24 meV FWHM to cal-

culate the spectral envelope shown in Fig. 4.8(b). The convergence of the three

partial spectra is checked by varying the length of the time propagation and also

the width of the absorbing region along R and r. The spectrum shown in Fig.

4.8(b) is obtained by propagating the WP for a total of ∼ 1.8 ps with a time

step of ∼ 0.109 fs. The width of the absorbing potential is set to 7.84 a0 and

3.92 a0 along R and r, respectively. It can be seen from Fig. 4.8(b) that the

theoretical results are in good accord with the experimental observations. But

despite a good overall agreement between the theoretical and experimental results

the separation between the peak maxima is ∼ 0.03 eV higher in the theoretical

results. It is to be noted that the theoretical result is obtained by propagating

WP and it is known that spectrum generated by this method is usually associated

with background contributions arising from the direct dissociative component of

the WP. This problem becomes even more severe as majority of the quasibound

states have the feature of a continuum state. Therefore, a part of the difference
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between the theoretical and experimental results in Fig. 4.8(b) can be attributed

to this. A second source for the difference can be attributed to the approximate

adjustment of the transition dipole matrix elements which are assumed to be

constants and to the accuracy of the neutral electronic PESs and their coupling

surfaces as well as the initial wavefunction of ClD−
2 which has been approximated

to a stationary GWP in the present study. The equilibrium geometry of ClD−
2

occurs at somewhat shorter (by ∼ 0.1 a0) distance than ClH−
2 along R. As a

result, the WP in case of the transition on ClD−
2 samples relatively more of the

repulsive part of the SO states of ClD2.

A similar peak structures have been reported by Manolopolous and Alexander

in the FC simulation of the ClH−
2 and ClD−

2 spectrum [152]. Analogous to the

ClH−
2 spectrum [cf. Fig. 4.5] ClD−

2 spectrum also reveals series of peaks which

can be attributed to the progression along the R and γ coordinates. In the next

section, we examine the individual peaks obtained at higher energy resolution

(dynamical resonanaces) in the Cl + H2 system in details.

4.3.2 Calculation of resonances by a spectral quantization

approach

The resonances in the Cl(2P ) + H2 reaction is investigated in details by spectral

quantization method (SQM). This method was proposed by Feit et al. [104] for

computing the bound state eigenvalues and eigenfunctions by solving the TDSE.

In this method, a stationary GWP, Ψ(0), is located initially in the interaction

region of the PES. The WP in time t, Ψ(t), is obtained by evolving Ψ(0) in space

and time using the formalism dicussed in Sec. 2.5. The temporal autocorrelation

function C(t) = 〈Ψ(0)|Ψ(t)〉, is computed at various time intervals and Fourier



4.3. Results and Discussion 104

transformed to generate the power spectrum:

I(E) ≈ Re

∫ ∞

0

C(t)eiEt/~dt, (4.4)

where, I(E) is the spectral intensity. The peaks in the power spectrum arise

from the quasibound states of the system and the energy value corresponding

to the peak maxima determine their eigenvalues. The accurate eigenvalues are

extracted by fitting each peak to a Lorentzian line-shape function

Y (E) = Y0 +
2A

π

w

4(E − E0)2 + w2
. (4.5)

The peaks are generally contaminated by an overlap with the neighboring states

and an estimate of the line-width often becomes cumbersome and difficult. When-

ever a peak is fitted reasonably well, the line-width lifetime τn is calculated from

the full width at the half maximum (FWHM) w of the Lorentzian function by,

τn = ~/w.

Once the eigenvalue of a peak is determined the corresponding eigenfunction

is then calculated by the spectral quantization algorithm: by projecting a time-

evolved WP onto the desired eigenstate (n) with eigenvalue En,

Ψn(E) ≈
∫ T

0

eiEnt/~Ψ(t)dt. (4.6)

We first calculate the pseudospeectra for the uncoupled diabatic and adia-

batic 2Σ1/2 surface. The genuineity of different peaks in the pseudospectrum

is confirmed by varying the initial location of the WP in the mentioned regions

of the PES. Resonances originating from the van der Waals well region of the

PESs reveal extended progression along the Cl...H2 van der Waals coordinate.
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In addition, we also examined the resonances arising from the TS region of the

2Σ1/2 PES of ClH2. Subsequently, we carried out coupled states calculations by

considering the electronic and also the electronic plus SO coupling separately and

investigated their role on the overall vibronic structure of each SO states. In the

coupled state picture the dynamics is studied throughout in a diabatic representa-

tion. All the calculations are carried out for the lowest value of the total angular

momentum J , for both the uncoupled and coupled state situations. Finally, the

role of the surface coupling on the individual eigenstates of the 2Σ1/2 adiabatic

states is examined and the corresponding time-dependent dynamics is discussed.

4.3.3 Resonances of Cl(2P ) + H2 reaction in the uncou-

pled adiabatic and diabatic representation

In order to carry out a detailed investigation of the resonances in Cl(2P ) +

H2 system, we first report the energy level spectrum of the uncoupled 2Σ1/2 ,

2Π3/2 and 2Π1/2 adiabatic and diabatic CW PESs. We note that the primary

aim of this study is to examine the surface coupling effects on the eigenstates

of the 2Σ1/2 adiabatic state which are important for the Cl(2P ) + H2 reaction

dynamics. The eigenstates of the component Π states are considered here only

briefly. The calculations are carried out by locating the initial GWP in the van

der Waals region of these surfaces as well as in the barrier (TS) region of the

2Σ1/2 PES. The initial locations and the width parameters of the GWPs used in

various calculations reported here are given in Table 4.1. We note that locating

the initial WP at γ◦= π/2 for a particular value of R◦ and r◦ yields identical

energy spectrum as for γ◦= 0 or π. The relative intensity of the peaks is only

different in the two. In view of the fact that the photodetachment of ClH−
2

samples the collinear configurations of the ClH2 PESs initially, we here show the
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Table 4.1: Parameters for the different choices of the initial Gaussian wave packet
used in time evolution.

GWP R0 r0 γ0 δR δr δγ 〈E〉
(a0 (a0 ) (rad) (a0 ) (a0 ) (rad) (eV)

1 5.58 1.402 0.0 0.28 0.24 0.2 0.4868
2 6.04 1.402 0.0 0.25 0.25 0.2 0.4827
3 6.11 1.402 0.0 0.28 0.24 0.2 0.4698
4 6.26 1.402 0.0 0.25 0.24 0.2 0.4733
5 6.56 1.402 0.0 0.25 0.24 0.2 0.4697
6 3.658 1.814 0.0 0.3 0.4 0.2 0.6164
7 4.475 2.049 0.0 0.4 0.3 0.2 1.0381
8 4.599 2.136 0.0 0.3 0.4 0.2 1.2106
9 4.475 2.409 0.0 0.3 0.4 0.2 1.3137
10 4.843 2.387 0.0 0.3 0.4 0.2 1.6763

results obtained by locating the initial wave packet at γ=0 or π.

The pseudospectra obtained by initially locating the GWP No. 2 and 7 on

the 2Σ1/2 adiabat are shown in Figs. 4.9(a) and 4.9(b), respectively. The spectra

are obtained through Eq. 4.4 and the decay of the corresponding autocorrelation

functions is included as an insert in the respective figures. The peaks in Fig.

4.9(a) correspond to the progression of low-energy van der Waals resonances

arising from the shallow well region of the Cl + H2 asymptote, whereas, those

in the Fig. 4.9(b) correspond to the high energy resonances arising from the

barrier region of the PES. Location of the initial WP on the PES corresponds to

an average energy 〈E〉 = 1.038 eV for the spectrum in Fig. 4.9(b). This leads

to resolved structure of the high energy peaks in the spectrum. The low energy

peaks are also obtained with this WP but are much less resolved than in Fig.

4.9(a). The analysis of the individual peaks of Figs. 4.9(a-b) is discussed below.

The pseudospectra obtained with the GWP No. 2 and 7 on the 2Σ1/2 diabat
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Figure 4.9: The pseudospectrum of the quasibound states of the uncoupled
2Σ1/2 adiabatic electronic state of ClH2. The two spectra in panel (a) and (b)
are obtained with the GWP No. 2 and 7, respectively. The intensity in arbitrary
units is plotted as a function of the energy of the 2Σ1/2 electronic state. The en-
ergy corresponding to peak maxima represents the eigenvalue of the quasibound
states. The zero of energy corresponds to the asymptotically separated Cl + H2

species on the 2Σ1/2 electronic state. The decay of the absolute value of the
corresponding autocorrelation function |C(2t)| in time, is shown as an insert in
the respective panels.
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Figure 4.10: Same as in Fig. 2, for the uncoupled 2Σ1/2 diabatic electronic state.
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are shown in Figs. 4.10(a-b). The decay of the corresponding autocorrelation

function is also included as an insert in the respective panel. It can be seen from

Fig. 4.10(a) that the low-energy diabatic spectrum is less structured than the

corresponding adiabatic spectrum shown in Fig. 4.9(a). The high energy spec-

trum in Fig. 4.10(b) resembles more closely to that in Fig. 4.9(b). However, the

high energy diabatic spectrum in Fig. 4.10(b) is relatively more structural than

the corresponding adiabatic spectrum in Fig. 4.9(b). The differences between

the adiabatic and diabatic results may be due to the fact that a diabatic state

represents an admixture of the adiabatic states. The extent of mixing depends

on the nuclear coordinates, which is different for the location of the initial WP in

the van der Waals well and the barrier regions of the PES. We note that although

we calculate the diabatic 2Σ1/2 spectra for comparison; we will concentrate on

the more realistic adiabatic 2Σ1/2 spectra (cf. Fig. 4.9(a-b)) in the rest of our

discussions.

We also calculated the adiabatic and diabatic 2Π3/2 and 2Π1/2 spectra. These

two surfaces are closed along the channel leading to the ground state products.

Therefore, the vibrational structure of the spectrum obtained on these surfaces

reveals the spectroscopy of the reagent van der Waals well region only. The

resulting spectra show analogous vibrational structure as seen in the low energy

2Σ1/2 spectra in Fig. 4.9(a) and Fig. 4.10(a). We note that the adiabatic results

for the component 2Π state has been shown Fig. 4.3 in the previous section.

The spectra reveal progression of envelopes and the fine structures under each

envelope correspond to the progression along the Cl· · ·H2 dissociation coordinate.

An energy shift of ∼ 0.1 eV of the 0-0 peak corresponding to the SO splitting of

the component Π states has been observed in the two spectra. The spectra for the

component 2Π state do not reveal any structure at high energies. As mentioned
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above, these two states are closed along the r coordinate. This also explains the

much similarity observed for the 2Σ1/2 adiabatic (cf. Fig. 4.9(b)) and diabatic

(cf. Fig. 4.10(b)) results at high energies.

4.3.3.1 Resonances of the uncoupled 2Σ1/2 adiabatic state

The quasibound spectrum of the 2Σ1/2 adiabatic electronic state is the most

crucial governing factor of the outcome of the Cl(2P ) + H2 reaction. Since the

adiabatic electronic representation gives the realistic description of the observ-

ables in an experiment, in this section we make an effort to analyze the peaks

observed in the adiabatic 2Σ1/2 spectra shown in Figs. 4.9(a-b). We mention

that apart from the two spectra shown in Figs. 4.9(a-b), we have computed

a number of additional spectra by varying the initial location of the GWP (as

described in table 4.1) in order to check the commonality of peaks observed in

different spectra. The peak energies and widths are computed by fitting them to

a Lorentzian line-shape function and their eigenvectors are computed by the spec-

tral quantization algorithm as described in sec. 4.3.2. The minimum of the van

der Waals well on the 2Σ1/2 adiabatic state occurs at a C2v configuration of ClH2

at R ∼ 5.78 a0. The low-energy spectrum shown in Fig. 4.9(a) corresponds to the

vibrational structure of the prereactive van der Waals complex. The barrier on

the 2Σ1/2 adiabatic state, on the other hand, occurs at the collinear configuration

of ClH2 and a shorter value of R ∼ 3.631 a0 [81]. Therefore, the peaks observed

in the spectrum in Fig. 4.10(b) is expected to reveal the spectroscopy of the TS

region of the 2Σ1/2 electronic state.

The energy eigenvalue and lifetime of the resonances extracted from various

spectra (calculated in the present study) are collected in table 4.2. We note that a

blank entry in table 4.2 represents an uncertainty in estimating the corresponding
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Figure 4.11: Lorentzian line shapes for the two typical spectral peaks centered at
E = 0.283 eV and E = 1.011 eV, shown by the solid curve in panel (a) and (b),
respectively. The results obtained from the time-dependent WP calculations are
shown by the asterisks. While the peak in panel (a) represents the case where
the energy eigenvalue can be estimated accurately but width can not be, the one
in panel (b) represents the case where both these quantities can be determined
with reasonable accuracy.

peak width. Lorentzian line-shape fittings of two typical peaks are shown in

Figs. 4.11(a-b). The asterisks in the figure represents the computed points while

the solid curves represent the best-fit Lorentzian. The fitting in Fig. 4.11(a)

represents a difficult situation where the energy eigenvalue corresponding to the

peak maximum can be extracted, however, the peak width can not be reliably

estimated. The fitting shown in Fig. 4.11(b), on the other hand represents the

situation where both the parameters can be reliably estimated.

The eigenfunction of a few representative resonances of the uncoupled 2Σ1/2 adi-

abatic state are shown in Figs. 4.12(a-n) and in Figs. 4.13(a-h). While the

eigenfunctions in Figs. 4.12(a-n) represent the low-energy van der Waals res-

onances, those in Figs. 4.13(a-h) represent the high-energy resonances arising

from the TS region of the PES. Eigenfunctions are plotted in terms of the prob-

ability density (|Ψ|2) contours in the (R, r) and (γ, R) plane averaged over γ

and r, respectively, in order to clearly identify their nodal pattern revealing the
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Figure 4.12: Probability density contours of the quasibound eigenfunctions ob-
tained through the spectral quantization algorithm [Eq. (4.6)]. The energy eigen-
values of the quasibound states are indicated in the respective panel and the con-
tour plots are shown both in the (R, r) and (γ, R) planes for average values of γ
and r, respectively.
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Fig. 4.12 continued.
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progression of the resonances. Each features of the eigenvalue spectra (cf. Figs.

4.9(a-b)) can be associated with a stationary wave function. All the eigenstates

documented in table 4.2 are assigned by inspecting their nodal pattern along R,

r and γ. They are identified in terms of three quantum numbers nR, nr and

nγ representing the number of nodes along these coordinates, respectively. We

note that we show plots of only a few eigenstates here, in order to discuss the

details. The eigenfunction in Fig. 4.12(a) has no node along R, r or γ and there-

fore represents the (0, 0, 0) state according to the (nR, nr, nγ) assignment. It

is interesting to see that the probability maximum of this function occurs at a

stretched configuration of ClH2 along R (6.0 ≤ R ≤ 7.5 a0), indicative of the

van der Waals nature of the interaction along this coordinate. A heavy build up

of the probability density at γ = π/2 can be seen from the (γ, R) plot. This

indicates that the van der Waals minimum occurs at the bent configuration of

ClH2. Furthermore, the wavefunction is highly diffuse along γ. The eigenfunc-

tion in Fig. 4.12(b) has one node along R and no nodes along r and γ. It is a

(1,0,0) state. The next eigenfunction (Fig. 4.12(c)) has two nodes along γ and is

a (0,0,2) state. We note that, even quantum progression is only observed along

the angle γ. The latter represents the bending motion of the ClH2 complex. For

each values of nγ we find an envelope with fine structures in Fig. 4.9. The fine

structures within each envelope reveal progression along the R coordinate. This

is illustrated by the eigenfunctions in Figs. 4.12(d) and 4.12(e). For each of these

two functions nγ=2, whereas, nR=2 for the former and nR=7 for the latter. The

next three eigenstates in Figs. 4.12(f-h) have four quantum excitation along γ

i.e. nγ=4. The next four eigenstates (c.f. Figs. 4.12(i-l)) correspond to nγ=6.

The eigenstate in Fig. 4.12(i) is a (1,0,6) state and those in Figs. 4.12(j), 4.12(k)

and 4.12(l) are (3,0,6), (7,0,6) and (9,0,6) states, respectively. The eigenstates in
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Figs. 4.12(m) and 4.12(n) have eight quantum excitation along γ and represent

the (0,0,8) and (3,0,8) states, respectively.

It can be seen that none of the mentioned eigenstates above reveal a pro-

gression along r coordinate. The latter represents the vibrational motion of the

H2 moiety. In Figs. 4.13(a-h) we show some representative eigenfunctions ob-

tained from the peaks observed at the high-energy part of the Figs. 4.9(a-b). The

eigenstate in Fig. 4.13(a) reveal one quantum excitation along H2 vibrational co-

ordinate and may be assigned as (0,1,4) state. When compared with the (0,0,4)

state in Fig. 4.12(f) one can see that this state is ∼ 0.5 eV higher in energy

corresponding to the v=0 → v=1 vibrational excitation of H2. The eigenstates

in Figs. 4.13(b) and 4.13(c) occurs under the same envelope with the one in Fig.

4.13(a). They all have nγ =4 and reveals a progression along the R motion. The

other eigenstates in Figs. 4.13(d-h) represent (0,0,10), (0,1,6), (4,1,6), (3,2,6) and

(4,2,6) states, respectively, according to the (nR, nr, nγ) assignment. We note

that, the overall structure of most of the eigenstates described in Figs. 4.12 and

4.13 reveals the feature of a continuum wavefunction when viewed along R and

γ coordinates.

4.3.4 The effect of electronic and SO coupling

In this section we will discuss on the effects of the electronic and SO coupling

on the spectra discussed above. For the low-energy part of the spectra, these

effects have been discussed in Sec. 4.3 dealing with the photodetachment of

ClH−
2 . Therefore, we here concentrate on the high-energy part of the spectra. We

note that a diabatic electronic representation is utilized throughout in calculating

the coupled states spectra. This is primarily to restore an uniformity, because

for the 3×3 coupled states problem, an acceptable definition of the adiabatic-
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to-diabatic transformation matrix is still a complicated issue. Therefore, the

uncoupled diabatic spectra shown above are to be considered when comparing

with the coupled state results presented below.

The coupled 2Σ1/2 diabatic spectra are presented in Figs. 4.14(a-b). These

spectra are obtained with the GWP No. 7, and the corresponding uncoupled

2Σ1/2 diabatic spectrum is shown in Fig. 4.10(b). The spectra in Fig. 4.14(a)

and 4.14(b) are obtained by considering the electronic (only) and electronic plus

SO coupling, respectively. It can be seen by comparing Fig. 4.14(a) with that

of the uncoupled state spectrum of Fig. 4.10(b), that the electronic coupling

does not have any noticeable impact on the spectrum. On the other hand, the

spectrum becomes more diffuse and structureless with the inclusion of the SO

coupling in the dynamics. This reveals that the nonadiabatic effects due to SO

coupling is stronger in the Cl(2P ) + H2 dynamics. This leads to a considerable

mixing of the interacting electronic states and an increase of the line density in the

spectrum. Due to the appearance of numerous closely spaced lines the spectral

envelope appears to be more diffuse and structureless.

4.3.5 Time-dependent dynamics of the adiabatic 2Σ1/2 qua-

sibound states

In order to investigate the effects of electronic and SO coupling on the quasibound

states of the 2Σ1/2 adiabat more closely, we examine their time-evolutions in

the uncoupled and coupled state situations. In Figs. 4.15(a-h) we show the

eigenvalue spectrum and the survival probability (|C(t)|2) of four quasibound

states corresponding to resonances indicated in the respective panel. The survival

probability of the resonance in panel (a) is shown in panel (b), the one of panel (c)

is shown in panel (d) and so on. In each panel the solid line indicates the result
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Figure 4.14: Quasibound spectrum of the 2Σ1/2 diabatic electronic state in the
coupled state situation obtained with the GWP No. 7. The spectrum in panel
(a) is calculated by considering the Σ-Π electronic coupling only. The spectrum
in panel (b) on the other hand is calculated by considering both the electronic
and SO coupling. The decay of the absolute value of the corresponding C(2t) is
shown as an insert in the respective panels.
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Figure 4.15: Impact of the electronic and electronic plus SO coupling on the
quasibound spectrum of the individual eigenstates (indicated in the panel) of the
2Σ1/2 adiabatic electronic state. The spectra obtained in the uncoupled (black
solid line) and coupled [electronic only (red line) and electronic plus SO (green
line)] state situations are shown in the panels in the left column of the figure.
The time-dependence of the corresponding survival probabilities are plotted in
the adjacent panels in the right column of the figure.
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obtained in the uncoupled state situation and those obtained with the electronic

and electronic plus SO coupling in the coupled state situation are shown by the

dashed and dotted lines, respectively. The eigenvalue spectra in Fig. 4.15(a)

correspond to the resonance shown in Fig. 4.12(a). It can be seen that the peak

maxima (referring to the energy eigenvalue of the resonance) shifts to higher

energy by ∼ 0.032 eV when electronic coupling is considered in the dynamics.

This kind of shift of energy eigenvalue in the coupled state dynamical study

has been reported earlier in the literature and is attributed to be arising due

to the geometric phase change of the adiabatic electronic wavefunction while

encircling the conical intersection in a closed loop [153, 154]. The spectral peak

splits into two (green line) when both the electronic and SO coupling included

in the dynamics. The two peaks are separated by ∼ 0.112 eV in energy which

is nearly equal to the magnitude of the SO splitting of the interacting states (cf.

Fig. 1).

The survival probability plot of the mentioned resonance shown in panel (b)

reveals interesting dynamical features. The initial decay of the resonance is very

very slow (cf. the solid black line) in the uncoupled state situation which indicates

a long life-time of this quasibound state and therefore revealing a bound state

character of this state. The inclusion of the electronic coupling leads to a relatively

faster decay (cf. red line) of the same due to a nonadiabatic transition to the 2Π

electronic state. A nonradiative transition time of ∼ 250 fs can be discerned from

the plot. In addition to the electronic coupling, when the SO coupling included

in the dynamics, nonadiabatic transitions to the component (2Π3/2 and 2Π1/2 )

states are possible and as a result one finds a rapid oscillatory pattern in the

corresponding survival probability curve (cf. green line). The recurrences are ∼
36 fs spaced in time. The latter corresponds to the ∼ 0.112 eV spacing of the
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observed peaks in Fig. 4.15(a) (cf. green line).

Analogous features of the eigenvalue spectra and the survival probabilities

are obtained for the (1,0,2) and (1,0,6) resonances shown in Figs. 4.15(c-d)

and 4.15(e-f), respectively. Generally, the bending excitation leads to somewhat

slower decay of the resonances which becomes more rapid when ClH2 is excited

along the R coordinate. The results shown in Fig. 4.15(g-h) correspond to the

(4,2,6) eigenstate shown in Fig. 4.13(h). In this case, the state reveals much

faster decay. The initial fast decay of survival probability relates to a decay time

of ∼ 230 fs in the uncoupled state situation. This decay time is further reduced

in the coupled state situation. Decay time of ∼ 70 fs can be estimated from

the survival probability curves with electronic and electronic plus SO coupling.

An energy shift of ∼ 0.035 eV in the eigenvalue of the resonances estimated with

electronic coupling remains almost the same in all the spectra shown in Fig. 4.15.

Also, the splitting in energy of ∼ 0.110 eV of the doublet peak structure when

both the electronic and electronic plus SO coupling are considered nearly remains

the same.

To this end it is worthwhile to discuss briefly the electronic population dynam-

ics in the coupled state situations mentioned above. It is probably not relevant

to discuss this for each of the quasibound states shown above and we typically

select the quasibound state of Fig. 4.13(g) in the following discussion. In Figs.

4.16(a-b) we show the time-dependence of the adiabatic and diabatic electronic

populations. While the populations shown in Fig. 4.16(a) consider the elec-

tronic coupling alone, both the electronic and SO couplings are considered in

Fig. 4.16(b). Since, in the latter case the whole investigation is carried out in

a diabatic electronic representation, we show the diabatic electronic populations

only.
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In Fig. 4.16(a) the adiabatic and the diabatic electronic populations are in-

dicated by the solid and dashed lines, respectively. The initial WP [the (4,2,6)

eigenstate] is located on the 2Σ diabat and therefore the population of this state

is 1.0 (upper dashed curve) and that of the 2Π state (lower dashed curve) is 0.0 at

t=0. The population of the 2Σ diabat decreases slightly and that of the 2Π diabat

grows to the same extent in time. It is evident from the figure that even for this

high energy quasibound state, only a small fraction of the WP transits to the 2Π

surface. Since, this transition is solely caused by the Σ-Π electronic coupling, the

latter seems to be very weak and does not have much impact on the dynamics.

This is also revealed in the energy spectrum discussed in Fig. 4.14(a). The initial

location of the WP for the population curves in Fig. 4.16(a) corresponds to an

admixture of the 2Σ-2Π adiabatic states. Therefore, a 65% (35%) population of

the 2Σ (2Π) adiabatic states is obtained at t = 0. Afterwords, the population

exchange between the two surfaces through the Σ-Π conical intersection is clearly

revealed by the figure.

The time-dependence of electronic populations of the 2Σ1/2 and the two com-

ponents of the 2Π diabatic states in presence of the electronic and SO coupling

are shown in Fig. 4.16(b). The electronic population of the 2Σ1/2 diabatic state

is shown by the solid line whereas that of the components of the 2Π diabatic

states are shown by dotted and dashed lines, respectively. In this case since the

SO coupling is also activated in addition to the Σ-Π electronic coupling, a con-

siderable population exchange with the component 2Π states is also seen. Since

the WP is initially located on the 2Σ1/2 diabat, the population of this state is

1.0 at t = 0. It can be seen that the populations of the 2Σ1/2 and one of the

component (with energy VΠ+A) of the 2Π diabat fluctuates uniformly in time,

indicating the exchange of populations between these states mediated mostly by
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the SO interactions. The recurrences in the population curves are ∼ 36 fs spaced

in time which amounts to an energy spacing of ∼ 0.112 eV, nearly corresponding

to the SO coupling strength of atomic Cl. The growth in population of the second

component (with energy VΠ−A) of the 2Π diabat in time is very small, indicating

that the nuclear dynamics on the 2Σ1/2 diabatic state is not very much affected

by this state.

4.4 Summary

We have carried out detailed theoretical calculations of the photodetachment

spectrum of ClH−
2 and ClD−

2 . A time-dependent WP approach is undertaken for

this pourpose. The ab initio PESs of the electronic ground state of ClH−
2 reported

by Alexander [148] and the ground and excited SO states of ClH2 reported by

Werner and Coworkers [75] are used in our dynamical calculations. The final

theoretical results reported here are in good accord with the experiment [64].

The spectra corresponding to the transition to the uncoupled adiabatic SO

states reveled progression of bands spaced in energy caused by the Σ-Π and Π-Π

SO coupling. The resolved structure of each band presumably arising from the

van der Waals progression and transition to the Cl + H2 continuum states. The

coupled state spectrum revels very complex features, in which each band appears

due to a transition to all three SO states as well as the continuum states of Cl +

H2. The spacing between the two major peaks in the final theoretical results is

found to be ∼ 0.102 eV which compares well with the experimental value of ∼
0.111 eV. The overall shape of the final theoretical results and the widths of the

two major peaks are in good accord with the experiment. The peak structure

in the ClD−
2 detachment spectrum is more diffuse and broad compared to the
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ClH−
2 spectrum, also in good accord with the experiment. We mention that the

effect of the 2Σ1/2 - 2Π3/2 SO coupling is much stronger than the 2Π3/2 -

2Π1/2 SO coupling and the Σ-Π vibronic coupling has practically no impact on

the spectrum. This is also in accord with the observations made in the reactive

scattering calculations where it has been found that the SO excited state of Cl

is less reactive than the SO ground state, but in apparent contradiction with the

experiment [81,140].

The existence of the van der Waals well in a reactive system has been demon-

strated for the first time in the spectroscopic experiment of Neumark [64] and

our quantum dynamical results presented here corroborate to such an observa-

tion. This in turn also reveals the spectroscopic accuracy of the reactive potential

energy surfaces of Cl + H2 [75]. A detailed analysis of the fine structures observed

in various spectra is presented thereafter. Each envelope in the spectrum corre-

sponds to an even quantum excitation along the bending coordinate. The fine

structures under each envelope correspond to an extended progression along the

Cl...H2 dissociation coordinate. The excitation of the H2 vibration is observed

only at high energies. Majority of the quasibound states revealed features of a

continuum state.

The effect of the electronic coupling to the 2Π state has only minor impact

on the overall structure of the quasibound spectrum of the 2Σ state. However,

the SO coupling has considerable effects on it. The line density in the spectrum

increases significantly because of relatively strong nonadiabatic effects due to SO

interactions and the spectrum becomes more diffuse and structureless. Investiga-

tion of the impact of the electronic and SO couplings on the individual eigenstates

of the 2Σ1/2 adiabat revealed that the electronic coupling alone causes a shift

of the energy of the peak maxima by ∼ 0.035 eV. This is attributed to be due
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to the geometric phase change of the adiabatic electronic wavefunction while en-

circling the 2Σ-2Π conical intersections in a closed loop. The electronic plus SO

coupling splits each individual states of the uncoupled situation into two. The

splitting in energy of ∼ 0.112 eV of the resulting two peaks corresponds to the SO

coupling of the atomic Cl plus the shift due to the electronic coupling as noted

above. Examination of the time-dependent dynamics revealed a faster decay of

the eigenstates in the coupled state situation.



Chapter 5

Dissociation dynamics of Cl···HD

complex initiated by the

photodetachment of Cl−–HD

5.1 Introduction

Molecular dissociation following photodetachment of its anionic precursor repre-

sents a rarely explored class of chemical reactions, particularly, when the latter

are guided by nonadiabatic interactions. As discussed in Chapter 4 anion pho-

toelectron spectroscopy [155–157] by and large has been utilized to probe the

bound vibronic level structure of the corresponding neutral species, however, the

dissociation of the latter can become an important event when its equilibrium ge-

ometry differs significantly from that of the anion precursor. More specifically, if

the ‘transition state’ or the repulsive region of the potential energy surface of the

neutral species is probed by photodetachment [155]. Experimental measurement

of such a process is also tedious and it requires a careful combination of the pho-

128
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toelectron spectroscopy with the photofragment translational spectroscopy. Such

a combination allows to record the kinetic energies and recoil angles of the pho-

toelectron and the final photofragments are measured in coincidence [157]. This

technique has been applied to study the dissociative photodetachment dynamics

of weekly bound cluster anions [158] and van der Waals complexes [159].

The dissociation of Cl···HD followed by photodetachment of Cl−–HD is ex-

amined in this chapter. The low-lying PESs of neutral Cl···HD are coupled by

electronic and relativistic SO coupling [75, 90]. The topography and essential

characteristics of Cl(2P ) + H2 PESs are discussed in Chapter 1. The same PESs

were used for Cl···HD system by replacing one of the H mass by D mass. The

lower state of A′ symmetry (2Σ1/2 ) correlates with the electronic ground state of

the products HCl / DCl (X1Σ+) + H (2S), whereas, the other two excited states

(the components of the 2Π state) correlate with the products in their electronic

excited state, HCl / DCl (3Π) + H(2S) (e.g. see Fig. 1.1). The product excited

state is considerably high in energy, thus the 2Π3/2 and 2Π1/2 states remain

nonreactive in the adiabatic Born-Oppenheimer picture for low and moderate

collision energies. However, they can form products via nonadiabatic transitions

to the 2Σ1/2 state. The two states of 2A′ symmetry are electronically coupled

with each other and form a conical intersection [90]. Thus, two types of nonadi-

abatic coupling, (i) Σ-Π electronic coupling and (ii) Σ-Π and Π-Π relativistic SO

coupling, govern the nuclear dynamics following photodetachment.

In the theoretical simulations the eigenfunctions of the energy levels of the

electronic ground state of Cl−–HD are vertically promoted to the coupled man-

ifold of Cl···HD electronic states. These are then propagated on this final elec-

tronic manifold by numerically solving the time-dependent Schrödinger (TDSE)

equation. The anionic wavefunctions are calculated by spectral quantization al-
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gorithm [104, 160]. The channel specific dissociation probabilities of Cl···HD are

calculated by recording the dissociative flux of the wave packet (WP) in time. We

find that the nuclear dynamics is significantly affected by the nonadiabatic inter-

actions. For instance, when the initial wavefunction is prepared on the 2Σ1/2 elec-

tronic state, more WP flux moves to the reactive channels HCl + D or DCl + H

in the coupled states situation than in the uncoupled one. The reactivity of the

2Π3/2 and 2Π1/2 electronic states via nonadiabatic transition to the 2Σ1/2 state

mostly populates the Cl + HD nonreactive channel of the latter. The dissociation

to the reactive channels of the 2Σ1/2 state in these cases are far less compared

to the situation when dynamics is initiated on the 2Σ1/2 electronic state. The

formation of HCl + D is found to be more than DCl + H also for the excited

eigen energy levels of Cl−–HD .

5.2 Methodology and Computational Details

The Cl−–HD anion is promoted to the reactive PES of neutral Cl···HD upon pho-

todetachment. A Franck-Condon (FC) transition is assumed for this step and the

subsequent reactive dynamics of Cl···HD is simulated by means of quantum WP

propagation. The final products (in their electronic ground state) may emerge in

one of the following three channels viz., (a) HCl + D (R1), (b) DCl + H (R2)

and (c) Cl + HD (NR). Here R1 and R2 represents the two reactive channels

and ‘NR’ stands for the non-reactive channel. The channel specific dissociation

probabilities are calculated both for the uncoupled and coupled surface situa-

tions for the 2Σ1/2 electronic state. Since, the 2Π3/2 and 2Π1/2 electronic states

yield products in their electronic ground state via nonadiabatic transitions to the

2Σ1/2 state, the dynamics of these states are simulated in the coupled surface



5.2. Methodology and Computational Details 131

situation only. All dynamical calculations are carried out for the lowest value of

the total angular momentum; J = 0 and 0.5 in the nonrelativistic and relativistic

situations, respectively, and the effect of excited vibronic levels of Cl−–HD on the

nuclear dynamics is examined.

The WP propagation in the coupled electronic manifold is carried out in a

diabatic electronic representation [26]. However, an adiabatic electronic represen-

tation is more realistic and therefore, the adiabatic initial WP pertinent to the

Cl−–HD anion transformed to a diabatic electronic basis prior to its propagation

on the Cl···HD electronic states and the time-evolved WP at each time is trans-

formed back to the adiabatic electronic basis again to calculate the dynamical

quantities. The nuclear dynamics is simulated here on the three lowest electronic

states of Cl···HD including both the electronic and SO couplings among them.

The Hamiltonian for the Cl···HD system can be expressed in the same way is

discussed in Chapter 2 (c.f. Eq. A.1,2.16 2.17 and 2.27). The calculations are

done for the lowest value of J and the Coriolis coupling terms are neglected.

5.2.1 Preparation of initial Wavefunction

The initial wavefunctions corresponding to the anionic precursor are obtained by

calculating the eigenenergy levels of its electronic ground state. The ab initio PES

reported by Alexander [148] is employed for the latter. The spectral quantization

algorithm [160] is utilized to calculate the eigenvalues and eigenfunctions of the

bound energy levels supported by this PES. The pseudo-spectrum obtained by

initially locating a GWP near the equilibrium geometry of Cl−–HD is shown in

Fig. 5.1. The peaks in Fig. 5.1 correspond to the bound states supported in the

potential well (∼ 0.12 eV deep) of Cl−–HD anion. The energy corresponding to

the maximum of each peak in the spectrum is obtained by fitting the latter to



5.2. Methodology and Computational Details 132

-0.11 -0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03
Energy [eV]

Re
la

tiv
e 

In
te

ns
ity

Figure 5.1: The bound energy level spectrum of the electronic ground state of
the Cl−–HD anion obtained by spectral quantization method and locating a sta-
tionary GWP near the equlibrium geometry of Cl−–HD (at R ∼ 6.01 a0, r ∼
1.402 a0 and γ ∼ 0o with width parameters 0.25, 0.25 and 0.2 a0 along these
coordinates, respectively). The intensity in arbitary units is plotted as a function
of the energy measured relative to that of equilibrium geometry of the electronic
ground state of Cl−–HD .
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Figure 5.2: The probability density contours of the eigenfunctions of the energy
levels of the electronic ground state of the Cl−–HD anion. These are calculated
by the spectral quantization algorithm and plotted in the (γ, R) plane. The
eigenfunctions are averaged over r. The energy eigenvalue and the assignment in
terms of number of nodes along R, r and γ are given for each eigenstate in the
respective panel.
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a Lorentzian line-shape function. The eigenfunctions are calculated by equation

[4.6] and are averaged over r coordinate and plotted in Figs. 5.2(a-g) in terms of

their probability density (|Ψ|2) contours in the (γ, R) plane. These are assigned

in terms of the number of nodes along R, r and γ coordinates and these are also

indicated in the respective panel. In the Cl−–HD PES two minima occurring for

the linear Cl−···HD and Cl−···DH configurations, respectively, are separated by

a barrier of ∼ 800 cm−1 at the T-shaped geometry [161]. Therefore, both the

regions of the PES near γ = 0 and Π are populated due to quantum mechanical

tunneling and can be seen from the wavefunction plots in Figs. 5.2(a-g).

The adiabatic initial wavefunctions of the anion presented above are subjected

to FC transition to the adiabatic electronic states of the neutral species. They

are then transformed to a diabatic electronic basis by, Ψd = SΨad, where S is the

adiabatic-to-diabatic transformation matrix. The latter represents the eigenvec-

tor matrix which diagonalizes Hel + Hso. This matrix is numerically diagonalized

at each node of the grid constructed here for the propagation of the WP and the

transformation of the wavefunction between the adiabatic and diabatic electronic

representations is carried out accordingly.

5.2.2 Wave packet propagation and dissociation probabil-

ity

The initial WP discussed above is propagated in the coupled manifold of the final

diabatic electronic states with the aid of the TDSE. The TDSE is numerically

solved on a grid consisting of equally spaced points along the Jacobi distances R

(128 points in the range 1.0 a0 to 14.0 a0) and r (64 points in the range 0.1 a0 to

8.0 a0). The grid along γ is chosen as the nodes of a 49-points Gauss-Legendre

quadrature [141]. The calculations are carried out for the lowest value of the
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total angular momentum (J = 0.5 with and J = 0 without the SO coupling).

The Coriolis coupling terms of the Hamiltonian are not included in the present

calculations.

The exponential time evolution operator in the TDSE (see above) at each

time step is evaluated by the second-order split-operator method [130]. The fast

Fourier transform method [102] and the discrete variable representation method

[132] are used to evaluate the action of the radial and angular kinetic energy

operators on the wave functions, respectively. In order to avoid the unphysical

reflections of the fast moving components of the WP at the grid boundaries a

sine-type of damping potential [135] is activated at the last 32 grid points along

R and the last 15 grid points along r. The WP is propagated in time with a step

size of ∆t ∼ 0.13 fs for a total propagation time of ∼ 550 fs. The convergence of

the results is explicitly checked by varying all the grid parameters noted above.

In order to access the energy distribution, we calculate the time autocorrela-

tion function of the wave packet, 〈Ψ(0)|Ψ(t)〉, evolving on the neutral electronic

states upon photodetachment. A Fourier transform of this autocorrelation func-

tion yields the photodetachment spectrum (cross sections), revealing the range

of energy covered by the initial wave packet. For illustration, a photodetachment

spectrum obtained with (0,0,0) anionic wavefunction evolving on the 2Σ1/2 adi-

abatic electronic state of ClHD is shown in Fig. 5.3.

The time-evolved WP at each time t is transformed back to the adiabatic

electronic representation by using the hermitian conjugate of the S matrix and

its asymptotic components on the 2Σ1/2 electronic state are analyzed to calculate

the dissociation probabilities. Only the components on the 2Σ1/2 electronic state

are of interest here because, as stated above, the components on the 2Π3/2 and

2Π1/2 electronic states do not yield products in their electronic ground state.
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Figure 5.3: The photodetachment spectrum of ClHD− for a transition of the
initial (0,0,0) to the uncoupled 2Σ1/2 adiabatic SO states of Cl(2P ) + HD. The
intensity in arbitrary units is plotted as a function of the energy of the final
electronic state E. The zero of the energy scale corresponds to the asymptotically
separated Cl + HD on the 2Σ1/2 state.

However, we note that the NR components on the latter states are examined also

in order to check the convergence of the dissociation probability results. The

initial state-selected and time-resolved dissociation probabilities are obtained by

integrating the WP flux at a dividing surface at, r = rd (located far out in the

desired channel) as

Pi(t) = 〈Φ(R, r, γ, t)|F̂ |Φ(R, r, γ, t)〉|r=rd
(5.1)

where Pi(t) is the dissociation probability starting form an initial state i of Cl−–

HD and averaged over all final states of the dissociative fragments of Cl···HD .

The flux operator F̂ in terms of a specific channel coordinate (say, r) is given by

F̂ = − i~

2µ

[
∂

∂r
δ(r − rd) + δ(r − rd)

∂

∂r

]
. (5.2)
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Figure 5.4: Time-dependent dissociation probabilities of Cl···HD to the DCl +
H (solid line), HCl + D (dotted line) and Cl + HD (dashed line) channels of the
2Σ1/2 electronic state. The Cl···HD species is prepared by photodetaching Cl−–
HD from the (0,0,0) level of its electronic ground state. This initial wavefunction
is evolved on the uncoupled 2Σ1/2 electronic state of the neutral to calculate the
dissociation probabilities. The total dissociation probabilities (integrated over
time) of the three channels obtained by using the initial wavefunction calculated
by (a) a relaxation scheme and (b) the spectral quantization method are shown
in the inset.
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Figure 5.5: Same as Fig. 5.4 with a initial GWP
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With this, the dissociation probability in Eq. [5.1] assumes the form

Pi(t) =
~

µ
Im

[
〈Φ(R, rd, γ, t)|

∂Φ(R, rd, γ, t)

∂r
〉
]

r=rd

. (5.3)

The quantity in the right-hand side is integrated over the whole range of R and

γ to obtain the dissociation probability at each time t which is further inte-

grated over t to calculate the total dissociation probability. Here we note that

the distinction between the two reactive channels (R1 and R2) in the product

asymptote is made by comparing the internuclear distances of the product HCl

and DCl molecules. The reactive flux, [Eq. (5.2)], in which the HCl distance is

smaller than the DCl distance is considered to represent the (R1) channel and

the rest is considered to represent the (R2) channel.

5.3 Results and Discussion

In order to clearly revel the effects of nonadiabatic coupling on the Cl···HD disso-

ciation dynamics, we first consider the FC transition of the (0,0,0) wavefunction

of Cl−–HD (cf., Fig. 5.2(a)) to the uncoupled 2Σ1/2 electronic state of the neu-

tral Cl···HD . The equilibrium geometry of the Cl−–HD anion is significantly

stretched along R (∼ 6 a0). Therefore, the FC transition promotes this anionic

wavefunction to the van der Waals well region of the reagent asymptote of the

reactive Cl···HD PES. The resulting time-dependent dissociation probabilities for

the R1, R2 and NR channels are plotted in Fig. 5.4 and are indicated by differ-

ent line types in the panel. The total dissociation probabilities (integrated over

time) are shown as a bar diagram in the inset. In the latter, the results from

the initial wavefunctions calculated by the spectral quantization scheme (as dis-

cussed above) and also by a relaxation scheme [149] using the Lanczos propagator
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Figure 5.6: Same as in Fig. 5.4, obtained for the transition of the (0,0,0) wave-
function of the Cl−–HD anion to the (a) 2Σ1/2 , (b) 2Π3/2 and (c) 2Π1/2 adiabatic
electronic state of Cl···HD . The nuclear dynamics in each case is simulated in
the coupled (both electronic and SO) manifold of electronic states of the latter.
The total dissociation probabilities to the non-reactive channels of the excited
2Π3/2 and 2Π1/2 states are also included in the inset of panel (a)
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are shown (indicated by a and b, respectively, in the inset). The identity of the

two results revel the accuracy of the initial wavefunctions calculated here by the

spectral quantization method. It can be seen from Fig. 5.4 that dissociation to

the Cl + HD (NR) channel is dominated followed by the HCl + D (R1) channel

on the uncoupled 2Σ1/2 electronic state. Also the R1 channel dominates over the

DCl + H (R2) channel in the dynamics.

5.3.1 The effect of electronic and SO coupling

The nuclear dynamics followed by the initial FC transition of the above (0,0,0)

anionic wavefunction separately to the 2Σ1/2 , 2Π3/2 and 2Π1/2 adiabatic elec-

tronic states of the neutral Cl···HD in the coupled states situation is considered

next. Both the electronic and relativistic SO coupling are activated in the dy-

namical simulations. The results are presented in Figs. 5.6(a-c), respectively.

The adiabatic initial anionic wavefunction is transformed to diabatic electronic

basis and propagated in the coupled manifold of the electronic states (cf., Hamil-

tonian in Eq. A.1) of neutral Cl···HD . In Fig. 5.6(a), the anionic wavefunction

is initially promoted to the 2Σ1/2 electronic state of the neutral. It can be seen

form Fig. 5.6(a) that the reactive R1 channel still dominates over the R2 channel

of the 2Σ1/2 adiabatic electronic state and the dissociation to its NR channel

is significantly less than what was observed in the uncoupled surface situation

(cf., Fig. 5.4). It can be seen also that dissociation to both the reactive chan-

nel also increases in the coupled surface situation. Therefore, the nonadiabatic

coupling enhances the reactive dissociation and reduces the nonreactive dissocia-

tion of Cl···HD . We note here that the sum of total dissociation probabilities on

the 2Σ1/2 state shown in the inset of Fig. 5.6(a) is less than 1.0 and is only ∼
0.69. The remaining of the WP dissociates in the NR channel of the 2Π3/2 and
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2Π1/2 electronic states and are also indicated in the inset.

The reactivity of the 2Π3/2 electronic state via nonadiabatic transitions to the

2Σ1/2 electronic state is shown in Fig. 5.6(b). The (0,0,0) anionic wavefunction

in this case is promoted to the 2Π3/2 adiabatic electronic state of the neutral

initially, and evolved in the coupled diabatic electronic manifold of the latter. In

this case, as can be seen from the inset, the dissociation to the NR channel of the

2Σ1/2 electronic state dominates. The dissociation to the reactive R1 channel

and R2 channels is practically insignificant. The remaining of the WP dissociates

to the NR channel of 2Π3/2 and 2Π1/2 electronic states. Therefore, it can be

concluded that the nonadiabatic transition of the WP (prepared initially on the

2Π3/2 state) to the 2Σ1/2 state leads to the dissociation predominately via the NR

channel of the latter. The same scenario as in the case of Fig. 5.6(b) persists for an

initial transition of the (0,0,0) anionic wavefunction to the 2Π1/2 electronic state

of Cl···HD and is depicted in Fig. 5.6(c). However, in this case the dissociation

probabilities to the reactive R1 and R2 channels of the 2Σ1/2 state are somewhat

larger than those observed in Fig. 5.6(b). Here also the remaining of the WP

dissociates to the NR channels of the 2Π3/2 and 2Π1/2 electronic states. The

results presented in Figs. 5.6(a-c) reveal that the products are formed in their

electronic ground state with better yield when the dynamics is initiated on the

2Σ1/2 electronic state of Cl···HD .

In order to better understand the above quantum dynamical results, we show

in Figs. 5.7(a-c) the time-dependence of the adiabatic electronic populations in

the coupled state dynamics of Cl···HD . The results of the initial FC transition of

Cl−–HD to the adiabatic 2Σ1/2 , 2Π3/2 and 2Π1/2 electronic states of Cl···HD are

shown in the panel a, b and c, respectively. These adiabatic initial wavefunctions

are evolved in the coupled manifold of the diabatic electronic states of Cl···HD and
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adiabatic electronic populations are calculated at each time t. In each panel the

electronic populations of the three states are indicated by different line types.

These represent fractional populations. Since the initial wavefunction in Fig.

5.7(a) is initially located on the 2Σ1/2 adiabatic electronic state its population

is 1.0 at t = 0. The populations of the 2Π3/2 and 2Π1/2 are therefore zero

initially. At later times the WP on the 2Σ1/2 electronic state reaches the Σ-Π

curve crossing regions and population transfer to the 2Π3/2 and 2Π1/2 adiabatic

electronic states takes place. This is indicated by a decrease in the 2Σ1/2 and

a growth in the 2Π3/2 and 2Π1/2 electronic populations. The population of the

2Σ1/2 electronic state sharply decreases to ∼ 58 % within ∼ 20 fs followed by

quasiperiodic recurrences. It can be seen from Fig. 5.7(a) that somewhat more

population transfer takes place to the 2Π1/2 electronic state when compared to

that to the 2Π3/2 electronic state. For instance, ∼ 30 % of the WP moves to the

2Π1/2 and only ∼ 12 % to the 2Π3/2 electronic state at ∼ 20 fs. The oscillations

in the population curves indicates the transfer of the WP back and forth through

the curve crossings of different electronic states.

The population curves for an initial transition of the anion to the 2Π3/2 state

of the neutral are plotted in Fig. 5.7(b). In this case the decay of the 2Π3/2 elec-

tronic population is not as large as that observed for the 2Σ1/2 state in panel a.

The population transfer to the 2Σ1/2 state (solid line) is more than that to the

2Π1/2 state (dashed line). However, it seems that the major fraction of the WP

dissociates to the NR channel of the 2Π3/2 electronic state leading to Cl + HD.

The scenario for an initial transition of the anion to the 2Π1/2 electronic

state of the neutral is depicted in Fig. 5.7(c). In contrast to the dynamics on

the 2Π3/2 electronic state, the nuclear motion on the 2Π1/2 electronic state is

much perturbed by the nonadiabatic interactions. As a result, relatively more
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fraction of the WP (as compared to panel b) moves to the 2Σ1/2 and 2Π3/2 elec-

tronic states. This also accounts for a relatively increased reactive dissociation

of Cl···HD on the 2Σ1/2 electronic state (cf. Fig 5.6(b) vs. Fig 5.6(c)) for this

initial condition.

In Figs. 5.8(a-c) we show the dissociative photodetachment dynamics of the

excited vibrational levels of the ground electronic state of Cl−–HD . We plot

the time-accumulated dissociation probabilities for these initial wavefunctions

promoted to the 2Σ1/2 , 2Π3/2 and 2Π1/2 adiabatic electronic states of Cl···HD ,

respectively, in panel a, b and c. It can be seen that the dissociation to the

DCl + H channel increases and to the HCl + D channel decreases upon internal

excitation. However, no significant change in the dissociation probabilities can

be observed for the initial transition to the 2Π3/2 and 2Π1/2 electronic states

of Cl···HD . In all cases the NR channel dominates and HCl + D formation is

preferred over DCl + H formation.
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5.4 Summary

We presented a brief theoretical account of the dissociative photodetachment

dynamics of Cl−–HD anion in this chapter. Photodetachment of Cl−–HD anion

prepares the neutral Cl···HD species in the van der Waals well region of the

reagent (Cl + HD) asymptote of its reactive PES. The latter represents a manifold

of three electronic states coupled by the electronic and relativistic SO interactions.

The dissociation of Cl···HD complex occurs on its lowest 2Σ1/2 electronic states

and the products emerge in their electronic ground state in three different R1,

R2 and NR channels. The 2Π3/2 and 2Π1/2 electronic state of Cl···HD can form

the dissociative fragments in their electronic ground state only by non Born-

Oppenheimer transition to the 2Σ1/2 state.

The eigenfunctions of the vibronic levels of Cl−–HD anion are calculated and

are vertically promoted to the coupled manifold of electronic states of Cl···HD .

The dissociation of the latter subsequently monitored by a time-dependent WP

propagation approach. The nonadiabatic coupling is observed to enhance the

reactivity of the 2Σ1/2 electronic state. Generally, for all initial transitions to

the 2Σ1/2 , 2Π3/2 or 2Π1/2 electronic states of Cl···HD and for internally excited

initial wavefunctions of the anion the reactive HCl + D channel dominates over

the DCl + H channel. The dissociation to the NR channel is always more than

the rest. The effect of the nonadiabatic coupling on the nuclear dynamics on the

2Π1/2 electronic state appears to be significantly more that that on the 2Σ1/2 and

2Π3/2 electronic states of Cl···HD . Finally, we mention that the photodetach-

ment recording on Cl−–HD anion has been carried out and it will be worthwhile

to extend these measurements with the aid of photofragment translational spec-

troscopy in order to validate the accuracy of the PESs and the theoretical findings

of this present chapter.



Chapter 6

Future Directions

We have presented a theoretical account of the reactive scattering dynamics oc-

curring on three electronic states of Cl(2P ) + H2 (HD) reaction. The effect

of electronic and SO coupling are studied with the aid of time-dependent WP

approach. Our findings reveal a decrease of reaction probability with the in-

clusion of coupling. The quantum dynamical simulations are carried out by a

time-dependent WP approach within the CS approximations. Calculations of

initial state-selected energy resolved reaction probabilities, integral reaction cross

sections and thermal rate constants are carried out both in the uncoupled- and

coupled-state situations. We report the detailed theoretical calculations of the

photodetachment spectrum of ClH−
2 (ClD−

2 ) along with a detailed theoretical

account of the quasibound states corresponding to resonances in the Cl(2P ) +

H2 reaction dynamics. Finally, We have presented a brief theoretical account of

the dissociation dynamics of the Cl−–HD anion. A brief theoretical description

of the photoelectron spectrum of F2O is also presented in the appendix.

In addition to the electronic and SO coupling, the Coriolis coupling terms in

the Hamiltonian may also have an important role in the dynamics. The latter

147
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has been found to be crucial for some reactions occurring on a single electronic

state [189]. Such a coupling is shown to have relatively minor role in the F + H2

reaction dynamics. An estimate of the effect of the Coriolis terms for Cl(2P ) +

H2 and Cl(2P ) + HD reaction would be valuable in order to assess the interplay

of three different coupling mechanisms on their reaction dynamics. Such a study

is presently under progress.

As discussed in cheaper 2 and 3, in a reactive scattering study, ideally the

reaction should be initiated in an adiabatic electronic representation. However,

in the present study, only a diabatic electronic representation is utilized in the

coupled three-state model when electronic and SO coupling is included in the

dynamics. A detailed study of the Cl(2P ) + H2 (HD) reaction dynamics starting

from the reaction in the adiabatic electronic representation will be important to

validate this concept and may help us to understand the differences between the

observed experimental results.

According to the molecular beam experimental results by Liu and coworkers

[62, 63], the SO excited Cl∗(2P1/2) state seems to be more reactive than the SO

ground state Cl∗(2P1/2), which is an apparent contradiction to the theoretical

wisdom and still remains unresolved. It will be worthwhile to study the state-to-

state reaction dynamics of this reaction including the electronic and SO coupling

to put some light on this unusual experimental observation.
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[121] U. Manthe and H. Köppel, J. Chem. Phys. 93, 345 (1990); 93, 1685 (1990).

[122] D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).



Bibliography 160

[123] C. C.-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (John Wiley
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hapatra, H. Köppel, J. Chem. Phys. 109, 1721 (1998).

[185] W. Domcke, G. Stock, Adv. Chem. Phys. 100, 1 (1997).
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Appendix A

Appendix

A.1 Electronic nonadiabatic transition in the

photoelectron spectroscopy of F2O

Spectroscopy and dissociation dynamics of halogen oxides have attracted increas-

ing attention in the literature because of their relevance in the photochemistry

of the stratosphere and they apparently involved directly or indirectly in the de-

pletion of ozone layer [162]. The molecules of oxygen and chlorine have been

studied extensively both theoretically and experimentally [163–170]. In contrast,

the photophysics and photochemistry of difluorine oxide, F2O, has received only

scant attention in the literature [171–173]. The photoelectron spectra of halo-

gen dioxide and dihalogen oxides are found to be particularly appealing because

they bear signatures of nonadiabatic interactions in the final excited electronic

states [167–170]. The photoelectron spectra usually have poor energy resolution,

however, they have often been used to estimate the extent of nonadiabatic inter-

actions and thereby facilitating the development of theoretical models to examine

167
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the nuclear dynamics in the excited electronic states.

F2O is a nonlinear triatomic molecule with a C2v geometry at its equilibrium

configuration. The ultraviolet photoelectron spectrum of F2O was first recorded

by Conford and coworkers [171] and then by Brundle and coworkers [172]. The

observed bands were assigned based on the semi empirical electronic structure

data. Both these experiments assigned the first four electronic states of F2O
+ in

the order 2B1,
2A1,

2B2 and 2A2. An alternative assignment was also proposed

by Brundle and coworkers [172], in which the overlapping second and the third

photoelectron bands were assigned to the 2A1,
2B2 and 2A2 electronic states. The-

oretical calculations of the ionization energies of the low-lying electronic states of

F2O
+ appeared thereafter. However, the energetic ordering of the three cationic

states (2A1,
2B2 and 2A2) still remained controversial. Recently Wang. et al. [174]

have reported high level ab initio calculation on the near equilibrium C2v poten-

tial energy surfaces (PESs) of the ground electronic state of F2O and the ground

and the low-laying excited states of F2O
+ . The three excited electronic states of

the latter are shown to be 2B2,
2A1 and 2A2 in the order of ascending energy. This

energetic ordering was reconfirmed latter by Tomasello et al. [175] by symmetry-

adapted-cluster-configuration-interaction calculations. Wang et al. [174] also re-

ported the harmonic and anharmonic Franck-Condon (FC) simulation of the pho-

toelectron bands employing the C2v PESs and have shown that the results are

generally in good agreement with the experiment. None of the theoretical studies

to date have considered any nonadiabatic interactions in the excited electronic

states and their impact on the photoelectron spectrum of F2O.

We in the following, revisit the photoelectron bands of F2O and theoretically

study them with the aid of a time-dependent wave packet (WP) as well as a

Lanczos based time-independent quantum mechanical approach [10, 37, 99, 176,
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177]. We consider the relevant nonadiabatic interactions in the excited electronic

states of F2O
+ and modeled them in our theoretical approach. The PESs reported

by Wang et al. [174] for the C2v geometry of F2O and F2O
+ are extended to

the Cs configurations in this study assuming a harmonic vibration along the

asymmetric stretching mode. The electronic nonadiabatic interactions between

the Ã 2B2 and B̃ 2A1 excited electronic states of F2O
+ are modeled by devising

a diabatic electronic Hamiltonian within a linear vibronic coupling approach [10].

The linear vibronic coupling parameter is calculated by an ab initio method and

conical intersections [10, 12] between the two electronic states are established.

The SO interactions between the near degenerate B̃ 2A1 and C̃ 2A2 electronic

states of F2O
+ is not considered in this study primarily because of relatively

weak SO coupling due to F atom. We have considered ∼ 10% contribution of

the C̃ 2A2 band to the composite overlapping second and third photoelectron

bands. The importance of the nonadiabatic interactions between the Ã 2B2 and

B̃ 2A1 electronic states is further examined by monitoring the nonradiative decay

of the electronic population in the coupled electronic manifold.

We also calculated the first photoelectron band of F2O and find that it com-

pares well with the experimental results at low energy resolution. The peaks

in the spectrum are ∼ 0.13 eV spaced in energy which corresponds to a pro-

gression along the symmetric stretching mode of F2O
+. Major contribution to

the intensity of overlapping second photoelectron band comes from the interact-

ing Ã 2B2 and B̃ 2A1 electronic states and a minor contribution is considered

from the C̃ 2A2 electronic state. The theoretical results compare well with the

experimental recording [174].
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A.2 Theoretical Framework

A.2.1 The vibronic Hamiltonian

The first photoelectron band of F2O pertinent to a transition to the X̃ 2B1 elec-

tronic state of F2O
+ is essentially described by the nuclear motion on the Born-

Oppenheimer PES of the latter. This is because the ground electronic state of

F2O
+ is energetically well separated (∼ 4.56 eV at the equilibrium configura-

tion) from its first excited electronic state. The second, third and the fourth

photoelectron bands, on the other hand, are highly overlapping and are proposed

here to be due to the nonadiabatic interactions among the three low-lying near

degenerate excited electronic states (Ã 2B2 , B̃ 2A1 and C̃ 2A2 ) of F2O
+. To

describe the associated nonadiabatic interactions we resort to a diabatic elec-

tronic representation [10] in which the coupling between the states is described

by smoothly varying off-diagonal elements of the electronic Hamiltonian. In ab-

sence of any relativistic effects, the representative Hamiltonian to describe the

first four photoelectron bands of F2O is given by

H = HNu + Hel

= TN




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




+




U11 0 0 0

0 U22 U23 0

0 U32 U33 0

0 0 0 U44



, (A.1)

where HNu and Hel represents the nuclear and the electronic part of the Hamil-

tonian matrix, respectively, TN is the nuclear kinetic energy operator and Uii

describe the potential energies of the electronic states of F2O
+ (i=1, 2, 3 and 4

refer to the X̃ 2B1 , Ã 2B2 , B̃ 2A1 and C̃ 2A2 electronic states, respectively).
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The quantity U23 = U32 represents the nonadiabatic coupling potential between

the Ã 2B2 and B̃ 2A1 electronic states.

F2O is a bent molecule and has a C2v minimum in the neutral ground electronic

state and the cationic ground and excited electronic states. In order to exploit

this symmetry explicitly in the nuclear dynamical simulations we express the

elements of the above Hamiltonian matrix in terms of the symmetry-adapted

ordinary Jacobi coordinates pertinent to the C2v point group in the body-fixed

frame. In the following, we refer to r as the distance between the two terminal F

atoms, R as the distance between the O atom to the center-of-mass of the two F

atoms and γ as the angle between ~r and ~R. The nuclear kinetic energy operator

for the total angular momentum J=0 can be represented as:

TN = − ~
2

2µ

∂2

∂r2
d

− ~
2

2µ′

∂2

∂r2
v

− ~
2

2I

1

sin γ

∂

∂γ

(
sin γ

∂

∂γ

)
, (A.2)

where,

µ =
2mFm0

mO + 2mF

and µ′ =
mF

2
.

The quantity mF and m0 denote the masses of the fluorine and oxygen atom and

I denotes the three-body moment of inertia.

The use of this symmetry adapted Jacobi coordinates for the present example

is advantageous over hyperspherical coordinates [178] because it leads to a block-

diagonal structure of the Hamiltonian based on the vibronic symmetries. This

consideration simplifies the numerical computation significantly by reducing the

grid size by a factor of two, when the Ã 2B2 -B̃ 2A1 coupled electronic manifold

is considered.
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A.2.2 Details of the ab initio electronic potential energy

surfaces and the vibronic coupling parameter

The elements of the electronic Hamiltonian matrix Hel of Eq. (A.1) have been

determined in the following way. For the dependence of the potential energy

surfaces U11, U22, U33 and U44 on the symmetric stretch coordinate, S1 = (∆r1 +

∆r2)/
√

2 (∆r1 and ∆r2 are the displacements in FO bond lengths) and bending

coordinates, S2 = ∆θ + α∆θ2 + β∆θ3, (∆θ being the displacements in FOF bond

angle; α and β are related by an expression, β = [1 + 3α(π-θeqm)2]/[-2(π-θeqm],

by restricting the energy gradient in S2 to zero when the molecule is linear, θeqm

is the equilibrium value of the FOF angle), i.e. for C2v geometries, the MRCI

potential energy functions derived from the large scale CASSCF/RCCSD(T)/cc-

pVQZ calculations by Wang et al. [174] is used. These authors have fitted the

potential energies to a polynomial of the form

V =
∑

ij

Cij(∆S1)
i(∆S2)

j + Veqm (A.3)

The above function for the ground electronic state of F2O and F2O
+ is described

by sixteen coefficients and by fourteen coefficients for the excited electronic states

of F2O
+. The quantity Veqm is the potential energy at the equilibrium configu-

ration in the respective electronic state. The details of the ab initio calculations

can be found in Ref. [174]. The dependence of these PESs on the asymmetric

stretch coordinate, S3 = (∆r1 - ∆r2)/
√

2, is approximated by a Harmonic poten-

tial, V (S3) = κuS
2
3/2 = ωuQ

2
u/2. The quantity κu is the force constant along the

asymmetric stretching vibration (u symmetry) and ωu is the harmonic vibrational

frequency. The quantity Qu represents the dimensionless normal coordinate of

the asymmetric stretching vibration (see the details below). The harmonic ap-
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proximation along the asymmetric stretching motion is employed because the

mentioned photoelectron bands of the F2O apparently do not show any notice-

able excitation along this vibration.

We devote some space here to introduce the dimensionless normal coordinates.

These are denoted as Qg1, Qg2 and Qu for the symmetric stretching, bending and

asymmetric stretching vibrational motions of F2O in its ground electronic state

pertinent to the C2v symmetry point group. The vibrational motion in this state

is treated as harmonic. The mass-weighted normal coordinates of F2O are then

calculated by the GF -matrix method of Wilson et al. [179] using the experi-

mentally derived force field of Pierce et al. [180]. They are then transformed

to the dimensionless normal coordinates by multiplying with (ωi/~)1/2 (ωi is the

frequency of the ith vibrational mode). The frequencies of the asymmetric stretch-

ing vibration of the neutral and the cationic electronic states used to describe the

PESs employed in this study are 0.1137 eV, 0.1670 eV, 0.1678 eV, 0.2246 eV

0.0714 eV for the ground electronic states of F2O and the U11, U22, U33 and U44

electronic states of F2O
+ reported by Wang et al. [174]. The diabatic coupling

potential between U22 and U33 is assumed to be linearly varying function of Qu,

U23 = U32 = λQu, λ being the linear vibronic coupling parameter. We note that

the present model treats all the higher order couplings in the Hamiltonian along

the symmetric stretch and bending coordinates whereas a linear coupling scheme

is applied to the asymmetric stretch coordinate only.

The interstate linear vibronic coupling parameter λ is derived from the dif-

ference of the adiabatic potential energies of the Ã 2B2 and B̃ 2A1 electronic

states, calculated for the various Cs geometries of F2O
+. The two are related
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via [10]

λ =
1

2
Q−1

u

{
[V2(Qu) − V1(Qu)]2 − [V2(Q0) − V1(Q0)]2

}1/2
, (A.4)

where V1 and V2 are the adiabatic potential energies of the Ã 2B2 and B̃ 2A1 elec-

tronic states, respectively, for the distorted nuclear configuration Qu. The latter

is chosen in the vicinity of Q0 (equilibrium configuration of the ground electronic

state of F2O), Qu = Q0 ± δ, with δ being the small shift applied to change the

symmetry point group from C2v at Q0 to Cs at Qu.

In order to calculate λ we perform ab initio calculations for the adiabatic

potentials V2 and V1 for different values of Qu around the equilibrium geome-

tries of the neutral and cationic electronic states. We have also optimized the

equilibrium geometry of the ground electronic state of F2O employing the cor-

relation consistent polarized valence triple-ζ (cc-pVTZ) Gaussian basis sets of

Dunning [181]. The electronic structure calculations are performed using the

GAUSSIAN [182] program package. The effect of electron correlation is treated

by the second order Møller-Plesset perturbation theory (MP2). This yields r (O-

F bond length)= 1.40 Åand θ (F-O-F angle) = 103.17◦ for the optimized ground

state equilibrium geometry of F2O to be compared with the corresponding values

derived from microwave spectroscopy, r = 1.4053 Åand θ = 103.07◦ [174]. We

performed direct calculations of the vertical ionization energies of F2O using the

outer-valence Green’s function (OVGF) method employing the same cc-pVTZ

basis set and equated them to the adiabatic potential energies V1 and V2. The

Green’s function calculations are carried out for the following combinations of

r and φ and for the displacement ∆r= 0.0, 0.01, 0.1 and 0.2 Å: (i) r = 1.4001

Å, φ = 103.17◦ (MP2/cc-pVTZ equilibrium geometry of F2O ground state), (ii)
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r = 1.4053 Å, φ = 103.07◦ (experimental equilibrium geometry of F2O ground

state), (iii) r = 1.2715 Å, φ = 107.99◦ (MP2/cc-pVTZ equilibrium geometry of

the X̃ 2B1 state of F2O
+), (iv) r = 1.331Å, φ = 107.3◦ (IFCA (harmonic) equi-

librium geometry of the X̃ 2B1 state of F2O
+), (v) r = 1.323 Å, φ = 107.30◦

(IFCA (anharmonic) equilibrium geometry of the X̃ 2B1 state of F2O
+) (vi)

r = 1.4437 Å, φ = 82.28◦ (CCSD(T)/aug-cc-pVTZ equilibrium geometry of the

Ã 2B2 state of F2O
+), (vii) r = 1.3689 Å, φ = 118.57◦ (CCSD(T)/aug-cc-pVTZ

equilibrium geometry of the B̃ 2A1 state of F2O
+). The displacements are then

transformed into dimensionless normal coordinates and λ is calculated using the

calculated OVGF data and Eq. (A.4). Such an analysis yields 0.05 eV ≤ λ ≤
0.28 eV, with an average value of λ ∼ 0.18 eV.

A.3 Calculation of the Photoelectron spectrum

and Electronic Populations

The photoionization process is described by Fermi’s Golden rule. The excitation

function is given by

P (E) =
∑

v

|〈Ψv|T̂ |Ψ0〉|2δ(E − Ev + E0), (A.5)

where |Ψ0〉 is the initial state; the vibrational and electronic ground state of the

neutral F2O with energy E0, which is assumed to be vibronically decoupled from

all other states. |Ψv〉 is the final vibronic state of the radical cation F2O
+ with

energy Ev. The operator T̂ is the transition operator, which describes the inter-

action of the electron with the external radiation with energy E. In the present
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application the initial and final states can be expressed as

|Ψ0〉 = |φ0〉|χ0
0〉,

|Ψv〉 =
∑

n

|φn〉|χn
v 〉, (A.6)

where |φ〉 and |χ〉 refer to the (diabatic) electronic and vibrational parts of the

wavefunction, respectively. The superscripts 0 and n refer to the electronic ground

state of F2O and excited nth electronic state of F2O
+, respectively. Using Eq.

(A.6) the spectral intensity can be rewritten within the Condon approximation

as [10]

P (E) =
∑

v

|τn〈χn
v |χ0

0〉|2δ(E − Ev + E0), (A.7)

with

τn = 〈φn|T̂ |φ0〉, (A.8)

being the transition operator matrix elements of the final electronic state n. In

rewriting Eq. (A.7), the matrix elements of the transition operator are considered

to be weakly varying function of the nuclear coordinates. These elements are not

calculated in the present study and are treated as constants (or adjusted empiri-

cally by examining the experimental data), in accordance with the applicability

of the generalized Condon approximation in the diabatic electronic basis [183].

To calculate the photoelectron spectrum using a time-dependent formalism

the Fourier transform representation of the Dirac delta function is used in the

Golden rule formula in Eq. (A.7). The resulting expression can then be reduced to

the Fourier transformation of the time autocorrelation function of the WP [10,35].

When the interacting electronic states possess different spatial symmetries, a

vibronic symmetry exists and the vibronic secular matrix becomes block diagonal
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upon a suitable ordering of basis states. The Golden rule expression is then

rearranges to

P (E) ∼ 2Re

∫ ∞

0

eiEt/~Ck(t)dt, (A.9)

where the index k goes over to the component (diabatic) electronic states, Ck(t) =

〈χk(t = 0)|e−iHt/~|χk(t = 0)〉. The integral in Eq. (A.9) equals to i (=
√
−1)

times the expectation value of the casual Green’s function in the initial WP

representation [see for example, Ref [10]]. Therefore, the imaginary part of this

expectation value finally contributes to P (E). The autocorrelation function is

evaluated by solving the time-dependent Schrödinger equation numerically on a

grid. For an explicitly time-independent Hamiltonian the solution reads

χk(t) = exp [−iHt/~]χk(t = 0). (A.10)

We solve Eq. (A.10) numerically on a grid in the rd, rv and γ space in order

to calculate the wavefunction at time t from that at time t = 0. A 128×64 spatial

grid is used in the rd×rv plane with 1.0 a0 ≤ rd ≤ 4.556 a0 and 1.0 a0 ≤ rv ≤ 6.985

a0. The grid along the Jacobi angle γ is chosen as the nodes of a 48-point Gauss-

Legendre quadrature (GLQ). The action of the exponential operator on |χk(t =

0)〉 is carried out by dividing the total propagation time t into N steps of length

∆t. The exponential operator at each ∆t is then approximated by a second-order

split-operator method [103,104], adapted to the present coupled state problem as

discussed in the literature [184]. This is used in conjunction with the fast Fourier

transform method to evaluate the exponential containing the radial kinetic energy

operator [102] and with the discrete variable representation method to evaluate

the exponential containing the rotational kinetic energy operator (j2/2I) on the

wave function [132]. The latter is accomplished by transforming the grid wave
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function to the angular momentum basis (finite basis representation), multiplying

it by the diagonal value of the operator (e−ij(j+1)∆t~/4I), and then transforming it

back to the grid representation. The WP is evolved for a total of 1.103 ps with a

time step ∆t=0.1347 fs. The last 16 points of the grid along rd and 8 points along

rv were covered with a damping function [135] in order to avoid any unphysical

reflexion or wraparound of the high energy components of the WP which reach

the finite-sized grid boundaries at longer time.

The initial vibrational wave function |χ0
0〉 pertinent to the ground electronic

state of F2O is calculated by a Lanczos based relaxation method [149]. The ab

initio potential energy surface for the ground electronic state of F2O reported

by Wang et al. [174] for the C2v configurations is extended to the Cs geometries

assuming a harmonic vibration along the asymmetric stretching mode, is used

for the relaxation calculations. The time propagation is carried out by the short

iterative Lanczos method [149] with variable time steps. This yields a zero point

energy of 0.097 eV for the neutral F2O. The ground vibrational wavefunction of

the neutral obtained by this method is referred to as anharmonic in the rest of

this paper. This initial wave function is then subjected to a FC transition and

propagated with the final state Hamiltonian (as discussed above). At each time

step the autocorrelation function is recorded and the spectral intensity is finally

calculated using Eq. (A.9).

The time-dependence of the diabatic as well as adiabatic electronic popula-

tions are of immense importance in understanding the nonradiative decay dynam-

ics of the optically prepared state mediated by the conical intersections [10,185].

These are calculated by defining adiabatic projectors in the diabatic electronic

representation [10,121].

In the following, we also report the results obtained by diagonalizing the vi-
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bronic Hamiltonian using the Lanczos algorithm [176] within a time-independent

quantum mechanical framework. A similar grid as stated above is used for the

purpose. In this method the initial wavefunction is written as a direct product

harmonic oscillator function along the Qg1, Qg2 and Qu vibrational modes of F2O.

In this case the intensity of the vibronic lines is shown to be the square of the

first component of the Lanczos eigenvectors [186]. In case of the anharmonic ini-

tial wavefunction (discussed above), this formalism can not be used and a filter

diagonalization approach will be most effective [187]. This is beyond the scope

of the present study and will be considered in future study.

A.4 Results and Discussion

We show the photoelectron bands of F2O calculated with the Hamiltonian of

Eq. (A.1) and compare the theoretical results with the available experimental

data [171, 172, 174] in this section. The structure of the Hamiltonian matrix in

Eq. (A.1) reveals that the nuclear dynamics can be treated independently on

the U11, coupled U22 - U33 and U44 electronic states. In order to reveal explicitly

the impact of the nonadiabatic coupling on the nuclear dynamics in the U22 -

U33 electronic states, we perform companion calculations for the photoelectron

transitions to the uncoupled U22 and U33 electronic states also and the results are

compared with those obtained in the coupled state simulations.

Since we start from an initial bound-state wave function, we calculate, C(t) =

〈χk?(t/2)|χk(t/2)〉, which halves the total propagation time T needed to achieve

the energy resolution, ∆E = 2π~/T , in the photoelectron spectrum [188]. To

reproduce the broadening of the spectrum due to limited energy resolution in

the experiment and also due to three-body rotation, we damp the autocorre-
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Figure A.1: The contour line diagram of the potential energy surface of the
X̃ 2B1 electronic state of F2O

+ in the rd-rv plane (panel a). The potential ener-
gies are obtained from Ref. [174]. The energy is measured relative to the minimum
of the ground electronic state of F2O. The minimum contour occurs at 0.5 eV and
the spacing between the successive contour lines is 0.1 eV. The theoretical results
on the first photoelectron band obtained by propagating the initial anharmonic
wavefunction of the F2O ground vibrational level of the ground electronic state
(shown as dark solid contour lines in panel a) on the above electronic state is
shown in panel c along with the available experimental results [174] in panel b.
The variation of the absolute value of the time autocorrelation function is shown
as an insert in panel c. Intensity in arbitrary units is plotted as a function of the
ionization energy.
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lation function with an exponential function, f(t) = exp(−t/τ), before Fourier

transformation. This is equivalent to convoluting a stick energy spectrum with

a Lorentzian function with full width at the half maximum (FWHM) Γ = 2~/τ ;

τ being the relaxation time. In the following this width is chosen to best match

the observed broadening of the experimental band.

A.4.1 The first photoelectron band

The potential energy surface of the X̃ 2B1 electronic state of F2O
+ in the rd-rv

plane is shown as a contour line diagram in Fig. A.1(a). Superimposed on it is

the anharmonic initial wavefunction of the ground vibrational level of the ground

electronic state of F2O. It can be seen that the FC transition promotes the latter

very near to the equilibrium geometry of the final state.

The theoretical results on the first photoelectron band is shown in Fig. A.1(c)

along with the experimental results in panel (b). The WP is time evolved for a

total of 1.1 ps. The variation of the absolute value of the time autocorrelation

function is shown as an insert in panel (c). The autocorrelation function revels

strong quasiperiodic recurrences in time, the average spacing between the suc-

cessive recurrences is ∼ 32 fs which results into a spacing of ∼ 0.13 eV in the

energy domain. The latter can be observed by inspecting the energy spectrum

in Fig. A.1(c). The average splitting between the dominant peaks is ∼ 0.13 eV

(∼ 1048 cm−1) to be compared with the experimental value of the symmetric

stretch frequency (∼ 1030 cm−1) of F2O
+ in the X̃ 2B1 electronic state [174].

This band do not reveal any progression along the bending mode at the resolution

of the experiment. This fact is considered in the FC simulation of this band by

Wang et al. [174] and their anharmonic model yielded results in good accord with

the experiment. The present time-dependent WP results are also in very good
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Figure A.2: Contour line drawing of the Ã 2B2 -B̃ 2A1 and C̃ 2A2 (panel a and
b) potential energy surfaces for C2v geometries of F2O

+. The spacing between
the successive contour lines in 0.5 eV and the lowest energy contour occurs at
0.5 eV, 1.0 eV and ∼ 0.83 eV for the Ã 2B2 , B̃ 2A1 and C̃ 2A2 ionic states,
respectively. The zero of the energy scale corresponds to the minimum of the
Ã 2B2 state of F2O

+. The seam of conical intersections between the Ã 2B2 and
B̃ 2A1 electronic states is shown by the solid line in panel a and the cross on it
indicates the energetic minimum of this seam. The heavy dots in panel a and b
indicate the center of the FC zone in the photoionization to the respective state.
One dimensional cuts of the Ã 2B2 , B̃ 2A1 and C̃ 2A2 electronic states through
the minimum of the intersection seam of panel a, are plotted along the O-F bond
distance and shown in panel c. The arrow in the panel points to the minimum of
the seam of conical intersection between the Ã 2B2 and B̃ 2A1 electronic states.
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agreement at low energy resolution. The time autocorrelation function in Fig.

A.1(c) is damped with a τ value of ∼ 263 fs (Γ = 5 meV) to generate the spectral

envelope. The Fourier transformation of the autocorrelation function without

damping is also included in the figure. It can be seen that each peak in the broad

envelope splits under high resolution and we find even quantum progression along

the bending vibrational mode of F2O
+ corresponding to a frequency value ∼ 0.07

eV. The experimental value of the adiabatic ionization energy of the above band

is ∼ 13.11 eV, this is reproduced well in the theoretical results.

A.4.2 The overlapping second, third and fourth photo-

electron bands and the nonadiabatic effects

The Ã 2B2 electronic state of F2O
+ is energetically lower at the equilibrium

configuration than the B̃ 2A1 state. The latter is in turn energetically lower than

the C̃ 2A2 state at the equilibrium geometry. The minimum of the Ã 2B2 state

is ∼ 0.036 eV lower than that of the B̃ 2A1 state which is ∼ 0.05 eV lower than

the C̃ 2A2 state. Therefore, it is clear that these states are very close in energy

and the photoelectron bands arising from these three ionic states will be highly

overlapping. In addition, the Ã 2B2 and B̃ 2A1 ionic states can couple via the

asymmetric stretching vibrational mode at sufficiently low energy.

The contour line diagram of the Ã 2B2 , B̃ 2A1 and C̃ 2A2 ionic states are

shown in Figs. A.2(a-b), plotted in the (r-θ) plane to illustrate their topography

for the C2v geometrical arrangements of the nuclei. The potential energies are

obtained from the ab initio potential energy function of Wang et al. [174]. The

energies are measured relative to the minimum of the Ã 2B2 electronic state. The

Ã 2B2 and B̃ 2A1 electronic states can cross each other at the C2v geometrical

arrangements in the space of the totally symmetric vibrational modes and from
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Figure A.3: The photoelectron spectrum for the uncoupled (a) Ã 2B2 , (b)

B̃ 2A1 and (c) C̃ 2A2 electronic states of F2O
+. The spectral intensity (in

arbitrary units) is plotted as a function of the energy of the final electronic state.
The spectra are obtained with the anharmonic initial wavefunction (cf. Fig.
A.1(a)) of F2O. The zero of the energy scale corresponds to the minimum of the

Ã 2B2 electronic state.
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conical intersections. The seam of conical intersections of these states is shown

by the solid line in Fig. A.2(a) and the cross on it indicate its energetic minimum

occurring at ∼ 0.83 eV. The center of the FC zone in this coupled electronic

manifold is shown by the dot in Fig. A.2(a) and also in Fig. A.2(b). It can

be seen that the photoionization process prepares the WP almost on the inter-

section seam. Therefore, the latter is expected to be immediately perturbed by

the associated nonadiabatic coupling effects. One dimensional cuts of the above

electronic states through the minimum of the seam of the intersections of Fig.

A.2(a) are plotted along the O-F distance in Fig. A.2(c). The minimum of the

seam of intersections occurs at r ∼ 2.67 a0 and θ ∼ 102.69◦, and this minimum is

relatively closer to the minimum of the B̃ 2A1 state occurring at r ∼ 2.62 a0 and

θ ∼ 119.5◦ [174]. Therefore, the effect of the nonadiabatic coupling on the nuclear

dynamics of the latter state is expected to be stronger. The near degeneracy of

the C̃ 2A2 state and Ã 2B2 -B̃ 2A1 electronic states is also revealed in the figure.

In Figs. A.3(a-c) we show the photoelectron bands for the uncoupled Ã 2B2 ,

B̃ 2A1 and C̃ 2A2 electronic states of F2O
+, respectively. The spectra are ob-

tained by propagating the anharmonic initial wavefunction of F2O ground state

on the above cationic states. The time autocorrelation function in each case is

damped with τ ∼ 8.5 fs to generate the broad band envelopes in Figs. A.3(a-c).

We note that, we also carried out the time-independent matrix diagonalization

calculations in order to unambiguously identify the progressions in the above three

spectra. In this case however, a harmonic initial wavefunction is used. The the-

oretical data reveal an average spacing of ∼ 0.062 eV (∼ 500 cm−1) between the

intense lines in the Ã 2B2 band. This can be attributed to the progression along

the bending vibrational mode of F2O
+. We also note that the time-dependent



A.4. Results and Discussion 186

Figure A.4: The composite photoelectron spectrum of F2O corresponding to a
transition to the three excited electronic states Ã 2B2 , B̃ 2A1 and C̃ 2A2 of F2O

+.
The relative intensity in arbitrary units is plotted as a function of the energy of
the final vibronic state. The experimental spectrum reproduced from Ref. [174] is
shown in panel a. The composite theoretical photoelectron spectrum obtained by
the Lanczos diagonalization method and using a harmonic initial wave function
of the F2O ground state is shown in panel b as dark solid lines. Similarly, in panel
c, the composite theoretical band obtained by propagating the anharmonic initial
wave function is shown. The two spectra due to the Ã 2B2 (thick solid lines) and

B̃ 2A1 (thin solid lines) electronic states obtained in the coupled state situation
are included in panels b and c under the theoretical composite band. The stick
energy spectra obtained by the Lanczos diagonalization method are also included
in panel b.
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results in Fig. A.3(a) may also have finite background contributions arising from

the direct dissociative component of the WP. A similar average energy spacing of

∼ 0.063 eV corresponding to a progression along the bending vibrational mode

is also found in the B̃ 2A1 band (cf. Fig. A.3(b)). Similar extended progression

along the bending vibrational mode is observed in the corresponding photoelec-

tron bands of Cl2O [169]. The dominant lines in the C̃ 2A2 band in Fig. A.3(c),

on the otherhand, are ∼ 0.13 eV (∼ 1048 cm−1) spaced in energy which corre-

sponds to the frequency of the symmetric stretching mode.

The final theoretical results (panel b and c) along with the experimental re-

sults (panel a) [174] are shown in Fig. A.4. First of all, the experimental band is

highly diffuse and ionization to all three cationic electronic states contributes to

the intensity of this band. Our theoretical results represent the full contribution

from the Ã 2B2 -B̃ 2A1 electronic manifold and ∼ 10% contribution from the

C̃ 2A2 electronic state to the overall spectral intensity. The composite photo-

electron bands are shown by the thick solid lines in panel b and c. They are

obtained by adding three spectra pertinent to the transitions to the above three

cationic states. The results in panel b are obtained by the Lanczos diagonalization

method using a harmonic initial wavefunction of the F2O ground electronic state

constructed in terms of dimensionless normal coordinates. The results in panel c

on the other hand, are obtained by propagating the anharmonic initial WP on the

final electronic states. The two spectra due to the Ã 2B2 (thick solid lines) and

B̃ 2A1 (thin solid lines) electronic states obtained in the coupled state situation

are included in each panel under the theoretical composite band. In addition, the

stick energy spectra obtained by the Lanczos diagonalization method are included

in panel b. The composite theoretical envelopes are obtained by introducing a

broadening by convoluting with a Lorentzian function with Γ = 40 meV. It can be
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clearly seen that the Ã 2B2 state contributes to the low-energy maximum and the

B̃ 2A1 and C̃ 2A2 states to the high-energy maximum of the observed bimodal

intensity distribution in the experimental recording. The peaks in the coupled

state spectra of the Ã 2B2 and B̃ 2A1 electronic states are somewhat broader

than that obtained in the uncoupled state situation (cf. Figs A.3(a) and 3(b),

respectively). The band origin in the coupled state situation shifts by ∼ 0.05 eV

and ∼ 0.001 eV to the higher energy compared to those in the uncoupled state

situation for Ã 2B2 and B̃ 2A1 electronic states, respectively. The broadening of

the spectral peaks in the coupled state situation (in comparison to the uncoupled

state results in Fig. A.3(a-b)) results from the nonadiabatic interactions between

the two states.

The composite theoretical photoelectron bands in panels b and c contained ∼
10% contribution from the C̃ 2A2 state spectrum (cf. Fig. A.3(c)). We note

that the heights of the two maxima in the theoretical band is adjusted empiri-

cally to fit with the experimental results. Such an adjustment was necessary as

constant values of the transition dipole moment are assumed in the theoretical

study. It is worth mentioning here that the nonadiabatic coupling strength in

F2O
+ is approximately two times larger than that found in Cl2O

+ [169]. This is

the reason that the experimental photoelectron band of Cl2O has more resolved

structures than F2O. The increased value of the nonadiabatic coupling definitely

contributes to the broadening of the bands, however, the resolution in the exper-

imental recording also to be taken into account for the observed broadening.

The adiabatic ionization positions can not be identified unambiguously in the

experimental recording, because of the highly overlapping nature of the compos-

ite band. Wang et al. [174] have predicted and adiabatic ionization energy of

∼ 15.71 eV for this composite band. In our calculation the first peak in the
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Ã 2B2 spectrum observed at ∼ 15.79 eV in the coupled state situation, when

energy is measured relative to the minimum of this state. The minimum of the

Ã 2B2 state of F2O
+ is ∼ 17.70 eV above to that of the ground electronic state

of F2O [174]. Therefore, the present theoretical results overestimates the adia-

batic ionization position of the band and can be further improved by refining the

energy at the global minimum of these electronic states. To this end we note that

the agreement between the theoretical and experimental results are satisfactory

within the mentioned approximations made in the theoretical treatment. The

theoretical results may be further improved by carrying out full dimensional cal-

culations of the potential energy surfaces, the electronic and relativistic spin-orbit

coupling surfaces and the relevant transition dipole moment surfaces. This is be-

yond the scope of the present investigations and may be considered in a future

study.

To this end we comment on the importance of the present full quantum dy-

namical treatment versus a similar approximate treatment within the harmonic

picture. Our observations reveal that the anharmonicity of the initial state does

not significantly alter the results as we start from its ground vibrational and

rotational level. However, the anharmonicity of the final electronic state (partic-

ularly in the coupled state situation) is definitely more crucial for the observed

asymmetry of the photoelectron band. Also, the broad and diffuse nature of the

observed band implies a portion of the WP samples the dissociative region of the

final electronic states (cf. Figs. A.6). The latter can not be described properly

by a harmonic model. Therefore, it is very important to consider realistic ab

initio model of the final electronic states and perform a full quantum dynamical

treatment of the nuclear dynamics.
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Figure A.5: The time dependence of the adiabatic (solid lines) and diabatic
(dashed lines) electronic populations in the coupled state dynamics of the

Ã 2B2 -B̃ 2A1 electronic states corresponding to an initial FC transition to
the B̃ 2A1 electronic state of F2O

+.
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A.4.3 Time-dependent dynamics in the Ã 2B2 -B̃ 2A1 elec-

tronic states of F2O
+

In order to enunciate the impact of nonadiabatic coupling on the WP dynamics

we now report on the time dependence of the adiabatic and diabatic electronic

populations in the Ã 2B2 -B̃ 2A1 coupled electronic states of F2O
+. These pop-

ulations are calculated by defining adiabatic projectors in the diabatic electronic

representation [?, 10]. The minimum of the B̃ 2A1 electronic state is closer to

the seam of conical intersections (cf. Fig. A.2(a)) and therefore, the dynamics of

the initially prepared WP on this state is more strongly influenced by the nona-

diabatic coupling compared to that on the Ã 2B2 state. An initial location of

the WP on the latter diabatic state corresponds to 63% : 37% population of the

component adiabatic states at t=0. In this case only ∼ 6% of the population

moves to the B̃ 2A1 diabatic state and the population dynamics does not reveal

any characteristic feature and therefore, we do not show it here.

The population dynamics of the WP initially prepared on the B̃ 2A1 diabatic

electronic state, on the other hand, reveals interesting features and is shown in

Fig. A.5. The adiabatic and diabatic electronic populations are shown by the

solid and dashed lines, respectively. Since the WP is initially located on the

B̃ 2A1 diabatic electronic state, the population of this state is zero at t=0. This

initial location also corresponds to 63% : 37% population of the component adia-

batic states like in the Ã 2B2 case above. It can be seen that the B̃ 2A1 diabatic

electronic population starting from 1.0 at t=0 decays to ∼ 0.2 at longer times.

The initial decay of the population relates to a decay time of ∼ 30 fs for this state.

The population decays to ∼ 0.63 at ∼ 25 fs, therefore, within this time about

37% of the population moves to the Ã 2B2 diabatic state, population of this state
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Figure A.6: Probability density (|χk|2) of the diabatic WP averaged over the
angular coordinate and superimposed on the potential energy contours in the
(rd-rv) plane for γ=π/2 in the coupled state dynamics of Fig. A.5. The WP

components on the Ã 2B2 and B̃ 2A1 electronic states at a given time (indicated
in each panel) are shown in the left and right panels, respectively.
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starts from zero at t=0. The population of both these states does not vary notice-

ably afterwards until ∼ 70 fs, when a second sharp drop in the B̃ 2A1 diabatic

population takes place. Within about ∼ 100 fs ∼ 73% of the population reaches

to the Ã 2B2 diabatic state. The population of the two component adiabatic

states reaches ∼ 100% : 0.0% at longer times. The weak recurrences seen in the

adiabatic electronic populations are damped in the diabatic ones.

In order to better understand the above population dynamics we show snap-

shots of the wave packet evolving on the coupled Ã 2B2 -B̃ 2A1 diabatic electronic

states at different times in Figs. A.6. The contours of the probability density

(|χk|2) of the WP averaged over the angular coordinate is superimposed on the

potential energy contours for γ=π/2 in the rd-rv plane. It can be seen that the

WP at t=0 is located very near to the equilibrium geometry of the B̃ 2A1 elec-

tronic state. The latter is found to be closer to the seam of Ã 2B2 -B̃ 2A1 conical

intersections (cf. Fig. A.2(a)). Because of this, the internal conversion to the

Ã 2B2 state takes place within a very short time. It can be seen that ∼ 37% of the

WP moves to this state within ∼ 25 fs. The portion of the WP in the Ã 2B2 state

approaches towards the energetic minimum of this state (cf. snapshots at ∼ 50

fs) after arrival and mostly remain there at longer times. It appears that once

the WP reaches the Ã 2B2 state most of it does not recross the intersection

seam and move to the B̃ 2A1 electronic state again. This is also indicated by

the absence of quasiperiodic recurrences in the time dependence of the electronic

populations (cf. Fig. A.6). At longer time (∼ 200 fs) ∼ 79% of the WP moves

to the Ã 2B2 electronic state.
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A.5 Summary

We have presented a theoretical account on the photoelectron spectroscopy of F2O

and compared our findings with the available experimental results. Particularly,

the effects due to possible nonadiabatic interactions between the Ã 2B2 and

B̃ 2A1 electronic states of F2O
+ on the photoelectron bands are examined in

detail. The theoretical approach is based on the relevant ab initio potential

energy surfaces of the system and time-independent and time-dependent quantum

dynamical methods.

In this study the near equilibrium C2v PESs reported by Wang et al. [174] for

the F2O ground and the low-lying excited electronic states of F2O
+ are extended

to the Cs geometries assuming a harmonic contribution from the asymmetric

stretching vibrational mode. This is motivated by the fact that the excitation

along this vibrational mode is not observed in the experimental data [174].

Analysis of the first photoelectron band revealed dominant progression along

the symmetric stretch vibration. Weak excitations of the even quantum of bend-

ing vibration are also observed under high energy resolution. The broad band

spectral envelope compares well with the experimental results. The second, third

and fourth photoelectron bands are highly overlapping and are due to ionizations

to the near degenerate Ã 2B2 , B̃ 2A1 and C̃ 2A2 electronic states of F2O
+,

respectively. The nonadiabatic interactions between the Ã 2B2 and B̃ 2A1 ionic

states are modeled here within a linear coupling scheme. These two ionic states

can be coupled via the asymmetric stretching vibration. Conical intersections

between these two states are established. The strength of the coupling parameter

is derived from the ab initio electronic structure results. This resulted in the es-

timate 0.05 eV ≤ λ ≤ 0.28 eV, with 0.18 eV as an average value of this quantity.

The photoelectron bands due to Ã 2B2 and B̃ 2A1 ionic states reveal extended
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progression along the bending vibrational mode. The nonadiabatic interactions

between these states contribute largely to the observed diffuse structure of the

experimental band. The photoelectron band due to the C̃ 2A2 ionic state reveals

dominant progression along the symmetric stretching vibration. The relativistic

spin-orbit interactions of this state with the B̃ 2A1 ionic state is not considered

in this study. We assumed ∼ 10% contribution due to this state in the overall

composite theoretical results presented here. The theoretical results are in good

accord with the observed experimental results. Experimental results at higher

energy resolutions are desirable to further refine the present theoretical model.
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