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Glossary

aug-cc-pVDZ augmented correlation-consistent polarized Valence Double-ζ
aug-cc-pVTZ augmented correlation-consistent polarized Valence Triple-ζ
aug-cc-pVQZ augmented correlation-consistent polarized Valence Quadrapule-ζ
ADT adiabatic to diabatic transformation
B3LYP Becke 3-Parameter (exchange), Lee, Yang and Parr
BO Born-Oppenheimer
BH Born-Haung
BZ Benzene
CA crude adiabatic
CASSCF complete active space self consistent field
CBS complete basis set
CC coupled cluster
CCSD(T) coupled cluster singles and doubles with triple excitations
cc-pVDZ correlation-consistent polarized Valence Double-ζ
CG Clebsch-Gordon
CIs conical intersections
CRD cavity ringdown
DFT density functional theory
DIBs Diffuse interstellar bands
DOF degrees of freedom
DVR discrete variable representation
ECP effective core potentials
EOM-CCSD equation of motion-coupled cluster singles and doubles
FC Franck-Condon
FWHM full width at the half maximum
G3B3 Gaussian-3 variant with B3LYP
HFBz hexafluorobenzene
HO Harmonic oscillator
HOMO highest occupied molecular orbital
IREP irreducible representation
JT Jahn-Teller
LIF laser-induced fluorescence
LVC linear vibronic coupling
m-DFBz meta-difluorobenzene

Continued in next page
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– continued from previous page
MCTDH multi-configuration time-dependent Hartree
MFBz monofluorobenzene
MO molecular orbital
MP2 Møller-Plesset perturbation theory
MRCI multi-reference configuration interaction
o-DFBz ortho-difluorobenzene
OVGF outer valence Greens function
PAHs polycyclic aromatic hydrocarbons
PESs potential energy surfaces
PFBz pentafluorobenzene
PJT pseudo-Jahn-Teller
QVC quadratic vibronic coupling
RT Renner-Teller
REMPI resonance enhanced multiphoton ionization
RHF restricted Hartree-Fock
ROMP2 restricted open shell Møller-Plesset perturbation theory
R2C2PI resonant two-color two-photon ionization
SPFs single particle functions
TDDFT time-dependent density functional theory
TFBz 1, 3, 5 trifluorobenzene
UHF unrestricted Hartree-Fock
UMP2 unrestricted second - order Møller- Plesset perturbation
UB3LYP Unrestricted Becke 3-Parameter (exchange), Lee, Yang and Parr
UCCSD(T) unrestricted coupled cluster singles and doubles with triple excitations
VC vibronic coupling
VDEs vertical detachment energies
VEEs vertical excitation energies
WP wave packet
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1 Introduction

1.1 Vibronic coupling

The Adiabatic approximation often called as clamped nuclei approximation, concerns
the separability of electronic and nuclear motions [1–3]. This approximation allows to
generate the so called adiabatic PESs by calculating electronic energies at various fixed
nuclear positions. This approximation is based on the fact that the electronic motion is
much faster than the nuclear motion as the nucleus is 1836 times heavier than electrons.
The cross coupling terms of the molecular Hamiltonian, also called as nonadiabatic
coupling elements, arise due to the coupling of electronic and nuclear motions. While
the nonadiabatic coupling elements completely ignored in the BO approximation [1,
4], the diagonal elements of this coupling operator are retained in BH approximation
[5]. The BO approximation received wide accolades from the molecular physicists and
chemists and treated as the cornerstone in the the molecular physics and chemistry. This
approximation holds good provided the PESs are well separated and the nuclear motion
confines to a single PES [6–9]. When the PESs are degenerate or near degenerate, the
nonadiabatic coupling elements diverge at the degeneracy points and supersedes the
nuclear mass effect. Therefore, they can not be ignored any more, leading failure of well
celebrated BO approximation [1–3,10–14].

Two types of degeneracies are identified from dependence of electronic energy on
the nuclear coordinate near their vicinity. In the first case, electronic states cross and
resemble a double cone topography, popularly known as CIs. In the second, the states
do not cross but coincide and result in a glancing topography leading to Renner effect or
RT coupling. Electronic degeneracies in molecules mostly yield CIs. While point group
symmetry allows a classification of different types of CIs, the RT case is unique for the
degenerate electronic states of linear polyatomic molecules.

1.1.1 Conical intersections

PESs of diatomic molecules will not cross unless the electronic states in question differ
either in their symmetry properties or in their spin multiplicity. This statement is called
noncrossing rule and proposed by Wigner and von Neumann [15]. When spin-orbit
coupling is excluded, minimum two DOF are required for two electronic states to be
degenerate. Due to availability of three or more DOF, electronic states of ployatomic
molecules often violates this rule. When two PESs cross, they form a hyperline in the
multidimensional nuclear coordinate space of polyatomic molecules and is called as CI.
Teller [16] pointed out in 1937 that CIs may give rise to exceptionally fast radiationless
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1 Introduction

transitions.

Molecular point group symmetry generally plays a decisive role for the existence of CIs.
The CIs of electronic PESs are classified into (i) symmetry required or enforced, (ii) acci-
dental symmetry allowed and (iii) accidental same-symmetry intersections. Symmetry-
enforced electronic degeneracy is exhibited by the JT systems. For example, a doubly
degenerate E state in D3h symmetry configuration splits into A1 and B2 when distorted
to C2v and forms CIs at the original undistorted D3h configuration. Conical intersections
which are not required by symmetry are accidental intersection. While accidental in-
tersection corresponds to two states of distinct spatial symmetry is known as accidental
symmetry-allowed (different symmetry) CI, the CI between two electronic states of same
symmetry is called as same-symmetry accidental CI. Symmetry-allowed (and accidental)

CIs are ubiquitous in molecular systems. The ã3B2u -̃b3B1u CI of B4 provide such an
example. CIs of states of same spatial symmetry are very rare. It has been shown by
Yarkony and coworkers that the excited electronic states of methyl mercaptan of 1A′′

symmetry indeed possess such intersections [17,18].

Based on the shape and orientation of the PESs, CIs are further classified as peaked
and sloped CI [19–21]. Peaked CIs appear when both the PESs are elliptical cones
pointing towards each other with a common tip. In this case, the crossing point is
the minimum of the upper PES and the topology at this point looks like a double
cone. At slopped CIs, both the PESs have downhill slope and touch each other at the
crossing point in branching space. Here, the crossing point is always at higher energies
compared to the minimum of the upper PES and the crossing appear as a seam of
intersections. While a large variety of photochemical reactions via excited-state reaction
pathways are controlled by peaked CIs, the sloped CIs are key factor for the unsuccessful
chemical reactions and arrange decay channels for the ultrafast nonradiative deactivation
of excited states [20, 21].

Seams of the CI can also be categorized based on the dimension of the branching
space, η, for intersection of two PESs with η = 2, 3 or 5 [22]. Among them η = 2
is the most common case of a two state CI for even electronic molecular system in a
non-relativistic situation.

CIs of electronic PESs have now emerged to be the paradigm of triggering strong nona-
diabatic effects leading to blurring of vibrational level structure of molecular electronic
states, various ultrafast molecular processes [17, 18] and also serve as the “bottleneck
” in photophysical and photochemical transitions [23–25]. They are also referred to as
photochemical funnels in the literature [26]. The book edited by Domcke, Yarkony and
Köppel represents an excellent collection of articles in this emerging area of chemical
dynamics [17,18].

The first evidence of CIs came from JT active systems [16]. The JT effect is a unique
vibronic coupling mechanism that prevails in complex electronic spectra of symmetric
molecules, according to which, the nonlinear nuclear configurations of polyatomic sys-
tems in electronic degenerate state (Γ) are unstable and distort spontaneously to remove
the degeneracy along a nontotally symmetric mode [27,28]. The symmetry of the nonto-
tally symmetric mode (ε) such that it contains in the direct product of Γ⊗ Γ. This VC

2



1.1 Vibronic coupling

is called as (Γ ⊗ ϵ)-JT coupling model. The (E ⊗ e)-JT effect, that is, perturbation of
a doubly degenerate electronic state (E) by a doubly degenerate vibrational mode (e),
has been extensively studied for molecules with trigonal symmetry [2, 10, 11, 27–31]. In
tetragonal systems, the JT perturbation of an E state is caused by the nondegenerate
vibrational modes of b symmetry, known as (E ⊗ b)-JT effect.
PJT effect is the interaction between the degenerate and non degenerate electronic

states in a molecule that is pronable to JT or RT effect. In 1957, Öpic and Price [32],
observed structural distortions and splitting of energy term when two or more electronic
states are very close in energy (pseudo degenerate). While the JT effect is the source
of instability in high symmetry configuration of any polyatomic molecules in degenerate
states, the PJT effect is the only source of instability and distortions of high-symmetry
configurations of any polyatomic system in nondegenerate states [33,34].

1.1.2 Glancing interactions

A situation analogous to the JT effect in nonlinear polyatomic molecules also occurs in
linear molecules in their degenerate states and is known as RT effect [35]. The RT effect
in degenerate Π electronic states of linear molecules represents one of the best known
examples of vibronic coupling in molecules. Upon bending the molecule, an additional
dipole moment is set up in the molecular plane which lifts the electronic degeneracy. The
interaction between the vibrational and electronic angular momentum behaves singularly
at the linearity and breaks the adiabatic approximation. While the JT effect is linear in
lowest order coupling terms, the RT effect is quadratic in nuclear displacements. Renner
in his original theory treated the vibronic coupling problem in perturbative approach
by expanding the lowest order of the Hamiltonian in a Taylor series around the linear
configuration. Later his work has been expanded to include higher order terms of Taylor
expansion [36], to allow for electronic spin [37], for the effect of molecular rotation [38],
∆ electronic states [39] and four atomic molecules [40] have also been considered. In
all the above reference perturbation method is used. Among the nonperturbative, i.e
numeric approaches, the reader is directed to the works of Brown et al. [41] and Jungen
et al. [42]. All the above mentioned works successfully explained the interactions in an
isolated doublet Π or ∆ electronic state of many triatomic molecules. The perturbative
methods known to fail when the respective nonadiabatic coupling is strong enough.
Moreover, the interaction between different electronic states are not accounted in these
approaches. The quadratic vibronic coupling approach developed by H. Köppel, Domcke
and Cederbaum appears to provide a systematic way to understand the multimode
dynamics in linear polyatomic molecules [43]. Historically, it is understood that the
RT effect is the source for instability of degenerate electronic states in linear polyatomic
molecules. It was recently proved that, contrary the above belief, PJT is the source of the
instability of the degenerate electronic states in linear polyatomic molecules [2, 33,34].
All these couplings (JT, RT and PJT) have been theoretically analyzed over the

years, gradually increasing the degree of complexity of the systems investigated. The
theoretical approach is generally based on the so-called LVC scheme, often augmented
by (selected or all) QVC terms [2,10,11,31]. This relies on the use of a diabatic electronic
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1 Introduction

basis, where the potential energy coupling matrix is expanded in a Taylor series in suit-
able displacement coordinates, and linear or quadratic terms are retained. The pertinent
coupling constants and the nuclear motion are computed within an ab initio quantum
dynamical scheme. Vibrational structures in various electronic spectra have been stud-
ied as time independent observables. Time dependent quantities of interest are often
electronic populations in the interacting manifold of states. Strong nonadiabatic cou-
plings manifest themselves typically in diffuse (under low resolution) or very irregular
(under high resolution) spectral structures and in a femtosecond electronic population
dynamics, thus signaling internal conversion processes proceeding on the same timescale
as the nuclear motion [2].

1.2 Current state of research

Atomic clusters are the aggregates of few to a few thousands of atoms. Due to their
small size, the properties of the clusters are in general different from those of the corre-
sponding material in the macroscopic bulk phase. For example the all boron and carbon
clusters displays wide variety of geometrical structures in contrast to their bulk phase.
While boron in its elemental form present in 3-dimensional networks, its clusters Bn

(where n=3-20) are planar or quasi planar. Similarly the carbon clusters also displays
astonishing geometries depending on the number of carbon atoms. Elemental clusters
are studied in gas phase and in solid state both experimentally and theoretically, be-
cause chemical and physical properties are of great fundamental interest. Theory played
an important role in the development and application of cluster science. Since many
cluster properties (e.g. cluster geometries, binding energies and energy barriers) can not
be easily measured in the experiment, theoretical models and computational methods
have been very useful in helping to interpret the geometry and spectroscopic (UV-visible
and photoelectron spectroscopy) and mass spectroscopic data. The field of clusters also
serves as an exciting test ground for validity of the theoretical methods. While there
are several computational studies on the structure and thermodynamical parameters on
both boron [44] and carbon [45,46] clusters, study of detailed topography of their ener-
getically low-lying electronic states and structure of the spectral bands is still missing
in the literature. As a part of this thesis, the photodetachment spectroscopy of B−

n with
n=4, 5 and 7 (see Chapters 3 and 4) and absorption spectroscopy of carbon cluster C15 is
studied theoretically by ab initio quantum dynamical methods. It is found that vibronic
coupling is an important mechanism in the dynamics of excited electronic states of these
clusters. Consequently fingerprints of electronic nonadiabatic effect for example, over-
lapping and broad band structure, excitation of nontotally symmetric vibrational mode
etc are derived.

1.2.1 Boron clusters

Relative to its next door neighbor carbon, boron is just one electron short, but the differ-
ence that makes is substantial. While carbon is very essential to life, boron is not. There
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1.2 Current state of research

are countless organic compounds having innumerable uses, but there are fewer examples
of boron derivatives. The number of applications for these boron compounds in electron-
ics, catalysis, organic synthesis, diagnostic and therapeutic medicine, while growing has
been limited [47–49]. Nevertheless, because boron is a little different, with a diverse set of
structural and bonding characteristics, chemists remained fascinated with the prospects
of striking it rich with new families of functional boron compounds, particularly all boron
clusters. It was found that boron has defied conventional bonding concepts that are cen-
tral to carbon compounds. Boron exhibits sp2 hybridization in most of its compounds,
leaving one unhybridized p orbital unoccupied. In this bonding picture, boron has more
bonding orbitals than available electrons, so it is considered “electron deficient”. Boron
adapts a multicentered bonding strategy that involves sharing electrons across BBB or
BHB units, which necessitates formation of cluster compounds [47, 48]. Boranes are
hydrocarbon equivalents, but they appear in all kinds of polyhedral structures.
Boron forms different types of clusters ranging from boranes, carboranes metallobo-

ranes and all-boron clusters. The structure and bonding in boranes is very well under-
stood from the contribution of many researchers Stock [50], Dilthey [51], Pitzer [52],
Nobel prize winning three centered two electron (3c - 2e) model of Lipscomb [53], Paul-
ing [54], Longuet-Higgins [55], Wade (also known as Wade’s rules) [56], Jemmis et al. (see
Ref. [57] and references therein) and the famous MNO of the latter rule is very helpful
in understanding the structure of boranes and carboranes.
The bare all boron clusters have been studied both theoretically and experimentally

during the past decade [44,49,58–65]. Boron clusters have been studied by mass [62–65]
and photoelectron spectroscopy [44] experiments to understand the structure and bond-
ing properties. To the surprise of the scientific community, the structure of bare boron
clusters (Bn where n=3-20) were shown to be planar or quasi planar [44,67]. The planar
or quasi planar geometries of boron clusters are established from extensive photoelec-
tron spectroscopy measurements by Wang et al aided by ab initio electronic structure
calculations by Boldyrev et al [44]. Their stability is explained based on aromaticity,
anti aromaticity and conflict aromaticity. As bare boron clusters have planar or quasi
planar structure and show aromaticity or antiaromaticity like hydrocarbons, these are
projected to be potential compounds as ligands for inorganic chemistry or building blocks
of new solids [44]. Recent Computational studies upon designing potential sandwich like
complexes based on the bare all-boron units B3 [71], B2

6 [72], B7 [73], B2
8 [74] and the

successful synthesis of the triple-decker (Cp*ReH2) B5Cl5 and (Cp*)2B6H4Cl2 [75] com-
pounds containing B5Cl5 and B6H4Cl2 structural units provide hope that many more
compounds with bare boron building blocks may be synthesized in the future.
Wang et al have measured photodetachment spectrum at different photon wavelengths

of 355, 266, and 193 nm. These studies revealed the vibronic band structures of the en-
ergetically low-lying electronic states of the corresponding neutral clusters with varying
degree of energy resolution. While the combined experimental and computational efforts
(stated above) unraveled rich information on the equilibrium structure and properties
of the ionic and neutral boron clusters, detailed topography of their energetically low-
lying electronic states and a detail study of the structure of the photodetachment bands
are still missing in the literature. As a part of this thesis, the photodetachment spec-
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troscopy of B−
n with n=4, 5 and 7 (see Chapters 3 and 4) is studied theoretically by

doing extensive ab initio quantum dynamical methods and by setting up suitable vi-
bronic Hamiltonian. It is found that vibronic coupling is an important mechanism in
the dynamics of excited electronic states of these clusters. Consequently fingerprints
of electronic nonadiabatic effect for example, overlapping and broad band structure,
excitation of nontotally symmetric vibrational mode etc are derived.

1.2.2 Carbon clusters

DIBs are a set of ubiquitous absorption features observed in the spectra of stars in
the universe, that are caused by the absorption of light by the interstellar medium
in ultraviolet, visible and infrared region of the electromagnetic spectrum [76]. For
the origin and history of this subject, we direct the readers to the recent review by
McCall et al. [76]. Over 500 DIBs are observed to date. The origin of DIBs is not
known unambiguously and is a subject of major debate in the astrophysical observations.
Because of their widths (ranging from a fraction to several angstroms wide), as well as
their observed asymmetric profiles and substructure, the unresolved rotational contours
of gaseous polyatomics are often considered. Origin of the DIBs were long believed
to be due to PAHs [77] and other large carbon-bearing molecules [78]. The gas phase
spectral measurements in the laboratory with support from theoretical studies of nuclear
dynamics offer valuable aid to the astronomers in unraveling the mystery of the DIBs.
Douglas in his seminal paper, suggested that the bare carbon chains Cn, where n

may lie in the range 5-15 [78] could show spectroscopic features consistent with the
DIB observations as their electronic transitions take place in the visible region of the
spectrum (the majority of the DIBs lying in the 400-800 nm region with a few others
to the red) and the spectrum gets broadened due to intramolecular processes. The first
spectroscopic detection of C3 in comets in the year 1881 [79] triggered curiosity among
the astronomers, chemists and physicists on the structure and spectroscopy of carbon
chains. Maier et al. investigated the spectroscopy of linear carbon chains extensively with
the aid of wide variety of spectroscopic techniques ranging from neon matrix studies,
CRD, R2C2PI, LIF, trapped ion photofragmentation, and electron photodetachment
processes [80–83] and concluded that absorptions of the carbon chains comprising upto
12 atoms do not correspond to any of the stronger DIB features.
The following criteria are furnishes by Mayer et al. for a species to be a potential DIB

carrier, “(a) absorptions in the 400-800 nm range, (b) oscillator strength f values in the
1-10 range, and (c) an excited electronic-state lifetime longer than a few picoseconds so
that intramolecular broadening would still be compatible with the typical half-widths
of the narrower DIBs (i.e., a few wave numbers)” [10]. The longer chains with an odd
number of carbon atoms of length 15, 17, 19 and 21 are expected to satisfy the first two
criteria because their transitions are in the 400-800 nm range and their f values scale
with the chain length. It remains to be seen by doing nuclear dynamics study, whether
the excited electronic state of 1Σ+

u symmetry has a lifetime longer than a few picoseconds
to satisfy the third condition listed above. Taking the mentioned facts into consideration
the electronic structure and dynamics of C15 cluster are studied (see Chapter 5) in an
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attempt to examine its potentiality as a DIB carrier.

1.2.3 Perfluoro effect

Fluorine atom substitution in the benzene (Bz) ring leads to a stabilization of the σ
orbitals which consist mostly the fluorine orbitals. In a more general context this phe-
nomenon is known as perfluoro effect in the literature [85]. Spectroscopic [88, 89] and
photophysical [86, 87] studies on FBz molecules have revealed that the features of the
electronic absorption and emission bands and lifetimes of fluorescence emission strongly
depends on the number of substituted fluorine atoms. For example, C6Fn with n ≤
4 exhibit structured S1 ← S0 absorption band, large quantum yield and nanosecond
lifetime of fluorescence. On the other hand, C6Fn with n=5 and 6 exhibit structureless
S1 ← S0 absorption band [88,89], low quantum yield [86,87], picosecond and nanosecond
lifetime of fluorescence emission [90]. Furthermore, a biexponential decay of fluorescence
is observed for the latter molecules [90].
Early work from this group on the FBz molecules have settled the ambiguities over the

justification of the origin of additional bands and several other issues mentioned above
for C6Fn with n upto 5 [91]. It is established that along vibronic coupling, perfluoro
effect [85] also plays important role on the dynamics of the low-lying excited electronic
states of these FBz molecules. In case of HFBz (where all the hydrogen atoms are re-
placed by fluorine atoms and the perfluoro effect is expected to have the maximum im-
pact), there exist no clear-cut understanding of the origin of the additional bands (when
compared to Bz) and several anomalous experimental observations about its fluores-
cence lifetime and biexponential decay dynamics in gas phase absorption spectrum [89].
Furthermore, the additional band (C-band) observed in HFBz, unlike PFBz, exhibits a
twin structure and there is no unambiguous interpretation exists for the observed twin
to date. The above mentioned unresolved issues on the observed optical absorption
spectrum of HFBz prompted us to study its absorption spectrum theoretically in order
to provide a comparative account on the impact of fluorine atom substitution on the
optical absorption spectrum of Bz (see Chapter 6).

1.3 Outline of the thesis

The theoretical background of vibronic interactions in polyatomic molecules is presented
in Chapter 2. The concept adiabatic and diabatic electronic basis is introduced. Con-
struction of diabatic electronic Hamiltonian utilizing elementary symmetry selection
rules is elaborated with few representative examples. The strategy to estimate the pa-
rameters of the electronic Hamiltonian, in particular, is described in each chapter. Tech-
nical details of the first principles quantum dynamics calculations are also discussed.
Photo-induced electron detachment spectroscopy of anionic boron clusters, B−

4 , B
−
5 ,

and B−
7 , is theoretically investigated by performing electronic structure calculations and

nuclear dynamics simulations. While the electronic potential energy surfaces and their
coupling surfaces of neutral B4, B5 and B7 clusters are constructed in Chapter 3, the
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details of the nuclear dynamics calculations on these electronic states are presented in
Chapter 4. Electronic structure calculations are carried out at the CASSCF-MRCI level
of theory employing the aug-cc-pVTZ basis set. Using the calculated electronic structure
data suitable vibronic Hamiltonians are constructed utilizing a diabatic electronic basis
and displacement coordinates of the normal vibrational modes. The theoretical results
are discussed in relation to those recorded in recent experiments.
In Chapter 4, the photodetachment bands of anionic boron clusters, Bn (n = 4, 5 and

7) are theoretically examined. The model Hamiltonians developed through extensive
ab initio quantum chemistry calculations in chapter 3 are employed for the required
nuclear dynamics study. While the precise location of vibronic lines and progression
of vibrational modes within a given electronic band is derived from time-independent
quantum mechanical studies, the broad band spectral envelopes and the nonradiative
decay rate of electronic states are calculated by propagating wave packets in a time-
dependent quantum mechanical framework. The theoretical results are in good accord
with the experiment to a large extent. The discrepancies between the two can be partly
attributed to the inadequate energy resolution of the experimental results and also to
the neglect of dynamic spin-orbit interactions and computational difficulty related with
detachment channels involving multi-electron transitions in the theoretical formalism.
While the studies of boron clusters in Chapters 3 and 4 are of importance in material

chemistry, in Chapter 5 structure and dynamics of odd numbered carbon chains are
studied in connection to their astrophysical relevance. The absorption spectrum of a
state of Σ+

u symmetry of the carbon chains consisting of 15, 17, 19 and 21 carbon atoms
is expected to be a DIB carrier provided it is long lived (upto ∼ 2 ps). Theoretical study
of nuclear dynamics in the S5

1Πg , S6
1Πu , S7

1Σ+
u and S12

1Σ+
g electronic states of C15

is carried out to examine the nonradiative decay dynamics of its 1Σ+
u electronic state.

The findings are presented in this Chapter.
In Chapter 6, theoretical study of the photoabsorption spectroscopy of HFBz is pre-

sented. The chemical effect due to fluorine atom substitution on the electronic structure
of Bz saturates in HFBz. State-of-the-art quantum chemistry calculations are carried
out to establish potential energy surfaces and coupling surfaces of five energetically low-
lying electronic (two of them are orbitally degenerate) states of HFBz. Coupling of these
electronic states caused by the JT and PJT type of interactions is examined. The impact
of these couplings on the nuclear dynamics of the participating electronic states is thor-
oughly investigated by quantum mechanical methods and the results are compared with
those observed in the experiments. The complex structure of the S1 ← S0 absorption
band is found to originate from very strong nonadiabatic coupling between the S2 (of
πσ∗ origin) and S1 (of ππ

∗ origin) electronic state. While S2 state is orbitally degenerate
and JT active, the S1 state is nondegenerate. These states form energetically low-lying
CIs in HFBz. These CIs are found to be the mechanistic bottleneck of the observed low
quantum yield of fluorescence emission, non overlapping absorption and emission bands
of HFBz and contribute to the spectral width. Justification is also provided for the
observed two peaks in the second absorption (the unassigned “c band”) band of HFBz.
The peaks observed in the third, fourth and fifth absorption bands are also identified
and assigned.



Final conclusions and prospects of the current thesis is presented in Chapter 7.
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[10] H. Köppel, L.S. Cederbaum, and S. Mahapatra, Theory of the JahnTeller Effect,
in Handbook of high-resolution spectroscopy, John Wiley & Sons, (2011).

[11] S. Mahapatra, Acc. Chem. Res. 42, 1004 (2009).

[12] M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and
conical intersections, John Wiley and Sons, (2006).

[13] M. S. Child in Atom-Molecular collision theory, edited by R. B. Bernstein, Plenum
press, New York, (1979).

[14] B. DiBartolo, Radiationless processes, PLenum press, New York, (1980).

[15] J. von Neumann and E. P. Wigner, Physik. Z. 30, 467 (1929).

[16] E. Teller, J. Phys. Chem. 41, 109 (1937).

[17] Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by
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2 Theoretical methodology

2.1 Born-Oppenheimer approximation and adiabatic
representation

Quantum chemistry and dynamics of a molecular system can be described theoretically
by the following time independent Schrödinger equation

H(q,Q)Ψ(q,Q) = EΨ(q,Q) (2.1)

where the vibronic wavefunction and energy are represented by Ψ(q,Q) and E , respec-
tively, and the molecular Hamiltonian H in the absence of spin-orbit interaction is given
by

H(q,Q) = Tel(q) + TN(Q) + U(q,Q) + V(Q) (2.2)

where q and Q collectively represent electronic and nuclear coordinates, respectively. Tel
and TN are electronic and nuclear kinetic energy terms, respectively. U(q,Q) includes the
repulsion energy between the electrons and attraction energy between the electrons and
nuclei. V(Q) is the potential energy of interaction between the nuclei. The Schrödinger
equation (2.1) can not be solvable because the Hamiltonian Eq. (2.2) doesnt allow a
separation of variables q and Q. To solve this problem of nonseparability of electronic
and nuclear motions, one of the most fundamental approximation known as adiabatic
approximation is proposed and it consists of computing the electronic wavefunctions
for fixed positions of the nuclei. The rationale for this approximation derives from the
much heavier mass (slower motion) of the nuclei relative to the electrons. The electronic
motion is treated with the nuclei held at fixed positions and then the slower motion
of the nuclei is monitored using a potential energy established by the moving cloud of
electrons. This is also called as clamped nuclei approximation [1, 2].

In the so called clamped nuclei approximation, the orthonormal electronic eigenfunctions
ψn(q;Q) and electronic energy Vn(q;Q) at a fixed nuclear position are calculated by
solving electronic Schrödinger equation

Hel(q,Q)ψn(q;Q) = (Tel(q) + U(q,Q))ψn(q;Q) = Vn(q;Q)ψn(q;Q) (2.3)

The molecular wavefunction within adiabatic theorem can be written as a product of
electronic eigenfunction (ψn(q;Q)) which in addition to electron coordinates is para-
metrically dependent on nuclear coordinates and nuclear eigenfunction (χ(Q)) which is
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dependent only on the nuclear coordinates.

Ψi(q,Q) =
∑
n

ψn(q;Q)χni(Q) (2.4)

By inserting the expression for vibronic wavefunction Ψi(q,Q) into Eq. (2.1), one readily
obtains the following coupled differential equations

[TN(Q) + Vn(q;Q) + V(Q)− E ]χn(Q) =
∑
m

Λnm(Q)χn(Q) (2.5)

where ∑
m

Λnm(Q) = −
∫
dqψ∗

n(q;Q) [TN(Q), ψm(q;Q)] (2.6)

defines the coupling of electronic states n and m through the nuclear kinetic energy
operator and is termed as the nonadiabatic coupling matrix of the adiabatic electronic
representation. The nuclear kinetic energy operator takes non-diagonal form in this
representation. The quantity Λnm(Q) can be expressed as [1, 3]

Λnm(Q) = −
∑
i

ℏ2

Mi

A(i)
nm(Q)

∂

∂Qi

−
∑
i

ℏ2

2Mi

B(i)
nm(Q) (2.7)

where Mi are nuclear masses and

A(i)
nm(Q) = ⟨ψn(q;Q)|∇i|ψm(q;Q)⟩ (2.8)

and
B(i)

nm(Q) = ⟨ψn(q;Q)|∇2
i |ψm(q;Q)⟩ (2.9)

represents the derivative coupling vector and scalar coupling, respectively. Depending
on the choice made in the molecular wavefunction and nonadiabatic coupling term, three
approximations are evolved. They are BO, BH and CA approximations [4].

BO approximation

If Λnm in Eq. (2.5) is approximated to zero, then that approximation is called as BO
approximation [2, 4, 5]. The molecular wavefunction is given by

ΨBO
i (q,Q) =

∑
n

ψn(q;Q)χ
BO
ni (Q)

The electronic and nuclear Hamiltonians are given by

[Tel(q) + U(q,Q)− Vn(q;Q)]ψn(q;Q) = 0
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and

[TN(Q) + V(Q) + Vn(q;Q)− E ]χBO
ni (Q) = 0.

BH approximation

If the diagonal terms of the nonadiabatic operator Λnm are retained while off-diagonal
terms set to zero, then that approximation is called as BH approximation [2, 4, 6]. The
diagonal part of the nonadiabatic operator is given by

Λnn = −
∑
i

ℏ2

Mi

A(i)
nn(Q)

∂

∂Qi

−
∑
i

ℏ2

2Mi

B(i)
nn(Q) (2.10)

Since the electronic wavefunction chosen to be real and A
(i)
mn is an anti-hermitian oper-

ator, the following relations apply.

A(i)
mn = −A(i)

nm

For diagonal terms m = n, then the above equation become

A(i)
nn = −A(i)

nn

2A(i)
nn = 0

A(i)
nn = 0

The molecular wavefunction and electronic Schrödinger equation in BH approximation
are same as that of the BO approximation. The nuclear Schrödinger equation differs
from BO approximation and is given by

[
TN(Q) + Vn(q;Q) + V(Q)− E +

∑
i

ℏ2

2Mi

B(i)
nn

]
χni(Q) = 0. (2.11)

CA approximation

In this approximation the molecular wavefunction is expanded in a basis of electronic
functions corresponds to a fixed nuclear configuration. The molecular wavefunction is
given by [1, 2]

ΨCA
i (q,Q) =

∑
n

ψn(q;Q0)χ
CA
ni (Q) (2.12)
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The electronic Hamiltonian is given by

Hel = Tel(q) + U(q,Q)
= Tel(q) + U(q,Q0) + ∆U(q,Q)
= Hel(q,Q0) + ∆U(q,Q) (2.13)

The nuclear Schrödinger equation is given as

[TN(Q) + Vn(Q0) + V(Q)− E + ⟨n|∆U(q,Q)|n⟩]χCA
ni (Q) = 0 (2.14)

In the adiabatic representation, the potential energy matrix is diagonal, while the nuclear
kinetic energy matrix is non-diagonal due to coupling between electronic states,

2.2 Breakdown of BO approximation and diabatic
representation

From the electronic Schrödinger equation Eq. 2.3

⟨ψm(q;Q)|Hel(q;Q)|ψn(q;Q)⟩ = ⟨ψm(q;Q)|Vn(q,Q)|ψn(q;Q)⟩
⟨ψm(q;Q)|Hel(q;Q)|ψn(q;Q)⟩ = Vn(q,Q)δmn

Differentiating the above equation with respect to Q

∂

∂Q
[⟨ψm(q;Q)|Hel(q;Q)|ψn(q;Q)⟩] =

∂Vn(q,Q)
∂Q

δmn

⟨ ∂
∂Q

ψm|Hel(q;Q)|ψn⟩+ ⟨ψm|
∂Hel(q,Q)

∂Q
|ψn⟩+ ⟨ψm|Hel(q,Q)|

∂

∂Q
ψn⟩ = 0

Vn⟨
∂

∂Q
ψm|ψn⟩+ ⟨ψm|

∂Hel(q;Q)

∂Q
|ψn⟩+ Vm⟨ψm|

∂

∂Q
ψn⟩ = 0 (2.15)

Since ψm and ψn are orthogonal to each other

⟨ψm|ψn⟩ = 0

Differentiating the above equation with respect to Q

⟨ψm|
∂ψn

∂Q
⟩+ ⟨∂ψm

∂Q
|ψn⟩ = 0

⟨∂ψm

∂Q
|ψn⟩ = −⟨ψm|

∂ψn

∂Q
⟩
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2.2 Breakdown of BO approximation and diabatic representation

Substituting the above equation in Eq. 2.15

−Vn⟨ψm|
∂ψn

∂Q
⟩+ Vm⟨ψm|

∂ψn

∂Q
⟩+ ⟨ψm|

∂Hel(q;Q)

∂Q
|ψn⟩ = 0

⟨ψm|
∂Hel(q;Q)

∂Q
|ψn⟩+ (Vm − Vn)⟨ψm|

∂ψn

∂Q
⟩ = 0

⟨ψm|
∂

∂Q
|ψn⟩ =

1

(Vn − Vm)
⟨ψm|

∂Hel(q,Q)

∂Q
|ψn⟩

Using the above equation, A
(i)
nm(Q) can be expressed as [1, 7, 8]

A(i)
nm(Q) =

⟨ψm(q;Q)|∇iHel(q;Q)|ψn(q;Q)⟩
Vn(Q)− Vm(Q)

, (2.16)

where Hel represents the electronic Hamiltonian for fixed nuclear configuration. When
the two surfaces Vn(Q) and Vm(Q) become degenerate, the derivative coupling elements
of Eq. (2.16) exhibit a singularity. This results discontinuity in both the electronic
wavefunction and the derivative of energy at the point of degeneracy and making the
adiabatic representation unsuitable for the computational study of the nuclear dynamics.
The derivative coupling, A

(i)
nm(Q), becomes extremely large at near-degeneracy or at de-

generacy of different electronic PESs eventually breaking down the BO approximation.
Typical phenomena associated with a violation of the BO approximation are inelas-
tic atom-atom collisions and the radiationless decay of excited electronic states [8, 9].
To overcome this singularity in the derivative coupling operator, the adiabatic basis
functions are replaced by smooth, slowly varying functions of nuclear coordinates and
correspond to potential energy surfaces which may cross at the avoided crossings of adi-
abatic PESs. These functions are called as diabatic basis [1, 10–13]. The diabatic basis
are constructed by a suitable unitary transformation of the adiabatic basis functions.

ϕ(q;Q) = S(Q) ψ(q;Q), (2.17)

Where ϕ(q;Q) and ψ(q;Q) are electronic eigenfunctions in diabatic and adiabatic rep-
resentations, respectively. S(Q) is the transformation matrix which reads as

S(Q) =

(
cos θ(Q) sin θ(Q)
− sin θ(Q) cos θ(Q)

)
(2.18)

The matrix S(Q) is called the ADT matrix and θ(Q) defines the transformation angle.
The required condition for such transformation is that the first-order derivative couplings
of Eq. (2.8) vanishes in the new representation for all nuclear coordinates [15,16] i.e.,∫

dqψ∗
n(q;Q)

∂

∂Qi

ψm(q;Q) = 0. (2.19)

This requirement yields the following differential equations for the transformation matrix
[15,17,18]
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2 Theoretical methodology

∂S

∂Qi

+A(i)S = 0, (2.20)

where the elements of the first-order derivative coupling matrix A(i) are given by Eq.
(2.8). A unique solution of the above equation can be obtained only when starting from
a finite subspace of electronic states [16]. Therefore, for polyatomic molecular systems
rigorous diabatic electronic states do not exist [16]. Approximate schemes are therefore
developed to construct diabatic electronic states [18–20].

2.3 Quasi Diabatic Hamiltonian

In all the theoretical studies presented in this thesis assume a diabatic basis is already
constructed. The diabatic basis results a diagonal form of nuclear kinetic energy operator
and the coupling between the electronic states is described by the off-diagonal elements
of the potential energy operator. The PESs are smooth, crossing curves in diabatic
basis in contrast to the adiabatic basis in which the PESs are non crossing and exhibit a
discontinuity at the avoided crossing. The vibronic Hamiltonian of the final states of the
ionized/excited species is constructed in terms of the dimensionless normal coordinates
of the electronic ground state of the corresponding (reference) anion or neutral species.
The mass-weighted normal coordinates (qi) are obtained by diagonalizing the force field
and are converted into the dimensionless form [14] by

Qi = (ωi/ℏ)
1
2 qi, (2.21)

where ωi is the harmonic frequency of the ith vibrational mode. These actually describes
the normal displacement coordinates from the equilibrium configuration, Q = 0, of
the reference state. The vibronic Hamiltonian describing the photoinduced molecular
process is then given by [1]

H = (TN + V0)1n +W(Q). (2.22)

In the above equation (TN + V0) defines the Hamiltonian for the unperturbed reference
ground electronic state, with

TN = −1

2

∑
i

ωi

[
∂2

∂Q2
i

]
, (2.23)

and

V0 =
1

2

∑
i

ωiQ
2
i , (2.24)

describing the kinetic and potential energy operators, respectively. All vibrational mo-
tions in this reference electronic state are generally, to a good approximation, assumed
to be harmonic. The quantity 1n is a (n× n) (where n is the number of final electronic
states) unit matrix and W in Eq. (2.22) describes the change in the electronic energy
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2.3 Quasi Diabatic Hamiltonian

upon ionization/excitation. This is a (n × n) non-diagonal matrix. The term W(Q) is
expanded in a Taylor series in terms of normal coordinates as [21–23]

W(Q) = W0(Q) +
∑
iα

V
(α)
i Qα

i +
1

2

∑
ij

∑
αβ

V
(αβ)
ij Qα

i Q
β
j + ... (2.25)

The indices i and j run over the number of normal vibration modes. α and β runs
over the components of the irreducible representations. m and n are electronic state
numbering, respectively. The electronic potentials V α

i and V αβ
ij are given by

V α
i =

∂V

∂Qα
i

∣∣∣∣
Q0

V αβ
ij =

∂2V

∂Qα
i Q

β
j

∣∣∣∣
Q0

While the diagonal elements of the electronic Hamiltonian, Wnn, describe the diabatic
potential energy surfaces of the electronic states, the off-diagonal elements Wnm are the
coupling surfaces between mth and nth electronic states [1, 21, 23] and are given by

Wnm =
∑
kk′

∑
iα

⟨n|V α
i |m⟩Qα

i +
1

2

∑
kk′

∑
ij

∑
αβ

⟨n|V αβ
ij |m⟩Qα

i Q
β
j (2.26)

where k and k′ are the indices for the components of the electronic states m and n,
respectively. To setup the molecular Hamiltonian, one needs to evaluate the integrals
⟨n|V α

i |m⟩ and ⟨n|V
αβ
ij |m⟩. This can be easily accomplished by employing group theory.

The terms V α
i and V αβ

ij transform according to the transformation properties of Qα
i and

Qα
i Q

β
j [21]. A truncation of the Taylor series expansion given in Eq. (2.26) at the first

and second order terms leads to the LVC and QVC schemes, respectively [1, 22, 23].

2.3.1 LVC

let β and γ be the nth and mth electronic states. The first order potential V α
i given

in Eq. (2.26) transforms according to Qα
i where α be the symmetry of the vibrational

mode Qi. Let i, k and k′ be the indices for the components of α, β and γ. The matrix
element ⟨n|V α

i |m⟩ can be reduced by using Wigner-Eckart theorem as follows [21]

⟨n|V α
i |m⟩ =

(
α β γ
i k k′

)∗

⟨n||V α||m⟩ (2.27)

It should be noted that index for the normal mode number is dropped. The index i should

not be confused with the index i in Eq. (2.26). The matrix elements

(
α β γ
i k k′

)
are
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2 Theoretical methodology

called as CG coefficients, which in turn depends only on the symmetry properties. These
CG coefficients are also called as V coefficients and are tabulated for each molecular point
group in Ref. [24]. The matrix elements ⟨n||V α||m⟩ is called as reduced matrix element,
as it is independent of i, k and k′. The integral Eq. (2.27) is non-zero if and only if
the symmetric direct product of β and γ contains α. i.e α ∈ β ⊗ γ. For non-degenerate
electronic states, only totally symmetric vibrational modes a1 are active in first order in
diagonal elements. For degenerate states, the direct product obtains some non-totally
symmetric vibrations, in addition to the totally symmetric modes, causes Jahn-Teller
distortions.

Now let us calculate the matrix elements of the Hamiltonian for S2
1E1g state of HFBZ.

Then m = n = S2, β=E1g and γ = E1g. k and k′ runs over θ and ϵ, the two components
of the degenerate electronic state E1g. The symmetric direct product [E1g ⊗ E1g] =
[E1u ⊗ E1u] = A1g + E2g. Hence, the linear coupling in the electronic state S2

1E1g is
possible only along the normal modes of symmetry a1g and e2g.

When α = a1g, then i = 1 and with aid of V coefficients given in page no. 109 of
Ref. [24], the Eq. (2.27) becomes

⟨n|V α
i |m⟩ =

(
A1g E1g E1g

1 k k′

)∗

⟨n||V A1g ||m⟩

=
1√
2
δkk′⟨n||V A1g ||m⟩

= κδkk′

where κ = 1√
2
⟨n||V A1g ||m⟩. The matrix elements of the Hamiltonian for S2

1E1g state

along a1g modes hence can be given by pre multiplying with ⟨k| and post multiplying
with |k′⟩

Wnn =
θ ϵ

θ κQ 0
ϵ 0 κQ

When α = E2g, then i runs over θ and ϵ and with the aid of the V coefficients given in
Table. 3.1 of page no. 30 of Ref. [24], the JT matrix Hamiltonian is given as

WE⊗e
nn =

∑
kk′

∑
i

⟨n|V e2g
i |n⟩Q

e2g
i

=
∑
kk′

∑
i

(
E2g E1g E1g

i k k′

)∗

⟨n||V E2g ||n⟩Qe2g
i

The nonzero V coefficients are
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2.3 Quasi Diabatic Hamiltonian

(
E2g E1g E1g

θ θ θ

)
= −

(
E2g E1g E1g

θ ϵ ϵ

)
=

1

2(
E2g E1g E1g

ϵ θ ϵ

)
=

(
E2g E1g E1g

ϵ ϵ θ

)
=

1

2

The matrix elements of the Hamiltonian for S2
1E1g state along e2g modes with λ =

1√
2
⟨n||V E2g ||n⟩, hence can be given by

Wnn =
θ ϵ

θ λQθ λQϵ

ϵ λQϵ −λQθ

2.3.2 QVC

Let α and β are the symmetries of the normal modes of vibration and i and j are the
indices for the components of α and β, respectively. The electronic states m and n are
represented by ψ and χ and their components are represented by indices k and k′. The
evaluation of the matrix elements ⟨n|V αβ

ij |m⟩ requires more effort. The quantity V αβ
ij

transform according to Qα
i Q

β
j .

⟨n|V αβ
ij |m⟩ =

∑
ρl

(
α β ρ
i j l

)
⟨n|T ρ

l |m⟩

Where T ρ
l represents some irreducible representations which are the symmetric direct

product of ψ and χ. Now, applying Wigner-Eckert theorem, the above integral reduced
to the following

⟨n|V αβ
ij |m⟩ =

∑
ρl

(
α β ρ
i j l

)(
ρ ψ χ
l k k′

)
⟨n||T ρ||m⟩ (2.28)

Where the stars on the CG coefficients have been removed, since the later turned out
to be real. Now let us use the above equation, to construct the QVC Hamiltonian for
S2

1E1g state of HFBz. ψ = χ = E1g; and since selection rule for ρ is given by

[E1g ⊗ E1g] = A1g + E2g

When ρ = A1g,
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2 Theoretical methodology

⟨n|V αβ
ij |m⟩ =

(
α β A1g

i j 1

)(
A1g E1g E1g

1 k k′

)
⟨n||T ρ||m⟩

=
1√
2
δkk′

(
α β A1g

i j 1

)
⟨n||T ρ||m⟩

=
1√
2
δαβδjj

1√
2
δkk′⟨n||TA1g ||m⟩

=
1

2
δαβδjjδkk′⟨n||TA1g ||m⟩

= γδαβδjjδkk′

where

γ =
1

2
⟨n||TA1g ||m⟩ (2.29)

From the above equation, it is clear that all vibrational modes are active in second order
and transform as A1 representation. When α is not a degenerate mode the molecular
Hamiltonian can be written as

Wnn =
θ ϵ

θ γQ2
α 0

ϵ 0 γQ2
α

When α is a degenerate mode the molecular Hamiltonian can be written as

Wnn =
θ ϵ

θ γ(Q2
θ +Q2

ϵ) 0
ϵ 0 γ(Q2

θ +Q2
ϵ)

When ρ = E2g

⟨n|V αβ
ij |m⟩ =

(
α β E2g

i j l

)(
E2g E1g E1g

l k k′

)
⟨n||TE2g ||m⟩

From the direct product table, it can be seen that E2g contained in the following
products,

E1g ⊗ E1g = E1u ⊗ E1u = E2g ⊗ E2g = E2u ⊗ E2u

Hence, all the degenerate vibrational modes are quadratically JT active. By substituting
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2.3 Quasi Diabatic Hamiltonian

required V coefficients in the above equation, the matrix elements for the quadratic part
of the JT Hamiltonian can be obtained, and are given below.

Wnn =
θ ϵ

θ η(Q2
θ −Q2

ϵ) 2ηQθQϵ

ϵ 2ηQθQϵ −η(Q2
θ −Q2

ϵ)

where η = 1
4
⟨n||TE2g ||m⟩

2.3.3 For molecules without degeneracy

When the molecular point group of the molecule which is under study is non-degenerate,
then the construction of the molecular Hamiltonian is straight forward. The Taylor series
expansion Eq. (2.26) is more complicated by the tensor potentials (product of three of
more vectors). But in case of non-degenerate molecules, these tensor potentials becomes
simple vectors. The Eq. (2.26) can be written as the following,

Wnn(Q) = W0(Q) + En +
∑
i

κ
(n)
i Qi +

∑
ij

γ
(n)
ij QiQj + ... (2.30)

and

Wnn′(Q) = Wnn′(0) + Σiλ
(nn′)
i Qi + ..., (2.31)

respectively. The intrastate (κ and γ) and the interstate (λ) coupling parameters are
given by

κ
(n)
i = (∂Wnn/∂Qi)0 (2.32)

λ
(nn′)
i = (∂Wnn′/∂Qi)0 (2.33)

γ
(n)
ij =

1

2
[(∂2Wnn/∂QiQj)0] (2.34)

Here En denotes the vertical ionization energy of the nth excited electronic state from
the reference state. Possible coupling between the states is assessed by employing the
symmetry selection rule

Γm × ΓQi
× Γn ⊃ ΓA, (2.35)

where Γm,Γn and ΓQi
refer to the IREPs of the electronic states m,n and the ith vibra-

tional mode, respectively. ΓA denotes the totally symmetric representation.
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2 Theoretical methodology

2.4 Simulation of eigenvalue spectrum

Assume that a molecule initially in the state Ψ0 is excited by some operator T̂ into a
manifold of vibronically coupled electronic state. According to Fermi’s golden rule, the
excitation spectrum is described by function

P (E) =
∑
v

∣∣∣⟨Ψf
v |T̂ |Ψi

0⟩
∣∣∣2 δ(E − Ef

v + Ei
0), (2.36)

where the quantity T̂ represents the transition dipole operator that describes the inter-
action of the electron with the external radiation of energy E during the photoionization
process. |Ψi

0⟩ is the initial vibronic ground state (reference state) with energy Ei
0 and

|Ψf
v⟩ corresponds to the (final) vibronic state of the photoionized/excited molecule with

energy Ef
v . The reference ground electronic state is approximated to be vibronically

decoupled from the other states and it is given by

|Ψi
0⟩ = |Φ0⟩|χ0

0⟩, (2.37)

The final vibronic state |Ψf
v⟩ in the coupled electronic manifold of n interacting states

can be written as

|Ψf
v⟩ =

∑
n

|Φn⟩|χn
v ⟩, (2.38)

where |Φ⟩ and |χ⟩ represent the diabatic electronic and vibrational part of the wave-
function, respectively. The superscripts refer to the ground and excited states. With
the help of Eqs. (2.37-2.38), the excitation function Eq. (2.36) can be rewritten as

P (E) =
∑
v

∣∣∣∣∣∑
n

τn⟨χn
v |χ0

0⟩

∣∣∣∣∣
2

δ(E − Ef
v + Ei

0), (2.39)

where

τn = ⟨Φn|T̂ |Φ0⟩ (2.40)

represent the matrix elements of the transition dipole operator of the final electronic
state n. In diabatic basis, these elements depends very weakly on nuclear coordinates
Q. Hence, in the study of photoinduced processes presented in this thesis, we consider
the transition dipole operator elements as constants. This approximation is called as
Condon approximation [25].
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2.4 Simulation of eigenvalue spectrum

2.4.1 Time-independent approach

The time-independent vibronic Schrödinger equation

H|Ψf
n⟩ = En|Ψf

n⟩, (2.41)

is solved by expanding the vibronic eigenstates {|Ψf
n⟩} in the direct product harmonic

oscillator basis of the electronic ground state [1]

|Ψf
n⟩ =

∑
{|Ki⟩}

anK1,...,Kl
|K1⟩|K2⟩...|Kl⟩|ϕn⟩ (2.42)

Here Kth level of ith vibrational mode is denoted by |Ki⟩. |ϕm⟩ is the electronic wave-
function. For each vibrational mode, the oscillator basis is suitably truncated in the
numerical calculations. In practice, the maximum level of excitation for each mode is
estimated from the convergence behavior of the spectral envelope. The Hamiltonian
matrix expressed in a direct product Harmonic oscillator basis is highly sparse and is
tri-diagonalized by the Lanczos algorithm [26]. The diagonal elements of the resulting
eigenvalue matrix give the position of the vibronic lines and the relative intensities are
obtained from the squared first components of the Lanczos eigenvectors [1, 13]. These
calculations are simplified by employing the generalized Condon approximation in a di-
abatic electronic basis [25], that is, the matrix elements of T̂ in the diabatic electronic
basis are treated to be independent of nuclear coordinates and have the equal modulus.

To reflect the inherent broadening of the experimental vibronic spectrum, the stick
vibronic lines obtained from the matrix diagonalization calculations are usually convo-
luted [1] with a Lorentzian line shape function

L(E) =
1

π

Γ
2

E2 + (Γ
2
)2

, (2.43)

with a FWHM Γ.

2.4.2 Time-dependent approach

Use of Fourier representation of the Dirac delta function, δ(x) = 1
2π

∫ +∞
−∞ eixt/ℏ, in the

golden rule equation transforms Eq. (2.36) into the following useful form, readily utilized
in a time-dependent picture

P (E) ≈ 2Re

∫ ∞

0

eiEt/ℏ⟨Ψi(0)|τ †e−iHt/ℏτ |Ψi(0)⟩dt, (2.44)
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≈ 2Re

∫ ∞

0

eiEt/ℏ Ci(t) dt. (2.45)

In Eq. (2.44) the elements of the transition dipole matrix τ † is given by, τ f = ⟨ϕf |T̂ |ϕi⟩.
The quantity Cf (t) = ⟨Ψf (0)|Ψf (t)⟩, is the time autocorrelation function of the WP
initially prepared on the f th electronic state and, Ψf (t) = e−iHt/ℏ Ψf (0).
In the time-dependent calculations, the time autocorrelation function is damped with

a suitable time-dependent function before Fourier transformation. The usual choice has
been a function of type

f(t) = exp[−t/τr] , (2.46)

where τr represents the relaxation time. Multiplying C(t) with f(t) and then Fourier
transforming it is equivalent to convoluting the spectrum with a Lorentzian line shape
function (cf., Eq. (2.43)) of FWHM, Γ = 2/τr.

2.4.3 Propagation of wave packet by MCTDH algorithm

The matrix diagonalization approach becomes computationally impracticable with in-
crease in the electronic and nuclear degrees of freedom. Therefore, for large molecules
and with complex vibronic coupling mechanism this method often becomes unachiev-
able. The WP propagation approach within the MCTDH scheme has emerged as a
very promising alternative tool for such situation [27–30]. This is a grid based method
which utilizes DVR combined with fast Fourier transformation and powerful integration
schemes. The efficient multiset ansatz of this scheme allows for an effective combination
of vibrational degrees of freedom and thereby reduces the dimensionality problem. In
this ansatz the wavefunction for a nonadiabatic system is expressed as [28–30]

Ψ(Q1, ..., Qf , t) = Ψ(R1, ..., Rp, t) (2.47)

=
σ∑

α=1

n
(α)
1∑

j1=1

...

n
(α)
p∑

jp=1

A
(α)
j1,...,jp

(t)

p∏
k=1

φ
(α,k)
jk (Rk, t)|α⟩, (2.48)

Where, R1,..., Rp are the coordinates of p particles formed by combining vibrational

degrees of freedom, α is the electronic state index and φ
(α,k)
jk are the nk SPFs for each

degree of freedom k associated with the electronic state α. Employing a variational
principle, the solution of the time-dependent Schrödinger equation is described by the
time-evolution of the expansion coefficients A

(α)
j1,...,jp

. In this scheme all multi-dimensional
quantities are expressed in terms of one-dimensional ones employing the idea of mean-
field or Hartree approach. This provides the efficiency of the method by keeping the
size of the basis optimally small. Furthermore, multi-dimensional SPFs are designed
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by appropriately choosing the set of system coordinates so as to reduce the number of
particles and hence the computational overheads. The operational principles, successes
and shortcomings of this schemes are detailed in the literature [28–30]. The Heidelberg
MCTDH package [27] is employed to propagate WPs in the numerical simulations for
present molecules. The spectral intensity is finally calculated using Eq. (2.44) from the
time-evolved WP.
Here we provide a brief overview on the memory requirement for the MCTDH method.

The memory required by standard method is proportional to N f , where N is the total
number of grid points or primitive basis functions and f is the total number of degrees
of freedom. In contrast, memory needed by the MCTDH method scales as

memory ∼ fnN + nf (2.49)

where, n represent the SPFs. The memory requirements can however reduced if SPFs
are used that describe a set of degrees of freedom, termed as multimode SPFs. By
combining d degrees of freedom together to form a set of p=f/d particles, the memory
requirement changes to

memory ∼ fñNd + ñf (2.50)

where ñ is the number of multimode functions needed for the new particles. If only
single-mode functions are used i.e. d=1, the memory requirement, Eq. (2.50), is dom-
inated by nf . By combining degrees of freedom together this number can be reduced,
but at the expense of longer product grids required to describe the multimode SPFs.
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[30] M. H. Beck, A. Jäckle, G. A. Worth, and H. -D. Meyer, Phys. Rep. 324, 1 (2000).

31





3 Theoretical study of
photodetachment spectra of anionic
boron clusters. Structure

3.1 Introduction

The electronic structure and properties of anionic, neutral and cationic boron clusters
have received considerable attention in theoretical and experimental research during
the past decade [1–8]. The electron deficiency in the p orbitals of boron atom and its
short covalent radius give rise to its unusual, highly coordinated bonding properties.
The complex chemistry of boron atom characterized by formation of planar (quasi-
planar) and three-dimensional bonding networks and even elementary boron exists in
variety of allotropic forms with B12 icosahedron as a common structural motif [9]. The
three-dimensional bonding network, planarity, multiple aromaticity (σ and π) are the
important contributors to the novel and diverse chemistry of boron when compared to
the much understood chemistry of carbon. Apart from the fundamental importance,
the boron clusters are also potential candidate in advanced technological applications as
optoelectronic materials (see ref. [10] and citations therein).

In order to understand the chemistry viz, the structure and bonding properties, boron
clusters have been studied by mass spectroscopy [5–8] and photoelectron spectroscopy
[11] experiments. In recent years, the latter in combination with ab initio electronic
structure calculations have been very successful in elucidating the structure and bonding
of many small and medium sized boron clusters [11]. Contrary to the expectations, the
small boron clusters have been found to possess planar geometry at the equilibrium global
minimum of their PESs (see ref. [12] and citations therein). Wang and co-workers have
carried out extensive photoelectron spectroscopy measurements on boron clusters, Bn

(n=3-20) and established their planar (or quasi-planar) equilibrium geometries aided
by electronic structure calculations by Boldyrev and co-workers [11]. In all cases the
measurements by Wang and co-workers [11] were carried out at three different photon
wavelengths 355, 266 and 193 nm, which revealed the vibronic band structure of the
energetically low-lying electronic states of the neutral clusters with varying degree of
energy resolution [11].

The computational study so far focused on the search for the global minimum (equilib-
rium) geometry of the electronic ground state and calculations of the VDEs at the global
minimum configuration [11]. This exercise has largely helped in identifying the novel
bonding properties of the global minimum structure as well as the excited electronic
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3 Structure of boron clusters

states and to correlate them with the observed band structures of the photodetachment
spectrum [13–15]. Spin contamination in the HF wavefunction is a common problem
for the open-shell boron clusters [19]. Hybrid DFT based methods are therefore gener-
ally employed to search for the global minimum configuration of these clusters [20, 21].
Methods based on the CASSCF theory orbitals and CC theory are also used for the pur-
pose [11]. More accurate calculations of the structure of B4, B5 and B7 clusters and their
anions, VDEs, electron affinities and thermochemical parameters are also performed re-
cently at the CCSD(T) level of theory [17,18]. In Ref. [17] the adiabatic electron affinity
and the equilibrium structure of B4 and B−

4 are calculated at the UCCSD(T)/aug-cc-
pVTZ level of theory, the vibrational frequencies are calculated at CCSD(T)/aug-cc-
pVDZ level of theory. While the electron affinity of B4 is calculated by the CCSD(T)
method extrapolated to CBS limit, the VDE of B−

4 is calculated at the CCSD(T)/aug-
cc-pVQZ level of theory [17]. Ref. [18] used CCSD(T) extrapolated to the CBS limit to
predict the adiabatic electron affinities for B5 and B7 and VDEs for B−

5 and B−
7 with

geometries calculated at the MP2/aug-cc-pVTZ theoretical level. These quantities are
also calculated with the G3B3 structures and frequencies [18]. The VDEs of B−

4 , B
−
5

and B−
7 are also calculated by the OVGF method [22–24].

While the combined experimental and computational efforts (stated above) yield rich
information on the equilibrium structure and properties of the ionic and neutral boron
clusters, detailed information on the topography of their energetically low-lying elec-
tronic states and nuclear dynamics on them are not known till date. In the recent past
we made some efforts to understand the photodetachment band structures of B−

3 [25].
In the present chapter, we attempt to investigate the structure and dynamics of the
low-lying electronic states of B4, B5 and B7 clusters and provide a theoretical basis for
understanding the observed photodetachment bands of B−

4 , B
−
5 and B−

7 . MRCI calcula-
tions are carried out to establish the energetically low-lying PESs of these highly corre-
lated boron clusters. Curve crossings of the electronic states and strong anharmonicity
of the potential energy functions in the neighborhood of these crossings are established.
The importance of the intersystem crossing mediated by spin-orbit interactions is also
discussed.

Model vibronic Hamiltonians are developed in this chapter with the aid of the calcu-
lated ab initio electronic structure data using various state-of-the-art electronic structure
methods. While the details of structural study are presented here, the nuclear dynamics
is investigated employing the developed Hamiltonians in Chapter 4. The theoretical
results are discussed in relation with the experimental photodetachment spectrum of
B−

4 [13], B−
5 [14] and B−

7 [15].

3.2 Electronic structure of boron clusters

3.2.1 B−4

The ground vibrational level of the electronic ground state of B−
4 is treated as the

reference state in the photodetachment spectroscopy study presented in Chapter 4. The
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3.2 Electronic structure of boron clusters

Table 3.1: Optimized equilibrium geometry parameters of the electronic ground state of
B−

4 . The results available in the literature [13, 17] are also included in the
table for comparison. The units for electronic energy, bond length and bond
angle are hartree, angstrom and degrees, respectively.

Parameters for B−
4 X̃2B1u X̃2Ag

Ref [13]a Ref [17]b This workc Ref [13]a This workc

UB3LYP ROMP2 UCCSD(T)
Etotal -99.227 -98.947 -99.236 -98.909 -98.947 -99.217 -99.226

R(B1-B2) 1.568 1.583 1.564 1.579 1.583 1.578 1.574
R(B1-B3) - 1.659 1.643 1.647 1.659 - 2.103

∠B1− B2− B3 63.50 63.20 63.38 62.82 63.30 84.30 83.84
∠B2− B1− B4 - 116.80 116.62 117.18 116.80 - 96.16
∠B2− B1− B3 - 58.31 58.59 58.40 - 48.08

a UB3LYP/6-311+G∗, b CCSD(T)/aug-cc-pVTZ, c aug-cc-pVTZ level of theory

electronic ground state of B−
4 is optimized by the UB3LYP density functional method [26]

using the aug-cc-pVTZ basis set of Dunning [27]. The Gaussian03 [29] suite of program
is used for this purpose. Although the results from B3LYP calculations generally suffer
from spin contamination owing to the presence of a HF component in it, fortuitously,
this choice of the optimization method in the present case has been found to minimize
spin contamination in the wavefunction drastically as compared to that obtained at the
UMP2 [30–32] level of theory. Expectation values of S2 operator are 0.754 and 1.579,
respectively, obtained by the two methods as compared to its exact expectation value of
0.75.

Two possible rhombus shaped equilibrium structures of B−
4 corresponding to the D2h

symmetry point group shown as found by Zhai et al. [13] are also obtained by us and are
shown in Fig. 3.1. In Table 3.1, the equilibrium geometry parameters are compared with
those obtained by Zhai et al. [13] and Nguyen et al. [17] with ours at UB3LYP/aug-cc-
pVTZ level of theory. It can be seen from the table that both sets of data agree very well
with each other. Although the two possible equilibrium structures are energetically close,
the X̃2B1u structure is ∼ 0.27 eV lower in energy and represents the global minimum on
the potential energy surface. While the B-B distance remains almost identical in the two
isomers, the B-B-B angle is significantly larger and approaches to a square configuration
at the X̃2Ag minimum (cf., Table 3.1. On hearing from the referees we have additionally
performed calculations at ROMP2 and UCCSD(T) [33–37] level of theory and obtained
optimized geometry and vibrational frequencies. The optimized equilibrium geometry
data is given in Table 3.1 and they are in very good agreement with those obtained from
the UB3LYP method. This comparison supports the small spin contamination found in
the UB3LYP results.

At both the minimum energy configurations of the electronic ground state, the har-
monic vibrational frequencies ωi are calculated by diagonalizing the ab initio force con-
stant matrix. The eigenvectors of the force constant matrix yield the mass-weighted
normal coordinates of the vibrational modes. The latter are transformed to the dimen-
sionless form Q by multiplying with

√
ωi (in atomic units) [38]. The six vibrational

degrees of freedom of B−
4 transform to the following IREPs of the D2h symmetry point

group.
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3 Structure of boron clusters

Figure 3.1: The geometry of the two low-lying isomers X̃2B1u (left) and X̃2Ag (right) of
B−

4 .

Table 3.2: Designation, symmetry, harmonic frequency (in cm−1) calculated with differ-

ent optimized equilibrium geometry of its electronic ground X̃2B1u state and
description of the six vibrational modes of B−

4 . The results available in the
literature [13,17] are also included in the table.

Designation Symmetry Harmonic frequency (cm−1) Description
UB3LYP ROMP2 UCCSD(T) Ref [13] Ref [17]

ν1 ag 1141 1169 1126 1138 1142 ring stretch
ν2 ag 804 800 779 800 825 (2-4) B-B stretch and (1-3) B-B shrink
ν3 b1u 1013 1489 924 1008 815; (1-4) and (2-3) B-B stretch
ν4 b2u 809 770 796 804 771 inplane bending
ν5 b3u 285 272 256 284 251 out of plane Butterfly bending
ν6 b3g 1043 1050 1032 1039 991 (1-2) and (3-4) B-B stretch inplane bending

a UB3LYP/ 6-311+G∗, b CCSD(T)/aug-cc-pVDZ

Γvib = 2ag + 1b3u + 1b2u + 1b1u + 1b3g (3.1)

The description of these vibrational modes along with their harmonic frequencies cal-
culated at UB3LYP/aug-cc-pVTZ level of theory, is given in Table 3.2. These vibrational
frequencies are also calculated by the ROMP2 and UCCSD(T) level of theory. The fre-
quencies available from the literature are also included in the table. It can be seen that
the frequencies obtained by different methods are in very good accord with each other.
The six vibrational modes are schematically shown in Fig. 3.2.

The electronic ground and excited PESs of neutral B4 cluster are calculated along
the dimensionless normal displacement coordinates (Q) of the vibrational modes of the

respective reference anionic clusters as discussed above. The MO sequence of the X̃2B1u

electronic ground state of B−
4 obtained at the UB3LYP level of theory is given by

α−MOs : (1ag)
1(1b1u)

1(2ag)
1(1b2u)

1(3ag)
1(2b1u)

1(2b2u)
1(4ag)

1(1b3u)
1(1b3g)

1(3b1u)
1

β −MOs : (1ag)
1(1b1u)

1(2ag)
1(1b2u)

1(3ag)
1(2b1u)

1(2b2u)
1(1b3u)

1(4ag)
1(1b3g)

1 (3.2)
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3.2 Electronic structure of boron clusters

Figure 3.2: Schematic representation of the normal vibrational modes of B−
4 . The de-

scription of these modes are given in Table 3.2 in the text.

Figure 3.3: Schematic representation of the four valence type molecular orbitals of the
electronic ground state of B−

4 .

The electronic ground and excited states of neutral B4 are obtained by one electron
detachment from the MOs listed above. For example, the singlet X̃1Ag, Ã

1B2u, B̃
1B2g

electronic states of B4 result from the detachment of an electron from b1u, b3g and b3u
α-MOs of B−

4 , respectively. On the other hand, the triplet ã3B2u, b̃
3B1u and c̃3B2g

electronic states of B4 result from the detachment of an electron from the b3g, ag and b3u
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3 Structure of boron clusters
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Figure 3.4: Schematic illustration of the formation of singlet and triplet electronic states
of neutral B4 cluster upon ionization from the α and β type of SCF canonical
orbitals of B−

4 . The orbital occupation leading to the respective state symbol

is also given. For example, the first singlet state X̃1Ag formed by removing
an α electron from the 3b1u orbital. Similarly, the triplet ã3B2u state is
formed by removing an electron of β spin from the b3g orbital (see text for
details). The formation of rest of the electronic states is obvious from the
diagram.

β-MOs of B−
4 , respectively. A pictorial illustration of the formation of various electronic

states from the detachment of electrons from the MOs is shown in Fig. 3.4. Since the
electronic states obtained by electron detachment from the above UHF type of orbitals
may not be proper spin eigenstates, we generated the above states from the RHF type
of MOs also. The orbital sequence obtained by optimizing the B−

4 at the ROMP2/aug-
cc-pVTZ level of theory is given by

(1ag)
2(1b1u)

2(2ag)
2(1b2u)

2(3ag)
2(2b1u)

2(2b2u)
2(1b3u)

2(1b3g)
2(4ag)

2(3b1u)
1 (3.3)

The X̃1Ag state results from the detachment of an electron from the HOMO 3B1u.
Now we are left with two choices to detach an electron from the remaining MOs. If an
electron with α spin is detached it will give rise to a singlet state, where as, a triplet
state will result from the detachment of an electron with β spin. The VDEs (discussed
below) obtained from both the UHF and RHF MOs are given in Table 3.3. It can be
seen from the table that the energetic ordering of electronic states resulting from both
the schemes is identical.

The four lowest canonical orbitals of the X̃2B1u isomer calculated at the UB3LYP/aug-
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3.2 Electronic structure of boron clusters

Table 3.3: Comparison of the VDEs (in eV) of B−
4 with available experimental and the-

oretical data [13]. The coefficients describe the contribution of the reference
configuration for the particular state.
State Co.eff of Expt [13] Ref [13] Ref [17] CASSCF-MRCI OVGF

neutral B4
a b UB3LYP ROMP2 UCCSD(T)

X̃1Ag 0.83 1.99 1.85 1.86 1.90 1.97 1.96 2.66

ã3B2u 0.80 3.08 3.14 3.21 3.19 3.21 3.07

b̃3B1u 0.85 3.41 3.24 3.28 3.26 3.25 3.00

Ã1B2u 0.81 - 4.03 3.94 3.87 3.89 4.38

c̃3B2g 0.82 - 4.35 4.23 4.18 4.15 4.34

B̃1B2g 0.82 4.39 4.65 4.42 4.37 4.34 3.53
a RCCSD(T) and EOM-CCSD methods with 6-311+G(2df), b CCSD(T)/aug-cc-pVQZ.

cc-pVTZ level of theory are shown in Fig. 3.3. The bonding nature of these MOs
significantly dictates the shape and properties of the photodetachment spectrum. The
HOMO orbital 3b1u is an anti-bonding orbital formed by the pσ orbitals of the two apex
boron atoms (B2-B4). The antibonding nature of the 3b1u MO pushes apart the atoms
B2 and B4, significantly reducing the <B1-B2-B3 bond angle. This rhombus distortion
enhances the bonding interaction between B1 and B3. As a result, the geometry changes
significantly by the removal of the electron, leading to very broad photodetachment X̃1Ag

band. The HOMO-1 1b3g orbital is a bonding σ MO formed by the 2pσ perpendicular
orbitals of boron. The 2ag-HOMO-2 is a completely bonding σ orbital formed by the
2pσ radial orbitals of the four boron atoms. The 1b3u-HOMO-3 is a completely bonding
π MO formed by the 2pπ orbitals of boron

The adiabatic energies of the mentioned electronic states of the neutral B4 cluster are
calculated along the normal vibrational coordinates (Q) of the respective anion. The
calculations are carried out using CASSCF orbitals and MRCI method [39–41] employing
the aug-cc-pVTZ basis set with the aid of MOLPRO suite of program [42]. The VDEs
are calculated by taking the difference of the energies of the electronic ground state of the
anion B−

4 with the ground and excited states of neutral B4. Complementary calculations
using the OVGF method [22–24] are also carried out to assess the validity of Koopman’s
theorem [43] for these highly correlated boron clusters.

To calculate the electronic ground state energies of B−
4 by the CASSCF-MRCI method,

the active space is designed to consist of the 2ag, 1b3u, 2b2u, 1b1g, 2b1u, 1b2g, 1b3g and
0au MOs pertinent to the D2h symmetry designation. This includes 1, 1, 1, 0, 2, 0,
1, 0 occupied and 1,0,1,1,0,1,0,0 virtual orbitals and corresponds to a distribution of
11 electrons in 10 orbitals. The energies of the ground and excited electronic states of
neutral B4 are calculated by correlating 10 electrons in 10 orbitals as described above.
This is sufficiently a large active space and expected to offer an accurate description
of the electron correlation effects in B4. The state symmetries, coefficient of the major
configurations and VDEs computed at the D2h symmetry configuration are given in
Table 3.3. It can be seen from the table that the VDEs obtained by the present MRCI
calculations using the CAS(11,10/10,10) are in good accord with the available theoretical

and experimental data [13]. The VDE of the X̃1Ag electronic state of B4 is calculated by
Nguyen et al. at the CCSD(T)/aug-cc-pVQZ level of theory is 1.86 eV. [17]. In the last
column of Table 3.3 the VDEs obtained at the OVGF/aug-cc-pVTZ level of theory are
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3 Structure of boron clusters

Table 3.4: The VDEs (in eV) of B−
4 are calculated with different active spaces are given

below.

S.NO Method X̃1Ag ã3B2u b̃3B1u Ã1B2u c̃3B2g B̃1B2g

1 MRCI(7,8) 2.010 3.353 3.269 3.996 4.180 4.371
2 MRCI(9,8) 2.070 3.321 3.196 3.916 4.241 4.434
3 MRCI(9,10) 1.853 3.153 3.282 3.852 4.433 4.567
4 MRCI(11,10) 1.903 3.207 3.283 3.935 4.228 4.421

Table 3.5: The VDEs (in eV) of B−
4 are calculated by varying basis sets and using (11,10)

active space, are given below.

S.NO Basis set X̃1Ag ã3B2u b̃3B1u Ã1B2u c̃3B2g B̃1B2g

1 cc-pVDZ 1.571 2.808 2.939 3.536 3.921 4.137
2 cc-pVTZ 1.819 3.113 3.170 3.797 4.122 4.320
3 cc-pVQZ 1.900 3.220 3.251 3.895 4.200 4.394
4 aug-cc-pVDZ 1.839 3.098 3.213 3.815 4.185 4.393
5 aug-cc-pVTZ 1.903 3.207 3.283 3.935 4.228 4.422
6 aug-cc-pVQZ 1.925 3.245 3.302 3.967 4.243 4.433

included. It can be seen that the Green’s function results predict a conflicting energetic
ordering of the ã3B2u and b̃3B1u electronic states of B4.
We also studied the dependence of these VDEs on the size of the CAS space as well

as the choice of a basis set. While the VDEs calculated by, varying the size of active
space with aug-cc-pVTZ basis set are tabulated in Table 3.4, the same calculated by
active space (11, 10) and varying the basis sets are tabulated in Table 3.5. The CAS
(11,10/10,10) and the aug-cc-pVTZ basis set are found to be a balanced compromise
of the accuracy and the affordable computational cost. The VDEs along the distorted
(from equilibrium at Q=0) geometries of B−

4 to the energetically low-lying six electronic
states of neutral B4 are calculated. The number of CSFs for each state along the normal
modes are tabulated in Table 3.6. These energies are equated with the adiabatic potential
energies of these electronic states of B4.

3.2.2 B−5

The equilibrium structure of B−
5 shown in Fig. 3.5, in its electronic ground state (X̃1A1)

converges to the C2v symmetry point group. This equilibrium geometry is optimized
in the present study at the MP2 level of theory employing the aug-cc-pVTZ basis set.
The optimized equilibrium geometry parameters are given in Table 3.7 along with those
available in the literature [14].
The harmonic vibrational frequencies and the dimensionless normal displacement co-

ordinates (Q) at this equilibrium minimum configuration are also calculated by the
same technique as described above for B−

4 . The nine vibrational degrees of freedom of
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3.2 Electronic structure of boron clusters

Table 3.6: The number of CSFs for the ground X̃2B1u of B−
4 and excited states X̃1Ag,

Ã1B2u, B̃
1B2g, C̃

1B1u, ã
3B2u, b̃

3B1u, c̃
3B2g of B4 radical on distorting the

anion geometry, at CASSCF-MRCI(11,10)/(10, 10) are tabulated here.

S.NO PG CSFs

X̃2B1u X̃1Ag Ã1B2u B̃1B2g C̃1B1u ã3B2u b̃3B1u c̃3B2g

ν1-ν2 D2h 3484 2540 2420 2396 2420 3716 3716 3724
ν3 C2v 6940 4956 4816 4816 4816 7440 7440 7380
ν4 C2v 6948 4960 4960 4840 4792 7352 7432 7448
ν5 C2v 6968 4960 4960 4812 4840 7432 7352 7468
ν6 C2h 6968 4960 4840 4792 4840 24540 24540 24540

b5aug.fchk
Created by GaussView 5.0.9
12/15/2013 02:18:23 PM

5
1

2

4 3

Figure 3.5: The optimized geometry of X̃1A1 of B−
5 .

B−
5 transform to the following IREPs of the C2v symmetry point group.

Γvib = 4a1 + 1a2 + 1b1 + 3b2 (3.4)

The nature of these vibrational modes and their harmonic frequencies are also given
in Table 3.8 and compared with the literature data [18]. These vibrational modes are
schematically shown in Fig. 3.6.

At the equilibrium configuration of the X̃1A1 electronic ground state, B−
5 possesses

the following MO sequence

(1a1)
2(1b2)

2(2a1)
2(2b2)

2(3a1)
2(4a1)

2(3b2)
2(5a1)

2(6a1)
2(4b2)

2(1b1)
2(7a1)

2(5b2)
2. (3.5)

Detachment of an electron from 5b2, 7a1, 4b2, 6a1, 1b1 and 5a1 MOs, respectively, cre-
ates the ground X̃2B2 and excited Ã2A1, B̃

2B2, C̃
2A1, D̃

2B1 and Ẽ
2A1 electronic states

of neutral B5. A schematic representation of the 6 low-lying canonical MOs of B−
5 is

presented in Fig. 3.7. The HOMO (5b2) of B−
5 is a bonding orbital within the trian-

gular wings B1-B2-B4 and B1-B3-B5 in the global minimum structure. Detachment of

41



3 Structure of boron clusters

Table 3.7: Optimized equilibrium geometry parameters of the electronic ground state of
B−

5 . The results available in the literature [14,18] are also included in the table
for comparison. Electronic energies and bond lengths are given in hartree and
angstrom units, respectively.

Parameters Ref [14]a Ref [18]b This workc

Etotal -124.081 -123.780 -123.685
R(B1-B2,B5) 1.738 1.729
R(B1-B3,B4) 1.614 1.610
R(B2-B3) 1.577 1.574
R(B3-B4) 1.579 1.576

a B3LYP/ 6-311+G∗, b only energy is reported at CCSD(T)/CBS(DTQ) level of
theory, c MP2/aug-cc-pVTZ.

Table 3.8: Designation, symmetry, harmonic frequency (in cm−1) and description of the
normal vibrational modes of B−

5

This worka Ref [14]b Ref [18]c description
ν1 a1 1210 1259 1186 (3-4) B-B stretch
ν2 a1 956 965 947 Ring stretch
ν3 a1 764 719 754 inplane bending
ν4 a1 601 638 583 inplane bending
ν5 a2 373 374 379 out of plane bending
ν6 b1 208 253 189 out of plane bending
ν7 b2 1200 1067 1201 inplane bending
ν8 b2 952 998 931 inplane bending
ν9 b2 547 582 519 inplane bending

a MP2/aug-cc-pVTZ, b B3LYP/6-311+G∗, c MP2/aug-cc-pVDZ

an electron from this orbital should result in geometry relaxations within these wings.
HOMO-1 (7a1) orbital is a strong bonding MO. However, the observed PES spectrum
shown in panel b of Fig. 4.7 was relatively sharp with a very short vibrational progres-
sion. This suggests that the A state cannot be well described by the simple removal of
an electron from the 7a1 orbital of B−

5 , consistent with the multi-configurational nature
of this transition. HOMO-3 (4b2) is a strong bonding orbital. The broad width of B
band was consistent with the strongly bonding nature of the this orbital.
Similar to the study of B−

4 in the previous section, the adiabatic energies of the
mentioned electronic states of the neutral B5 cluster are calculated along the normal
vibrational coordinates (Q) of the anion. The CASSCF/MRCI calculations have been
carried out in order to calculate electronic ground and energetically low-lying excited
states of the neutral B5 cluster. As mentioned before, the equilibrium geometry of B−

5

in its X̃1A1 electronic state converges to the C2v symmetry point group. A CAS space
is therefore constructed in terms of the a1, b1, b2 and a2 electronic MOs of the C2v

symmetry point group. In this case the CAS space includes 3, 1, 2, 0 occupied and 1, 1,
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3.2 Electronic structure of boron clusters

Figure 3.6: Same as Fig. 3.2 of the normal vibrational modes of B−
5

Table 3.9: Comparison of the VDEs (in eV) of B−
5 with available experimental and the-

oretical data [14]. The coefficients describe the contribution of the reference
configuration for the particular state. It can be seen from this table the co-
efficient for the Ã2A1 state is 0.59. This implies strong electron correlation
effects in B5 molecular system.

State Co.eff Expt [14] Ref [14] Ref [18] CASSCF-MRCI OVGF
neutral B5

a b

X̃2B2 0.80 2.40 ±0.02 2.36 2.47 2.28 2.35

Ã2A1 0.59 3.61 ±0.02 4.00 3.53 4.06

B̃2B2 0.75 4.33 ±0.05 4.51 4.41 4.53

C̃2A1 0.64 4.7-6.2 5.78 4.96 5.79

D̃2B1 0.78 4.7-6.2 5.25 5.24 5.37

Ẽ2A1 0.58 c - 5.64c -
a ROVGF/ 6-311+G(2df), b CCSD(T)/ CBS level, c This is a shake up state obtained

by one electron detachment followed by electron transition.

1, 1 virtual orbitals in that order. A set of 12 electrons are correlated in 10 orbitals for
B−

5 and 11 electrons are correlated in 10 orbitals for electronic states of neutral B5. The
state symmetries of B5, coefficient of the dominant configuration and VDE values are
given in Table 3.9. The experimental and theoretical VDE results from the literature
as well as those obtained at the OVGF/aug-cc-pVTZ level of theory are also included
in the table. It can be seen from the table that the VDE values obtained by the MRCI
method generally agree well with the experimental and other theoretical [14] estimates.
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3 Structure of boron clusters

Figure 3.7: Schematic representation of the six valence type MOs of the electronic ground
state of B−

5 .

Tai et al. [18] have reported the VDE to electronic ground X̃2B2 state of B5. They
obtained a value of 2.64 and 2.47 eV at the G3/B3LYP and CBS/CCSD(T) level of
theory, respectively, for this quantity. The VDE values obtained by the OVGF method
are given in the last column of the table. In the latter case the VDE values for the
Ẽ2A1 state could not be obtained. This appears to be a shake-up state (as confirmed
from the CASSCF-MRCI calculations) and originates from a two electrons transition.
It can be seen from the table that energetic ordering of the first three electronic states
is same in all the computed models (i.e RCCSD(T), MRCI and OVGF) and also they
agree well with the experiment. Two genuine one electron process predicted by ROVGF
are found at 5.37 and 5.79 eV. These correspond to detachment of electron from 1b1 and
6a1 orbitals, respectively. But for the fourth band (between 4.7-6.2 eV) it is anticipated
that two or three shake-up states contribute to the spectrum [14]. It can be seen from

the table that the energetic position for D̃2B1 state remains nearly same in all the three
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3.2 Electronic structure of boron clusters

Table 3.10: The symmetry of vibrational mode and number of CSF’S for the ground
X̃1A1 of B−

5 and excited states X̃2B2, Ã
2A1, B̃

2B2, C̃
2A1, D̃

2B1 and Ẽ2A1

of B5 neutral on distorting the anion geometry are tabulated here.

S.NO CSFs

X̃1A1 X̃2B2 Ã2A1 B̃2B2 C̃2A1 D̃2B1 Ẽ2A1

a1 3564 6948 6968 6948 6968 6912 6968
a2 6900 13860 13860 13860 13860 13860 13860
b1 6980 13840 13880 13840 13880 13880 13880
b2 900 1182 1182 1182 1182 1170 1182

Table 3.11: The VDEs of B−
5 are calculated with different active spaces are given below.

S.NO Method VDEs

1 MRCI(8,8) 2.522 X̃ 4.008 Ã 4.704 B̃ 5.250 D̃ 5.729 C̃ 5.926 Ẽ

2 MRCI(8,9) 2.338 X̃ 3.784 Ã 4.586 B̃ 5.234 D̃ 5.742 C̃ 5.809 Ẽ

3 MRCI(10,8) 2.397 X̃ 3.982 Ã 5.228 D̃ 5.871 C̃ 6.174 C̃ 7.293 B̃

4 MRCI(10,10) 2.408 X̃ 3.920 Ã 4.654 B̃ 5.236 C̃ 5.248 D̃ 5.827 Ẽ

5 MRCI(12,10) 2.283 X̃ 3.529 Ã 4.406 B̃ 4.957 C̃ 5.242 D̃ 5.638 Ẽ

theoretical results presented in Table 3.9. However, energetic location of the C̃2A1 state
seems to be conflicting. The location of the state at 5.79 eV of A1 symmetry found
from the OVGF results may correspond to this state. We have carried-out extensive
CASSCF(11, 10)-MRCI calculations and found that this state is located at ∼ 4.96 eV.
It has been shown in (in Chapter 4) that experimental structure of the detachment
band in this energy region reproduced only when this state is included in the dynamics.
Similar to the study of B−

4 , the dependence of the VDEs on the active space and basis
sets are also studied and are tabulated in Tables 3.10 to 3.12.

3.2.3 B−7

The spectral intensities in the photodetachment spectrum of B−
7 found to be altered

by the source of boron cluster beam [15], indicating the contribution of more than one

Table 3.12: The VDEs of B−
5 are calculated with different basis sets are given below.

S.NO Basis X̃2B2 Ã2A1 B̃2B2 C̃2A1 D̃2B1 Ẽ2A1

1 cc-pVDZ 1.971 3.203 4.030 4.591 4.954 5.313
2 cc-pVTZ 2.187 3.429 4.301 4.856 5.141 5.337
3 cc-pVQZ 2.264 3.513 4.400 4.953 5.217 5.624
4 aug-cc-pVDZ 2.208 3.449 4.276 4.831 5.181 5.552
5 aug-cc-pVTZ 2.283 3.529 4.406 4.954 5.242 5.638
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3 Structure of boron clusters

(a) Isomer I
(b) Isomer II

(c) Isomer III

Figure 3.8: Optimized structures of isomer I, II and III of B−
7 , respectively.

low-lying isomers. Boldyrev et al. with his ab initio calculations confirmed that three
isomers of B−

7 viz., a triplet hexagonal pyramidal (C6v,
3A1), a singlet pyramidal (C2v,

1A1) and a singlet planar (C2v,
1A1) contribute most to the recorded photodetachment

band structure [15]. The above three isomers will be identified as I, II and III in the given
order in the rest of this chapter. Geometry of the equilibrium minimum of the electronic
ground state of the isomer I of B−

7 is optimized at the UMP2 level of theory using the
aug-cc-pVDZ basis set [28]. It is well known that the wavefunction suffers from spin
contamination in calculations with unrestricted spin orbitals. The spin contamination
value in the ground electronic wavefunction of the C6v (

3A1) isomer I at the UMP2 level
of theory is ∼ 2%. Therefore, for this isomer the optimized geometry at the UMP2
level can be safely utilized as a reference. The optimized geometry parameters of this
isomer are given in Table 3.13 and compared with the available theoretical data from the
literature [15,16,18]. The ab initio force constant matrix for the electronic ground state
of the anion is obtained at the same level of theory and the harmonic frequencies (ωi) and
mass-weighted normal displacement coordinates (Qi) of the fifteen vibrational modes of
B−

7 are calculated. A similar exercise is repeated for the C2v pyramidal (isomer II, 1A1)
and C2v planar (isomer III, 1A1) isomers of of B−

7 . As these are closed shell species,
the calculations are carried out with MP2 method for them in contrast to isomer I. The
calculated geometry parameters of these two isomers are also included in Table 3.13.
The optimized equilibrium structure of three isomers of B−

7 are shown in Fig. 3.8.

The vibrational modes of B−
7 belong to the following IREPs of C6v (I) and C2v (II and

III) symmetry point groups.

I : Γvib = 2a1 + 3e2 + b1 + 2b2 + 2e1

II : Γvib = 5a1 + 3a2 + 3b1 + 4b2

III : Γvib = 6a1 + 2a2 + 2b1 + 5b2

The harmonic frequencies of these fifteen vibrational modes are given in Table 3.14
and compared with the literature data [15,18] for all three isomers discussed above.

The following MO sequence is obtained for the electronic ground state of the isomers
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3.2 Electronic structure of boron clusters

Table 3.13: Optimized equilibrium geometry parameters of the electronic ground state
of isomer I, II and III of B−

7 (see text for details). Theoretical results avail-
able in the literature [15, 18] are also included in the table for comparison.
Equilibrium minimum energy (Eeq), bond length (R) and bond angle (<)
are given in hartree, angstrom and degree units, respectively.

parameters B3LYP/6-311+G a

This work Ref. [15] Ref. [18]
Pyramidal C6v Isomer; I

Eeq -173.1323 -173.8038 -173.3849
R(B1−B2, 3, 4, 5, 6, 7) 1.689 1.655 1.626
R(B2−B3) 1.646 1.606 1.626

Pyramidal C2v Isomer; II
Eeq -173.1320 -173.7975 -173.3748
R(B1−B2, 3, 5, 6) 1.701 1.667 1.667
R(B1−B4, 7) 1.797 1.738 1.747
R(B2−B3) 1.685 1.660 1.664
R(B4−B3, 5) 1.604 1.558 1.563

Planar C2v Isomer; III
Eeq -173.1149 -173.7861 -173.3701
R(B1−B2, 3) 1.963 1.999
R(B1−B4, 5) 1.617 1.584
R(B1−B6, 7) 2.830 2.780
< (B2−B1−B3) 50.70 48.96
< (B4−B1−B5) 167.81 162.85
< (B6−B1−B7) 115.98 113.82

a While the bond lengths and angles were calculated at the B3LYP/6-31G(D) level of
theory, the equilibrium minimum energy (Eeq) is reported at the CCSD(T)/CBS(DTQ)

level of theory in Ref. [18].

of B−
7

I :

{
α-MOs (1a1)

1(1e1)
2 . . . . . . . . . . . (4a1)

1(5a1)
1(1b1)

1(3e1)
2(4e1)

2

β-MOs (1a1)
1(1e1)

2 . . . . . . . . . . . (4a1)
1(1b1)

1(5a1)
1(3e1)

2

II : (1a1)
2(1b1)

2 . . . . . . . . . . . (3b1)
2(7a1)

2(4b2)
2(4b1)

2(5b2)
2

III : (1a1)
2(1b2)

2 . . . . . . . . . . . (1b1)
2(8a1)

2(9a1)
2(1a2)

2(7b2)
2

The important low-lying MOs of isomer I, II and III are plotted in figs. 3.9 to 3.11,
respectively. The neutral isomer I of B7 is formed in its electronic ground X̃2E1 , first
Ã4E1 and second B̃2E1 excited states upon electron detachment from 4e1 (α orbital),

3e1 (β orbital) and 3e1 (α orbital) of B−
7 , respectively. Similarly, the ground X̃2B2 ,

first Ã2B1 , second B̃2B2 , third C̃2A1 and fourth D̃2B1 excited electronic states of the
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3 Structure of boron clusters

Table 3.14: Harmonic frequencies (in cm−1) of the fifteen vibrational modes of three
isomers of B−

7 (see text for details). The present theoretical results are
compared with the literature data and included in the table.

Symmetry Mode Frequency
MP2/aug-cc-pVDZ B3LYP/6-311+G MP2/aug-cc-pVDZ

This work Ref. [15] Ref. [18]

Pyramidal C6v Isomer I

a1 ω1 893.6 917.7 893.6
ω2 283.5 293.0 283.5

b1 ω3 1158.6 1056.5 1158.6

b2 ω4 1247.7 756.2 1247.7
ω5 660.7 352.3 660.8

e1 ω6 1154.4 1120.8 1154.5
ω7 715.0 756.2 715.0

e2 ω8 1073.9 1111.3 1073.9
ω9 665.8 685.4 665.8
ω10 412.0 355.6 411.9

Pyramidal C2v Isomer II

a1 ω1 1087.6 1129.7 1087.2
ω2 923.9 931.6 924.5
ω3 636.1 652.2 636.3
ω4 407.0 440.5 406.9
ω5 244.5 239.8 244.8

a2 ω6 1070.3 1104.2 1069.3
ω7 627.8 647.7 628.5
ω8 397.2 422.8 397.2

b1 ω9 1159.7 1183.0 1159.1
ω10 1050.6 1091.3 1051.7
ω11 661.1 694.8 661.0

b2 ω12 1102.0 1094.3 1102.1
ω13 780.6 796.7 781.4
ω14 532.9 570.3 532.9
ω15 360.1 409.2 360.1

Planar C2v Isomer III

a1 ω1 1276.4 1303.0 1275.9
ω2 1200.5 1207.4 1200.3
ω3 786.9 816.9 786.1
ω4 619.4 664.7 618.7
ω5 478.0 566.4 478.3
ω6 361.0 435.1 361.3

a2 ω7 448.0 472.2 449.0
ω8 385.4 245.7 385.9

b1 ω9 441.1 415.9 440.8
ω10 195.8 183.4 196.7

b2 ω11 1370.9 1272.6 1372.3
ω12 1204.2 1125.8 1203.5
ω13 991.7 885.9 991.8
ω14 733.7 671.3 732.8
ω15 472.1 534.0 472.548



3.2 Electronic structure of boron clusters

(a) HOMO (b) HOMO-1
(c) HOMO-2

Figure 3.9: Low-lying MOs of isomer I of B−
7

neutral isomer II result from electron detachment from 5b2, 4b1, 4b2, 7a1 and 3b1 MOs

of the anion, respectively. The electronic states 2A2 , 2B2 , B̃′2B1 , C̃ ′2A1 and D̃′2A1 of
the neutral isomer III result from detachment of an electron out of 1a2, 7b2, 1b1, 9a1
and 8a1 MOs of the B−

7 , respectively. The VDEs of all three isomers are calculated at
the U(R)OVGF/aug-cc-pVDZ level of theory and for the isomers II and III the VDEs
are also calculated by MRCI method by using CASSCF orbitals using the same basis
set. In the latter method the VDEs are extracted from the difference of the calculated
energies of the electronic ground state of the anion B−

7 with the ground and excited
states of neutral B7. All geometry optimizations, vibrational frequency and U(R)OVGF
calculations are performed using Gaussian-03 program [29] modules. On the other hand,
CASSCF-MRCI calculations are carried out by using MOLPRO suite of programs [42].
The adiabatic energies of the mentioned electronic states of neutral isomers are calculated
ab initio along the dimensionless normal displacement coordinates of the 15 vibrational
degrees of freedom. These energies are calculated for Qi = ±0.10 and in the range −1.50
to +1.50 with an increment of 0.25, along i th vibrational mode (keeping others at their
equilibrium value at Q=0). While the electronic energies of the neutral isomer I are
calculated from the VDEs calculated by the OVGF method, those of isomer II and III
are calculated from the CASSCF-MRCI data.

To calculate the electronic ground state energies of isomer II of B−
7 by the CASSCF-

MRCI method, the active space is designed to consist of 3a1, 3b1, 3b2 and 1a2 MOs
pertinent to the C2v point group symmetry designation. This includes 1, 2, 2, 0 occupied
and 2, 1, 1, 1 virtual orbitals and corresponds to a distribution of 10 electrons in 10
orbitals. The core orbitals 5b1, 2b1, 3b2, 1a2 were frozen in the MRCI calculations
to reduce the CPU time. The energies of the ground and excited electronic states
of corresponding neutral B7 are calculated by correlating 9 electrons in 10 orbitals as
described above. This is a sufficiently large active space and expected to offer an accurate
description of the electron correlation effects in B7. The state symmetries and VDEs
computed at the C2v symmetry configuration are given in Table 3.15. It can be seen
from the table that the VDEs obtained by the present MRCI calculations using the
CAS (10,10/9,10) are in good accord with the available theoretical and experimental

data [15]. The VDE of the X̃2B2 electronic state of B7 isomer II calculated by Nguyen
et al. by the CCSD(T) including CBS extrapolation is 2.87 eV [18]. In the last column
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3 Structure of boron clusters

(a) HOMO (b) HOMO-1

(c) HOMO-2 (d) HOMO-3

(e) HOMO-4

Figure 3.10: Low-lying MOs of isomer II of B−
7

of Table 3.15 the VDEs obtained at the OVGF/aug-cc-pVDZ level of theory are also
included. We also studied the dependence of these VDEs on the size of the CAS space
as well as the choice of a basis set. The CAS (10,10/9,10) and the aug-cc-pVDZ basis
set yield fairly accurate results within the affordable computational cost.

A similar study (vide supra) has been carried out in order to calculate electronic
ground and energetically low-lying excited states of the neutral isomer III of B7 cluster.
A CAS space is constructed in terms of the a1, b1, b2 and a2 MOs of the C2v symmetry
point group. In this case the CAS space includes 2, 1, 1, 1 occupied and 2, 0, 2, 0
virtual orbitals in that order. A set of 10 electrons are correlated in 9 orbitals for B−

7

isomer III and 9 electrons are correlated in 9 orbitals for electronic states of neutral B7

isomer III. The state symmetries of B7 isomer III and VDE values are given in Table
3.15. The experimental and theoretical VDE results from the literature as well as those
obtained at the OVGF/aug-cc-pVDZ level of theory are given in the table. Eventhough
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3.2 Electronic structure of boron clusters

(a) HOMO (b) HOMO-1

(c) HOMO-2 (d) HOMO-3

(e) HOMO-4

Figure 3.11: Low-lying MOs of isomer III of B−
7

VDEs calculated by MRCI method generally agree well with the experimental and other
theoretical [15] estimates, a reversal of energetic ordering of the 2A2 and

2B2 can be seen
when compared to ROVGF calculations (cf. Table 3.15). While in the MRCI/CASSCF
method, the first excited electronic state of neutral planar isomer has A2 symmetry, in
the ROVGF results it is found to have the B2 symmetry. As explained in Section 4.2.3,
the experimental observations for the second band (short vibrational progression and the
peak maximum) can only be explained if the electronic ground state of neutral planar
isomer belongs to B2 symmetry. We checked this result by varying the active space in
all possible ways and found that the A2 state is lower in energy than the B2 state in the
CASSCF-MRCI results. This may be attributed to the strong correlation (relaxation)
effects present in 2A2 state. The state B1 is a shakeup state, which is resulted from two
electron transition located at ∼ 4.14 eV.
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3 Structure of boron clusters

Table 3.15: Comparison of the calculated VDEs (in eV) of isomers I, II and III of B−
7 (see

text for details) with the experimental and theoretical literature data [15].

Isomer of Electronic This study Experiment ROVGF Assignment
B−

7 state of B−
7 MRCI OVGF Ref. [15] Ref. [15] (cf. Fig. 4.20)

I: C6v
3A1 X̃2E1 - 2.90 2.85 2.74 X

Ã4E1 - 4.10 4.05 4.14 D

B̃2E1 - 4.34 4.28

II: C2v
1A1 X̃2B2 2.65 2.68 2.85 2.70 X

Ã2B1 4.25 4.10 4.21 4.07 E

B̃2B2 4.39 4.32 4.35 4.29 F

C̃2A1 5.18 5.27 5.32 5.31 H

D̃2B1 5.88 5.68 5.64 5.66 I
III: C2v

1A1
2A2 3.28 3.53 3.71 3.67 B
2B2 3.76 3.30 3.44 3.40 A

B̃′2B1 4.14 - - - -

C̃ ′2A1 4.77 4.83 4.60 4.92 G

D̃′2A1 4.92 4.88 - 4.97 -

3.3 Multistate Hamiltonian

To study the photodetachment spectrum of B−
4 , B−

5 and B−
7 cluster anions, suitable

vibronic Hamiltonians of the low- lying electronic states of neutral B4, B5 and B7 are
constructed here using the ab initio electronic structure data calculated above. The
Hamiltonians are constructed in terms of the normal coordinates of the vibrational
modes (Q) of the reference electronic ground state of the anions, utilizing a diabatic
electronic basis and symmetry selection rules. While the coupling between the states of
same spin multiplicity is caused by the vibrational modes of appropriate symmetry and
governed by the vibronic selection rules [44], the same between the states of different
spin multiplicity results from more involved spin vibronic selection rules [45]. The singlet
spin function 1Ψ always belongs to the totally symmetric representation of the molecular
point group. The three sub levels of the triplet spin function (3ψx , 3ψy and 3ψz) on the
other hand transform as the three components of the rotational angular momentum (Rx,
Ry and Rz) operator. As a result, the components of the triplet state would belong to
Γ3Ψk

⊗ΓRk
; k ∈x, y, z, symmetry species of the molecular symmetry point group. A non-

vanishing element of the spin-orbit coupling matrix ⟨3ψ|HSO|1ψ⟩ (HSO being spin-orbit
coupling operator) should therefore satisfy

Γ3Ψk
⊗ ΓRk

⊗ Γ1Ψ ⊃ ΓA1 , (3.6a)
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3.3 Multistate Hamiltonian

(ΓA1 is totally symmetric IREP) symmetry selection rule. Otherwise, a finite distortion
along suitable vibrational modes (Q) which satisfy,

Γ3Ψk
⊗ ΓRk

⊗ Γ1Ψ ⊗ ΓQ ⊃ ΓA1 , (3.6b)

can cause the coupling between singlet and triplet states [46].

3.3.1 Singlet and triplet states of B4

The symmetry rule allows a coupling (in first-order) of the electronic ground X̃1Ag state

of B4 with its excited Ã1B2u and B̃1B2g states through the vibrational modes of b2u
and b2g symmetry, respectively, in the D2h symmetry point group. Likewise, the Ã1B2u

state can be coupled to the B̃1B2g state via the vibrational modes of au symmetry.

The vibrational modes of b3g and au symmetry can couple the triplet ã3B2u, b̃
3B1u and

ã3B2u, c̃
3B2g states, respectively. The b̃3B1u-c̃

3B2g states can be coupled through the
vibrational modes of b3u. symmetry.

As stated above, the intersystem crossing between the singlet and triplet states is
governed by the spin vibronic selection rules of Eq. 3.6. The static and dynamic compo-
nents of the spin-orbit coupling are described by Eqs. 3.6a and 3.6b, respectively. The
rotational angular momentum operator Rk in these equations transforms to the b1g, b2g
and b3g IREPs of the D2h symmetry point group along z, y and x directions, respec-
tively. It can be trivially analyzed in accordance with Eq. 3.6a that the static spin-orbit
coupling is allowed between the X̃1Ag-c̃

3B2g, Ã
1B2u-̃b

3B1u and C̃1B1u-ã
3B2u electronic

states of B4 only. The direct product of the IREP’s of these states yields b2g, b3g and
b3g IREPs of the rotational angular momentum operator in that order. The strength of
these static spin-orbit coupling is estimated using the Briet-Pauli operator [47] within
MRCI(11,10)/aug-cc-pVTZ level of theory using the MOLPRO suite of programs. Cou-
pling strengths of ∼ -0.64, ∼ 1.15 and ∼ 1.46 cm−1 are obtained between the three pairs
of states mentioned above, respectively.

For the distorted (from equilibrium) configurations of B4, the dynamic spin-orbit
coupling (in first-order) can be caused by a vibrational mode of suitable symmetry in
accordance with Eq. 3.6b. Many possibilities exist in this situation. For example, the
coupling between states can be caused by any component (x, y, z) of the rotational
angular momentum operator provided a vibrational mode of appropriate symmetry ex-
ists. Various possibilities emerged in accordance of the selection rules of Eq. 3.6 are
presented in Table 3.16. In this table the IREP of the x, y and z component of the
rotational angular momentum operator is given in the second row. The symmetry of
the electronic states are given in the first row and first column. The symmetry of the
vibrational mode which can induce spin-orbit coupling in the distorted nuclear geometry
is given in the rest of the table. For example, for a coupling between the X̃ and ã states
along the Z component of the rotational angular momentum operator, the selection rule
reads, [Ag ⊗ b1g ⊗ B2u] ⊗ b3u ⊃ Ag in the D2h symmetry point group. The remaining
coupling vibrational modes given in the table can be determined in a similar way. A
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3 Structure of boron clusters

Table 3.16: Selection rules for the dynamic spin vibronic coupling for the singlet and
triplet electronic states of B4.

ã3B2u b̃3B1u c̃3B2g

b1g(z) b2g(y) b3g(x) b1g(z) b2g(y) b3g(x) b1g(z) b2g(y) b3g(x)

X̃1Ag b3u au b1u au b3u b2u b3g ag b1g
Ã1B2u b1g b2g b3g b2g b1g ag b1u b2u b3u
B̃1B2g b1u b2u b3u b2u b1u au b1g b2g b3g
C̃1B1u b2g b1g ag b1g b2g b3g b2u b1u au

calculation of all the spin-vibronic coupling parameters is out of the scope of the present
investigations and will be taken up separately in a forthcoming publication.

Given the very small magnitude of the static spin-orbit couplings and proposed fu-
ture work (which is much involved as regard to the calculation of parameters of various
order and fitting of the Hamiltonian) on the dynamic spin-orbit coupling elements, we
consider here to understand the nonadiabatic electronic coupling effects only. The vi-
bronic Hamiltonian of the low-lying six electronic states of B4 in such a situation can be
expressed in a block diagonal form as

H = (TN + V0)16 +


uX̃ uX̃Ã uX̃B̃ 0 0 0

uÃ uÃB̃ 0 0 0
h.c uB̃ 0 0 0
0 0 0 uã uãb̃ uãc̃
0 0 0 ub̃ ub̃c̃
0 0 0 h.c uc̃

 , (3.7a)

where, (TN + V0), represents the unperturbed Hamiltonian of the reference state

(X̃2B1u state of B−
4 ), treated as harmonic with

TN = −1

2

6∑
i=1

ωi

(
∂2

∂Q2
i

)
, (3.7b)

V0 =
1

2

6∑
i=1

ωiQ
2
i (3.7c)

I6 is a 6 × 6 Unit matrix. The elements of the electronic (matrix) Hamiltonian in
equation 3.7a represent the energies of the diabatic electronic states (diagonal) and
their coupling potentials (off-diagonal) of B4. These elements are expressed in terms of
a standard Taylor series expansion around the reference equilibrium configuration (at
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3.3 Multistate Hamiltonian

Table 3.17: Linear intrastate coupling parameter (κ) for the X̃1Ag, ã
3B2u, b̃

3B1u, Ã
1B2u,

c̃3B2g and B̃1B2g electronic states of B4 derived from the CASSCF-MRCI
potential energy data. All quantities are given in eV.

modes frequency κ

(symmetry) (eV) X̃1Ag ã3B2u b̃3B1u Ã1B2u c̃3B2g B̃1B2g

ν1(ag) 0.1414 -0.0147 0.0169 -0.0568 0.0132 -0.1907 -0.1863
ν2(ag) 0.0997 0.1737 -0.1736 -0.0114 -0.1634 0.0115 0.0048

Q=0) as

uk = E
(k)
0 +

2∑
i=1

κ
(k)
i Qi +

1

2

6∑
i=1

γ
(k)
i Q2

i +
1

2
γ
(k)
12 Q1Q2, k ∈ X,A,B, a, b, c (3.7d)

ukl =
∑
i

λkli Qi +
∑
m

∑
n

λklmnQmQn, (3.7e)

where kl ∈ (X̃Ã, X̃B̃, ÃB̃, ãb̃, ãc̃, b̃c̃) and i, m, n ∈ relevant coupling vibrational

modes. In the above equations the quantity E
(k)
0 represents the VDE of the kth electronic

state. κ
(k)
i and γ

(k)
i are the linear and second-order coupling parameters of the ith vibra-

tional mode in the kth electronic state. The quantity γ
(k)
12 is bilinear coupling parameter

along the two symmetric vibrational modes. The quantity λ
(kl)
i is the linear vibronic

coupling parameter between the k and l electronic states along the ith vibrational mode.
The quantity λ

(kl)
mn is the interstate bilinear vibronic coupling parameter between the k

and l electronic states along the mth and nth vibrational mode. After some algebra, this
coupling parameter in a second-order coupling model can be expressed as :

λ1,2i,j =
1

4

√
∂2

∂Q2
i

∂2

∂Q2
j

(V2 − V1)2 − 2(γ2i − γ1i )(γ2j − γ1j ) . (3.8)

All the coupling parameters defined above are estimated by performing extensive
ab initio calculations of electronic energies as discussed in Sec. 3.2.1. The calculated
adiabatic electronic energies are fitted to the adiabatic form of the diabatic electronic
Hamiltonian of Eq. 3.7a to estimate these parameters. We note that the interstate
bilinear parameter as defined in Eq. 3.8 above are estimated both by a two-dimensional
fit (using MATHEMATICA [48]) as well as a suitable finite difference of the electronic
energies. The linear intrastate and interstate coupling parameters are given in Tables
3.17, 3.18. The interstate bilinear coupling parameters are given in Table 3.19.

The coupling parameters of Table 3.17 reveal that the symmetric vibrational mode ν1
is active in the c̃3B2g and B̃1B2g electronic states only. The vibrational mode ν2 on the
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3 Structure of boron clusters

Table 3.18: Linear interstate coupling parameters (λkl) for the electronic states of B4

estimated from the CASSCF-MRCI potential energy data. All quantities
are given in eV.

Coupled states b1u b2u b3u b3g

λX,A X̃1Ag-Ã
1B2u - - - -

λX,B X̃1Ag-B̃
1B2g - - - -

λA,B Ã1B2u-B̃
1B2g - - - -

λa,b ã3B2u-̃b
3B1u - - - 0.1759

λa,c ã3B2u-c̃
3B2g - - - -

λb,c b̃3B1u-c̃
3B2g - - 0.0794 -

Table 3.19: Interstate bilinear coupling parameter (in eV) for the electronic states of B4

States Symmetry of coupling mode coupled modes λ

X̃1Ag-Ã
1B2u b2u

ag(ν1),b2u(ν4) -
ag(ν2),b2u(ν4) -
b1u(ν3),b3g(ν6) 0.0692

Ã1B2u-B̃
1B2g au b3u(ν5),b3g(ν6) -

ã3B2u-̃b
3B1u b3g

ag(ν1),b3g(ν6) -
ag(ν1),b3g(ν6) -
b1u(ν3),b2u(ν4) 0.0141

ã3B2u-c̃
3B2g au b3u(ν5),b3g(ν6) -

b̃3B1u-c̃
3B2g b3u

ag(ν1), b3u(ν5) -
ag(ν2), b3u(ν5) -

other hand is expected to be significantly excited in the X̃1Ag, ã
3B2u and Ã1B2u elec-

tronic states of B4. It can be seen from Table 3.18 that the coupling between the singlet
states is insignificant (in first-order). The ã3B2u-̃b

3B1u and b̃3B1u-c̃
3B2g electronic states

are however coupled, along the ν6 and ν5 vibrational modes, respectively. Simultaneous
displacements along ν5 and ν6 vibrational modes can cause a coupling between the X̃1Ag

and Ã1B2u electronic states. Coupling between ã3B2u-̃b
3B1u electronic states can also

be caused by a simultaneous displacement along the ν3 and ν5 vibrational modes. The
diagonal second-order and the bilinear coupling parameters given in Table 3.20 are also
significant.
In order to confirm that the coupling parameters presented above do not suffer from

any spin contamination (although we have confirmed above that the spin contamination
is negligible in the calculated UB3LYP results), we have calculated them again using the
vibrational coordinates derived from the ROMP2 calculations. The electronic energies
and the parameters of the Hamiltonian of Eq. 3.7a are calculated with the similar
approach as mentioned above. The calculated Hamiltonian parameters are given in
Tables 3.21-3.24. It can be seen in comparison with the data in Tables 3.17-3.20 that
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3.3 Multistate Hamiltonian

Table 3.20: The diagonal second-order (γ) and bilinear (γ12) coupling parameters (in

eV) for the X̃1Ag, ã
3B2u, b̃

3B1u, Ã
1B2u, c̃

3B2g and B̃1B2g electronic states
of B4.

modes γ

(symmetry) X̃1Ag ã3B2u b̃3B1u Ã1B2u c̃3B2g B̃1B2g

ν1(ag) 0.0038 -0.0106 0.0012 -0.0098 0.0116 0.0120
ν2(ag) -0.0354 -0.0078 0.0152 -0.0044 0.0098 0.0088
ν3(b1u) 0.0938 -0.0446 0.0532 -0.1214 0.0012 0.0058
ν4(b2u) 0.0126 -0.0274 -0.0110 -0.0194 -0.0028 -0.0010
ν5(b3u) 0.0324 -0.0518 -0.0072 -0.0512 0.0142 -0.0480
ν6(b3g) -0.0098 -0.0054 0.0046 0.0140 0.0068 0.0094

bilinear ν1-ν2 -0.0127 0.0146 -0.0013 0.0143 0.0000 0.0013

Table 3.21: Linear intrastate coupling parameter (κ) for the X̃1Ag, ã
3B2u, b̃

3B1u, Ã
1B2u,

c̃3B2g and B̃1B2g electronic states of B4 derived from the CASSCF-MRCI
potential energy data calculated using the ROMP2 optimized geometry of
B−

4 . All quantities are given in eV.

modes frequency κ

(symmetry) (eV) X̃1Ag ã3B2u b̃3B1u Ã1B2u c̃3B2g B̃1B2g

ν1(ag) 0.1449 -0.0195 0.0321 -0.0526 0.0297 -0.1951 -0.1891
ν2(ag) 0.0993 0.1592 -0.1732 -0.0145 -0.1647 0.0022 -0.0072

the two sets of parameters are in very good accord with each other. The coupling
strength between the b̃ and c̃ electronic states along the ν5 vibrational mode is about
a factor of the two lower in the results of Table 3.22. The importance of the above
coupling parameters in the photodetachment spectrum of B−

4 is examined in detail in
Chapter 4.

Table 3.22: Linear interstate coupling parameters (λkl) for the electronic states of B4

estimated from the CASSCF-MRCI potential energy data calculated using
the ROMP2 optimized geometry of B−

4 . All quantities are given in eV.

Coupled states b1u b2u b3u b3g

λX,A X̃1Ag-Ã
1B2u - - - -

λX,B X̃1Ag-B̃
1B2g - - - -

λA,B Ã1B2u-B̃
1B2g - - - -

λa,b ã3B2u-̃b
3B1u - - - 0.1732

λa,c ã3B2u-c̃
3B2g - - - -

λb,c b̃3B1u-c̃
3B2g - - 0.0362 -
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3 Structure of boron clusters

Table 3.23: Interstate bilinear coupling parameter (in eV) for the electronic states of B4

calculated using the ROMP2 optimized geometry of B−
4

States Symmetry of coupling mode coupled modes λ

X̃1Ag-Ã
1B2u b2u

ag(ν1),b2u(ν4) -
ag(ν2),b2u(ν4) -
b1u(ν3),b3g(ν6) 0.2165

Ã1B2u-B̃
1B2g au b3u(ν5),b3g(ν6) 0.0840

ã3B2u-̃b
3B1u b3g

ag(ν1),b3g(ν6) -0.0079
ag(ν1),b3g(ν6) -0.0131
b1u(ν3),b2u(ν4) -

ã3B2u-c̃
3B2g au b3u(ν5),b3g(ν6) -

b̃3B1u-c̃
3B2g b3u

ag(ν1), b3u(ν5)
ag(ν2), b3u(ν5) -

Table 3.24: The diagonal second-order (γ) and bilinear (γ12) coupling parameters (in

eV) for the X̃1Ag, ã
3B2u, b̃

3B1u, Ã
1B2u, c̃

3B2g and B̃1B2g electronic states
of B4 calculated using the ROMP2 optimized geometry of B−

4

modes γ

(symmetry) X̃1Ag ã3B2u b̃3B1u Ã1B2u c̃3B2g B̃1B2g

ν1(ag) 0.0045 -0.0117 0.0008 -0.0108 0.0110 0.0113
ν2(ag) -0.0262 -0.0059 0.0163 -0.0025 0.0091 0.0081
ν3(b1u) 0.0694 -0.0244 0.0869 -0.1064 -0.0415 0.0038
ν5(b2u) 0.0114 -0.0235 -0.0118 -0.0201 -0.0003 0.0001
ν4(b3u) 0.0310 -0.0542 -0.0061 -0.0558 -0.0027 -0.0396
ν6(b3g) -0.0087 -0.0366 0.0578 0.0309 0.0005 0.0025

bilinear ν1-ν2 -0.0121 0.0134 -0.0024 0.0135 0.0000 0.0006

3.3.2 Doublet electronic states of B5

While the symmetric vibrational modes are Condon active in the energetically low-lying
six electronic states of B5, the vibrational modes of b2 symmetry can cause symmetry
allowed coupling between its X̃ and Ã, C̃ and Ẽ electronic states. Similarly, the X̃-
D̃ coupling is allowed through the vibrational modes of a2 symmetry. The vibrational
modes of b2 symmetry can couple Ã-B̃, B̃-C̃ and B̃-Ẽ electronic states. Whereas, the
vibrational modes of b1 symmetry can couple Ã-D̃, C̃-D̃ and D̃-Ẽ electronic states of
B5. The vibrational modes of a2 symmetry can also cause a coupling between the B̃ and
D̃ electronic states.

A diabatic vibronic Hamiltonian corresponding to this coupling scheme can be written
as
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3.3 Multistate Hamiltonian

H = (TN + V0)16 +


uX̃ uX̃Ã 0 uX̃C̃ uX̃D̃ uX̃Ẽ

uÃ uÃB̃ 0 uÃD̃ 0
uB̃ uB̃C̃ uB̃D̃ uB̃Ẽ

h.c uC̃ uC̃D̃ 0
uD̃ uD̃Ẽ

uẼ

 (3.9a)

The nuclear kinetic TN and potential V0 energy terms of the reference electronic ground
state of B−

5 are defined in the same way as in Eqs. 3.7a. In this case the index i runs
from 1 to 9.

The computed ab initio potential energies of the electronic states of B5 reveal con-
siderable anharmonicity (see below) along the symmetric vibrational modes particularly
along ν3. While some of the potential functions could be represented very well by a
second-order Taylor expansion, many of them required expansion upto fourth or even
sixth-order terms for a satisfactory description. The uk’s in Eq. (3.9a) are therefore
expressed in general as

uk = E
(k)
0 +

4∑
i=1

f
(k)
i +

1

2

9∑
i=5

γ
(k)
i Qi

2 +
1

2

4∑
i=1

4∑
j>i

γ
(k)
ij QiQj +

1

2

9∑
i=7

9∑
j>i

γ
(k)
ij QiQj (3.9b)

The parameters of the above equation are defined in the same way as in Sec. 3.3.1.
The function f

(k)
i is defined as

f
(k)
i =

1

n!

6∑
n=1

c(k)n Qn
i . (3.9c)

In the following a fourth-order polynomial is used to fit the energies of the B̃ electronic
state along ν2, D̃ and Ẽ electronic states along ν1, ν2 and ν4 vibrational modes. The en-
ergies of the C̃, D̃ and Ẽ electronic states along ν3 are fitted by a sixth-order polynomial
function. A second-order function is found to be adequate for the remaining electronic
states and vibrational modes. The elements ukl of Eq. (3.9a) are represented as

ukl =
∑
i

λkli Qi. (3.9d)

Some of the fit parameters of the potential function of Eq. 3.9(b-c) along the symmetric
vibrational modes are given in Table 3.25. The fourth and sixth-order polynomial fits of
the ab initio VDEs of the electronic states are shown in Fig. 3.12. It can be seen from
this figure that the ab initio energy points are very well represented by these higher-order
polynomial functions. Strong anharmonicity of the electronic energies, particularly in
the vicinity of the degeneracies [see later in Fig. 3.17], is revealed by the data of Table

3.25. The latter also reveal large coupling strength of ν2 in the D̃ state and ν3 in the X̃
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3 Structure of boron clusters

Table 3.25: Fit parameters (in eV) of the potential energy function [Eq. (3.9c)] of the

X̃2B2, Ã
2A1, B̃

2B2, C̃
2A1, D̃

2B1 and Ẽ2A1 electronic states of B−
5 are de-

rived from the CASSCF-MRCI data.

State Mode C1 C2 C3 C4 C5 C6

X̃2B2

ν1 -0.0326 0.0012 - - - -
ν2 -0.0340 -0.0019 - - - -
ν3 0.1274 -0.0088 - - - -
ν4 -0.0453 0.0074 - - - -

Ã2A1

ν1 -0.0324 0.0050 - - - -
ν2 -0.0431 -0.0095 - - - -
ν3 -0.0123 -0.0330 - - - -
ν4 -0.0376 -0.0086 - - - -

B̃2B2

ν1 0.1428 0.0047 -0.0010 -0.0001 - -
ν2 0.0850 -0.0032 -0.0003 -0.0022 - -
ν3 -0.1348 0.0015 -0.0272 -0.0246 - -
ν4 0.0738 -0.0269 -0.0085 -0.0012 - -

C̃2A1

ν1 0.1353 -0.0070 - - - -
ν2 -0.0301 -0.0014 -0.0026 0.0010 - -
ν3 -0.0368 0.0139 -0.0042 -0.0135 -0.0047 0.0001
ν4 0.0749 -0.0130 - - - -

D̃2B1

ν1 0.0290 -0.0014 -0.0039 -0.0003 - -
ν2 -0.1806 0.0048 -0.0003 0.0006 - -
ν3 -0.0632 0.0383 0.0326 -0.0411 -0.0033 0.0143
ν4 -0.0227 -0.0026 -0.0004 0.0000 - -

Ẽ2A1

ν1 0.1483 0.0025 -0.0003 0.0011 - -
ν2 0.0419 -0.0280 -0.0107 -0.0005 - -
ν3 -0.1171 -0.0048 0.0068 0.0306 -0.0391 0.0130
ν4 0.0644 -0.0167 -0.0006 0.0005 - -

Table 3.26: Linear interstate coupling parameters λkl [in eV] for the electronic states of
the B5 estimated from the CASSCF- MRCI data.

modes λX,A λX,C λX,E λA,B λB,C λB,E λD,E

(symmetry) X̃2B2-Ã
2A1 X̃2B2 -C̃2A1 X̃2B2-Ẽ

2A1 Ã2A1-B̃
2B2 B̃2B2-C̃

2A1 B̃2B2-Ẽ
2A1 D̃2B1-Ẽ

2A1
ν5(a2) - - - - - - -
ν6(b1) - - - - - - 0.0608
ν7(b2) 0.1174 0.1279 0.2261 - - 0.0819 -
ν8(b2) - 0.1545 - 0.0989 0.0394 - -
ν9(b2) 0.0753 0.2216 - - 0.1643 0.1625 -

and B̃ states. The coupling strengths of the remaining vibrational modes are moderate
or weak.

The interstate coupling parameters of the Eq. 3.9(d) are given in Table 3.26. An
analysis of the data presented in this table reveal that the coupling strength of vibrational
mode ν9 in the X̃-Ã, X̃-C̃, B̃-C̃ and B̃-Ẽ, ν7 in the X̃-Ẽ, ν8 in the Ã-B̃ and ν6 in the
D̃-Ẽ electronic states is largest. The second-order and the bilinear coupling parameters
of the remaining modes are given in Table 3.27.
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3.3 Multistate Hamiltonian

Figure 3.12: The higher order polynomial (fourth or sixth order) fit (solid line) of the
calculated ab initio electronic energies (points) of B5 along symmetric vi-
brational modes indicated in the panel. The parameters of the Table 3.25
are derived from the above fit.
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Table 3.27: The diagonal second-order and bilinear coupling parameters of Eq. 3.9(b)
of the vibronic Hamiltonian of B5. The parameter values are given in eV.

modes γ

(symmetry) X̃2B2 Ã2A1 B̃2B2 C̃2A1 D̃2B1 Ẽ2A1

ν5(a2) -0.0002 -0.0118 0.0086 -0.0360 -0.0120 -0.0464
ν6(b1) 0.0212 -0.0030 -0.0288 -0.0122 -0.0264 -0.0130
ν7(b2) -0.0170 0.0288 0.0240 0.0062 -0.0114 0.0452
ν8(b2) -0.0078 -0.0382 0.0136 0.0240 -0.1206 -0.0206
ν9(b2) 0.0064 0.0322 -0.0954 0.0670 -0.1360 -0.0148

Intrastate bilinear coupling constants

ν1ν2 0.0060 0.0106 -0.0102 -0.0188 0.0215 -0.0449
ν1ν3 -0.0034 -0.0164 0.0050 0.0314 0.0060 0.0350
ν1ν4 0.0005 -0.0008 0.0000 -0.0051 -0.0028 -0.0284
ν2ν3 0.0026 0.0216 0.0019 0.0021 0.0003 0.0283
ν2ν4 0.0009 -0.0032 -0.0085 -0.0040 0.0005 -0.0166
ν3ν4 -0.0028 0.0017 -0.0032 0.0072 0.0003 0.0059
ν7ν8 0.0013 0.0434 -0.0200 -0.0038 0.0450 0.0092
ν7ν9 -0.0009 -0.0065 -0.0010 0.0034 0.0044 -0.0190
ν8ν9 0.0043 -0.0185 0.0372 -0.0816 0.0880 -0.0216

3.3.3 Electronic states of B7

It is well established that coupling of electronic and nuclear motion is ubiquitous in
polyatomic systems and such coupling leads to complex structure of electronic spectra
and ultrafast nonradiative decay of electronically excited molecules [49,50]. Taking these
facts into account, to study the photodetachment spectrum of B−

7 cluster anion, coupled
vibronic Hamiltonians of the energetically low-lying electronic states of isomer I, II and
III of neutral B7 are constructed here using the ab initio electronic energy data calculated
above. It is already discussed that the isomer I supports orbitally degenerate electronic
states, where as electronic states of isomer II and III are nondegenerate. The electronic
degeneracy of isomer I is symmetry enforced and undergoes JT splitting along suitable
symmetry allowed nuclear coordinates. The resulting JT split electronic energy surfaces
may further interact with the energetically close nondegenerate electronic states and can
undergo PJT type of coupling. The coupling of the nondegenerate electronic states of
isomer II and III can also be caused by suitable symmetry allowed vibrational modes.
The discussions above reveal that this system quite unique in terms of rich variety of
vibronic coupling mechanisms that could exist in a single molecular system and to the
best of our knowledge, dynamics of such a complex system has not been treated in the
literature so far.

The Hamiltonians of neutral B7 originating from the three isomers of B−
7 are con-

structed separately here in terms of the normal displacement coordinates of the vibra-
tional modes (Q) of the reference electronic ground state of the anions, utilizing a dia-
batic electronic basis and symmetry selection rules [44]. The first-order coupling within
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(intra) and between (inter) electronic states is governed by the symmetry selection rule;
Γi ⊗ ΓQ ⊗ Γj ⊃ A1. The symbol, Γ represents the IREP, i and j are the electronic state
indices, and Q represents the coupling vibrational mode.

While the totally symmetric a1 vibrational modes are intrastate coupling modes, the
e2 modes are JT active in isomer I. The e2 modes lift the degeneracy of X̃2E1 , Ã

4E1 and
B̃2E1 electronic states of this isomer. Therefore, all six JT split components of these
electronic states are relevant for the nuclear dynamics of isomer I within the energy range
considered here. The X̃2E1 -B̃

2E1 electronic states can also be coupled by the vibrational
modes of e2 symmetry. The ab initio electronic structure data reveal negligible coupling
in this case. The coupling between states X̃2E1 -Ã4E1 and Ã4E1 -B̃2E1 of different
spin multiplicity is governed by the spin-orbit interactions. The spin-orbit coupling
parameters are calculated by using Briet-Pauli operator method implemented in Molpro
package [42]. The resulting data reveal that the spin-orbit splitting of X̃2E1 , Ã

4E1 and

B̃2E1 electronic states is 0.45, 6.0 and 3.0 cm−1, respectively. The coupling strength
between the components of X̃2E1 and Ã4E1 at C6v symmetry configuration is 1.72
cm−1 (magnitude). Therefore, because of extremely small size of the spin-orbit coupling
parameters as compared to the JT coupling parameters (discussed later in the text), the
spin-orbit coupling is neglected in the present study. Neglect of spin-orbit interactions
reduces the vibronic Hamiltonian for the X̃2E1 , Ã

4E1 and B̃
2E1 states of neutral isomer

I into a block diagonal form consisting of three 2 ⊗ 2 blocks each representing the JT
interactions within a degenerate electronic manifold. Such a Hamiltonian can be written
as

HI = (TN + V0)16 +


v1x v1x−1y 0 0 0 0

v1y 0 0 0 0
v2x v2x−2y 0 0

h.c v2y 0 0
v3x v3x−3y

v3y

 , (3.10a)

where

TN = −1

2

∑
i ∈ a1, b1, b2

ωi
∂2

∂Q2
i

− 1

2

∑
i ∈ e1, e2

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (3.10b)

and

V0 =
1

2

∑
i ∈ a1, b1, b2

ωiQ
2
i +

1

2

∑
i ∈ e1, e2

ωi

(
Q2

ix +Q2
iy

)
, (3.10c)
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vkx/ky = Ek
0 +

∑
i ∈ a1

κkiQi ±
∑
i ∈ e2

λkiQix +
1

2

∑
i,j ∈ a1

γkijQiQj +
1

2

∑
i ∈ b1

γki Q
2
i +

1

2

∑
i,j ∈ b2

γkijQiQj

1

2

∑
i,j ∈ e1, e2

[γkij(QixQjx +QiyQjy)]±
1

2

∑
i,j ∈ e1, e2

[ηkij(QixQjx −QiyQjy)]

±1

2

∑
i ∈ a1,j ∈ e2

γkijQiQjx, (3.10d)

vkx−ky =
∑
i∈e2

λkiQiy +
∑

i,j ∈ e1, e2

ηkijQixQjy +
1

2

∑
i ∈ a1,j ∈ e2

γkijQiQjy. (3.10e)

The electronic states X̃2B2 and Ã2B1 of the neutral isomer II of B−
7 are coupled by the

vibrational modes of a2 symmetry. The latter modes also couple X̃2B2 -D̃2B1 , Ã2B1 -
B̃2B2 and B̃

2B2 -D̃
2B1 electronic states. The vibrational modes of b2 symmetry couples

X̃2B2 -C̃2A1 and B̃2B2 -C̃2A1 electronic states. The electronic states Ã2B1 -C̃2A1 and
C̃2A1 -D̃2B1 are coupled by vibrational modes of b1 symmetry. Therefore, the vibronic
Hamiltonian for the coupled manifold of electronic states of the neutral isomer II of B−

7

can be expressed as

HII = (TN + V0)15 +

u11
∑
i∈a2

λ1−2
i Qi 0

∑
i∈b2

λ1−4
i Qi

∑
i∈a2

λ1−5
i Qi

u22
∑
i∈a2

λ2−3
i Qi

∑
i∈b1

λ2−4
i Qi 0

h.c u33
∑
i∈b2

λ3−4
i Qi

∑
i∈a2

λ3−5
i Qi

u44
∑
i∈b1

λ4−5
i Qi

u55


. (3.11a)

The electronic ground 2A2 state of neutral isomer III of B−
7 can be coupled to its 2B2 ,

B̃′2B1 , C̃ ′2A1 and D̃′2A1 states by the b1, b2, a2 and a2 vibrational modes, respectively.

Similarly, the coupling of 2B2 state to the B̃′2B1 , C̃ ′2A1 and D̃′2A1 states is allowed by
vibrational modes of a2, b2 and b2 symmetry, respectively. The vibrational modes of b1

symmetry can couple the B̃′2B1 state with the C̃ ′2A1 and D̃′2A1 states. The electronic

states C̃ ′2A1 -D̃′2A1 coupled by vibrational modes of a1 symmetry. With such a coupling
scheme the vibronic Hamiltonian of isomer III can be written as
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3.3 Multistate Hamiltonian

HIII = (TN + V0)15 +

u11
∑
i∈b1

λ1−2
i Qi

∑
i∈b2

λ1−3
i Qi

∑
i∈a2

λ1−4
i Qi

∑
i∈a2

λ1−5
i Qi

u22
∑
i∈a2

λ2−3
i Qi

∑
i∈b2

λ2−4
i Qi

∑
i∈b2

λ2−5
i Qi

u33
∑
i∈b1

λ3−4
i Qi

∑
i∈b1

λ3−5
i Qi

h.c u44
∑
i∈a1

λ4−5
i Qi

u55


. (3.11b)

The elements of the vibronic Hamiltonians (3.11a) and (3.11b) are given by

TN = −1

2

15∑
i=1

ωi

(
∂2

∂Q2
i

)
, (3.11c)

V0 =
1

2

15∑
i=1

ωiQ
2
i , (3.11d)

In the above, TN and V0 represent the kinetic and potential energy operators, respec-
tively, of the reference electronic ground state of B−

7 . Vibrational modes are designated
by the index i. The quantity ωi represents the harmonic vibrational frequency of the
mode i. The diagonal elements of the electronic HamiltoniansHII andHIII are expanded
in a Taylor series around the reference equilibrium geometry (occurring at Q=0) as [44].

ukk = E
(k)
0 +

∑
i∈a1

κ
(k)
i Qi +

1

2

∑
i∈a1,a2,b1,b2

γ
(k)
i Q2

i +
1

2

∑
i∈a1

∑
j∈a1>i

γ
(k)
ij QiQj +

1

2

∑
i∈b1

∑
j∈b1>i

γ
(k)
ij QiQj +

1

2

∑
i∈b2

∑
j∈b2>i

γ
(k)
ij QiQj +

1

2

∑
i∈a2

∑
j∈a2>i

γ
(k)
ij QiQj +

1

3!

15∑
i=1

γ
(k)
3i Q

3
i +

1

4!

15∑
i=1

γ
(k)
4i Q

4
i (3.11e)

The symbols introduced in the Hamiltonian of all three isomers HI, HII and HIII have
the following meaning. The notation 1m stands for a m × m unit matrix. The quantity
Ek

0 represents the VDE of the kth electronic state. κki and γki are the linear and second-
order coupling parameters of the ith vibrational mode in the kth electronic state. γkij is
the intrastate bilinear coupling parameter between ith and jth modes. λki denotes the

linear JT coupling parameter of the kth state along the ith vibrational mode. λ
(k−l)
i is

the LVC parameter between two electronic states, k and l of B7. It can be seen from
Eq. (3.11e) that higher order (up to quartic) Taylor expansion is necessary in order
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3 Structure of boron clusters

to reproduce the strong anharmonicity of the potential energies along some vibrational
modes (see, Tables 3.31 and 3.32). All coupling parameters discussed above are extracted
by fitting the calculated ab initio electronic energies to the adiabatic form of the diabatic
electronic Hamiltonians presented in Eqs. 3.10a-3.11b. The resulting parameters of all
three isomers are given in Tables 3.28-3.33.
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3.3 Multistate Hamiltonian

Table 3.28: Linear (κ or λ), quadratic (γ and η) and bilinear intrastate coupling param-

eters (in eV units) of the X̃2E1 , Ã
4E1 and B̃

2E1 electronic states of isomer
I. The dimensionless coupling strengths are given in the parentheses.

Isomer I

Parameter Modes X̃2E1 Ã4E1 B̃2E1

κ ν1 0.0247 (0.02) 0.0251 (0.03) 0.0311 (0.04)
ν2 -0.0684 (1.86) 0.0026 (0.00) 0.0016 (0.00)

λ ν8 0.1205 (0.41) 0.1321 (0.49) 0.1136 (0.36)
ν9 0.0467 (0.16) 0.0074 (0.00) 0.0058 (0.00)
ν10 0.0678 (0.88) 0.0229 (0.10) 0.0368 (0.26)

γ ν1 0.0021 -0.0001 0.0001
ν2 -0.0167 -0.0031 -0.0050
ν3 0.0204 0.0065 0.0070
ν4 -0.0005 -0.0176 -0.0163
ν5 0.0029 0.0036 0.0069
ν6 0.0081 -0.0097 -0.0123
ν7 0.0059 -0.0138 -0.0134
ν8 0.0067 -0.0009 0.0003
ν9 -0.0033 -0.0099 -0.0078
ν10 0.0034 -0.0079 -0.0041

η ν6 -0.0107 0.0015 -0.0031
ν7 0.0071 0.0015 -0.0019
ν8 -0.0023 -0.0059 0.0055
ν9 -0.0010 -0.0193 0.0165
ν10 0.0000 0.0000 0.0000

bilinear ν1ν2 -0.0031 0.0026 0.0029
ν1ν8 0.0134 -0.0050 0.0178
ν1ν9 0.0006 -0.0114 -0.0022
ν1ν10 -0.0124 -0.0396 -0.0278
ν2ν8 0.0064 0.0057 0.0042
ν2ν9 0.0173 0.0080 0.0018
ν2ν10 0.0252 -0.0030 0.0072
ν4ν5 0.0021 -0.0091 -0.0010
ν6ν7 0.0013 -0.0078 -0.0146
ν8ν9 0.0000 -0.0007 0.0015
ν8ν10 -0.0013 -0.0083 0.0087
ν9ν10 -0.0020 -0.0003 0.0078
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3 Structure of boron clusters

Table 3.29: Linear (κ), quadratic (γ) and bilinear intrastate coupling parameters (in

eV units) of the X̃2B2 , Ã2B1 , B̃2B2 , C̃2A1 and D̃2B1 electronic states of
isomer II. The dimensionless coupling strengths are given in the parentheses.

Parameter Modes X̃2B2 Ã2B1 B̃2B2 C̃2A1 D̃2B1

κ ν1 -0.0485 (0.07) 0.1148 (0.47) -0.1382 (0.39) -0.1930 (1.02) 0.0143 (0.01)
ν2 -0.0185 (0.02) -0.0449 (0.15) -0.0103 (0.03) -0.0797 (0.24) -0.0431 (0.07)
ν3 0.0959 (0.69) 0.0018 (0.00) -0.0159 (0.02) 0.0139 (0.02) -0.0667 (0.36)
ν4 0.0390 (0.22) -0.0202 (0.13) 0.0009 (0.02) 0.0762 (1.14) 0.0007 (0.00)
ν5 0.1416 (9.35) -0.0653 (1.11) 0.0506 (2.10) -0.0113 (0.69) -0.0688 (2.58)

γ ν1 0.0133 -0.0096 0.0072 -0.0027 0.0155
ν2 -0.0001 -0.0011 -0.0003 -0.0036 -0.0006
ν3 -0.0094 -0.0234 0.0153 -0.0110 0.0118
ν4 0.0033 -0.0064 -0.0053 -0.0186 -0.0058
ν5 0.0116 -0.0227 -0.0024 0.0134 -0.0169
ν6 0.0135 -0.0571 0.0589 0.0008 0.0061
ν7 -0.0053 0.0114 -0.0342 -0.0053 0.0227
ν8 -0.0086 -0.0078 -0.0023 -0.0148 -0.0081
ν9 0.0040 -0.0053 0.0151 -0.0279 0.0096
ν10 0.0108 -0.0091 0.0353 0.0056 0.0385
ν11 0.0012 -0.0152 -0.0062 0.0000 -0.0079
ν12 -0.0183 -0.0023 0.0943 -0.0118 0.0222
ν13 0.0002 -0.0321 -0.0532 0.0237 -0.0281
ν14 0.0037 -0.0484 0.0019 0.0256 -0.0347
ν15 0.0106 -0.0200 -0.0471 0.0352 -0.0062

γij ν1ν2 0.0045 -0.0105 0.0033 0.0003 -
ν1ν3 0.0068 0.0141 -0.0052 0.0000 -
ν1ν4 0.0063 -0.0028 -0.0081 0.0000 -
ν1ν5 0.0139 0.0000 -0.0064 0.0017 -
ν2ν3 0.0225 0.0270 0.0137 0.0000 -
ν2ν4 -0.0022 0.0011 0.0067 -0.0003 -
ν2ν5 -0.0021 -0.0080 -0.0029 0.0003 -
ν3ν4 0.0039 0.0104 -0.0092 0.0005 -
ν3ν5 0.0079 0.0065 -0.0071 -0.0001 -
ν4ν5 -0.0014 0.0049 0.0001 -0.0007 -
ν6ν7 -0.0058 0.0125 0.0118 0.0140 -
ν6ν8 0.0050 -0.0050 -0.0084 -0.0266 -
ν7ν8 -0.0042 -0.0113 0.0132 -0.0185 -
ν9ν10 -0.0026 -0.0241 0.0048 0.0215 -
ν9ν11 0.0018 -0.0261 -0.0030 0.0546 -
ν10ν11 -0.0012 -0.0718 -0.0143 -0.0053 -
ν12ν13 -0.0210 -0.0340 -0.0322 0.0145 -
ν12ν14 0.0182 0.0333 0.0105 -0.0316 -
ν12ν15 -0.0009 -0.0196 0.0037 -0.0018 -
ν13ν14 -0.0058 0.0308 0.0119 -0.0090 -
ν13ν15 0.0055 0.0128 0.0228 0.0008 -
ν14ν16 0.0013 -0.0196 -0.0004 0.0177 -
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Table 3.30: Linear (κ), quadratic (γ) and bilinear intrastate coupling parameters (in eV

units) of the 2A2 ,
2B2 , B̃′2B1 , C̃ ′2A1 and D̃′2A1 electronic states of isomer

III. The dimensionless coupling strengths are given in the parentheses.
Parameter Modes 2A2

2B2 B̃′2B1 C̃′2A1 D̃′2A1
κ ν1 -0.1604 (0.51) 0.0036 (0.00) -0.3367 (2.27) -0.1409 (0.39) -0.3149 (1.98)

ν2 0.0230 (0.01) 0.0779 (0.14) 0.1401 (0.44) 0.0670 (0.10) -0.0012 (0.00)
ν3 -0.0448 (0.10) -0.0193 (0.02) -0.0184 (0.02) -0.0311 (0.05) -0.0817 (0.35)
ν4 0.0325 (0.09) 0.0412 (0.14) 0.0134 (0.01) -0.0138 (0.01) 0.0028 (0.00)
ν5 0.0229 (0.07) 0.0231 (0.07) 0.0145 (0.03) 0.0058 (0.00) 0.0214 (0.06)
ν6 -0.0549 (0.75) 0.0256 (0.16) 0.0803 (1.60) 0.1189 (3.52) -0.0699 (1.21)

γ ν1 0.0070 0.0339 0.0350 0.0078 0.0694
ν2 0.0067 0.0405 0.0330 0.0025 0.0385
ν3 0.0001 0.0059 -0.0029 -0.0190 0.0152
ν4 -0.0012 -0.0051 0.0043 -0.0024 -0.0012
ν5 -0.0047 -0.0031 -0.0138 -0.0093 -0.0101
ν6 0.0003 -0.0125 0.0066 -0.0202 0.0244
ν7 0.0061 -0.0023 -0.0097 -0.0030 0.0069
ν8 -0.0198 0.0047 -0.0229 -0.0013 -0.0460
ν9 -0.0348 0.0258 -0.0344 0.0042 -0.0031
ν10 -0.0228 -0.0011 -0.0524 -0.0221 -0.0405
ν11 0.0079 -0.0523 -0.0001 -0.0138 0.0619
ν12 -0.0111 -0.0209 -0.0088 -0.0177 -0.0381
ν13 0.0035 -0.0747 -0.0021 -0.1132 -0.0025
ν14 0.0022 -0.0329 0.0008 -0.0517 0.0202
ν15 -0.0042 0.0460 -0.0194 -0.0057 -0.0302

Bilinear ν1ν2 0.0005 -0.0182 -0.0051 -0.0396 0.0137
ν1ν3 0.0038 -0.0124 -0.0081 -0.0488 0.0368
ν1ν4 -0.0002 0.0018 0.0078 0.0276 -0.0137
ν1ν5 -0.0034 -0.0138 -0.0101 0.0129 -0.0074
ν1ν6 -0.0004 0.0012 -0.0021 -0.0822 0.0717
ν2ν3 - 0.0005 0.0010 0.0168 0.0112 0.0285
ν2ν4 -0.0013 -0.0099 -0.0140 -0.0057 0.0057
ν2ν5 0.0046 0.0236 0.0136 0.0087 0.0041
ν2ν6 -0.0013 0.0290 0.0097 -0.0043 0.0328
ν3ν4 0.0010 -0.0005 -0.0010 0.0059 -0.0023
ν3ν5 -0.0038 0.0108 0.0008 0.0060 -0.0080
ν3ν6 0.0046 0.0009 0.0075 -0.0203 0.0435
ν4ν5 0.0031 -0.0066 0.0043 -0.0008 -0.0115
ν4ν6 -0.0011 0.0012 -0.0021 0.0007 -0.0274
ν5ν6 0.0077 0.0108 0.0043 0.0051 -0.0202
ν7ν8 -0.0055 -0.0110 -0.0217 -0.0217 -0.0142
ν9ν10 0.0012 0.0012 0.0012 0.0012 0.0012
ν11ν12 -0.0097 -0.0305 -0.0183 0.0463 0.0202
ν11ν13 0.0053 -0.0254 -0.0168 -0.0321 0.0318
ν11ν14 -0.0049 0.0091 -0.0075 -0.0308 0.0027
ν11ν15 0.0012 -0.0214 0.0038 0.0044 -0.0073
ν12ν13 0.0111 -0.0451 -0.0050 -0.0226 0.0300
ν12ν14 -0.0029 0.0025 0.0055 0.0032 0.0042
ν12ν15 -0.0044 -0.0265 -0.0226 0.0482 0.0222
ν13ν14 0.0037 0.0309 0.0284 0.0392 0.0009
ν13ν15 0.0065 -0.0188 -0.0063 -0.0099 0.0753
ν14ν16 -0.0042 -0.0343 -0.0311 -0.0387 0.0050
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3 Structure of boron clusters

Table 3.31: Higher order coupling parameters (in eV units) of the Taylor expansion of
the electronic Hamiltonian [cf. Eq. (3.11e)] of isomer II.

Parameter Modes X̃2B2 Ã2B1 B̃2B2 C̃2A1

γ3 ν1 - -0.0080 0.0005 0.0104
ν2 0.0001 - - 0.0000
ν3 -0.0013 -0.0013 0.0028 -0.0021
ν4 - 0.0015 -0.0002 -0.0013
ν5 -0.0034 - 0.0021 -0.0010

γ4 ν1 -0.0006 -0.0020 -0.0002 -0.0037
ν2 - - - 0.0000
ν3 - 0.0007 -0.0008 -0.0007
ν4 0.0004 0.0002 0.0002 0.0009
ν5 -0.0007 - 0.0006 -0.0035
ν10 -0.0253 0.0207 -0.1057
ν12 - - 0.1718
ν13 0.0169 - -
ν14 0.0015 -0.0073 0.0014
ν15 - - 0.0126

Table 3.32: Same as in Table 3.31 for isomer III.

Parameter Modes 2A2
2B2 B̃′2B1 C̃ ′2A1 D̃′2A1

γ3 ν1 - 0.0073 - -0.0247 0.0317
ν2 - 0.0188 0.0100 -0.0036 0.0032
ν3 - 0.0009 0.0005 -0.0129 0.0119
ν4 - - -0.0011 0.0012 -0.0002
ν5 - - - 0.0002 0.0002
ν6 - - -0.0077 -0.0045 0.0009

γ4 ν1 - 0.0007 - -0.0156 0.0146
ν2 - 0.0113 0.0016 0.0091 -0.0025
ν3 - 0.0002 0.0002 0.0074 -0.0066
ν4 - - 0.0003 0.0002 0.0002
ν5 - - - 0.0001 0.0003
ν6 - -0.0009 -0.0002 -0.0039 0.0015
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3 Structure of boron clusters

3.4 Adiabatic potential energy surfaces

3.4.1 Singlet and triplet electronic states of B4

The adiabatic PESs of the singlet X̃, Ã, B̃ and triplet ã, b̃, c̃ electronic states of B4 are
obtained by diagonalizing the diabatic electronic Hamiltonian (H − TNI6) introduced
in Eq. (3.7a). One dimensional cuts of the resulting adiabatic PESs are shown in Fig-

ures 3.13 and 3.14. In Fig. 3.13 cuts of singlet X̃1Ag, Ã
1B2u and B̃1B2g electronic states

are shown along the normal displacement coordinates of the totally symmetric vibra-
tional modes ν1 and ν2. In these plots the lines indicate the potential energies derived
from the model using the parameters of Tables 3.17 to 3.20. The points superimposed on
them represent the CASSCF-MRCI data obtained by using UB3LYP optimized (squares
in blue color) and ROMP2 optimized (circles in red color) reference geometry. It can
be seen from Table 3.3 that the calculated VDEs obtained with the two reference ge-
ometries differ (within the error limit of ∼ 0.3 eV). In the plots given in Figures 3.13
and 3.14 we have adjusted the VDE values obtained with the ROMP2 geometry to those
obtained with the UB3LYP reference geometry. With this constant adjustment, the two
sets of ab initio data can be seen to be in excellent agreement with each other and also
with the model potential energy curves. It is intriguing to note that the slopes and
curvatures of the PESs around the reference equilibrium geometry (Q=0) are in perfect
accord with each other. These are the most important quantities required for the the-
oretical models developed here. The X̃1Ag state is vertically well separated (by ∼ 2.0
eV or more, cf., Table 3.3) from the other two singlet states and the coupling of this
state with them is not found from the calculated energy data. However, it can be seen
that the equilibrium minimum of the X̃ state significantly shifts from Q=0, alarming
a significant condon activity of the ν1 vibrational mode in the nuclear dynamics of the
X̃ state. A similar situation arises for the Ã1B2u state along the ν1 vibrational mode.
Considering the same argument, the condon activity of ν2 vibrational mode is expected
to be significant in the dynamics of the B̃1B2g state, however the effect is expected to
be significantly smaller in this case.
As stated above, that a coupling in first-order between the X̃ and Ã electronic state

requires a vibrational mode of b2u symmetry. Since the coupling parameter of the single
b2u mode of B4 between the X̃-Ã electronic states is zero (in first-order), we looked for
the possible bilinear combinations of vibrational modes that transform to the b2u sym-
metry description of the D2h point group. The possible combinations are ν1 ⊗ ν4, ν2 ⊗
ν4 and ν3 ⊗ ν6. Out of these three combinations the third one is only found to yield
a bilinear interstate coupling parameter of ∼ 0.069 eV. Similar possible combination of
modes are examined between all pairs of electronic states of B4. Detailed analysis yields
that the triplet pair of states ã and b̃ can be coupled via the ν3 ⊗ ν4 combination which
transforms to the b3g symmetry representation. The coupling parameter in this case is

found to be ∼ 0.014 eV. Despite the fact that the Ã-B̃ electronic states are vertically
only ∼ 0.5 eV apart, a coupling between these states (which requires a vibrational mode
of au symmetry) could not be established.
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Figure 3.13: One dimensional plot of the adiabatic PESs of the X̃1Ag, Ã
1B2u and B̃1B2g

electronic states of B4 as a function of the dimensionless normal coordinates
of the totally symmetric vibrational modes. The potential energies obtained
from the vibronic model are shown by the lines. The potentials energy
points calculated by using the UB3LYP optimized reference state are shown
by square (blue color) symbol. The same calculated by using the ROMP2
optimized reference state are shown in circle (red) symbol.

The energetic minimum of the seam of CIs between the X̃-Ã states is estimated to
occur at ∼ 8.18 eV. This is ∼ 4.38 eV above the minimum of the Ã state. Similarly, an
intersection minimum between the Ã-B̃ states at ∼ 5.10 eV, lying ∼ 0.81 eV above the
B̃ state minimum is estimated, from the electronic structure data.

For the triplet electronic states of B4 the low-energy curve crossings between the ã-̃b
states can be immediately seen from Fig. 3.14. These states are indeed coupled via the
vibrational mode ν6 of b3g symmetry (cf, Table 3.18). Also, a nonzero bilinear interstate
coupling has been found between these states as described in the previous paragraph.
The triplet c̃ state of B4 is vertically ∼ 1.0 eV above its triplet b̃ state. Despite this, a
very strong coupling between these states along the ν5 vibrational mode of b3u symmetry
can be found from the data of Table 3.18. The coupling between the ã-c̃ states of B4

is found to be insignificant. The intersections between the ã-̃b states yield an energetic
minimum of ∼ 3.34 eV, on its seam which almost coincides with the energetic minimum
of the b̃ state (∼ 3.27 eV). Similarly, the minimum of the seam of CIs between the b̃-c̃
states occurs at ∼ 11.33 eV which is ∼ 7.24 eV above the energetic minimum of the c̃
state. It emerges from the above discussion that the ã-̃b CIs expected to have profound
impact on the dynamics of these electronic states. Despite a very strong coupling of the
b̃ and c̃ states along ν5 (cf., Table 3.18), the b̃-c̃ CIs occur at very high energy and not
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Figure 3.14: Same as in Fig. 3.13 for the ã3B2u, b̃
3B1u and c̃3B2g electronic states of B4.

expected to have any impact on the dynamics of these states. Since the VDEs calculated
with the UB3LYP and ROMP2 reference geometries slightly differ from each other, this
difference is expected to have some effects on the stationary points of the PESs discussed
above. We estimated these stationary points using energies obtained with the ROMP2
optimized reference geometry and an account of this estimate is the following. The
minimum of the X̃-Ã CIs estimated to occur at ∼ 1.7 eV above the minimum of the
Ã state. The minimum of the Ã-B̃ CIs is located at ∼ 1.4 and ∼ 0.84 eV above the
minimum of the Ã and B̃ states, respectively. As regard to the ã-̃b, b̃-c̃ and ã-c̃ CIs
similar results are found. The coupling between the ã-c̃ states is insignificant and the
minimum of b̃-c̃ CIs occurs at high energy. The ã-̃b CIs occurring at ∼ 3.30 eV is found
to be quasi-degenerate with the minimum of b̃ state at ∼ 3.25 eV.

The details of the effect of these energetic minima on the nuclear dynamics is presented
in Chapter 4. A perspective drawing of the most important ã-̃b CIs of B4 is presented
in Fig. 3.15. It can be seen from this drawing that the degeneracy of the surfaces
is retained along the symmetric vibrational mode, whereas the lower adiabatic surface
develops new minima at broken (from equilibrium D2h) symmetry configuration along
the coupling mode ν6.
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3.4 Adiabatic potential energy surfaces

Figure 3.15: Three dimensional perspective view of the ã3B2u-̃b
3B1u CIs of B4 (see text

for details)

3.4.2 Doublet electronic states of B5

By diagonalizing the diabatic electronic Hamiltonian of Eq. 3.9a, the adiabatic potential
energy functions for the X̃, Ã, B̃, C̃, D̃ and Ẽ states of B−

5 are obtained. These are
presented in Fig. 3.16 plotted along the totally symmetric vibrational modes. Crossing
of different electronic states can be immediately seen from the figure. As in case of
B4, the energetic minimum of the seam of various CIs and the minimum of the upper
adiabatic electronic states are also estimated in this case. The resulting data are collected
in Table 3.34. The diagonal entries in this table are the energy at the minimum of a
state. Whereas the off-diagonal entries represent the minimum of the seam of various
CIs. It is generally observed that inclusion of the second-order coupling terms lowers
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3 Structure of boron clusters

Table 3.34: Estimated equilibrium minimum (diagonal entries) and minimum of the
seam of various CIs (off-diagonal entries) of the electronic states of B5 within
a quadratic coupling model. All quantities are given in eV.

X̃2B2 Ã2A1 B̃2B2 C̃2A1 D̃2B1 Ẽ2A1

X̃2B2 - 4.10 - 7.10 16.67 7.45

Ã2A1 - 3.50 4.21 - 14.75 -

B̃2B2 - - 4.15 5.73 5.26 9.05

C̃2A1 - - - 4.83 5.52 -

D̃2B1 - - - - 5.09 5.44

Ẽ2A1 - - - - - 5.44

the energy of the minimum of the seam of CIs as compared to their value obtained in
a linear coupling model (excluding the γ terms in the Hamiltonian). This lowering is

quite significant (∼ 2.38 eV) in case of the X̃-Ã CIs, which puts the energetic minimum

of its seam at ∼ 0.6 eV above the minimum of the Ã state. The CIs of the X̃ state with
the remaining states occur at much higher energies and are not expected to have any
role on the nuclear motion on these states in the time scale of the present investigations.
Except the minimum of the Ã-B̃ CIs which occurs ∼ 0.71 and ∼ 0.06 eV above the
minimum of the Ã and B̃ state, respectively, all the other CIs with the Ã state occur
at higher energies (cf, Table 3.34). Similarly, the minimum of the CIs of B̃ state with
others occurs much above its energetic minimum at ∼ 4.15 eV. The energetic minimum
of the CIs of C̃ state with B̃, D̃ and Ẽ states occurs within ∼ 1.0 eV above its energetic
minimum and expected to be important in the nuclear dynamics on this state. The
estimated minimum of the C̃ state is also very close to the minimum of the B̃-C̃, C̃-D̃
and D̃-Ẽ CIs (∼ 0.15, ∼ 0.43 and ∼ 0.35 eV, respectively, in that order). The minimum

of the Ẽ state is quasi-degenerate with the minimum of the D̃-Ẽ CIs and lies only ∼ 0.08
eV above the C̃-D̃ CIs. The dynamical consequences of all these findings are examined
in detail in Chapter 4.

3.4.3 X̃2E1 , Ã4E1 and B̃2E1 electronic states of isomer I of B7

It is mentioned above that the isomer I of B7 possesses C6v point group symmetry at
the equilibrium geometry of the reference B−

7 . The first three electronic states of the B7

(considered here) are orbitally degenerate at this geometry. The electronic degeneracy
is restored upon distortions along the totally symmetric vibrational modes ν1 and ν2.
The cuts of the adiabatic electronic PESs along the coordinates of these vibrational
modes are shown in Figs. 3.18(a-b), respectively. In these figures the solid curves
represent the adiabatic electronic energies obtained by diagonalizing the model diabatic
electronic Hamiltonian, HI−TNI6, using the parameters given in Table 3.28. The points
superimposed on these curves represent the ab initio calculated adiabatic electronic
energies. It can be seen from these figures that the degeneracy of the electronic states
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Figure 3.16: Same as in Fig 3.13 for the X̃2B2, Ã
2A1, B̃
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2B1 and Ẽ2A1

electronic states of B5 along the totally symmetric vibrational modes.

is not lifted along these modes and the calculated ab initio electronic energies are in
very good accord with those obtained from the constructed vibronic model. It can
be seen from Fig. 3.18(b) that the vibrational mode ν2 is strongly condon active in

the X̃2E1 state of the isomer I of B7. The equilibrium minimum of this state shifts
considerably away from the equilibrium minimum of the reference state occurring at
Q=0. The condon activity of both the modes in the remaining electronic states is very
weak as can also be seen from the coupling strength data given in Table 3.28.

In contrast to the symmetric modes, distortion along the degenerate JT active e2
vibrational modes split the electronic degeneracy of the above electronic states. One
dimensional cuts of the degenerate X̃, Ã and B̃ electronic states of B7 along the co-
ordinates of one component of the e2 vibrational modes are shown in Figs. 3.19(a-c),
respectively. As in Fig. 3.18, the calculated ab initio energies and those obtained from
the vibronic model are shown by the points and solid curves, respectively. It can be
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Figure 3.17: Potential energy functions (derived from higher order polynomial fit) of
the electronic states of B5 in the vicinity of crossings. The calculated ab
initio energies are given by points.
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3.4 Adiabatic potential energy surfaces

seen that the vibronic model reproduces the ab initio energies extremely well also for
geometries significantly away from the Franc-Condon zone. From the splitting pattern,
it can be seen that the JT activity of the vibrational mode ν8 is almost similar in all
three states. The JT activity of the vibrational mode ν10 is the strongest in the X̃ state
and that of ν9 is weakest in the Ã and B̃ electronic states. It is well known that the JT
splitting causes a symmetry breaking and as a result new minima (of lower symmetry)
and saddle points develop on the lower adiabatic sheet of the JT split PESs [44]. The
seam of CIs of the JT split PESs, on the other hand, occurs at the C6v symmetry config-
urations and each point on this seam represents a ‘cusp’ in an adiabatic electronic basis.
Using the linear and diagonal second order coupling parameters given in Table 3.28, the
energetic minimum on this seam is calculated for all three degenerate electronic states.
Energetic minima at ∼ 2.769, ∼4.096 and ∼4.339 eV are found, respectively, on the JT
interaction seam of the X̃, Ã and B̃ electronic states. The new energetic minima on the
lower adiabatic sheet of the JT split PESs of the X̃, Ã and B̃ states occur at ∼2.661,
∼4.024 and ∼4.276 eV, respectively. Therefore, the JT stabilization energy amounts to
∼0.11, ∼0.07 and ∼0.06 eV of these three states in that order.

3.4.4 X̃2B2 , Ã2B1 , B̃2B2 , C̃2A1 and D̃2B1 electronic states of
isomer II of B7

One dimensional cuts of the adiabatic PESs of the X̃, Ã, B̃, C̃ and D̃ electronic states
of the isomer II of B7 are plotted along the coordinates of the symmetric vibrational
modes ν1-ν5 in Figs. 3.20 (a-e), respectively. As in Figs. 3.18- 3.19, the potential energies
obtained from the present theoretical model and computed ab initio are shown by the
lines and points, respectively. In contrast to Fig. 3.18 of isomer I, where a second-order
model was adequate to fit the ab initio data, a higher-order model had to be used for
the same in case of isomer II. It can be seen from Fig. 3.20 that the ab initio points
reveal substantial anharmonicity of the underlying PESs. It can be seen from Table 3.31
that third and fourth order terms contribute (along the given vibrational modes) to the
Taylor expansion [cf. Eq. 3.11e] of the potential energy of this isomer. With such higher
order expansion, it can be seen from Fig. 3.20 that the ab initio energies are very well
reproduced by the model.

The energetic minimum of the seam of various CIs and the minimum of the upper
adiabatic electronic states are estimated. The resulting data are collected in Table
3.35. The diagonal entries in this table are the energy at the minimum of a state.
Whereas, the off-diagonal entries represent the minimum of the seam of CIs. Although
the electronic state X̃2B2 is energetically well separated from Ã2B1 state (cf. Table

3.15) the energetic minimum of the seam of X̃2B2 -Ã
2B1 CIs is located at ∼3.91 eV (cf.

Table 3.35) and only ∼0.05 eV above the Ã state minimum. As the coupling strength
of a2 vibrational modes between these states is moderate (see Table 3.33), the CIs can

act as a funnel for the nonradiative transfer of electronic population of Ã2B1 state to
the X̃2B2 state. The minimum of X̃2B2 -B̃2B2 and X̃2B2 -C̃2A1 CIs occurs at ∼ 6.09
and ∼6.10 eV, respectively. These are ∼ 1.76 and ∼1.19 eV above the minimum of the
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Figure 3.18: One dimensional plots of multidimensional adiabatic PESs of X̃2E1 ,
Ã4E1 and B̃2E1 electronic states of isomer I of B7 as a function of the
dimensionless normal displacement coordinates of the totally symmetric a1
vibrational modes, ν1-ν2. The electronic energies are plotted along the co-
ordinate of the given vibrational mode keeping others at their equilibrium
reference configuration. The energies obtained from the constructed model
and calculated ab initio are shown by the lines and points, respectively.
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Figure 3.19: Same as in Fig. 3.18, plotted along the normal displacement coordinate of
the x component of the JT active degenerate vibrational modes ν8, ν9 and
ν10 in panel a, b and c, respectively.
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3 Structure of boron clusters

B̃2B2 and C̃2A1 state, respectively. The minimum of X̃2B2 -D̃2B1 CIs occurs at ∼5.69
eV, which is just ∼0.10 eV above the minimum of D̃2B1 electronic state. Similarly, the
minimum of Ã-B̃ CIs occurs at ∼ 4.35 eV, which is only ∼ 0.02 eV above the minimum
of B̃ state. Furthermore the coupling of these two states via vibrational modes of a2
symmetry is stronger [cf. Table 3.33]. Therefore, the vibronic structures of the Ã and

B̃ electronic states is expected to be strongly perturbed by the associated nonadiabatic
effects. Eventhough the Ã2B1 -C̃2A1 CI occurs at ∼4.93 eV and located only ∼0.02 eV
above the minimum of C̃2A1 state, the coupling between these states via ν11 vibrational
mode (cf. Table 3.33) is much weaker compared to Ã-B̃ coupling. Finally, the minimum

of B̃2B2 -C̃
2A1 CIs occurs at ∼5.00 eV and located ∼0.09 eV above the minimum of the

C̃2A1 state. The coupling strength of ν15 vibrational mode is also quite large between
these states. Impact of these electronic state couplings on the nuclear dynamics is
discussed in section 4.2.3.

3.4.5 2A2 , 2B2 , B̃′
2
B1 , C̃ ′

2
A1 and D̃′

2
A1 electronic states of isomer

III of B7

Adiabatic potential energies of the X̃ ′, Ã′, B̃′, C̃ ′ and D̃′ electronic states of the neutral
isomer III are plotted as a function of the normal displacement coordinates of the totally
symmetric vibrational modes (ν1-ν6) in Figs. 3.21(a-f). As in the case of isomer I and
II, the calculated ab initio energies are in excellent accord with those obtained from the
vibronic model in this case also. It can be seen from Fig. 3.21, in particular, from panel
a and f that electronic states of isomer III exhibit a rich variety of curve crossings-all
five states are entangled together. As in case of isomer II, the energetic minimum of
various CIs and also the minimum of the states are estimated in this case. The results
are collected in Table 3.35. It can be seen from the latter that the minimum of X̃ ′-Ã′ CIs
is ∼0.73 and ∼0.16 eV above the minimum of the X̃ ′ and Ã′ states, respectively. The
minimum of the X̃ ′-B̃′ CIs is quasi-degenerate with the minimum of the B̃′ state and
occurs ∼0.42 eV above the minimum of the X̃ ′ state. Similarly, the minimum of X̃ ′-C̃ ′

CIs occurs nearly at the equilibrium minimum of the C̃ ′ state. While the coupling of
the X̃ ′-B̃′ state is not revealed by the electronic structure results, that of the X̃ ′-Ã′ and
X̃ ′-C̃ ′ is expected to have noticeable impact on the nuclear dynamics (cf. Table 3.33).

The intersection minimum of B̃′ and C̃ ′ state occurs ∼0.25 eV above the minimum of
the C̃ ′ state. These two states are strongly coupled through ν10 vibrational mode of b1

symmetry. The B̃′ and D̃′ states are also fairly strongly coupled through ν9 and ν10
vibrational modes. The intersection minimum of these states occurs ∼0.73 eV above
the minimum of the D̃′ state. The intersections between the remaining states occur
at higher energies and are not expected to have any noticeable impact on the nuclear
dynamics.
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Figure 3.20: Same as in Fig. 3.18 for the X̃2B2 , Ã
2B1 , B̃
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2B1 electronic
states of neutral B7 originating from the isomer II of B−
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Table 3.35: Estimated equilibrium minimum (diagonal entries) and minimum of the
seam of various CIs (off-diagonal entries) of the electronic states of neu-
tral isomer II and III within a quadratic coupling model. All quantities are
given in eV.

Isomer II Isomer III

X̃ Ã B̃ C̃ D̃ X̃ ′ Ã′ B̃′ C̃ ′ D̃′

X̃ 2.32 3.91 6.09 6.10 5.69 X̃ ′ 3.14 3.87 3.56 4.43 16.93

Ã 3.86 4.35 4.93 - Ã′ 3.71 3.79 4.47 5.28

B̃ 4.33 5.00 5.62 B̃′ 3.56 4.66 5.37

C̃ 4.91 5.59 C̃ ′ 4.41 6.70

D̃ 5.59 D̃′ 4.64

3.5 Summary

Structures of the low-lying electronic states of neutral B4, B5 and B7 clusters have been
investigated here as a prerequisite for the dynamics study (presented in Chapter 4) to
examine the photodetachment spectrum of the corresponding anions. The electronic en-
ergies are calculated by the CASSCF-MRCI method along the normal coordinates of the
reference equilibrium geometry of the corresponding anionic clusters. The possibilities
of curve crossings and CIs among various electronic states of B4 and B5 are thoroughly
examined. In case of B4 the possibility of intersystem crossings between its singlet and
triplet electronic states is also analyzed. The possible spin contamination issue in B−

4

is examined in detail using different electronic structure methods. With the aid of the
calculated ab initio energies, model vibronic Hamiltonians are developed in terms of
normal coordinates of vibrational modes and employing a diabatic electronic basis. It
is found that the model required terms upto sixth order in the Taylor expansion of the
elements of the electronic Hamiltonian matrix for a satisfactory representation of the
calculated ab initio data for B5 along same vibrational modes. Various stationary points
of the multidimensional PESs, e.g., the energetic minimum of the seam of CIs and the
equilibrium minimum of a state, are estimated. The static aspects of neutral B7 clusters
originating from electron detachment of three isomers (C6v hexagonal pyramidal, C2v

pyramidal and C2v planar) of anionic B−
7 cluster are examined. All three neutral B7

clusters originating from the three isomers of B−
7 exhibit rich vibronic coupling mecha-

nisms in their energetically low-lying electronic states. While the latter of the neutral
cluster corresponding to the C6v isomer are JT active, those corresponding to the C2v

isomers form symmetry allowed CIs. To the best of our knowledge, B7 represents a
unique system for which the complex vibronic structure of the energetically low-lying
electronic state arise from anion precursors of different symmetry and a rich variety of
VC mechanism. The expected impact of these energy data on the nuclear dynamics of
B4, B5 and B7 electronic states (studied in detail in Chapter 4) is discussed.

85



References

References

[1] H. Kato and K. Yamashita, Chem. Phys. Lett. 190, 361 (1992).

[2] I. Boustani, Int. J. Quantum Chem. 52, 1081 (1994).

[3] A. Ricca and C.W. Bauschlicher Jr., Chem. Phys. 208, 233 (1996).

[4] I. Boustani, Phys. Rev. B. 55, 16426 (1997).

[5] L. Hanley, J. L. Whitten, and S. L. Anderson, J. Phys. Chem. 92, 5803 (1988).

[6] L. Hanley and S. L. Anderson, J. Phys. Chem. 91, 5161 (1987).

[7] S. A. Ruatta, P. A. Hintz, and S. L. Anderson, J. Chem. Phys. 94, 2833 (1991).

[8] P. A. Hintz, S. A. Ruatta, and S. L. Anderson, J. Chem. Phys. 92, 292 (1992).

[9] M. Kobayashi, I. Higashi, and M. Takami, J. Solid State Chem. 133, 211 (1997).

[10] R. N. Grimes, J. Chem. Educ. 81, 657 (2004).

[11] A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang, Coord. Chem.
Rev. 250, 2811 (2006).

[12] B. Kiran, S. Bulusu, H.J Zhai, S. Yoo, X. C. Zeng and L. S. Wang. Proc. Natl.
Acad. Sci. USA. 102, 961 (2005).

[13] H. J. Zhai, L. S. Wang, A. N. Alexandrova, A. I. Boldyrev, and V. G. Zakrzewski,
J. Phys. Chem. A 107, 9319 (2003).

[14] H. J. Zhai, L. S. Wang, A. N. Alexandrova, and A. I. Boldyrev, J. Chem. Phys.
117, 7917 (2002).

[15] H-J Zhai, L-S Wang, A. N. Alexandrova and A. I. Boldyrev, J. Phys. Chem. A
108, 3509 (2004).

[16] Q-S Li, L-F Gong, and Z-M Gao, Chem. Phys. Lett. 390, 220, (2004)

[17] M. T. Nguyen, M. H. Matus, V. T. Ngan, D. J. Grant, and D. A. Dixon, J. Phys.
Chem. A 113, 4895, (2009)

[18] T. B. Tai, D. J. Grant, M. T. Nguyen, and D. A. Dixon, J. Phys. Chem. A 114,
994, (2010)

86



References

[19] D. C. Young, Computational Chemistry: A Practical Guide for Applying Tech-
niques to Real World Problems, John Wiley & Sons, Inc., New York, USA, 2002,
p. 227.

[20] A. N. Alexandrova, A. I. Boldyrev, Y. J. Fu, X. Yang, X. B. Wang, and L. S.
Wang, J. Chem. Phys. 121, 5709 (2004).

[21] A. N. Alexandrova and A.I. Boldyrev, J. Chem. Theory Comput. 1, 566 (2005).

[22] J. V. Ortiz, J. Chem. Phys. 89, 6348 (1988).

[23] L. S. Cederbaum, J. Phys.B 8, 290 (1975).

[24] W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comp. Phys. Rep. 1, 57 (1984).

[25] T. S. Venkatesan, K. Deepika, and S. Mahapatra, J. Comput. Chem. 27, 1093
(2006).

[26] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[27] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796
(1992).

[28] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

[29] M. J. Frisch, et al. Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh, PA,
2003.

[30] M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503
(1988).

[31] M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275
(1990).

[32] M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281
(1990).

[33] J. Cizek, Adv. Chem. Phys. 14, 35 (1969).

[34] G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

[35] G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, J. Chem. Phys. 89, 7382
(1988).

[36] G. E. Scuseria and H. F. Schaefer III, J. Chem. Phys. 90, 3700 (1989).

[37] J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968
(1987).

87



References

[38] E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular vibrations (McGraw-
Hill, New York, 1955).

[39] H. -J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

[40] P. J. Knowles and H. -J. Werner, Chem. Phys. Lett. 145, 514 (1988).

[41] P. J. Knowles and H. -J. Werner, Theor. Chim. Acta. 84, 95 (1992).

[42] H. -J. Werner, P. J. Knowles, R. D. Amos, A. Bernhardsson, and oth-
ers, MOLPRO-2010.2, a package of ab initio programs; Universitat Stuttgart:
Stuttgart, Germany; University of Birmingham:Birmingham, United Kingdom,
2010.2.

[43] T. Koopmans. Physica. 1, 104 (1933).
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4 Theoretical study of
photodetachment spectra of anionic
boron clusters. Nuclear dynamics

4.1 Introduction

The nuclear dynamics of boron clusters has not been studied in the literature except
for B3 [1] from our group. In this chapter we investigate how the complex structural
properties of boron clusters detailed in Chapter 3 contribute to the nuclear dynamics
underlying the observed photodetachment bands [2,3]. The crossings of various electronic
states leading to CIs [7,8] often control the nuclear motion primarily on the participating
electronic states and contribute to their overall band structures and time-dependent
properties. The most critical consequence of CIs of electronic PESs is a break-down
of the adiabatic BO theoretical formalism [9, 10]. In such circumstances it is therefore
necessary to go beyond and examine nuclear motion concurrently with the electronic
motion [7, 11–13]. The present study (wherever relevant) considers such a requirement.
Moreover, the study here relies on a full quantum mechanical treatment including most
of the relevant electronic and nuclear DOF.
The photodetachment spectrum of B−

4 , B
−
5 and B−

7 considered here has been exper-
imentally recorded by Wang and coworkers at three different (355, 266 and 193 nm)
wavelengths of the probe laser photon [2, 3]. Depending on the energy of the probe
photon at these wavelengths (3.496, 4.661 and 6.424 eV, respectively, in that order)
the recorded vibronic bands reveal varied degree of energy resolution of the underlying
peaks that could be attributed to the excitation of specific vibrational quanta. In the
theoretical study detailed below, we tried to identify and assign the specific vibrational
modes that contribute to a given spectral envelope predominantly.
The experimental photodetachment spectrum of B−

4 recorded by Wang and coworkers
[2] reveals four broad bands in the 1.0-5.0 eV energy range. The recording at 355 nm

photon wavelength revealed partially resolved structure of the ã band whereas the X̃
band revealed broad structure consistently at all three wavelengths of the photon used
in the measurements. The latter is interpreted (through ab initio electronic structure
calculations) to be due to a large geometry change of the neutral B4 in its electronic
ground state compared to that of B−

4 [2]. The detachment spectrum recorded at 266 nm

revealed interesting and complex overlapping structures of the triplet ã and b̃ electronic
states of B4 [2]. While the origin of X̃, ã and b̃ bands could be successfully predicted,
the C band (as marked in the experiment [2]) that shows up in the 193 nm spectrum
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4 Dynamics in boron clusters

could not be given a clear interpretation of its origin! In the present chapter, in addition
to describing the detailed structure of the X̃, ã and b̃ bands, we attempt to resolve this
issue also.

The photodetachment spectrum of B−
5 recorded using same laser photons (as in case of

B−
4 ) revealed four bands in the 1.5-6.4 eV binding energy range [3]. While the three bands

observed at lower energies are attributed to the X̃, Ã and B̃ doublet electronic states of
B5, the fourth one revealed much complex pattern observed at higher electron binding
energies [3]. Resolved vibrational structures of the X̃ and Ã bands are reported at 355
nm and 266 nm photon wavelengths, respectively. An adiabatic ionization energy of ∼
2.33 eV is estimated from the resolved vibronic structure of the X̃ state in which the 550
cm−1 vibrational mode is reported to make major progressions [3]. An average spacing

of ∼ 530 cm−1 is estimated from the resolved vibronic structure of the Ã band observed
in the 266 nm spectrum [3]. The B̃ band, distinctly appeared in the 193 nm spectrum,
is very broad and no vibrational progressions could be resolved. The complex features
of the C band observed in the 193 nm spectrum is reported to originate from two one
electron and several multielectron transitions. Inadequate energy resolution is one of the
major shortcoming of the detachment spectrum of these small boron clusters. As pointed
out by Wang and co-workers [2] that this is primarily due to low photodetachment cross
sections of the light clusters and difficulty to produce them in cold conditions. The VDEs
of B−

5 has been computed by the ROVGF as well as RCCSD(T) methods and excellent
agreement with the experimental results has been reported [3]. The electron affinities of
neutral B4 and B5 clusters and VDEs of their anions are calculated at CCSD(T) level
and extrapolated upto CBS level [5, 6]. These reported results are in good accord with
ours presented in Chapter 3.

The photodetachment spectrum of B−
7 recorded by Wang and co-workers reveals very

complicated and congested band structure [4]. The spectrum recorded at 193 nm is
reproduced in panel a of Fig. 4.20. A broad feature (X) at ∼2.85 eV and a very sharp
and intense band (A) at ∼3.44 eV with a short vibrational progression with a spacing
480 (40) cm−1 are observed with the 355 nm laser photon. The adiabatic detachment
energies ∼ 2.55 and 3.44 eV for X and A bands are observed in the experiment [4]. Four
more bands B (3.71 eV), C (3.84 eV), D (4.05 eV) and E (4.21 eV) are observed at 266
laser energy. In 199 nm spectrum five more states appeared in a congested and narrow
energy range of ∼ 0.7 eV. Overall total 11 distinct features are discernible in the 193 nm
spectrum. The spectral intensities in the photodetachment spectrum of B−

7 found to be
altered by the source of boron cluster beam [4], indicating the contribution of more than
one low-lying isomers. Boldyrev et al. with his ab initio calculations confirmed that three
isomers of B−

7 viz., a triplet hexagonal pyramidal (C6v,
3A1), a singlet pyramidal (C2v,

1A1) and a singlet planar (C2v,
1A1) contribute most to the recorded photodetachment

band structure [4]. The above three isomers will be identified as I, II and III in the given
order in the rest of this chapter.

In the present chapter we set out to investigate the detailed structure of each of the
observed photodetachment bands of B−

4 , B
−
5 and B−

7 by studying the underlying nuclear
dynamics quantum mechanically using the techniques developed in 2 and employing the
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4.2 Results and Discussions

Hamiltonians developed in Chapter 3. The excitations of vibrational modes, electronic
nonadiabatic coupling effects and decay of the excited electronic states are examined
and discussed in relation with the experimental observations mentioned above.

4.2 Results and Discussions

In this section we first report the complete broad band spectral envelopes of the electronic
states of B4, B5 and B7. These broad band envelopes are calculated by propagating WPs
using the MCTDH program modules [14–17] and considering the complete Hamiltonians
developed in Chapter 3. The ab initio electronic structure parameters reported therein
are used (as are) without any adjustments. The theoretical results are compared with
the reported experimental band structures [2, 3]. Subsequently, each of the broad spec-
tral envelopes is critically examined at higher energy resolution. In this case the precise
location of the vibronic levels is calculated by a time- independent matrix diagonaliza-
tion approach employing the Lanczos algorithm [18] as stated above. The resolved band
structures are also compared with resolved experimental results whenever available. Im-
portantly, this exercise enabled us to identify the excitations of the vibrational modes
underlying the broad experimental bands and assess the impact of electronic nonadia-
batic effects on their overall structure. Finally, the decay of excited electronic states is
examined and discussed.

4.2.1 Photodetachment bands of B−4
Broad band spectral envelope

The broad band spectrum of the low-lying electronic states of B4 is shown in Fig. 4.1
along with the recorded 193 nm detachment spectrum of Wang and coworkers [2]. The
theoretical results are obtained by using the six states diabatic Hamiltonian given in Eq.
(3.7a) of Chapter 3 including all six vibrational degrees of freedom. Six separate WP
propagations are carried out by preparing the WP initially in each of these electronic
states and by numerically solving the time-dependent Schrödinger equation with the aid
of the MCTDH program modules [14–17]. The technical details of the MCTDH WP
propagations are given in Table 4.1. The time autocorrelation function data obtained
from six calculations are combined in 1:1 statistical ratio, damped with an exponen-
tial function, e−

t
τ (with a damping time τ= 11 fs) and finally Fourier transformed to

generate the spectral envelopes shown in the panel a and b of Fig. 4.1. While the set
of Hamiltonian parameters (cf. Tables 3.17 to 3.20 of Chapter 3) obtained with the
UB3LYP optimized equilibrium geometry of B−

4 used to calculate the spectrum in panel
a, the same (cf. Tables 3.21 to 3.24 of Chapter 3) obtained with the ROMP2 optimized
equilibrium geometry are used to calculate the spectrum in panel b. It can be seen that
both the results agree extremely well with each other. This additionally demonstrates
negligible spin contamination in the theoretical results presented here. Although the
theoretical results in Figs. 4.1(a-b) obtained by using reference geometry optimized by
two different methods agree extremely well with each other, the VDEs obtained from the
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4 Dynamics in boron clusters

Table 4.1: The normal mode combinations, sizes of the primitive and single particle bases
used in the WP propagation (using the MCTDH program modules [14–17])

on the X̃-ã-̃b-Ã-c̃-B̃ electronic manifold of B−
4 using the Hamiltonian of Eq.

(3.7a) of Chapter 3.

S.No Normal modes Primitive basis SPF basis
1 ν1,ν3 (10,8) [6,4,4,6,10,15]
2 ν2,ν5 (12,4) [10,10,4,10,4,4]
3 ν4,ν6 (4,8) [6,8,8,6,4,4]

ROMP2 optimized reference geometry seem to reproduce the experiment slightly better
(cf., Table 3.3 of Chapter 3) , Therefore, we have adjusted the VDE values obtained with
the UB3LYP optimized geometry to those of the ROMP2 reference values in calculating
the band structure presented in panel a.

It can be seen that the experimental features of the recorded detachment spectrum
(reproduced from ref. [2] in panel c) are reproduced very well by both sets of theoretical

results presented in Fig. 4.1. We reiterate that the X̃ band has been found to be
broad and diffuse in all three different wavelengths of the probe laser photon used in the
experiment [2]. The broad structure of the X̃ band is attributed to a large geometry
change of the equilibrium minimum configuration of the electronic ground state of B−

4

and B4 [2].

The second broad band has been attributed to the vibronic structure of the ã3B2u

and b̃3B1u electronic states of B4 based on their VDEs. It can be seen from Table 3.18
of Chapter 3 that these two states are coupled through the ν6 vibrational mode of b3g
symmetry. Also, the bilinear interstate coupling parameter along ν3ν4 vibrational modes
is nonzero for these states. It is discussed in Chapter 3 that the energetic minimum of
the ã-̃b CIs occurs at ∼ 3.34 eV, which is quasi-degenerate with the minimum of the
b̃ state. This results into the highly overlapping and diffuse structure of the second
detachment band of B−

4 . It can be seen that the observed asymmetry of this band is
very well reproduced by the present theoretical results.

The third detachment band of B−
4 has been found to be formed by the Ã, c̃ and B̃

electronic states of B4. All these three states are located vertically within ∼1.0 eV of
energy (cf., Table 3.3 of Chapter 3). The coupling of the singlet Ã and B̃ states is not
found from the electronic structure data. The triplet c̃ state is however, strongly coupled
to the b̃ state through the ν5 vibrational mode (cf., Table 3.18 of Chapter 3). Despite

this, the energetic minimum of the b̃-c̃ CIs occurs at ∼ 11.33 eV which is ∼ 7.24 eV
above the c̃ state minimum. It is therefore very unlikely to expect any impact of the
b̃-c̃ CIs on the overall structure of the third detachment band. Although the theoretical
structure of this band in Fig. 4.1 reveals an overall agreement with the experiment,
there remains several discrepancies:
(i) the structures above ∼ 3.7 eV and below ∼ 4.25 eV seen in the theoretical spectrum
are missing in the experimental band,
(ii) the theoretical band reveals distinct peak structure, whereas the experimental band
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Figure 4.1: The photodetachment bands of B−
4 obtained by the time-dependent WP

propagation approach (see text for details) and employing the complete vi-
bronic Hamiltonian of Eq. 3.7a of Chapter 3. The theoretical results ob-
tained by using the UB3LYP and ROMP2 reference geometries are shown in
panel a and b, respectively. The symmetry of the final electronic states (of
neutral B4) at the reference equilibrium configuration is indicated in panel
a. The 193 nm experimental recording of Wang and coworkers is reproduced
from Ref. [2] and shown in panel b.
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4 Dynamics in boron clusters

Table 4.2: The number of harmonic oscillator basis function used in the calculation of
the stick vibronic spectrum of the mentioned electronic states of B4.

S.NO State(s) No. of HO basis along
ν1,ν2,ν3,ν4,ν5,ν6

1 X̃1Ag 9,100,2,2,2,2
2 ã3B2u 10,200,2,2,2,2

3 b̃3B1u 80,4,2,2,2,2

4 Ã1B2u 5,125,2,2,2,2
5 c̃3B2g 320,6,2,2,2,2

6 B̃1B2g 250,6,2,2,2,02

7 X̃1Ag-Ã
1B2u 30,300,10,10,2,2

8 ã3B2u-̃b
3B1u 10,150,6,6,45,2

is almost structureless.
Small detachment cross sections obtained in the experimental measurements [2] and

the neglect of probable contribution from dynamic spin- orbit interactions of the triplet
c̃ state with the participating singlet states may be the reasons for the observed discrep-
ancy. The latter issue is presently being examined in our group.

Interpretation of the structure of the detachment bands

The photodetachment bands of B−
4 presented in Fig. 4.1(a) are examined here in detail

to reveal the contributions of the vibrational modes to the broad envelopes. A time-
independent matrix diagonalization method (as discussed in Sec. 2.4.1) of Chapter 2
is employed for this purpose. This method yields the precise location of the vibronic
lines within the accuracy of the present theoretical model. The technical details of the
calculation of all the stick vibronic spectra presented in this section are given in Table
4.2. The calculated stick spectrum of a given state is convoluted with a Lorentzian
function with 15 meV FWHM to generate the corresponding envelope. All theoretical
calculations are carried out with the Hamiltonian parameters presented in Chapter 3
(cf., Tables 3.17 to 3.20 of Chapter 3) without any adjustments.

The vibrational structure of the X̃1Ag electronic state of B4 without including its cou-
pling with the neighboring states is shown in panel a of Fig. 4.2. Both the symmetric
vibrational modes ν1 and ν2 form progressions in this band. The dominant progression
is formed by the ν2 vibrational mode. The peaks are 1590 and 423 cm−1 spaced corre-
sponding to the frequency of combination (ν1+ν2) and ν2 vibrational modes, respectively.
As stated above that a very broad structure of this band is observed in the experiment.
The best, resolved band structure obtained in the 355 nm recording is given in panel b
of Fig. 4.2. It can be seen that the overall width of the experimental band is in good
accord with the theoretical results. The theoretical VDEs of ∼ 1.903 eV (cf., Table
3.3 of Chapter 3) is also in good agreement with the experimental estimate of ∼ 1.99
± 0.05 eV [2]. This estimate is slightly in better agreement with the results obtained
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Figure 4.2: The stick vibronic spectrum of the X̃1Ag electronic state of B4 along with the
convoluted spectral envelope. The spectrum obtained by excluding all cou-
plings with the neighboring states is given in panel a. The best resolved 355
nm experimental recording is reproduced from Ref. [2] and shown in panel

b. The spectrum obtained by including the coupling with the Ã electronic
state is shown in panel c.
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Table 4.3: Optimized equilibrium geometry parameters of the electronic ground state of
B4. The results available in the literature [2] are also included in the table
for comparison.

S.No Equilibrium parameters for B4 Ref. [2] Ref. [5]a This work

in the X̃1Ag state B3LYP/aug-cc-pVTZ
1 Etotal⧸hatree -99.156 -98.919 -99.137
2 R(B1-B2)⧸angstrom 1.523 1.5754 1.519
3 R(B1-B3)⧸angstrom - 1.9334 1.889
4 R(B2-B4)⧸angstrom - - 2.399
5 ∠B1−B2−B3 ⧸degrees 76.50 75.7 76.5
6 ∠B2−B1−B4 ⧸degrees - 104.3 103.5

a The total electronic energy calculated at CCSD(T) and extrapolated to complete
basis set upto doubles, triples and quadrapole zeta (CBS(DTQ)) approximation. The

geometry parameters reported at CCSD(T)/aug-cc-pVTZ level of theory.

from ROMP2 and UCCSD(T) optimized reference geometry. It is discussed in Chapter

3 that the X̃1Ag state is not coupled (in first-order) with the other two singlet states

Ã and B̃. A non-zero bilinear interstate X̃-Ã coupling along ν3ν6 combination modes
has been found (cf., Tables 3.19 and 3.23 of Chapter 3). However, no noticeable impact

of this coupling on the structure of the X̃ band is observed. The X̃ band obtained by
including the X̃-Ã coupling is shown in panel c. The significant geometry change (along
the B-B-B angle) from the anion to the neutral ground electronic state is obvious from

the structure of X̃ band. The intensity of the origin (0-0) peak is very small and the
maximum shifts to the 4th/5th quantum of excitation of the ν2 vibrational mode. We

also optimized the equilibrium geometry of B4 in the X̃ state, at the B3LYP/aug-cc-
pVTZ level of theory. The optimized geometry parameters are given in Table 4.3 and
compared with the available literature data [3,5]. It can be seen in comparison with the

optimized geometry parameters of the anionic X̃2B1u state (cf., Table 3.1 of Chapter 3)
that all the adjacent B-B bonds are shortened by 0.04 angstrom1 and the B-B-B angles
are reduced by ∼ 13◦ in the neutral ground state. The bond between the diagonally
opposite B atoms elongates by ∼ 0.24 angstroms in the neutral ground state.

The vibrational structures of the uncoupled ã3B2u and b̃3B1u electronic states of B4

are shown in panel a and b of Fig. 4.3, respectively. It can be seen from Table 3.18 of
Chapter 3 that the coupling strength of both the symmetric vibrational modes is very
small in the b̃ state whereas, the vibrational mode ν2 has a large coupling strength in
the ã state. The bilinear ν1ν2 coupling parameter in the ã state is ∼10 times larger
than that in the b̃ state (Table 3.19 of Chapter 3). As a result distinct progression
of the ν2 vibrational mode can be observed in the spectrum of the ã state (panel a).
The peaks are ∼ 741 cm−1 spaced, corresponding to the frequency of the ν2 vibrational
mode in the ã state. In contrast, the spectrum of the b̃ state (panel b) shows only weak

1Due to some conflict in latex packages, I am unable to write the symbol of angstrom.
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structures. Very weak excitation of ν1 vibrational modes at an energy spacing (from 0-0
peak) of ∼ 1150 cm−1 can be seen from the spectrum of panel b of Fig. 4.3. The band

structure of the ã and b̃ electronic states, is found to be very broad and overlapping in
the experimental recording [2]. As already discussed that the ã and b̃ states are coupled
through the ν6 (Table 3.18 of Chapter 3) and ν3ν4 (Table 3.19 of Chapter 3) vibrational

modes, and the energetic minimum of ã-̃b CIs is quasi-degenerate with the minimum
of the b̃ state. Strong nonadiabatic mixing of the ã and b̃ electronic states therefore
causes a blurring of the distinct weak vibrational structure of the uncoupled b̃ state.
The coupling strength of the b̃ with the c̃ state is also very large (Table 3.18 of Chapter
3), however, these two states are vertically ∼ 1.0 eV apart (cf. Table 3.3 of Chapter

3). Also the minimum of the b̃-c̃ CIs occurs at much high energy, ∼ 7.24 eV above the

minimum of the b̃ state and does not have any impact on the spectrum. The ã-̃b coupled
states spectrum is plotted in panel c of Fig. 4.3. Some increase of the spectral line
density can be immediately seen from the spectrum of panel c. The excitation of non
totally symmetric mode ν6 with an energy spacing of ∼ 1004 cm−1 is estimated from
the irregular spectral progression.

It is shown in Fig. 4.1 and discussed therein that the third detachment band of B−
4

is formed by three energetically close-lying (Ã1B2u, c̃
3B2g and B̃1B2g) electronic states

of B4. These states are found to be decoupled from each other (except the possible
dynamic spin-orbit coupling which is not explored in this chapter) or coupling of any of
these states (if exists) with a lower one occurs at very high energies (for example, the

b̃-c̃ coupling, see Chapter 3 for details) and does not play any role in the energy range
of the detachment bands studied here. The composite third detachment band of B4

obtained by combining the stick spectrum of the Ã, c̃ and B̃ electronic states is shown
in the panel a of Fig. 4.4. The 193 nm and 266 nm experimental bands of Ref [2] are
shown in panel b of Fig. 4.4. It can be seen in comparison that in the 193 nm spectrum
the detachment cross section of the Ã state is very small. Whereas, distinct vibrational
structure of the Ã band is obtained in the theoretical results. The 266 nm experimental
spectrum, however reveals some structure in this region. At high energies the broad
band experimental envelope agrees fairly well with the overall composite spectrum of
the c̃ and B̃ electronic states of B4. The vibrational mode ν2 in the Ã and ν1 in the c̃ and
B̃ electronic states from dominant progressions. Peak spacings of ∼ 767, ∼ 1234 and ∼
1237 cm−1 are found corresponding to the frequency of these modes in the mentioned
electronic states, respectively.

Internal conversion dynamics

Dynamics of the electronic excited states of B4 cluster is examined in terms of time-
dependence of adiabatic electronic populations recorded in the WP calculations. The
time dependence of the adiabatic populations when the WP prepared on X̃, ã, b̃, Ã, c̃
and B̃ electronic states is shown in panel a-f of Fig. 4.5. Except for the ã3B2u and b̃3B1u

electronic states the nonadiabatic coupling effects are found not very insignificant in B4.
The coupling between the Ã1B2u and X̃1Ag states through the intermode bilinear (ν3ν6)
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Figure 4.3: Stick vibronic spectrum and the corresponding convoluted envelope. The
spectra of uncoupled ã and b̃ states are shown in panels a and b, respec-
tively. The entire ã-̃b spectrum obtained by including nonadiabatic coupling
between them is shown in panel c.
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the Ã, c̃ and B̃ electronic states of B4. The 193 and 266 nm experimental
recordings of Ref. [2] are shown in panel b for comparison.
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4 Dynamics in boron clusters

coupling term (cf., Table 3.19 of Chapter 3) has been found to have very mild effects on
the vibronic energy level structure of these electronic states only. Less than 1 % of the
electronic population flows to the X̃ state when the WP is initially prepared on the Ã
state in this case.

In contrast to the above scenario, the nonadiabatic coupling appears to have significant
effect on the dynamics of the ã3B2u and b̃3B1u electronic states. To assess these coupling
effects on the nonradiative internal conversion dynamics we show the time-dependence of
the adiabatic and diabatic electronic populations in Fig. 4.6. The adiabatic (thick solid
line) and diabatic (thin dashed line) electronic populations for an initial location of the

WP on the ã and b̃ diabatic states are shown in panel a and b of Fig. 4.6, respectively. It
can be seen from panel a of Fig. 4.6(a) that the diabatic population of the ã state starts

from 1.0 and that of the b̃ state from 0.0 at t=0. The population of the ã state flows
to the b̃ state in time and fluctuates around 0.8 at longer times. The recurrences in the
diabatic population curves indicate WP moves back and forth between the two states
in a time scale of ∼ 49 fs which nearly corresponds to the period of the ν2 vibrational
mode. It can be seen from the Table 3.18 of Chapter 3 that the latter mode is strongly
active in the ã state of B4. Since a diabatic state is an admixture of the two (lower and
upper) adiabatic states, the initial location of the WP on the diabatic state corresponds
to 70 % and 30 % population of the two adiabatic states. The upper and lower adiabatic
population curves in panel b correlates to the ã and b̃ states of B4, respectively. The
oscillations in the adiabatic population curves are much smaller in magnitude compared
to those in the diabatic population curves, and relatively less significant population flows
to the adiabatic states in this situation.

The adiabatic and diabatic electronic populations for an initial location of the WP on
the b̃3B1u electronic state (diabatic) are plotted in panel b of Fig. 4.6. The lower thin
dashed and thick solid curves represent diabatic and adiabatic population, respectively,
of the b̃ state whereas the same for the ã state are represented by the same two curves
in the upper part of panel b. In contrast to the population curves of panel a, a large
fraction of population flows to both the electronic states in this case. This is because
the equilibrium minimum of the b̃ state is near degenerate to the minimum of the ã-̃b
CIs (cf., Chapter 3). The diabatic population of the b̃ state starts from 1.0 at t=0. The
corresponding adiabatic population is ∼ 0.7 at t=0. A sharp decay of population occurs
within ∼ 10 fs followed by the quasi-periodic recurrences. The diabatic population of the
ã state on the other hand starts from zero at t=0 and exhibits quasi-periodic recurrences
at longer times. The corresponding adiabatic population also exhibits oscillatory pattern
starting at ∼ 0.3 at t=0. The initial sharp decrease of population relates to a decay rate
of the b̃ state of ∼ 14 fs (∼ 7 fs) in the diabatic (adiabatic) picture.

We note that the coupling parameters of the Hamiltonian derived from the ROMP2
optimized reference geometry (cf., Tables 3.21 to 3.24 of Chapter 3) are almost identical
to those obtained from the UB3LYP optimized reference geometry (cf., Tables 3.17

to 3.20 of Chapter 3). The stationary points of the ã-̃b are also nearly identical in the
two sets of results (cf., Chapter 3). The electronic population dynamics discussed above
also remains same when calculated with the parameters of (cf., Tables 3.17 to 3.20).
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Figure 4.5: Time-dependence of the adiabatic electronic populations in the coupled sur-
face dynamics of B4. The electronic populations for an initial preparation of
the WP on the X̃, ã, b̃, Ã, c̃ and B̃ electronic states are shown in panel a-e,
respectively (see text for details).
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4.2 Results and Discussions

Table 4.4: The normal mode combinations, sizes of the primitive and single particle bases
used in the WP propagation (using the MCTDH program modules [14–17])

on the X̃-Ã-B̃-C̃-D̃-Ẽ electronic states of B5 using Hamiltonian of Eq. (3.9)
of 3.

S.No Normal modes Primitive basis SPF basis
1 ν1,ν3,ν7 (6,10,8) [8,8,10,10,4,10]
2 ν2,ν6,ν8 (10,6,6) [10,8,10,8,4,8]
3 ν4,ν5,ν9 (8,4,8) [4,10,8,8,10,10]

4.2.2 Photodetachment bands of B−5

Broad band spectral envelope

The broad band spectral envelope of B5 obtained byWP propagations using the MCTDH
method [14–17] is shown in the panel a of Fig. 4.7. The 193 nm experimental recording
of Ref. [2] is shown in the panel b of Fig. 4.7. Six separate WP calculations are carried
out with six different choices of initial state, the time autocorrelation functions derived
from these calculations are then combined, damped with an exponential function (e−

t
τ ,

with τr=11 fs) and Fourier transformed to generate the spectral envelopes shown in panel
a. The full Hamiltonian and its parameters given in Eq. 3.9 and Tables 3.25 to 3.27
respectively of Chapter 3, are used in the WP calculations. The technical details of the
WP calculations using MCTDH program modules [14–17] are given in Table 4.4. It can
be seen from Fig. 4.7 that the broad band theoretical spectrum agrees fairly well with
the experimental band structures.

While the 193 nm experimental spectrum [3] reveals broad structures of all detachment

bands (with a partial resolution of the C band), resolved vibronic structures of the X̃ and

Ã states are reported in the 355 nm and 266 nm recordings, respectively. The individual
band structures at higher energy resolutions are discussed later in the text. The first
band is found to originate from photodetachment of B−

5 to the X̃2B2 electronic state of
B5. An adiabatic detachment energy of ∼ 2.33 eV is reported for this band [3]. The

second and third bands are found to represent the vibronic structures of the Ã2A1 and
B̃2B2 electronic states of B5. The third band marked C in the energy range between 4.7-
6.2 eV seems to reveal features originating from both one electron detachment channels
as well as multi-electron transitions [3]. No assignment of these features are available
from an analysis of the experimental spectrum [3]. We have found two one-electron

detachment channels leading to C̃2A1 and D̃2B1 electronic states of B5 and several
shake-up states (electron detachment followed by electron reorganization) exist in this
energy range. A careful examination of the details of these shake-up states is out of
the scope of the present chapter and is left to a future work. We however mention
that along with one electron detachment states C̃ and D̃ we considered the shake-up
state Ẽ in the theoretical calculations of the C band. The latter state is found to have
some contribution in the observed structure of the C band between ∼ 5.4-6.0 eV. The
structures between ∼ 4.7-5.4 eV are found to be formed by the C̃ and D̃ electronic states
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Figure 4.7: Broad band spectral envelope (panel a) of the low-lying six electronic states
of B5 cluster obtained by the WP propagations using the complete Hamil-
tonian of Eq. 3.9 of Chapter 3 (see text for details). The symmetry des-
ignation of the electronic states at the reference C2v configuration is given
in the panel. The 193 nm experimental recording of Ref. [3] is shown in
panel b. The relative heights of the theoretical envelopes are adjusted to the
maximum relative to the electron detachment probabilities extracted from
the experimental spectrum.

of B5.

As discussed in Chapter 3 that the existence of the C̃2A1 state does not have any clear
evidence in the literature. In our CASSCF(11,10)-MRCI calculations we found this state
at ∼ 4.96 eV of VDE. Now, the hump in the experimental results, between ∼ 4.5-5.0
eV can only be obtained with the CASSCF(11, 10)-MRCI results, as shown in Fig. 4.7.
We therefore strongly believe (as confirmed by more test calculations) the existence of

the C̃2A1 state in this energy region. The OVGF calculations clearly overestimate the
energy of this state and lead to a conflicting energetic ordering.
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Table 4.5: The number of harmonic oscillator basis function used in the calculation of
the stick vibronic spectrum of the mentioned electronic states of B5.

S.NO State No of HO basis along
ν1,ν2,ν3,ν4,ν6,ν7,ν8,ν9

1 X̃2B2 5,5,76,19,2,3,3,3

2 Ã2A1 3,8,3,16,2,3,3,3

3 B̃2B2 15,7,26,12,2,3,3,3

4 C̃2A1 50,4,7,60,2,3,3,3

5 D̃2B1 3,100,6,10,2,3,3,3

6 Ẽ2A1 15,3,22,11,2,3,3,3

7 X̃2B2-Ã
2A1 4,3,25,12,2,10,3,15

8 X̃2B2-C̃
2A1 4,3,12,6,2,4,9,54

9 X̃2B2-Ẽ
2A1 18,3,26,12,2,3,3,34

10 Ã2A1-B̃
2B2 12,8,32,18,2,3,10,3

11 B̃2B2-C̃
2A1 8,6,20,12,2,3,3,40

12 B̃2B2-Ẽ
2A1 6,4,16,9,2,2,2,36

13 D̃2B1-Ẽ
2A1 10,20,30,15,40,2,2,2

Interpretation of the structure of the detachment bands

The vibrational fine structures underlying the broad detachment bands of B−
5 shown in

Fig. 4.7 are examined here. The time-independent matrix diagonalization approach is
employed to calculate the stick line spectrum underlying the broad spectral envelopes.
In Table 4.5, the technical details of the calculation of each spectrum shown below are
given. Each spectrum is converged with respect to the parameters given in this table.
The stick spectra presented below are convoluted with a Lorentzian function of 15 meV
FWHM to generate the respective spectral envelopes.

The vibrational structure of the X̃ state of B5 in absence of coupling with its neigh-
boring states is shown in panel a and the resolved 355 nm experimental recording of
Ref [3] is shown in panel b of Fig. 4.8. It can be seen in comparison that the theoretical

results are in very good agreement with the experimental band structure of the X̃ state.
The weak feature observed at ∼ 2.24 eV in the experiment and attributed to a hot band
understandably cannot be seen in the theoretical results. From the data given in Table
3.25 of Chapter 3, the excitation of vibrational modes ν3 and ν4 can be expected in this
band. The excitation of the ν3 mode is stronger than that of ν4. Line spacings of ∼
724 and ∼ 658 cm−1 corresponding to the frequency of these modes, respectively, can
be extracted from the theoretical spectrum. A vibrational progression of ∼ 550 cm−1

has been estimated from the experimental band structure [3] of the X̃ state.

It can be seen from the data given in Table 3.26 that X̃ state is coupled (in first-

order) with the Ã2A1 state via ν7 and ν9 vibrational modes, with the C̃2A1 state via the

ν7, ν8 and ν9 vibrational modes and with Ẽ2A1 state via the ν7 vibrational mode of b2
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Figure 4.8: Stick vibronic spectrum and convoluted envelope of the X̃2B2 electronic state
of B5 in the uncoupled (panel a) and X̃-Ã-C̃-Ẽ coupled (panel c) states
situation. The 355 nm experimental recording reproduced from Ref. [3] and
shown in panel b.
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symmetry. The coupling strength is strongest between the X̃ and C̃ states through the
ν9 vibrational mode. Now considering the data presented in Table 3.34 of Chapter 3 and
discussions therein, it is expected that only the X̃-Ã coupling will have some impact
on the vibrational structure of the X̃ band, the intersections of the X̃ state with the
others occur at much higher energies. The coupling effect of each of the above states on
the X̃ band is examined in detail. To save space we do not show the calculated band
structures obtained by including each of these couplings. The coupling of the X̃ state
with the rest of the states does not have any major impact on its vibronic structure. The
final structure of the X̃ band including all couplings mentioned above is shown in the
panel c of Fig. 4.8. It can be seen that the resolved experimental band structure (panel
b) is indeed in good agreement with the theoretical results of panel c and nonadiabatic
coupling causes some increase of the vibronic line density. Weak excitations of the
nontotally symmetric coupling vibrational modes ν7, ν8 and ν9 are extracted from the
stick vibronic spectrum of panel c.

The vibrational structure of the uncoupled Ã state of B5 is presented in panel a along
with the better resolved 266 nm experimental recording [3] in panel b of Fig. 4.9. It can
be seen that the overall structure of the theoretical band is already in good agreement
with the experimental results. All symmetric vibrational modes are very weakly active
(cf., Table 3.25 of Chapter 3) in this electronic state. The excitation strength of the ν4
vibrational mode is highest among them. We indeed find the progression of ν4 vibra-
tional mode with an energy spacings of ∼ 530 cm−1 in theoretical stick spectrum of Fig
4.9(a). An energy spacing of ∼ 530 cm−1 similar to that in the X̃ band was reported
in the experiment [3]. We note that we differ with the experiment [3] in terms of major

progressions in the X̃ and Ã bands of B5. The theory predicts major progression of ν3
in the X̃ and ν4 in the Ã state of B5.

The equilibrium minimum of the Ã state occurs ∼ 0.6 and ∼ 0.7 eV below the mini-
mum of the X̃-Ã and Ã-B̃ CIs (see Chapter 3 for details). These two pairs of states are
coupled by the vibrational modes ν7, ν9 and ν7 (cf., Table 3.26 of Chapter 3), respec-

tively. The vibronic structure of the Ã state obtained by including the coupling with
the X̃ and B̃ states is shown in panel c of Fig. 4.9. It can be seen from the latter that
the nonadiabatic coupling causes an increase of the spectral line density although the
intensity of the lines is very small. As a result the spectral envelope becomes broad and
diffuse and agrees more closely to the experiment. Weak excitation of ν9 vibrational
mode is found in this case.

Although a partially structured B̃ band with extremely low intensity was obtained in
the 266 nm recording it appeared to be very broad and diffuse in the 193 nm recording [3].
No vibrational progressions could be resolved from these experimental band structures.
The data of Table 3.26 of Chapter 3 reveal that the B̃ state is coupled (in first-order)

with Ã, C̃ and Ẽ electronic states via the vibrational modes ν8; ν8, ν9 and ν7, ν9,
respectively, of b2 symmetry. The equilibrium minimum of the B̃ state occurs ∼ 0.06,
∼ 1.58 and ∼ 4.90 eV below the minimum of the Ã-B̃, B̃-C̃ and B̃-Ẽ CIs. It therefore
appears to be interesting to critically investigate the impact of these couplings on the
observed diffuse structure of the B̃ band of B5.
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Figure 4.9: Same as in Fig. 4.8 for the Ã2A1 electronic state of B5 in the uncoupled
(panel a) and coupled (panel c) states situations. The 266 nm experimental
recording of Ref. [3] is reproduced in panel b.
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The vibrational structure of the uncoupled B̃ state is presented in panel a of Fig. 4.10.
All four totally symmetric vibrational modes are excited in this band. The excitation of
the mode ν3 is strongest. Peak spacings of 1242, 901, 723 and 337 cm−1 corresponding
to the modified frequency of ν1, ν2, ν3 and ν4 vibrational modes, respectively, in the
B̃ state are extracted from the stick line spectrum of Fig. 4.10(a). The B̃ band is

examined by including the Ã-B̃, B̃-C̃ and B̃-Ẽ couplings. The effect of Ã-B̃ coupling on
the structure of the B̃ band is found to be the strongest. It causes a huge increase in the
vibronic line density. As mentioned above that the B̃ state minimum occurs only ∼ 0.06
eV below the minimum of the Ã-B̃ CIs and therefore the entire B̃ band is perturbed by
the associated nonadiabatic coupling. In contrast, the effect of coupling with the C̃ and
Ẽ states on the structure of the B̃ band is far less. The B̃ band obtained by including
the above couplings is shown in panel c of Fig. 4.10. It can be seen that observed diffuse
structure of this band [3] is much better reproduced by the spectrum of panel c.

The vibrational energy level spectrum of the uncoupled C̃, D̃ and Ẽ electronic states
are shown in panel a, b and c, respectively, of Fig. 4.11. The vibrational modes ν1
and ν4 form detectable progression in the C̃ state. Line spacings of ∼ 1191 and ∼ 474
cm−1, respectively, are extracted from the spectrum of the C̃ state. The vibrational
mode ν2 form extended progression in the D̃ state. Line spacing of ∼ 964 cm−1 has
been found from its spectrum shown in panel b. The vibrational modes ν1, ν3 and ν4
from detectable progression in the spectrum of the Ẽ state shown in Fig. 4.11(c). Peak
spacings of 1239, 723 and 471 cm−1 corresponding to the excitation of these modes,
respectively, are extracted from this spectrum.
It is discussed in Chapter 3 that the C̃ state is coupled with the X̃ and B̃ states, the D̃

state is coupled with the Ẽ state and the Ẽ state is coupled with the X̃, B̃ and D̃ states.
The D̃-Ẽ, B̃-Ẽ and X̃-Ẽ couplings are quite strong. The equilibrium minimum of the Ẽ
state is quasi-degenerate with the energetic minimum of the seam of D̃-Ẽ CIs. The X̃-Ẽ
and B̃-Ẽ CIs occur at much higher energies and are not relevant in the energy range of
the Ẽ band. A similar consideration on energetic ground reveals that the B̃-C̃, C̃-D̃,
B̃-D̃ CIs will play important role in the vibronic structure of the C̃ and D̃ bands. The
band structures of the C̃, D̃ and Ẽ electronic states obtained by including the couplings
mentioned above are shown in the panel a, b and c of Fig. 4.12, respectively. While the
impact of these couplings is not very significant on the C̃ and D̃ bands, the structure of
the Ẽ band is considerably modified by them.

Internal conversion dynamics

Similar to the case of neutral electronic states of B−
4 , the time-dependence of electronic

population of the neutral electronic states of B5 is recorded, when the WP prepared on
X̃, Ã, B̃, C̃, D̃ and Ẽ electronic states and is plotted in panels a-f of Fig. 4.13. From the
figure, it can be seen that no major flow of electronic population takes place to the other
states when the WP is initially prepared on the X̃, Ã, C̃ and D̃ electronic states. In
contrast, the electron population dynamics is quite involved for an initial location of the
WP either on the B̃ and Ẽ electronic states. The latter two cases are shown in panel a
and b of Fig. 4.14, respectively. The decay and growth of adiabatic (thick solid line) and
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Figure 4.10: Same as in Fig. 4.8 for the B̃2B2 state of B5. The B̃ band obtained in
the uncoupled and coupled (Ã-B̃-C̃-Ẽ) states situations is shown in panel a
and c, respectively. The 193 nm experimental recording is reproduced from
Ref. [3] and shown in panel b.

110



4.2 Results and Discussions

4.5 5 5.5 6

(a)

(b)

(c)

C
2
A1

D
2
B1

E
2
A1

eBE(eV)

R
el

at
iv

e 
in

te
n

si
ty

 (
ar

b
it

ra
ry

 u
n

it
s

~

~

~

Figure 4.11: Same as in Fig. 4.8 for the uncoupled C̃2A1, D̃
2B1 and Ẽ2A1 electronic

states of B5.
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Figure 4.12: The same C̃2A1, D̃
2B1 and Ẽ2A1 states in fully coupled situation is shown

in panel a, b and c respectively. These simulations were done by MCTDH
diagonalization procedure.
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diabatic (thin dashed line) electronic populations for an initial location of the WP on

the B̃ state are plotted in panel a of Fig. 4.14. The B̃ states population starts from 1.0
(diabatic) and 0.96 (adiabatic) at t=0 and rapidly decays to the Ã state and relatively

slowly to the X̃ state in time. This is indicated by the growth of populations of the latter
two states. The decay of the B̃ state population is much faster in the adiabatic picture
and relates to a decay rate of ∼ 12 fs (adiabatic) and ∼ 38 fs (diabatic). The coupling

between the Ã-B̃ state caused by the ν8 vibrational mode of b2 symmetry. Although the
strength of this coupling is not very large [cf., Table 3.34 of Chapter 3], the energetic

minimum of the B̃ state located only ∼ 0.06 eV below the minimum of the Ã-B̃ CIs.
This causes a fairly strong mixing of the lower vibrational levels of the B̃ states with
higher vibrational levels of Ã state and a huge increase of the vibronic line density of the
B̃ state starting from its adiabatic detachment position [cf., Fig. 4.10(c)]. The adiabatic

population of the B̃ state exhibits damped oscillations and saturates at ∼ 0.2 at longer
time. The damping of the oscillations caused by the strong anharmonicity by the WP
in the vicinity of the CIs during its evolution. These quasiperiodic oscillations reveal a
period of 36 fs which roughly corresponds to the frequency of the ν2 vibrational mode.
The B̃ state is not directly coupled to the X̃ state of B5. However the small population
flow to the X̃ state seen in panel a of Fig. 4.14 is mediated via the X̃-Ã CIs. It can be
seen that within about 10 fs the population start flowing to the X̃ state indicating an
extremely fast internal conversion dynamics. The population of the X̃ state saturates
roughly to the same value as of the B̃ state at longer time.

Except the X̃ state the electron population flows to all excited states when the WP
is initially prepared on the Ẽ state as can be seen from panel b of Fig. 4.14. The
adiabatic population of the Ẽ state decays much faster (in about ∼ 12 fs) compared

to its diabatic population (∼ 167 fs). The Ẽ state quickly relaxes to the D̃ state as

its equilibrium minimum is quasi-degenerate with the minimum of the D̃-Ẽ CIs. The
damped recurrences in the adiabatic populations of the D̃ and Ẽ electronic states occur
in a period of ∼ 26 fs which correlates to the vibrational period of the ν1 mode. The
X̃-Ẽ CIs occur at higher energies (∼ 2.01 eV above the Ẽ state minimum) and therefore

no direct population transfer to the X̃ state can be seen. The population can however,
directly flow to the B̃ state through the B̃-Ẽ CIs. The small population flow to the Ã
and C̃ states occurs indirectly through the Ã-B̃ and B̃-C̃ CIs, respectively.

4.2.3 Photodetachment bands of B−7

In this section we present and discuss the photodetachment bands of B−
7 originating

from its three isomers discussed above. Theoretical results are compared with the ex-
perimental band structures and assigned. Wang and co-workers [4] assigned origin of
the observed peaks X and D to isomer I, X, E, F, H and I to isomer II and A, B and G
to isomer III (cf. panel a of Fig. 4.20 and Table 3.15) by performing extensive quantum
chemistry calculations of VDEs. In the following, the detachment bands are calculated
by employing the vibronic Hamiltonians HI, HII and HIII developed in section 3.3.3
and both by time-independent and time-dependent quantum mechanical methods. In
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the former approach the Hamiltonian matrix is represented in a direct product har-
monic oscillator basis of relevant vibrational modes and then diagonalized with the aid
of Lanczos algorithm [18] to calculate the precise location of the vibronic eigenvalues.
The spectral intensity is calculated by the golden rule equation. In the time-dependent
approach WP pertinent to reference initial state of the anion is propagated on the cou-
pled manifold of electronic states of the neutral isomer. At each step of propagation the
time autocorrelation function is calculated. The latter is Fourier transformed to calcu-
late the broad band detachment spectrum. The decay of the excited electronic states of
the neutral cluster is studied by recording the time-dependence of the electronic popu-
lation. The WP propagation is carried out within the framework of MCTDH approach
employing the Heidelberg MCTDH suite of programs [14–17]. The assignment of the
peaks observed in the experimental spectrum (cf. Fig. 4.20) in terms of VDEs agrees
quite well with our estimate of the same (cf. Table 3.15). Therefore, in the remaining of
this section we have undertaken the exercise to analyze the details of each of these peaks
(rather bands) and discuss the nuclear dynamics on the relevant electronic states of the
corresponding neutral isomer. Several reduced dimensional calculations are performed
in order to detect the progression of the vibrational modes in each band. To save space
the details of this exercise is not presented here for brevity, however, the important
findings are discussed and related to the broad and overlapping structure of each band
recorded in the experiment. To this effort the vibronic structure of the mentioned elec-
tronic states of each of the isomer is first presented and discussed. The overall composite
band structure is presented in a later section and compared with experimental results.

Vibronic structure of the electronic states of isomer I

The three degenerate electronic states of the isomer I are JT active. In the absence
of intermode bilinear couplings the vibronic Hamiltonian of each of these states is sep-
arable in terms of the symmetric a1 and JT active degenerate e2 vibrational modes.
Therefore, partial spectra considering these modes are calculated separately by the time-
independent method. Analysis of these spectra facilitates the assignment of dominant
vibrational progression in the final band structure calculated including all relevant cou-
plings among electronic states and vibrational modes. To save space and for brevity we
do not show all partial spectra here however, the important finding are discussed below.
The partial spectrum of the symmetric vibrational modes revealed dominant progres-

sion of ν2 vibrational mode in the X̃ state. This mode is strongly Condon active in this
state (cf. Table 3.28). The energetic minimum of the X̃ state shifts considerable away
(by Q2 = ∼ 3.68) from the reference equilibrium geometry at Q2=0 along this mode [cf.
Fig. 3.18 (b)]. As a result, the center-of-gravity of this partial spectrum occurs at the
position of the sixth quantum of excitation of this mode. Line spacings of ∼206 cm−1

corresponding to the frequency of ν2 vibrational mode is extracted from the spectrum.
The vibrational mode ν1 is very weakly excited in this state. Similar partial spectra of
the Ã and B̃ states reveal negligible excitations of the vibrational modes ν1 and ν2 in
these states.
The vibrational modes of e2 symmetry are JT active in the X̃, Ã and B̃ electronic
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Table 4.6: The number of HO basis functions used in the calculation of the stick vibronic
spectrum of the mentioned electronic states of neutral isomer I of B7.

State(s) Lanczos No. of HO basis Figure
iterations ν1,ν2,ν8x,ν8y,ν9x,ν9y,ν10x,ν10y number

X̃2E1 5000 8, 40, 12, 12, 6, 6, 20, 20 Fig. 4.15(a)

Ã4E1 5000 25, 10, 20, 20, 6, 6, 12, 12 Fig. 4.15(b)

B̃2E1 5000 30, 10, 15, 15, 6, 6, 15, 15 Fig. 4.15(c)

states. The partial spectra of these modes reveal irregular vibronic structures of all three
states. As a result of the JT effect the vibronic levels of the upper and lower adiabatic
component of the JT split states mix. Such mixing transforms the discrete vibronic lines
to a cluster of lines involving quasi bound resonances. A careful examination reveals
that the vibrational mode ν10 is the most active JT mode in the X̃ state and line spacing
of ∼477 cm−1 is extracted from the JT spectrum of this state. The JT activity of this
mode is much weaker in the Ã and B̃ states. The JT activity of the vibrational mode ν9
is the weakest in all three states and that of ν8 is weak but almost similar in magnitude
in all three states discussed above.
The photodetachment bands of all three degenerate states considering all relevant

couplings introduced in the Hamiltonian HI are calculated with the aid of the time-
independent matrix diagonalization method. The results are presented in Fig. 4.15, for
the X̃, Ã and B̃ states in panel a, b and c, respectively. The numerical details of the
size of the harmonic basis and the number of Lanczos iterations are given in Table 4.6.
The composite band structure of the X̃ state is shown in panel a reveals discrete line

progressions at the lower energies and a huge increase of line density at higher energy.
At lower energies below ∼2.8 eV the clustering of lines occurs because of mixing of the
vibrational modes of a1 and e2 symmetry. This region of the spectrum portrays the
vibronic structure of the lower adiabatic sheet of the JT split X̃ state. The JT CI with
the upper adiabatic sheet is accessible beyond ∼2.77 eV. Therefore, the discrete vibronic
levels of the upper adiabatic sheet strongly mix with the quasi-continuum levels of the
lower sheet and causes a huge increase of line density beyond this energy as shown in
the inset of panel a. A similar explanation holds for the vibronic structure of the Ã and
B̃ states plotted in panels b and c, respectively. However, in contrast to the X̃ state the
JT coupling in the Ã and B̃ state is much weaker (cf. Table 3.28). Therefore, vibronic
line density at higher energies in these latter two bands is much less compared to that
in the X̃ band.

Vibronic structure of the electronic states of isomer II

Within ∼6 eV electron binding energy range of the photodetachment spectrum of B−
7

apparently five energetically low-lying electronic states of the neutral isomer II partici-
pate. The energies (vertical) of these states are given in Table 3.15. The coupling among
these states through vibrational modes of appropriate symmetry is also documented in
Table 3.33. It can be seen from the data given in this table that an estimate of the
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correct vibronic structure of these electronic state requires simultaneous treatment of
nuclear dynamics on the five coupled electronic states. This task could not be accom-
plished using the matrix diagonalization approach discussed above. This is carried out
by propagating WPs using the MCTDH method [14–17] and discussed later in the text.
However, as stated earlier in order to assess the progression of vibrational modes in each
electronic state and the impact of nonadiabatic coupling on them due to neighboring
states, calculations are carried out for uncoupled and various reduced dimensional cou-
pled states situation using the matrix diagonalization approach. The vibronic structures
of uncoupled X̃2B2 , Ã2B1 , B̃2B2 , C̃2A1 and D̃2B1 electronic states are presented in
panels a-e of Fig. 4.16. The important findings of this exercise are discussed below.
Analysis of vibronic structure of each of the above states without including the coupling
with their neighbors revealed dominant excitation of the symmetric ν5 vibrational mode
in all of them except in the C̃ state. Excitation of the ν4 vibrational mode is stronger
in the latter electronic state. Line spacings of ∼ 288, ∼ 156, ∼ 233, ∼ 290 and ∼
171 cm−1 corresponding to the progression of ν5 vibrational mode in the X̃, Ã, B̃, C̃
and D̃ electronic states, respectively, are extracted from the spectrum of these states.
Line spacings of ∼ 1116 and ∼ 350 cm−1 corresponding to the progressions of ν1 and ν4
vibrational modes, respectively, are also extracted from the spectrum of the C̃ state.

The impact of nonadiabatic coupling with the neighboring states on the vibronic
structure of a given electronic state is examined next. The numerical details of the
calculations are given in Table 4.7. The results are presented in Figs. 4.17 (a-e) for the

X̃, Ã, B̃, C̃ and D̃ electronic states, respectively. It is found that the band structure
of the X̃ state is mostly perturbed by its coupling with the Ã and C̃ states. Although
the coupling strength of the a2 vibrational modes ν7 and ν8 is weak (cf. Table 3.33)

between the X̃ and Ã states, the energetic minimum of the X̃-Ã intersection is close to
the equilibrium minimum of the X̃ state (cf. Table 3.35). Therefore, X̃-Ã coupling has

quite some impact on the structure of the X̃ band. The X̃ and C̃ states are strongly
coupled by the b2 vibrational mode ν15. the vibrational mode ν14 also makes important
contribution to this coupling. The vibronic structure of the X̃ state by retaining its
coupling with the Ã and C̃ states is presented in panel a of Fig. 4.17. The calculated
stick vibronic lines are convoluted with a Lorentzian function of ∼ 30 meV FWHM to
generate the spectral envelope. We note that the same Lorentzian function is used to
convolute all stick spectra presented in this chapter. Excitation of nontotally symmetric
modes ν7 and ν8 with peak spacings of ∼665 and ∼357 cm−1, respectively, is extracted
from the X̃ state spectrum of Fig. 4.17 (a). The vibronic structure of the Ã state

is shown in Fig. 4.17 (b) is mostly perturbed by its coupling with the X̃ state. The

energetic minimum of X̃-Ã state intersection occurs only ∼0.05 eV above the minimum
of the Ã state. Unlike the case of X̃ state, the vibronic structure of Ã state is also
perturbed by its coupling with the B̃ state. Excitation of nontotally symmetric modes
ν7 and ν8 is found in the Ã state. The vibronic structure of the B̃, C̃ and D̃ electronic
states are shown in panel c, d and e of Fig. 4.17, respectively. Coupling of the B̃ state
with Ã and C̃ states contributes to the vibronic structure of the B̃ state. Similarly,
coupling of the C̃ state with B̃ state and D̃ state with C̃ state contributes to their
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Table 4.7: The number of harmonic oscillator basis function used in the calculation of the
stick vibronic spectrum of the mentioned electronic states of neutral isomer
II of B7.

State(s) Laczos No. of HO basis along Figure
iterations symmetric modes ν1-ν5 coupling modes number

X̃2B2 5000 6, 6, 18, 10, 35 4.16(a)

Ã2B1 5000 6, 18, 6, 15, 30 4.16(b)

B̃2B2 5000 18, 6, 6, 12, 40 4.16(c)

C̃2A1 5000 30, 15, 6, 30, 15 4.16(d)

D̃2B1 5000 6, 6, 15, 6, 30 4.16(e)

X̃2B2 -Ã2B1 5000 10, 6, 15, 6, 25 6 (ν6), 10 (ν7), 6 (ν8) Fig. 4.17(a)

X̃2B2 -C̃2A1 5000 10, 6, 4, 10, 6 6 (ν12), 6 (ν13), 8 (ν14), 10 (ν15)

X̃2B2 -D̃2B1 5000 6, 6, 10, 6, 20 4 (ν6), 10 (ν7), 8 (ν8)

Ã2B1 -B̃2B2 5000 8, 4, 8, 6, 15 6 (ν6), 6 (ν7), 6 (ν8) Fig. 4.17(b)

Ã2B1 -C̃2A1 5000 8, 6, 4, 8, 10 4 (ν9), 4 (ν10), 8 (ν11)

B̃2B2 -C̃2A1 5000 25, 8, 4, 25, 10 4 (ν12), 8 (ν13), 6 (ν14), 15 (ν15) Fig. 4.17(c)

B̃2B2 -D̃2B1 5000 4, 4, 8, 6, 15 4 (ν6), 8 (ν7), 4 (ν8)

C̃2A1 -D̃2B1 5000 6, 6, 10, 6, 20 6 (ν9), 10 (ν10), 6 (ν11) Fig. 4.17(d & e)

respective vibronic structure. The vibrational mode ν15 of b2 symmetry strongly couples
to B̃ and C̃ electronic states and the minimum of the B̃ and C̃ intersections is closer
to their respective equilibrium minimum (cf. Table 3.35). In addition, the B̃ state is

also strongly coupled with the D̃ state. As a result, its vibronic structure is strongly
perturbed by the associated nonadiabatic coupling. Excitations of nontotally symmetric
modes ν8 & ν15, ν14 & ν15 and ν7 are found from the spectrum of the B̃, C̃ and D̃ state,
respectively.

Vibronic structure of the electronic states of isomer III

The vibronic structure of the 2A2 , 2B2 , B̃′2B1 , C̃ ′2A1 and D̃′2A1 electronic states is
similarly examined as discussed in sections 4.2.3 and 4.2.3 above. While the vibronic

structures of uncoupled 2A2 , 2B2 , B̃′2B1 , C̃ ′2A1 and D̃′2A1 electronic states are
presented in Fig. 4.18, the same including the most relevant interstate couplings are

shown in Fig. 4.19 (panel a: 2A2 , b: 2B2 , c: B̃′2B1 , d: C̃ ′2A1 , e: D̃′2A1 ). The
coupling schemes as well as the numerical details of the calculations are given in Table
4.8. In comparison with Fig. 4.17, it can be seen that the nonadiabatic coupling effects
are generally stronger in the electronic states of isomer III. In contrast to the assignment
of Boldyrev and co-workers we find that the A2 (X̃ ′) state is lower in energy than the B2

(Ã′) state at the vertical configuration. This aspect is explicitly confirmed by varying
the size of the basis set and the active space in the CASSCF/MRCI calculations. A
detail comparison with the experimental band structure is discussed in the subsequent
section.
A careful examination of various spectra presented in Figs. 4.18 (a-e) and also corre-

sponding uncoupled state spectra reveal the following. The symmetric vibrational modes
ν1 and ν6 form dominant progression in the X̃ ′, Ã′, B̃′, C̃ ′ and D̃′ electronic states. Peak
spacings of 1331 & 354, 1411 & 301, 1535 & 409, 1280 & 323 and 1337 & 440 cm−1 due
to ν1 & ν6 vibrational modes are found in the vibronic structure of the above states,
in that order. The excitation of the mode ν1 and ν6 is strongest in the and C̃ ′ and
D̃′ states, respectively. The excitation of the remaining symmetric vibrational modes is
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Table 4.8: The same data as Tables 4.7 for neutral isomer III of B7.
State(s) Lanczos No. of HO basis Figure

iterations Symmetric modes ν1-ν6 Coupling modes numbers
2A2 5000 20, 8, 8, 8, 20 4.18(a)
2B2 5000 4, 20, 4, 20, 10, 20 4.18(b)

B̃′2B1 5000 25, 12, 6, 6, 6, 20 4.18(c)

C̃′2A1 5000 20, 12, 6, 6, 6, 40 4.18(d)

D̃′2A1 5000 40, 4, 18, 4, 4, 18 4.18(e)
2A2 -2B2 5000 10, 4, 4, 4, 4, 10 6(ν9), 10 (ν10) Fig. 4.19(a & b)

2A2 -B̃′2B1 5000 10, 4, 6, 4, 20 0 (ν11), 6 (ν12), 0 (ν13), 0 (ν14), 0 (ν15)
2A2 -C̃′2A1 5000 10, 6, 4, 6, 4, 15 8 (ν7), 4 (ν8)
2A2 -D̃′2A1 5000 25, 4, 10, 4, 4, 15 4 (ν7), 4 (ν8)
2B2 -C̃′2A1 5000 18, 4, 4, 4, 8, 20 6(ν11), 6 (ν12), 0 (ν13), 0 (ν14), 0 (ν15)
2B2 -D̃′2A1 5000 15, 4, 8, 4, 4, 10 6(ν11), 0 (ν12), 6 (ν13), 8 (ν14), 0 (ν15)

B̃′2B1 -C̃′2A1 5000 10, 6, 4, 4, 4, 10 6 (ν9), 8 (ν10) Fig. 4.19(c)

B̃′2B1 -D̃′2A1 5000 10, 6, 6, 4, 4, 10 8 (ν9), 8 (ν10)

C̃′2A1 -D̃′2A1 5000 30, 6, 6, 15, 6, 30 Fig. 4.19(d & e)

weaker in these states. All symmetric vibrational modes are very weakly excited in the
Ã′ state. The impact of the X̃ ′-Ã′ coupling on the vibronic structure of the X̃ ′ band [cf.
Fig. 4.19 (a)] is strongest. This coupling is mainly caused by the ν10 vibrational mode

of b1 symmetry. Although the X̃ ′ and C̃ ′ states are fairly strongly coupled through
ν7 vibrational mode of a2 symmetry (cf. Table 3.33), impact of this coupling on the

structure of X̃ ′ band is not as profound as due to the Ã′ state. This is because the
energetic minimum of the X̃ ′-C̃ ′ CIs occurs at much higher energy compared to that
of the X̃ ′-Ã′ states. Excitation of nontotally symmetric vibrational modes ν8 and ν10
are found in the X̃ ′ band of Fig, 4.19. Peak spacings of ∼245 and ∼131 cm−1 due to
the above vibrational modes are extracted from the spectrum. The coupling parameters
recorded in Table 3.33 reveal that the vibronic structure of the Ã′ state is perturbed
mostly by its coupling with the X̃ ′ state. Likewise, B̃′-C̃ ′ coupling mutually perturbs
their vibronic structures. In addition, coupling of the C̃ ′ state with X̃ ′ state also makes
significant contributions to the structure of the C̃ ′ state. Vibronic structure of the D̃′

state is mainly perturbed by its coupling with the Ã′ and B̃′ states. Although the C̃ ′

state has negligible contribution to the structure of the X̃ ′ state, its energetic minimum
is quasi-degenerate with the minimum of the X̃ ′-C̃ ′ intersections (cf. Table 3.35). As

a result X̃ ′-C̃ ′ coupling through ν7 vibrational mode of a2 symmetry makes significant
contribution to the vibronic structure of the C̃ ′ state. Excitation of nontotally symmet-
ric modes ν10, ν9 & ν10, ν7 & ν10 and ν10 & ν14 are found in the Ã′, B̃′, C̃ ′ and D̃′ states,
respectively.

Composite photodetachment bands versus experiment

The photodetachment bands of all three isomers are calculated separately employing the
full Hamiltonians (HI, HII and HIII) and WP propagation method. The MCTDH suite
of programs is used for this purpose [14–17]. For each isomer separate calculations are
carried out for six different initial locations of the WP. The resulting time autocorrelation
functions are then combined and damped with an exponential function (e−

t
τ , with τ=33

fs) to generate the broad band spectral envelope. The technical details of the calculations
for each isomer are given in Table 4.9. The spectral envelopes of three isomers are plotted
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separately in panel b of Fig. 4.20 and shown by black (isomer I), red (isomer II) and blue
(isomer III) color lines. The composite theoretical band structure of all three isomers is
shown in panel c. The 193 nm experimental recording of Ref. [4] is shown in panel a.
As mentioned in the introduction, eleven distinct peaks are identified in the experiment
by recording the detachment spectrum with 355, 266 and 193 nm laser photon. These
peaks are assigned by calculating the VDEs [4] as illustrated in Table 3.15. The origin of
the theoretical spectra plotted in panel b and c is placed at the experimental adiabatic
ionization energies reported in Ref. [4].
A careful inspection of the theoretical and experimental results shown in Fig. 4.20

reveal the following. The broad threshold feature representing the X band originates
from both isomer I and II. The A, B, C and G bands originate from isomer III. It is
mentioned before that a very sharp band with a short progression of ∼480 (40) cm−1

was observed in the experiment [4]. This band is identified with the vibronic structure of
the 2B2 electronic state of the neutral isomer III supported by the VDE data calculated
by the OVGF method [4]. The VDE data calculated by us by the same method also
supports this assignment. The very sharp structure of this band is attributed to very
small geometry changes of the neutral B7 in the 2B2 state as compared to the geometry
of the electronic ground state of the anionic isomer III. An adiabatic detachment energy
of ∼3.44(2) eV is estimated for this band from the experimental data [4]. As discussed
in Sec. 4.2.3 and noted in Table 3.15 that the CASSCF-MRCI calculations yield a
reverse energetic ordering of the 2B2 and

2A2 electronic states of the neutral isomer III.
According to the latter results, the 2A2 state is the electronic ground state of this isomer.
Now a close look at the vibronic energy level structure of the 2A2 [Fig. 4.19(a)] and

2B2

[Fig. 4.19(b)] states of the neutral isomer III clearly indicates that the latter structure
closely resembles the structure of the observed band A. A short vibronic progression of
∼460 cm−1 can also be observed from the band structure of Fig. 4.19(b) in excellent
agreement with the experiment. This progression can be attributed to both ν4 and ν5
vibrational modes. These modes have fairly large bilinear coupling (cf. Table 3.30).
Further to this analysis it can be seen from Fig. 3.21 that the equilibrium minimum
of the 2B2 state is more closer to the reference equilibrium minimum (at Q=0) than
the 2A2 state. The MO sequence of the anionic isomer III given in Sec. 3.2.3 also
suggests that the 2B2 electronic state ought to be the electronic ground state of the
corresponding neutral isomer. Therefore, all the evidences furnished above suggest a
reverse energetic ordering of the first two electronic states of neutral isomer III of B7

in the CASSCF-MRCI results. A reversal of this energetic ordering and placing the
adiabatic detachment position of the 2B2 state at the reported experimental energy
of ∼3.44 eV nicely reproduces the structure of the observed band (cf. Fig. 4.20).
In contrast, the vibronic spectrum calculated for the coupled 2B2-

2A2 states from the
OVGF energy data deviates considerably from the observed band structure of these two
electronic states. To support this statement the calculated band structures from the
OVGF energy data are given from the OVGF energy data are given panel a (2B2 state)
and b (2A2 state) of Fig. 4.21. Therefore, the results given above clearly indicates
that the CASSCF-MRCI energy data are more accurate for this isomer of B7 despite
a reverse energetic ordering of the first two electronic states. Furthermore, a shakeup
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Table 4.9: The normal mode combinations, sizes of the primitive and single particle
bases used in the WP propagation (using the MCTDH program modules on

the X̃-Ã-B̃ electronic states of neutral isomer I, X̃, Ã, B̃, C̃ and D̃ electronic
states of neutral isomer II and X̃ ′, Ã′, B̃′, C̃ ′ and D̃′ electronic states of
neutral isomer III of B7 using Hamiltonians of Eq. 3.10a, 3.11a and 3.11b,
respectively.

particle no Normal modes SPF basis Primitive basis
Isomer I

1 ν2, ν9x, ν8y, ν7x [10,10,8,8,8,8] (10, 6, 10, 4)
2 ν1, ν8x, ν9y,ν4 [10,10,8,8,8,8] (6, 10, 6, 4)
3 ν10x, ν10y, ν3, ν5 [10,10,6,6,6,6] (10, 10, 4, 4)
4 ν7y,ν6y,ν6x [6,6,6,6,6,6] (4, 4, 4)

Isomer II
1 ν5, ν7, ν10, ν9, ν14 [20, 10, 15, 10, 10] (18, 10, 8, 8, 8)
2 ν4, ν8 ν11, ν12, ν15 [10, 10, 10, 10, 10] (8, 10, 8, 8, 8)
3 ν3, ν2 ν1, ν6, ν13 [15, 10, 15, 10, 10] (10, 10, 8, 10, 8)

Isomer III
1 ν1,ν7,ν11,ν13 [10, 8, 4, 6] (6, 6, 10, 8, 4)
2 ν2,ν6,ν12,ν15 [4, 10, 6, 8] (4, 8, 16, 4, 12)
3 ν3,ν5,ν9,ν14 [6, 4, 10, 4] (10, 10, 12, 12, 10)
4 ν4,ν8,ν10 [6, 4, 8] (4, 4, 4, 4, 8)

state at ∼4.14 eV VDE is involved in the higher energy bands of this isomer (see the
text below) which cannot be obtained by the OVGF method.

While the location of the C band is missing in the 193 nm experimental spectrum,
its existence is clearly seen in the 266 nm experimental spectrum (Fig. 1 of Ref. [4]).
The B and C bands originate from the 2A2 electronic state of the neutral isomer III.
The B̃′ state of isomer III, which is a shake-up state is strongly coupled with its C̃ ′ and
D̃′ states through the vibrational modes ν9 and ν10 of b1 symmetry (cf. Table 3.33).
The broad and diffuse structure of the G band (cf. Fig. 4.20) arises from the coupled

B̃′-C̃ ′-D̃′ states of this isomer. The D band represents the vibronic structure of isomer
I and originates from its Ã4E1 electronic state. The E, F, H and I bands represent
predominantly the vibronic structure of the Ã2B1 , B̃2B2 , C̃2A1 and D̃2B1 electronic
states of isomer II respectively. The separations of G and H bands of ∼ 0.7 eV as found
in the experimental results can also be found in the theoretical results (∼ 0.66 eV ) of
Fig. 4.20 (c). Therefore, it can be concluded that the present theoretical results are on
the average in excellent accord with the experimental band structure.

Internal conversion dynamics

Dynamics of the electronic excited states of B7 clusters is examined in terms of time-
dependence of diabatic electronic populations recorded in the WP calculations of Sec.
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4.2.3. It is discussed in Sec. 4.2.3 that the three electronically degenerate electronic
states of isomer I is JT active and JT effect is strongest in the X̃2E1 electronic state
of this isomer. Time-dependence of the populations (diabatic) of the two JT split com-
ponents of this state is shown in panel a of Fig. 4.22. At time t=0 the population of
the component on which the WP is prepared (say component 1) starts from 1.0 and
the same for the component 2 is 0.0. It can be seen that population of component 1
transfers to component 2 through the JT CIs.in time and they become equal at = ∼100
fs. At longer time the population of component 2 transfers back to component 1 and
fluctuate around a value of ∼0.4. Similar variation of electronic populations of the two
components of the Ã4E1 and B̃2E1 states is found. In these cases the JT effect is weak
and population transfer occur back and forth between the component states over the
entire time interval.

The diabatic electronic populations of the X̃2B2 , Ã
2B1 , B̃

2B2 , C̃
2A1 and D̃

2B1 elec-
tronic states of neutral isomer II of B−

7 when the WP prepared in X̃, Ã, B̃, C̃ and D̃
states are given in panel a, b, c, d and e of Fig. 4.23. When the WP is prepared in
X̃ state, panel a of Fig. 4.23 reveal minor population flow to the other states. The
X̃-Ã CI is just ∼0.05 eV above the minimum of Ã state (cf. Table 3.35). The X̃-Ã CI

acts as a funnel for the nonradiative transfer of the Ã state to X̃ state shown in Fig.
4.23(b). As the X̃ and Ã states are well separated from each other and the associated
interstate coupling parameter is small, the flow of population expected to be moderate.
The other intersections with Ã state occurs at much higher energies, and are not ex-
pected to create impact on the diabatic population of Ã state. The initial population
value of the Ã state is 1 at t=0. Only 30 % of the population of Ã transferred to X̃ state
after 150 fs propagation of the WP, due to the weak coupling with X̃ state. An initial
decay of the population relates to ∼503 fs is estimated from Fig. 4.23(b). Significant

population flows to the Ã state when the B̃ state is initially populated (Fig. 4.23 (c)).

This happens through the Ã-B̃ CIs. From Table 3.35, it can be seen that the Ã-B̃ CI
minimum is just ∼0.02 eV above the minimum of B̃ state. Similar situation arises when
the WP is initially located on the C̃ (panel d) and D̃ (panel e) electronic states. In

panel d the B̃ & Ã states populated through Ã-C̃ & B̃-C̃ CIs, respectively. In panel e
C̃ & B̃ electronic states populated through B̃-D̃ & C̃-D̃ CIs, respectively. Nonradiative
decay rate of ∼72, ∼136 and ∼86 fs are estimated for B̃, C̃ and D̃ electronic states,
respectively.

Similarly, the diabatic populations of the states 2A2 , 2B2 , B̃′2B1 , C̃ ′2A1 and

D̃′2A1 electronic states of neutral isomer III of B−
7 when the WP prepared in X̃ ′, Ã′, B̃′,

C̃ ′ and D̃′ states, are given in panel a, b, c, d and e of Fig. 4.24. The panel a reveals no
significant population flow to other states. The population flow from Ã′, B̃′, C̃ ′ and D̃′

states through X̃ ′-Ã′, X̃ ′-B̃′, X̃ ′-C̃ ′ & B̃′-C̃ ′, C̃ ′-D̃′ & Ã′-D̃′ CIs can be seen from panels
b, c, d and e, respectively. Nonradiative decay rate of ∼89, ∼154, ∼41 and ∼22 fs are
estimated for Ã′, B̃′, C̃ ′ and D̃′ electronic states, respectively.
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4 Dynamics in boron clusters

4.3 Summary

A theoretical study of the photodetachment spectroscopy of boron cluster anion B−
n

(n=4, 5 and 7) is presented in this chapter. The nuclear dynamics underlying the
observed complex structure of the photodetachment bands is studied both by time-
independent and time-dependent quantum mechanical methods. The vibronic Hamilto-
nians developed in Chapter 3 are employed in the investigation. The theoretical results
are compared with the experimental findings and discussed in detail.
The nonadiabatic coupling effects are generally found to be small in the photodetach-

ment bands of B−
4 . Some significant effect of such coupling is found in the ã3B2u and

b̃3B1u bands of B4 only. The symmetric vibrational mode ν1 and ν2 forms progression in
all the low-lying electronic states of B4 considered here. The theoretical results are found
to be in fair agreement with the experiment and the apparent discrepancy between the
two is attributed to the neglect of dynamic spin-orbit coupling in the theoretical treat-
ment and small photodetachment cross sections and inadequate energy resolution in the
experiment. In order to confirm that the theoretical results of B−

4 photodetachment do
not contain any spin contamination, the equilibrium geometry of B−

4 is optimized both
by the UB3LYP and ROMP2 methods (cf., Chapter 3). Using these geometry parame-
ters, two sets of Hamiltonian parameters are derived and dynamics study is performed.
Consistent results are obtained in both the cases.
In contrast to B−

4 , the nonadiabatic coupling effects are far more significant in the
photodetachment bands of B−

5 . The symmetric vibrational modes ν3 and ν4 play most
crucial role in this case. Visible impact of nonadiabatic coupling and excitations of
nontotally symmetric vibrational modes observed in this case. The complex C band (as

designated in the experiment) has been partially described to originate from the C̃2A1,

D̃2B1 and Ẽ2A1 electronic states of B5. Like the shake-up Ẽ2A1 state, there are many
more states of this kind in the energy range of the C band. A complete analysis of this
problem is beyond the scope of the present investigation and will be taken up in future.
Neutral B7 clusters originating from electron detachment of three isomers (C6v hexag-

onal pyramidal, C2v pyramidal and C2v planar) of anionic B−
7 cluster are examined and

their contribution to the composite experimental band structure is elucidated. The the-
oretical results are shown to be in good accord with the experimental findings. The
impact of the nonadiabatic coupling on the vibronic structure of the photodetachment
bands is studied and discussed at length. In addition to totally symmetric vibrational
modes excitation of several nontotally symmetric modes is found from the theoretical
results. The peaks marked in the experimental spectrum of Fig. 4.20(a) (X to I) are
found to originate from the C6v isomer (X and D), pyramidal C2v isomer (X, E, F, H
and I) and planar C2v isomer (A, B, C and G). The energetic ordering of the 2A2 and
2B2 states of isomer III is assessed through extensive quantum chemistry calculations
and experimental band structures. To the best of our knowledge, B7 represents a unique
system for which the complex vibronic structure of the energetically low-lying electronic
state arise from anion precursors of different symmetry and a rich variety of vibronic
coupling mechanisms in its energetically low-lying electronic states.
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Figure 4.13: Time-dependence of the diabatic electronic populations in the coupled sur-
face dynamics of B5. The electronic populations for an initial preparation
of the WP on the X̃, Ã, B̃, C̃, D̃ and Ẽ electronic states are shown in panel
a-e, respectively (see text for details).
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4 Dynamics in boron clusters

Figure 4.14: Time-dependence of adiabatic (solid lines) and diabatic(dashed lines) for

an initial location of the WP on the B̃2B2 (panel a) and Ẽ2A1 (panel b)
electronic states of B5.
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Figure 4.15: Vibronic eigenvalue spectra of X̃2E1 , Ã4E1 and B̃2E1 electronic states of
the neutral B7 (isomer I) plotted in panel a, b and c, respectively. The
zero of energy correspond to the equilibrium minimum of isomer I of B−

7 .
The huge increase of vibronic line density at higher energies resulting from
the strong JT effect in the X̃2E1 electronic manifold is shown in the inset
of panel a. The numerical details of calculations of the above spectra are
given in Table 4.6.
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Figure 4.16: Same as in Fig. 4.15, of uncoupled X̃2B2 , Ã2B1 , B̃2B2 , C̃2A1 and
D̃2B1 electronic states of B7 (isomer II). The numerical details of calcula-
tions of the above spectra are given in Table 4.7.
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Figure 4.17: Same as in Fig. 4.15, of coupled X̃2B2 , Ã
2B1 , B̃

2B2 , C̃
2A1 and D̃

2B1 elec-
tronic states of B7 (isomer II). The numerical details of calculations of the
above spectra are given in Table 4.7.
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Figure 4.18: Same as in Fig. 4.15, of uncoupled 2A2 ,
2B2 , B̃′2B1 , C̃ ′2A1 and D̃′2A1 elec-

tronic states of B7 (isomer III). The numerical details of calculations of the
above spectra are given in Table 4.8.
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Figure 4.19: Same as in Fig. 4.15, of 2A2 , 2B2 , B̃′2B1 , C̃ ′2A1 and D̃′2A1 electronic
states of B7 (isomer III). The numerical details of calculations of the above
spectra are given in Table 4.8.
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Figure 4.20: Photodetachment spectrum of B−
7 . Relative intensity (in arbitrary units) is

plotted as a function of electron binding energy. The 193 nm experimental
recording is reproduced from Ref. [4] and plotted in panel a. Theoretical
band structure originating from isomer I, II and III of B−

7 is plotted sepa-
rately in panel b and shown by black, red and blue color lines, respectively
(see text for details). The composite theoretical band structure of all three
isomers is shown in panel c.
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Figure 4.21: Same as in Fig. 4.15, for the 2B2 and
2A2 electronic states of B7 (isomer III)

calculated with the aid of Hamiltonian parameters for the coupled 2B2-
2A2

states extracted from the OVGF energy data. 131
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Figure 4.22: Time-dependence of diabatic electronic populations for an initial location
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electronic states of B7 neutral isomer I. The black and red lines in each
panel represents the x and y components of the each degenerate state,
respectively.
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Figure 4.23: Time-dependence of diabatic electronic populations for an initial location
of the WP on the X̃2B2 (panel a), Ã2B1 (panel b), B̃2B2 (panel c),

C̃2A1 (panel d) and D̃2B1 (panel e) electronic states of neutral isomer II.
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Figure 4.24: Time-dependence of diabatic electronic populations for an initial location of

the WP on the 2A2 (panel a),
2B2 (panel b). B̃′2B1 (panel c), C̃ ′2A1 (panel

d) and D̃′2A1 (panel e) electronic states of B7 neutral isomer III.

134



References

[1] T. S. Venkatesan, K. Deepika, and S. Mahapatra, J. Comput. Chem. 27, 1093
(2006).

[2] H. J. Zhai, L. S. Wang, A. N. Alexandrova, A. I. Boldyrev, and V. G. Zakrzewski,
J. Phys. Chem. A 107, 9319 (2003).

[3] H. J. Zhai, L. S. Wang, A. N. Alexandrova, and A. I. Boldyrev, J. Chem. Phys.
117, 7917 (2002).

[4] H. J Zhai, L-S Wang, A. N. Alexandrova and A. I. Boldyrev, J. Phys. Chem. A
108, 3509 (2004).

[5] M. T. Nguyen, M. H. Matus, V. T. Ngan, D. J. Grant, and D. A. Dixon, J. Phys.
Chem. A 113, 4895, (2009)

[6] T. B. Tai, D. J. Grant, M. T. Nguyen, and D. A. Dixon, J. Phys. Chem. A 114,994,
(2010)

[7] Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by
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5 Theoretical study of photoabsorption
spectroscopy of carbon chains. C15

5.1 Introduction

DIBs are absorption features seen in the spectra of reddened stars through diffuse in-
terstellar clouds [1]. Over 400 bands are seen, in ultraviolet, visible and infrared wave-
lengths. Identification of carriers of DIBs has been a long standing and unresolved issue
in the astrophysical spectroscopy. The diffuse structure of these bands is attributed
to the very short life times of the excited electronic states of the carrier molecule [2].
Douglas in his seminal paper, suggested that the bare carbon chains Cn, where n may
lie in the range 5-15 [3] could show spectroscopic features consistent with the DIBs. The
first spectroscopic detection of C3 in comets in 1881 [4] triggered curiosity among the
astronomers, chemists and physicists to further investigate structure and spectroscopy
of carbon chains.

Since then many experimental and theoretical studies were reported on the struc-
ture of anionic, neutral and cationic bare carbon clusters. Here we refer to two reviews
on the rich history of carbon cluster chemistry by Weltner [5] and Orden [6]. Car-
bon clusters smaller than C10 possess low-energy linear structures. Cumulenic bonding
(:C=C–C=C:), with nearly equivalent bond lengths, as opposed to acetylenic bonding,
(.C≡C-C—C≡C) with alternating bond lengths, was predicted to be the preferred bond-
ing configuration. Linear chains containing odd number of carbon atoms were thought to
possess 1Σ+

g ground electronic states, whereas the ground states were 3Σ−
g for the chains

with even number of carbon atoms. Clusters larger than C10 were believed to occur as
monocyclic rings, due to the reduction in angle strain of the larger rings and the added
stability arising from an additional C-C bond. Despite this, the cyclic isomers of the
neutral clusters reported to be difficult to detect and characterize spectroscopically, and
it is the linear isomers that are observed in the vast majority of experimental studies.
This is the case even for clusters as large as C15.

The neutral and anions of bare carbon chains are studied with various spectroscopic
techniques ranging from pulsed and continuous-wave CRD, R2C2PI, LIF, trapped ion
photofragmentation, and electron photodetachment processes during the past decade
[7–11] to examine the conjecture of Douglas. It was proved from the study of Maier et
al. that bare carbon chains Cn upto n=12 can not be carrier for DIBs. The following
criteria are formulated by the latter authors for a species to have to be a potential DIB
carrier: “(a) absorptions in the 400-800 nm range, (b) oscillator strength f values in the
1-10 range, and (c) an excited electronic-state lifetime longer than a few picoseconds so
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5 Photophysics of C15

Table 5.1: VEEs (in eV) of low-lying excited singlet electronic states calculated at the
equilibrium geometry of S0 state of C15.

Symbol Excitation f
energy (eV)

S1
1∆u 0.6701 0.00

S2
1Σ−

u 0.7461 0.00
S3

1Σ−
g 2.1277 0.00

S4
1∆g 2.1431 0.00

S5
1Πg 3.1081 0.00

S6
1Πu 3.1097 0.01

S7
1Σ+

u 3.2729 12.97
S8

1Σ−
u 3.4325 0.00

S9
1Σ−

g 3.4485 0.00
S10

1∆g 3.4800 0.00
S11

1∆u 3.5148 0.00
S12

1Σ+
g 3.6132 0.00

that intramolecular broadening would still be compatible with the typical half-widths
of the narrower DIBs (i.e., a few wave numbers)” [10]. The longer chains with an odd
number of carbon atoms of the length 15, 17, 19 and 21 are expected to satisfy the first
two criteria because their transitions are in the 400-800 nm range and their f values
scale with the chain length. It remains to be seen by doing nuclear dynamics study,
whether the excited electronic state S7

1Σ+
u has a lifetime longer than a few picoseconds

to satisfy the third condition listed above.

The low-lying electronic excited states of C15 and their oscillator strengths are tabu-
lated in Table 5.1. Ab initio calculation of the excited states are described in Section
5.2. As can be seen from the table, the electronic states are very closely spaced, infact 18
electronic states (including degeneracy) appear within 4.0 eV, ideally which need to be
studied, for a correct description of the nuclear dynamics. While, consideration all the
electronic states would be much appreciated, both the ab initio electronic structure cal-
culations and nuclear dynamics simulations would be computationally very challenging
and difficult. While the first one (ab initio calculations) can be feasible with relatively
less expensive yet reliable methods such as equation of motion coupled cluster with sin-
gle and double excitations (eom-CCSD), the later (nuclear dynamics) with all the 18
electronic states appears to be impossible to study. As our study, primarily focuses on
the life time of S7

1Σ+
u electronic state of C15, we retain only those electronic states which

couple to S7
1Σ+

u electronic state according to the vibronic coupling selection rules given
in Section 5.3. From the selection rules, it can be seen that only S5

1Πg , S6
1Πu and

S12
1Σ+

g electronic states couple to S7
1Σ+

u electronic state.

In this chapter, such study of the nuclear dynamics in the S5
1Πg , S6

1Πu , S7
1Σ+

u

and S12
1Σ+

g coupled electronic states of C15 carbon chain, by doing rigorous electronic
structure calculations is presented. The well celebrated BO approximation fails [18–22]
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when two electronic states happen to be degenerate or near degenerate. The reason for
such breakdown is the non-adiabatic coupling operator behaves singularly at degeneracy.
Familiar examples for such breakdown of BO approximation are JT [23] and RT [24]
effects. The RT has been considered as the driving force behind bending instability of
linear molecules in degenerate states [31]. Upon bending the molecule, an additional
dipole moment is set up in the molecular plane which lifts the electronic degeneracy. In
contrast to this, it was proved very recently that the RT effect in fact produces just a
splitting of the degenerate term, but not any bending instability. All instabilities and
distortions of linear molecules arise due to the mixing with appropriate excited electronic
states which is called as the PJT effect [32].

The RT effect in triatomic molecules is extensively studied theoretically by perturba-
tive treatment of the Hamiltonian when expanded in a Taylor series around the linear
configuration [24–27]. While there are plethora of studies on the triatomic RT effect,
studies on linear polyatomic molecules with atoms more than three, are very less. To the
best of our knowledge carbon chains of upto 6 atom length were theoretically studied
by including the RT [29, 30] effect. However perturbation theory is known to fail in
strong coupling case and when the interacting states are very closely spaced. A quasi-
diabatic-Hamiltonian is proposed by Köppel et al. to avoid the perturbative treatment
of the RT [20, 28] intersections. On rigorous study, this model diabatic Hamiltonian is
wide accepted by the scientific community.

This chapter is organized as follows. The details of electronic structure calculations
are given in Sec 5.2. The vibronic Hamiltonian is derived in Sec 5.3 by considering the
group theoretical approach. The topography of the adiabatic potential energy surfaces
are presented in Sec. 5.4. While the theoretical absorption spectrum is discussed in Sec.
5.5, the internal conversion dynamics is discussed in Sec. 5.6.

5.2 Electronic structure calculations

The reference equilibrium geometry of the electronic ground state S0
1Σ+

g of C15 is op-
timized by the B3LYP method employing the cc-pVDZ basis set of Dunning [35]. The
geometry parameters are tabulated in Table 5.2 along with the literature data. Har-
monic frequency (ωi) of the vibrational modes of C15 is calculated by diagonalizing the
kinematic and ab initio force constant matrix of the reference equilibrium structure.
These vibrational frequencies (in eV units) are listed in the third column of Table 5.3.
The mass-weighted normal coordinates of the vibrational modes are calculated from the
eigenvectors of the force constant matrix. These are then transformed into their dimen-
sionless form (Qi) by multiplying with

√
ωi (in a0) [36]. The fundamental vibrational

modes of C15 decompose into thirteen degenerate and fourteen non degenerate symmetry
species of the D∞h symmetry point group. They transform into the following IREPs of
this symmetry point group:

Γ = 7σg(ν1 − ν7)⊕ 7σu(ν8 − ν14)⊕ 6πg(ν15 − ν20)⊕ 7πu(ν21 − ν27). (5.1)
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Table 5.2: Optimized equilibrium geometry parameters of the electronic ground state of
C15. The results available from the literature [33] are also included in the
table for comparison. All units are given in

Parameter B3LYP/cc-pVDZ B3LYP/cc-pVDZ MP2/cc-pVDZ
[33] This work This work

R12 1.29 1.29 1.32
R23 1.30 1.30 1.31
R34 1.28 1.27 1.29
R45 1.29 1.29 1.30
R56 1.28 1.28 1.30
R67 1.29 1.29 1.30
R78 1.28 1.28 1.30

The geometry optimization and calculation of the normal modes of vibrations are
performed using G03 suit of ab initio programs [37]. Adiabatic energies of the low-lying
singlet electronic states of C15 are calculated ab initio along the dimensionless normal
coordinates of the 27 (altogether) vibrational degrees of freedom. The VEEs of these
electronic states are calculated for Qi = ±0.10 and in the range −3.0 to +3.0 with an
increment 0.25, along i th vibrational mode (keeping others at their equilibrium value)
using the EOM-CCSD method as implemented in MOLPRO program package [38]. The
excited state symbol, excitation energy and oscillator strength are given in Table 5.1.

5.3 Vibronic Hamiltonian

In this section we construct a Hamiltonian describing the vibronic interactions of S5
1Πg ,

S6
1Πu , S7

1Σ+
u and S12

1Σ+
g excited electronic states of C15 cluster in terms of the normal

displacement coordinates of the reference electronic ground state of respective carbon
chain, in accordance with the symmetry selection rules. The Hamiltonian is constructed
in a diabatic electronic basis [20]. The molecular Hamiltonian in linear vibronic coupling
scheme for E1g, E1u, A2u and A1g interacting electronic manifold for Benzene and HFBz
are derived thoroughly by Köppel et al. and Mahapatra et al. [39–41]. In the analogous
manner, the molecular Hamiltonian for interacting manifold of excited electronic states
of odd numbered carbon chains can be written.
The first-order coupling within (intra) and between (inter) electronic states is gov-

erned by the selection rules; (Γi)
2 ⊃ (Γσ+

g
) and Γi ⊗ Γj ⊃ Γx, respectively [20]. The

symbol, Γ represents the IREP, i and j are the electronic state indices, σ+
g represents

the totally symmetric vibrational mode and the symbol, x, represents the symmetry of
the vibrational mode that transforms according to, Γi ⊗ Γx ⊗ Γj ⊃ Σ+

g . Now for the

degenerate, S5
1Πg and S6

1Πu electronic states the symmetrized direct product trans-
forms into, (Πg)

2 = (Πu)
2 = Σ+

g + ∆g. While the vibrational modes of σ+
g symmetry

can not split the electronic degeneracy (are condon active), and the lack of δg modes of
symmetry that can lift this electronic degeneracy makes first order RT coupling vanish.
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5.3 Vibronic Hamiltonian

But the electronic degeneracy of Πg and Πu states is lifted by the πg and πu modes in
second order. For the rest of the off-diagonal elements of the Hamiltonian written below
the following symmetry rules apply. With the given symmetry representation of the
electronic states and the vibrational modes [in Eq. (5.1)] of C15 the following rules can
be derived from the character table of the D∞h symmetry point group.

Πg ⊗ Πu = δu + σ−
u + σ+

u (8− 14),

Πg ⊗ Σ+
u = πu(21− 27),

Πg ⊗ Σ+
g = πg(15− 20),

Πu ⊗ Σ+
u = πg(15− 20),

Πu ⊗ Σ+
g = πu(21− 27),

Σ+
u ⊗ Σ+

g = σ+
u (8− 14),

Where the numbers in the parentheses in the right hand side indicates the vibrational
mode number given in Eq. 5.1. The relative sign of various elements of the Hamiltonian
is determined by explicitly checking the invariance of the Hamiltonian with respect to
the symmetry operations of the D6h point group, following similar works on benzene and
cyclopropane radical cation [39–41]. With these considerations the vibronic Hamiltonian
can be written as

H = H016 +W , (5.2a)

where

W =



E5 + U5x
∑

i∈πu,πg

η
3x,3y
i QixQiy

∑
i∈σ

+
u

λ
3x,4x
i Qi

∑
i∈σ

−
u

λ
3x,4y
i Qi

∑
i∈πu

λ
3x,7
i Qix

∑
i∈πx

λ
3x,8
i Qix

E3 + U3y
∑

i∈σ
−
u

λ
3y,4x
i Qiy

∑
i∈σ

+
u

λ
3y,4y
i Qi

∑
i∈πu

λ
3y,7
i Qiy

∑
i∈πg

λ
3y,8
i Qiy

E4 + U4x
∑

i∈πu,πg

η
4x,4y
i QixQiy

∑
i∈πg

λ
4x,7
i Qix

∑
i∈πg

λ
4x,7
i Qix

E4y + U4y
∑

i∈πg

λ
4y,7
i Qiy

∑
i∈πg

λ
4y,8
i Qiy

h.c. E7 + U7
∑

i∈σu

λ
7,8
i Qi

E8 + U8



(5.2b)

In the above, H0 = TN + V0, represents the Hamiltonian (assumed to be harmonic)
of the reference electronic ground (S0) state of C15 with

TN = −1

2

∑
i ∈ σ+

g , σ−u

ωi
∂2

∂Q2
i

− 1

2

∑
i ∈ πg , πu

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (5.3)
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and

V0 =
1

2

∑
i ∈ σ+

g , σ−u

ωiQ
2
i +

1

2

∑
i ∈ πg , πu

ωi

(
Q2

ix +Q2
iy

)
. (5.4)

The quantity 16 is a 6 × 6 diagonal unit matrix. The nondiagonal matrix Hamiltonian in
Eq. (5.2b) describes the PESs of the excited electronic states of C15 and their coupling
surfaces. The quantity E j in this matrix is the VEE of the jth electronic state. The
elements of this matrix are expanded in a standard Taylor series around the reference
equilibrium geometry at, Q = 0, in the following way

U j =
∑

i ∈ σ+
g

κjiQi +
1

2

∑
i ∈ σ+

g , σ−u

γjiQ
2
i +

1

2

∑
i ∈ πg , πu

[γji (Q
2
ix +Q2

iy)] (5.5a)

U jx/jy =
∑

i ∈ σ+
g

κjiQi ±
∑

i ∈ πg , πu

ηji (Q
2
ix −Q2

iy) +
1

2

∑
i ∈ σ+

g , σ−u

γjiQ
2
i +

1

2

∑
i ∈ πg , πu

[γji (Q
2
ix +Q2

iy)];

j ∈ 1 and 2. (5.5b)

In above equations the two components of the degenerate states and modes are labeled
with x/y. The quantity κji and ηji represents the linear intrastate and quadratic RT
coupling parameters [20] for the symmetric (σ+

g ) and degenerate (πg, πu) vibrational
modes, respectively, for the jth electronic state. The first-order PJT coupling parameter
of the ith vibrational mode between the electronic states j and k is given by λj−k

i and γji
are the second-order parameters of the ith vibrational mode for the jth electronic state.
The summations run over the normal modes of vibration of specified symmetry in the
index. The + and - sign in Eq. (5.5b) is applicable to the x and y components of the
degenerate state, respectively. The VEEs calculated in Sec. 5.2 are fitted to the adiabatic
counterpart of diabatic electronic Hamiltonian of Eq. 5.2 by a least squares procedure to
estimate the parameters of the Hamiltonian defined above. The estimated parameters
along the relevant vibrational modes are given in Tables 5.3 and 5.4. A careful inspection
of the coupling parameters suggests that not all 40 vibrational modes play significant
role in the nuclear dynamics on the electronic states of Cn cluster considered in this
chapter. Therefore, only the relevant modes having significant coupling strengths are
retained in the nuclear dynamics study presented below.
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5.4 Adiabatic potential energy surfaces

In this section we examine the topography of the adiabatic PESs of the four excited sin-
glet electronic states S5

1Πg , S6
1Πu , S7

1Σ+
u and S12

1Σ+
g of C15 obtained by diagonalizing

the electronic Hamiltonian of the diabatic model developed above. The nonradiative de-
cay of the diabatic population of the S7

1Σ+
u electronic state is calculated and found to

depend strongly on the topography of the PESs.

According to the selection rules, given in Sec 5.3, the totally symmetric modes ν1-ν7 of
C15 cannot split the degeneracy of S5

1Πg and S6
1Πu electronic states, while the degener-

ate bending πg and πu modes split the degeneracy of S5
1Πg and S6

1Πu electronic state.
One dimensional cuts of the potential energy hypersurfaces of C15 are viewed along the
given totally symmetric modes (σ+

g ) vibrational mode keeping others at their equilib-
rium values at, Q=0, are shown in panels (a-g) of Fig. 5.1. In the figure the solid curves
represent the adiabatic potential energy functions obtained from the model developed
in Sec 5.3 and the points superimposed on them are obtained from ab initio quantum
chemical calculations discussed in Sec. 5.2. It can be seen from Fig. 5.1 that the ab
initio energies are very well reproduced by the model.

The energetic minimum of the seam of various CIs and the minimum of the upper
adiabatic electronic states are estimated. The resulting data are collected in Table 5.5.
The diagonal entries in this table are the energy at the minimum of a state. Whereas,
the off-diagonal entries represent the minimum of the seam of CIs. The electronic states
S5 and S6 are almost degenerate, they are just separated by ∼ 0.002 eV from each other.
The minimum of S5 -S6 intersections is just ∼0.28 above the minimum of the upper
adiabatic S6 electronic state. From Table 5.4 it can be seen that interstate coupling
between these states is moderately strong along ν10 and ν11 normal modes of vibrations
of symmetry σ+

u . Similarly the minimum of S5 -S7 CIs occurs just ∼0.04 eV above the
minimum of S7 electronic state and coupling between these states is facilitated by πg
modes with a strong coupling along ν11. Hence the right wing of S5 absorption band
and the left wing of S6 and S7 absorption bands are expected to be strongly perturbed
by the S5 -S6 and S5 -S7 interstate couplings, respectively. Similarly, the minimum
of S5 -S12 CIs is ∼0.14 eV above the minimum of S5 electronic state. The interstate
coupling between them is negligible. So, the non-adiabatic interactions between them
can be safely ignored. As can be seen from the Table 5.5, the minimum of S6 is just
∼0.04, ∼0.14 eV below it’s CIs with the S7 and S12 electronic states, respectively. The
interstate coupling between S6 -S7 and S6 -S12 electronic states is negligible (cf. Table
5.4). The minimum of S7 -S12 CIs is ∼1.81 eV above the minimum of the upper adiabatic
sheet of the S12 state. This separation is relatively high when compared to the remaining
energetic positions discussed above. However, the strong coupling between S7 -S12 makes
the nonadiabatic interactions stronger in these coupled electronic states.

The RT effect lifts the degeneracy of S5 and S6 electronic states when the molecule is
distorted along πg (ν15-ν20) and πu (ν21-ν27) normal coordinates of vibration in second
order. Now let us consider the topography of S5 and S6 electronic states. The Hamil-
tonian for degenerate electronic state (S5 or S6 ) including only the πg modes is given
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Figure 5.1: Adiabatic potential energies of the low-lying excited singlet electronic states
of C15, along the normal coordinates of totally symmetric vibrational modes.
The potential energies obtained from the present vibronic model are shown
by the solid lines and the computed ab initio energies are shown by the
circles.
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Table 5.5: Estimated equilibrium minimum (diagonal entries) and minimum of the seam
of various CIs (off-diagonal entries) of the electronic states of C15 within a
quadratic coupling model. All quantities are given in eV.

S5
1Πg S6

1Πu S7
1Σ+

u S12
1Σ+

g

S5
1Πg 2.89 3.17 3.30 3.74

S6
1Πu - 2.89 3.30 3.74

S7
1Σ+

u - - 3.26 5.41
S12

1Σ+
g - - - 3.60

as

H =

[
E + 1

2
(ω + γ)(Q2

x +Q2
y) +

1
2
η(Q2

x −Q2
y) ηQxQy

ηQxQy E1 +
1
2
(ω + γ)(Q2

x +Q2
y)− 1

2
η(Q2

x −Q2
y)

]
Diagonalization the above diabatic Hamiltonian results adiabatic PESs

V± = E +
1

2
(ω + γ − η)(Q2

x +Q2
y)

Minimization of V− with respect to Qx suggest V− is minimum or maximum (at Qx=0)
depending on whether the quantity ω + γ − η is greater or less than zero. From the
above expression, it is quite clear that RT effect can not induce a new minimum for the
degenerate electronic state (S5 or S6 ) and it can not explain the bent geometries of the
excited states of the linear polyatomic molecules unless strong anharmonicity terms are
presented in the PESs [32].
To explain the bent geometries of the excited states, one has to resort to Π − Σ

coupling mechanism. To obtain the adiabatic PES of C15 along πg mode, one needs to
diagonalize the Hamiltonian 5.2b containing only the x components of πg mode. The
analytical expression for the resultant PESs are given in Eq. 5.7 and are plotted in Fig.
5.2. Similarly the one dimensional cuts of the adiabatic PESs of electronic states of C15

along πu vibrational normal coordinates are given in Eq. 5.8 and are plotted in Fig. 5.3.
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5.4 Adiabatic potential energy surfaces
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5.5 Absorption spectrum

Since we found quadratic RT coupling parameters are very small and do not induce a
new minimum, here we neglect them in Eq. 5.7

V3− =
E1 + E4

2
+

1

2
ωQ2

x ±

√(
E4 − E1

2

)2

+ (λ1x,4Qx)2

Differentiation of V3− with respect to Qx, yield a minimum at

Qx =

√√√√((λ1x,4)2

ω2
−
(
E4 − E1

2λ

)2
)

provided the following condition is satisfied

2(λ(1x,4))2 > ω(E4 − E1).

5.5 Absorption spectrum

Vibronic energy levels of the S5
1Πg , S6

1Πu , S7
1Σ+

u and S12
1Σ+

g electronic states of C15

are shown and discussed here. These are calculated by the quantum mechanical meth-
ods described in Chapter 2 using the parameters of Tables 5.3-5.4. To start with, we
construct various reduced dimensional models and examine the vibrational energy levels
of each of these electronic states by excluding the PJT coupling with their neighbors.
These results help us to understand the role of various vibrational modes and electronic
states in the complex vibronic structures of C15. The final simulation of nuclear dy-
namics is, however, carried out by including all relevant couplings of the Hamiltonian
and propagating wave packets using the MCTDH suite of programs [12–15] to elucidate
the nonadiabatic coupling effects on the spectral envelopes. The theoretical results are
finally compared with the available experimental absorption spectrum of C15 [34].

In the uncoupled states situation and in absence of any intermode coupling terms, the
Hamiltonian for the S5

1Πg and S6
1Πu states are separable in terms of the σ+

g , πg and
πu vibrational modes. One can therefore calculate partial spectra separately for the σ+

g ,
πg and πu and convolute them to generate the complete spectrum, for these degenerate
electronic states. Such a separation reduces the dimension of the secular matrix and
facilitates the numerical computation. The vibronic energy level spectrum of the S5

1Πg

electronic state is shown in Fig. 5.4. The partial spectra of σ+
g , πg and πu vibrational

modes are shown in panels a and b, respectively. The results of convolution of the three
partial spectra are shown in panel c. The vibronic energy eigenvalues are obtained by
diagonalizing the Hamiltonian matrix using the Lanczos algorithm [42] and are shown as
the stick lines in the figure. The envelopes are obtained by convoluting these stick lines
with a Lorentzian function with a FWHM of 10 meV. Further details of the calculations
are given in Table 5.6. The partial spectrum of the πg and πu (panel b) is essentially
structureless because of their weak RT coupling (Since RT coupling is quadratic and
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5 Photophysics of C15

weak, it is expected not to contribute much to the spectrum except giving a small shift
to the energies). The vibrational modes (panel a), ν1-ν7 form progressions and the
peaks are ∼2197, ∼2050, ∼2010, ∼1739, ∼1306, ∼819 and ∼282 cm−1, respectively
spaced in energy corresponding to the frequencies of these vibrational modes (cf., Table
5.3). The vibrational modes ν2 and ν3 forms dominant progression in the band. Very
weak fundamental transition due to the bending modes is observed in the spectrum of
πg and πu modes.
Similar spectra for the RT split S6

1Πu electronic manifold of C15 are shown in Fig. 5.5
(a-c). The coupling parameters (see Table 5.3) suggests the vibrational progressions in
the S6

1Πu electronic state are very similar to the S5
1Πg electronic state. The vibrational

modes ν2 and ν3 forms dominant progressions with energy spacings ∼2045 and ∼2007
cm−1, respectively. The excitations from the bending (πg and πu) modes is very weak.
The vibrational structure of the S7 electronic state in absence of coupling with its

neighboring states is shown in panel a and the resolved 355 nm experimental recording
of Ref [34] is shown in panel b of Fig. 5.6. It can be seen in comparison that the
theoretical results are in very good agreement with the experimental band structure of
the S7 state. From the data given in Table 5.3, the excitation of vibrational modes ν3, ν4
and ν5 can be expected in this band. The excitation of the ν3, ν5 modes is stronger than
that of ν4. Line spacings of ∼ 607, ∼ 429 and ∼ 288 cm−1 corresponding to the frequency
of these modes, respectively, are extracted from the theoretical spectrum. Similarly, the
spectrum of S12

1Σ+
g electronic state is shown in Fig. 5.7 reveals progressions ∼286 and

∼816 cm−1 along the vibrational modes ν6 and ν5, respectively.
So far we did not consider the PJT coupling of various electronic states in the nu-

merical calculations. On inclusion of this coupling, the separation of the Hamiltonian in
terms of the symmetric and degenerate vibrational modes for the degenerate electronic
states as explored above is no longer possible. It is therefore necessary to follow the
nuclear dynamics simultaneously on six coupled electronic states (four from the two RT
split S5 and S6 states plus two non degenerate S7 and S12 electronic states) including all
relevant vibrational degrees of freedom. Computationally, it turns out to be a daunting
task to simulate the nuclear dynamics quantum mechanically by the matrix diagonaliza-
tion approach employed above. We therefore resort to the MCTDH algorithm [12–15],
and propagate WPs on six coupled electronic states including all vibrational degrees of
freedom in order to arrive at the desired goal. Even with MCTDH, simulations with
40 vibrational modes is not possible. By looking at the coupling strength of the vibra-
tional modes in Tables 5.3 and 5.4, it is clear that, not all the vibrational modes are
important in the nuclear dynamics simulations. We selected thirty vibrational modes
(including x and y components of the degenerate vibrational modes) on the basis of
the coupling strength. The thirty vibrational degrees of freedom are grouped into four
three dimensional particles. The combination scheme of the vibrational modes is given
in Table 5.7, along with the sizes of the primitive and SPF bases. The parameters
documented in Table 5.7 are optimally chosen to ensure the numerical convergence of
the vibronic bands shown in Fig. 5.8. The WP in each calculation is propagated for
200 fs. Fig. 5.8 displays the present theoretical absorption bands of C15 in the energy
range ∼3-4 eV. The theoretical results of 5.8 are obtained by including the coupling

152



5.5 Absorption spectrum
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Figure 5.4: The stick vibronic spectra and their convoluted envelopes for the S5
1Πg elec-

tronic state of C15 calculated with σ+
g , πg and πu modes (indicated in the

panel) plotted in panels a and b respectively. The composite spectrum of
S5

1Πg by including all the above modes is given in panel c.
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Figure 5.5: Similar as Fig. 5.4 for S6
1Πu electronic state.
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5.5 Absorption spectrum

Figure 5.6: The stick vibronic spectrum and the convoluted envelope of the S7
1Σ+

u elec-
tronic state of C15 calculated with the σ+

g vibrational modes plotted in panel
a. The 355 nm experimental spectrum is reproduced from Ref. [34] and
shown in panel b.

among the states. Six WP propagations in the coupled S5 -S6 -S7 -S12 electronic mani-
fold are carried out by initially preparing the WP separately on each of the component
state of this manifold. Finally, results from these six calculations are combined. The
resulting time autocorrelation function is damped with an exponential function e

−t
τ with

τ=66 fs (which corresponds to a 20 meV FWHM Lorentzian function) before Fourier
transformation to generate the spectral envelopes of Fig. 5.8.
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5.6 Internal conversion dynamics

Table 5.6: The number of HO basis functions along with the vibrational mode and the
dimension of the secular matrix used in the calculation of the stick vibronic
spectra shown in various figures noted below.

Vibrational modes No. of HO basis Dimension of Figure(s)
secular matrix

ν1, ν2,ν3,ν4,ν5,ν6,ν7 8,25,15,8,8,4,4 3072000 5.4 (a)
ν15,ν16,ν17,ν18 8,8,8,8 16777216 5.4 (b)
ν21,ν22,ν23,ν24 8,8,8,8 16777216 5.4 (b)

ν1, ν2,ν3,ν4,ν5,ν6,ν7 8,25,15,8,8,4,4 3072000 5.5 (a)
ν15,ν16,ν17,ν18 8,8,8,8 16777216 5.5 (b)
ν21,ν22,ν23,ν24 8,8,8,8 16777216 5.5 (b)

ν1, ν2,ν3,ν4,ν5,ν6,ν7 30,8,8,8,8,8,8 7864320 5.6 (a)
ν1, ν2,ν3,ν4,ν5,ν6,ν7 30,6,6,6,6,6,6 1399680 5.7

Table 5.7: Normal mode combinations, sizes of the primitive and the single particle basis
used in the WP propagation within the MCTDH framework in the six coupled
electronic manifold using the complete vibronic Hamiltonian of Eq. (5.2b).
First column denotes the vibrational DOF which are combined to particles.
Second column gives the number of primitive basis functions for each DOF.
Third column gives the number of SPFs for each electronic state.

Normal modes Primitive basis SPF basis
ν1,ν6,ν11,ν15y,ν16y,ν23y (6,6,6,6,6,6) [8,8,8,8,8,8]
ν2,ν7,ν12,ν18x,ν17y,ν22y (6,6,6,6,6,6) [8,8,8,8,8,8]
ν3,ν8,ν13,ν17x,νv18y,ν21y (6,6,6,6,6,6) [8,8,8,8,8,8]
ν4,ν9,ν14,ν16x,ν21x,ν24x (6,6,6,6,6,6) [8,8,8,8,8,8]
ν5,ν10,ν15x,ν20x,ν23x,ν24y (6,6,6,6,6,6) [8,8,8,8,8,8]

5.6 Internal conversion dynamics

As stated in the introduction, the lifetime of the S7
1Σ+

u excited electronic state of C15 is of
importance for it to qualify as a potential DIB carrier. To be a good carrier for DIBs, the
nonradiative decay of the diabatic population of S7

1Σ+
u electronic state is expected [11] be

around 70-200 fs. Here in this section, we present the time-dependence of the diabatic
electronic populations in the S5 -S6 -S7 -S12 electronic states. In order to calculate
the latter we recorded the time-dependence of the diabatic electronic populations for
an initial transition to each of the above electronic states separately. The results are
shown in Fig. 5.9 (a-d). Interesting observations on the dynamical mechanism can
be obtained from these population curves in conjunction with the coupling parameters
given in Tables 5.3 and 5.4 and the stationary points on the PESs detailed in Section
5.4.

In panel a, the population dynamics is shown for an initial transition of the WP to one
of the two RT split components of the S5

1Πg electronic state. In contrast to the well-

157



5 Photophysics of C15

0

0.2

0.4

0.6

0.8

1
S

5x
Πg

S
5y

Πg

S
6y

Πu

S
6x

Πu
S

7
Σu

S
12

Σg

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time (fs) Time (fs)

d
ia

b
at

ic
 e

le
ct

ro
n

ic
 p

o
p

u
la

ti
o

n
S5Πg

+

S6Πu

+

S7Σu
S12Σg

(a) (b)

(c)+ + (d)
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5.7 Summary

known JT effect where the decay and growth of the population of x and y components of
the degenerate electronic can be seen, the population transfer to the counter component
is very minimal in the RT case. This is due to the small RT coupling found in the S5

1Πg

and S6
1Πu electronic states. The S5

1Πg and S6
1Πu electronic states are coupled by σ+

u

modes and it can be seen from the Table 5.4 that this coupling is strong along ν10 and
ν11 vibrational modes. From Table 5.5, it can be seen that the location of the energetic
minimum of S5 -S6 and S5 -S7 CIs lie just ∼0.33 eV and ∼0.40 eV above the minimum
of the S5 electronic state. Hence population transfer to S6 and S7 state is expected in
this case. The decay of population of the x component of S5 state and the growth of the
S6 (x component) and S7 state population can be clearly seen from the diagram (panel
a). The population of S12 electronic state show only minor variations in this case as the
minimum of S5 -S12 CIs lie ∼0.84 eV above the minimum of S5 electronic state and they
are weakly coupled. It is therefore clear that the electronic nonadiabatic dynamics in
this situation is predominantly governed by the PJT coupling with S6 and S7 electronic
states. The initial decay of the population of the S5

1Πg state relates to a decay rate of
∼56 fs.

Panel b of Fig. 5.9 portrays the population dynamics when theWP is initially prepared
on the x component of S6 state. The S5 and S6 states are nearly degenerate at the
vertical configuration. The initial depletion of the diabatic electronic population of S6

state amounts to a nonradiative decay rate of ∼ 25 fs. It can be seen that the decay of
the S6 population mainly contributes to the growth of the population of x component
of the S5 state and S7 state. This reflects that the coupling of the S6 state with S5 and
S7 states is much stronger (cf., Table 5.4) than the RT coupling within the S6 state.

The population dynamics of the WP initially prepared on the S7 is shown in panel
c. In this case the electronic diabatic population of S7 state transfers to S5 and S6

electronic states. The decay rate of the S7 electronic state are estimated to be ∼ 110 fs.
This population decay is indeed within the proposed range of ∼70-200 fs [10, 11]. It is
already stated that while the PJT coupling between S5 and S7 states is strong, the PJT
coupling between S6 and S7 electronic states is weak. The minimum of S5 -S7 and S6 -S7

are just ∼0.04 eV above the minimum of S7 electronic state. Hence the population of
the S7 state is expected to transfer to S5 state. The S5 state in-turn coupled strongly to
S6 state via σ

+
u modes. A population transfer to S6 state from S7 state can also be seen.

Finally, the electronic population dynamics for an initial propagation of the WP on
S12 state is shown in panel d. It can be seen that the S12 state decays at a much faster
rate ∼ 63 fs compared to the S7 state. This is due to the relatively stronger PJT coupling
between the S7 -S12 states. Only minor population transfer takes place to the S5 and S6

coupled electronic manifold in this case

5.7 Summary

A detailed theoretical account of the multimode RT and PJT interactions in some se-
lected electronic states of linear C15 cluster is presented here to elucidate the lifetimes of
its excited electronic state S7

1Σ+
u . The vibronic Hamiltonian is constructed in a diabatic
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electronic basis, including the RT coupling within the degenerate S5 and S6 electronic
states and the PJT couplings of these RT split states with the nondegenerate S7 and
S12 electronic states of C15. The coupling parameters of the vibronic Hamiltonian are
determined by calculating the adiabatic PESs of the S5

1Πg , S6
1Πu , S7

1Σ+
u and S12

1Σ+
g

electronic states along each of the 40 vibrational modes. First principles nuclear dynam-
ics calculations are carried out both via time-independent and time-dependent quantum
mechanical methods to simulate the nonadiabatic nuclear motion on the coupled man-
ifold of these electronic states. The theoretical results are found to be in good accord
with the available experimental results. The final theoretical simulations using the full
Hamiltonian of Eqs. 5.2-5.5b can only be carried out by propagating WPs employing
the MCTDH algorithm [12–15]. A careful examination of various theoretical results
enabled us to arrive at the following conclusions. The RT effect in the S5 and S6 elec-
tronic states of C15 is very weak. The PJT coupling between the S5 and S6 dominates
the RT coupling. Due to the clustering of the four excited states within ∼ 1.0 eV, the
nonradiative processes are found to be dominanting in predicting the vibronic structure
and the transfer of diabatic electronic population among these states. The initial decay
of the diabatic population of S7

1Σ+
u is estimated to be ∼110 fs, which lie in the much

anticipated range ∼70-200 fs [10,11].
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6 Photophysics of hexafluorobenzene

6.1 Introduction

Fluorine atom substitution in the Bz ring leads to a stabilization of the σ orbitals which
consist mostly the fluorine orbitals. In a more general context this phenomenon is known
as perfluoro effect in the literature [1]. Several experimental and theoretical studies on
neutral FBz molecules have appeared in the literature over the past decades [2–24], a
detailed understanding of the spectroscopic and dynamical properties of their electronic
excited states is still missing. Despite this, some detailed theoretical studies attempting
to understand these properties of neutral FBzs and their radical cations have appeared in
the recent past [25–31]. In continuation to earlier works of this group on MFBz, o-DFBz,
m-DFBz, PFBz [25,26] and TFBz+ [30] we attempt here to investigate the structure and
dynamics of the energetically low-lying electronic states of HFBz by quantum mechanical
methods. Like the parent Bz, HFBz also belongs to the D6h symmetry point group at its
equilibrium geometry. Because of high symmetry like Bz, many optical transitions are
electric-dipole forbidden in HFBz also. Vibronic interaction is an important mechanism
that causes a symmetry mixing and allows optically dark transitions. This statement
dates back to the work of Sponer et al. , in which the optically dark transition of Bz was
reported [32] for the first time. Furthermore, because of high symmetry, many of the
low-lying electronic states of these molecules are orbitally degenerate and prone to the
JT distortion [33]. The latter introduces a rich variety of vibronic coupling mechanisms
which are fundamentally important in the spectroscopic and dynamical properties of
these polyatomic molecular systems.

Spectroscopic [9, 13] and photophysical [5, 7] studies on FBz molecules have revealed
that the features of the electronic absorption and emission bands and lifetimes of flu-
orescence emission strongly depends on the number of substituted fluorine atoms. For
example, C6Fn with n ≤ 4 exhibit structured S1 ← S0 absorption band, large quan-
tum yield and nanosecond lifetime of fluorescence. On the other hand, C6Fn with n=5
and 6 exhibit structureless S1 ← S0 absorption band [9, 13], low quantum yield [5, 7],
picosecond and nanosecond lifetime of fluorescence emission [16]. Furthermore, a biex-
ponential decay of fluorescence is observed for the latter molecules [16]. Experimental
measurements of Philis et al. [13] revealed that a lowering of D6h symmetry of Bz by
fluorine substitution leads to the appearance of additional bands within 8.0 eV which
do not have a Bz parentage. For example, apart from three singlet-singlet transitions
analogous to the B2u ← A1g, B1u ← A1g and E1u ← A1g transitions in Bz, one additional
band has been observed in MFBz and in o-DFBz in the region of the 1B1u band [13].
This band is correlate with the 3s (1E1g) Rydberg state of Bz molecule [13]. Likewise,
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6 Photophysics of hexafluorobenzene

one additional band has been identified in PFBz and HFBz at ∼5.85 and ∼5.36 eV,
respectively, and is designated as the unassigned C-band [13]. Recent theoretical stud-
ies [25, 26] on the FBz molecules have settled the ambiguities over the justification of
the origin of these additional bands and several other issues mentioned above for C6Fn

with n upto 5. It appears from the work done by Mondal et al. [25, 26] that along
with vibronic coupling, perfluoro effect [1] also plays an important role on the dynam-
ics of the low-lying excited electronic states of these FBz molecules. In case of HFBz
(where all the hydrogen atoms are replaced by fluorine atoms and the perfluoro effect is
expected to have the maximum impact), there exist no clear-cut understanding of the
origin of the additional bands (when compared to Bz) and several anomalous experi-
mental observations about it’s fluorescence lifetime and biexponential decay dynamics
in gas phase absorption spectrum [13]. Furthermore, the additional band (C-band) ob-
served in HFBz, unlike PFBz, exhibits a twin structure and there is no unambiguous
interpretation exists for the observed twin to date.
The lowering of energy of the two lowest πσ∗ states upon increasing fluorination is

discussed in our previous work [25]. For completeness, we plot in Fig. 6.1, the energy of
the first few electronic states of Bz and HFBz calculated at the equilibrium geometry of
the respective S0 state. The energies are calculated by the EOM-CCSD method using
the aug-cc-pVDZ basis set. It can be seen from the diagram that the πσ∗ state becomes
S2 in case of HFBz. In the latter, two πσ∗ states are degenerate at the equilibrium
configuration of the S0 state. They represent the two components of the degenerate
1E1g electronic state of HFBz [25]. These findings are in excellent accord with those of
Philis et al. [13], Motch et al. [20] and Holland et al. [21] but are in contrast to those of
Zgierski et al. [19] and Temps et al. [22]. The lowest πσ∗ state was found to be the S1

(in PFBz and HFBz) in the latter studies [19, 22].
The absorption bands observed within 8.0 eV for HFBz are highly diffuse and exhibit

irregular structures which hardly allow any definitive vibrational assignments. Therefore,
a detail theoretical investigation of the nuclear dynamics is undertaken to understand
the these observations. The complex and diffuse nature of the gas phase absorption
spectrum of HFBz [13, 19–22] suggests vibronic coupling among the underlying excited
electronic states which makes an optically dark transition allowed. Such coupling induces
nonadiabatic transitions among different electronic states and a mixing of the energy lev-
els of different vibronic symmetries. A typical signature of vibronic interactions is the
occurrence of CIs [34, 37–42] of electronic PESs in multi-dimensions. These intersec-
tions become the mechanistic bottleneck for ultrafast relaxation and energy transfer
between electronic states [34]. Occurrence of CIs causes a breakdown of the adiabatic
BO approximation [43]. The nonadiabatic coupling terms are singular in the adiabatic
electronic basis. For numerical convenience, a diabatic electronic basis [44] is preferred
in the dynamics study. In the latter basis, the coupling between states is described by
the electronic Hamiltonian and the coupling elements are smooth functions of nuclear
coordinates.
The aim of the present chapter is to understand some of the unresolved issues on

the observed optical absorption spectrum of HFBz and to provide a comparative ac-
count on the impact of fluorine atom substitution on the optical absorption spectrum
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Figure 6.1: Schematic diagram of the energetically low-lying electronic states of Bz and
HFBz. The adiabatic electronic energies are calculated at the equilibrium
configuration of the respective S0 state. The zero of energy corresponds to
the equilibrium minimum of the S0 state of Bz and HFBz. Further details
of the diagram are given in Sec. 6.2 of the text.

of Bz. This task is accomplished by performing detail ab initio electronic structure cal-
culations and first principles simulations of nuclear dynamics. The electronic structure
calculations for the low-lying electronic states of HFBz are carried out to construct an
appropriate parametrized model vibronic Hamiltonian of HFBz. In this model the PESs
and the coupling surfaces of the relevant electronic states are constructed by calculating
the VEEs with the aid of EOM-CCSD method [45] implemented in MOLPRO suite of
program [46]. The VEEs are calculated along the dimensionless normal displacement
coordinates of all the vibrational modes. The calculated adiabatic energy points are fit-
ted to the theoretical model developed in this chapter. The coupling between different
electronic states is taken into consideration in accordance with the symmetry selection
rules [54] and the relative phases of the coupling terms of the Hamiltonian are derived
from group theory considerations analogous to that carried out for the benzene radical
cation (Bz+) [35].

On the technical aspects, a time-independent matrix diagonalization approach to treat
the coupled-state nuclear dynamics including all the relevant vibrational modes is beyond
the capability of the present computer hardware. This task is therefore accomplished
with a time-dependent WP propagation approach employing the MCTDH scheme devel-
oped at Heidelberg [47–50]. This scheme has been very successful particularly in treating
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the multi-state and multi-mode vibronic coupling problems of large dimension [47–50].
While the final results of this chapter are obtained by this method, comparison calcu-
lations are carried out in reduced dimensions by the time-independent matrix diagonal-
ization method in order to arrive at unambiguous assignments (whenever possible) of
the vibronic structure of the observed absorption bands.

6.2 Details of electronic structure calculations

The reference equilibrium geometry of the electronic ground state [S0 (1A1g)] of HFBz
is optimized by the MP2 theory method employing the aug-cc-pVDZ basis set of Dun-
ning [51]. The Gaussian-03 suite of program [52] is used for this purpose. The optimized
reference equilibrium geometry converged to the D6h symmetry point group. The opti-
mized structural parameters, rC−C = 1.401 angstrom and rC−F = 1.346 angstrom, are
in fair agreement with their experimental values [53] of, 1.391 ± 0.007 angstrom and
1.327 ± 0.007 angstrom, respectively.

Harmonic frequency (ωi) of the vibrational modes of HFBz is calculated by diago-
nalizing the kinematic and ab initio force constant matrix of the reference equilibrium
structure. These vibrational frequencies are listed in Table 6.1. The mass-weighted
normal coordinates of the vibrational modes are calculated from the eigenvectors of the
force constant matrix. These are then transformed into their dimensionless form (Qi)
by multiplying with

√
ωi (in a0). The fundamental vibrational modes of HFBz belong to

ten degenerate and ten nondegenerate symmetry species of the D6h point group. They
decompose into the following IREPs of this symmetry point group [54]:

Γ = 2a1g(ν1, ν2)⊕ a2g(ν3)⊕ a2u(ν4)⊕ 2b1u(ν5, ν6)⊕ 2b2g(ν7, ν8)⊕ 2b2u(ν9, ν10)⊕
e1g(ν11)⊕ 3e1u(ν12, ν13, ν14)⊕ 4e2g(ν15, ν16, ν17, ν18)⊕ 2e2u(ν19, ν20). (6.1)

The description of the vibrational modes of Eq. (6.1) is given in Table 6.1 along with
their numbering as proposed by Herzberg [55] and also by Wilson [56].

Adiabatic energies of the low-lying singlet electronic states of HFBz are calculated
ab initio along the dimensionless normal coordinates of the 30 (altogether) vibrational
degrees of freedom. The VEEs of these electronic states are calculated for Qi =±0.25 and
in the range −3.00 to +3.00 with an increment 0.50, along i th vibrational mode (keeping
others at their equilibrium value) using the EOM-CCSD method as implemented in
MOLPRO program package [46]. Like in our previous studies on FBzs [25,26,30] the aug-
cc-pVDZ basis set is used for the C atoms and the energy-consistent pseudopotentials
of Stuttgart/Cologne group [58] are used for the fluorine atoms.

In order to ensure a reliable basis for using ECPs for fluorine atoms, we have done test
calculations of the VEEs of the low-lying electronic states of HFBz with and without
ECPs. The results are given in Table 6.2. It can be seen that the change in VEE for all
five states is very minor (the average deviation is ∼0.04 eV), indicating the reliability of
ECPs to describe the excited state PESs of HFBz.
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Table 6.1: Description of the vibrational modes of the electronic ground state of HFBz
calculated at the MP2/aug-cc-pVDZ level of theory.

Symmetry Nomenclature Vibrational Frequency(ωi/eV) Predominant nature
Herzberg [55] Wilson [56] present Experiment [57]

a1g ν1 ν1 0.1874 0.1847 C-F stretching in-phase
ν2 ν2 0.0686 0.0693 Ring breathing

a2g ν3 ν3 0.0968 0.0857 C-F in-plane bending, in-phase
a2u ν4 ν11 0.0261 0.0267 C-F out-of-plane bending, in-phase
b1u ν5 ν12 0.1507 0.1640 C-F trigonal stretching

ν6 ν13 0.0727 0.0793 C-C-C trigonal bending
b2g ν7 ν4 0.0577 0.0885 C-F out-of-plane trigonal

ν8 ν5 0.0222 0.0309 C-C-C Puckering
b2u ν9 ν14 0.1825 0.1553 C-C stretching (kekule)

ν10 ν15 0.0341 0.0258 C-F in plane trigonal bending
e1g ν11 ν10 0.0448 0.0459 C-F out-of-plane bending
e1u ν12 ν20 0.1921 0.1897 C-C stretching

ν13 ν19 0.1236 0.1263-0.1232 C-F stretching
ν14 ν18 0.0387 0.0391 C-F in-plane bending

e2g ν15 ν6 0.2093 0.2052 C-C stretching
ν16 ν9 0.1420 0.1434 C-F stretching
ν17 ν8 0.0541 0.0549 C-C-C in-plane bending
ν18 ν7 0.0328 0.0327 C-F in-plane bending

e2u ν19 ν16 0.0757 0.0738 C-C-C out-of-plane
ν20 ν17 0.0169 0.0217 C-F out-of-plane

Table 6.2: Vertical excitation energy (in eV) of the five low-lying four excited singlet
electronic states calculated at the equilibrium geometry of S0 state of HFBz.

State aug-cc-pVDZ ECP
S1(

1B2u) 5.204 5.168
S2(

1E1g) 5.617 5.678
S3(

1B1u) 6.677 6.646
S4(

1A2u) 7.456 7.556
S5(

1E1u) 7.574 7.542

6.3 The vibronic Hamiltonian and nuclear dynamics

In this section we construct a Hamiltonian in the normal displacement coordinates of
the reference electronic ground state of HFBz in accordance with the symmetry selection
rule. The nuclear dynamics in its excited electronic states is studied subsequently using
this Hamiltonian. The Hamiltonian is constructed in a diabatic electronic basis [44].
Within ∼ 8.0 eV excitation energy range signature of five excited singlet electronic
states (viz., S1

1B2u , S2
1E1g , S3

1B1u , S4
1E1u and S5

1A2u ) emerged in the experimental
absorption spectrum [13]. The symmetry of these electronic states indicates that the
JT and PJT interactions are the two fundamentally important mechanisms that would
primarily govern the overall shape and the assignment of the electronic absorption bands
of HFBz. With the given symmetry representation of the electronic states and the
vibrational modes, the following rules can be derived from the character table of the D6h

symmetry point group.

The first-order coupling within (intra) and between (inter) electronic states is gov-
erned by the selection rules; (Γi)

2 ⊃ (Γa1) and Γi ⊗ Γj ⊃ Γx, respectively [34]. The
symbol, Γ represents the IREP, i and j are the electronic state indices, a1 represents the
totally symmetric vibrational mode and the symbol, x, represents the symmetry of the
vibrational mode that transforms according to, Γi⊗Γx⊗Γj ⊃ A1. Now for the degener-
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ate, 1E1g (S2) and
1E1u (S4) electronic states the symmetrized direct product transforms

into, (E1g)
2 = (E1u)

2 = a1g + e2g. While the vibrational modes of a1g symmetry can not
split the electronic degeneracy (are condon active), the modes of e2g symmetry can lift
this electronic degeneracy and are JT active. For the rest of the off-diagonal elements
of the Hamiltonian written below the following symmetry rules apply.

B2u ⊗ E1g = e2u (ν19, ν20), (6.2a)

B2u ⊗B1u = a2g (ν3), (6.2b)

B2u ⊗ E1u = e2g (ν15, ν16, ν17, ν18), (6.2c)

B2u ⊗ A2u = b1g, (6.2d)

E1g ⊗B1u = e2u (ν19, ν20), (6.2e)

E1g ⊗ E1u = e2u (ν19, ν20) + a2u (ν4) + a1u, (6.2f)

E1g ⊗ A2u = e1u (ν12, ν13, ν14), (6.2g)

B1u ⊗ E1u = e2g (ν15, ν16, ν17, ν18), (6.2h)

B1u ⊗ A2u = b2g (ν7, ν8), (6.2i)

E1u ⊗ A2u = e1g (ν11). (6.2j)

According to Eq. (6.1) HFBz does not have any vibrational mode of either b1g or a1u
symmetry. Therefore, the coupling of the electronic states as given in Eqs. (6.2d) and
(6.2f), through these modes do not appear in the electronic Hamiltonian given below.
The relative sign of various elements of the Hamiltonian is determined by explicitly
checking the invariance of the Hamiltonian with respect to the symmetry operations
of the D6h point group, following similar works on Bz and cyclopropane radical cation
[35,36]. With these considerations the vibronic Hamiltonian can be written as
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In the above, H0 = TN + V0, represents the Hamiltonian (assumed to be harmonic)
of the reference electronic ground (S0) state of HFBz with

TN = −1

2

∑
i ∈ a1g , a2g , b2g , b2u

ωi
∂2

∂Q2
i

− 1

2

∑
i ∈ e2g , e2u, e1g , e1u

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (6.4)

and

V0 =
1

2
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ωiQ
2
i +

1

2

∑
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ωi

(
Q2

ix +Q2
iy

)
. (6.5)

The quantity 17 is a 7×7 diagonal unit matrix. The nondiagonal matrix Hamiltonian
in Eq. (6.3b) describes the PESs of the excited electronic states of HFBz and their
coupling surfaces. The quantity E j in this matrix is the VEE of the jth electronic state.
The elements of this matrix are expanded in a standard Taylor series around the reference
equilibrium geometry at, Q = 0, in the following way

U j =
∑
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15 (Q4

15x +Q4
15y)]; j ∈ 1, 3 and 5, (6.6a)
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iy)]; j ∈ 2 and 4. (6.6b)

In above equations the two components of the degenerate states and modes are labeled
with x/y. The quantity κji and λji represents the linear intrastate and interstate (JT)
coupling parameters [34] for the symmetric (a1g) and degenerate (e2g) vibrational modes,
respectively, for the jth electronic state. The first-order PJT coupling parameter of the
ith vibrational mode between the electronic states j and k is given by λj−k

i ; γji and ζji
are the second-order and fourth-order coupling parameters of the ith vibrational mode
for the jth electronic state. The summations run over the normal modes of vibration
of specified symmetry in the index. The + and - sign in Eq. (6.6b) is applicable to
the x and y components of the degenerate state, respectively. A fourth-order term
along the degenerate ν15 vibrational mode is included in Eq. (6.6a), in order to account
for the anharmonicity of the S3 state along this vibrational mode (discussed later in
the text). The VEEs calculated in Sec. 6.2 are fitted to the adiabatic counterpart of
diabatic electronic Hamiltonian of Eq. 6.3 by a least squares procedure to estimate
the parameters of the Hamiltonian defined above. The estimated parameters along the
relevant vibrational modes are given in Tables 6.3 and 6.4. A careful inspection of the
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6.3 The vibronic Hamiltonian and nuclear dynamics

coupling parameters suggests that not all 30 vibrational modes play significant role in the
nuclear dynamics on the electronic states of HFBz considered in this chapter. Therefore,
only the relevant modes having significant coupling strengths are retained in the nuclear
dynamics study presented below. The VEEs of the electronic excited states of HFBz
are given in Table 6.5 along with the theoretical and experimental excitation energies
available from the literature.
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6.4 Potential energy surfaces

Table 6.5: Vertical excitation energies (in eV) of the lowest five electronic states of HFBz.
S1 (1B2u ← X̃ 1A1g) S2 (1E1g ← X̃ 1A1g) S3 (1B1u← X̃ 1A1g) S4 (1E1u← X̃ 1A1g) S5 (1A2u← X̃ 1A1g)

π∗ ← π σ∗ ← π π∗ ← π π∗ ← π π∗ ← π
Ref. [11] 4.80 5.32 6.36 7.10 -

Ref. [14]
4.70 5.39 6.25 7.00 -
- 5.72 - - -

Ref. [13,15]
(4.28) 5.38 6.40 7.11 7.70

- 5.75 - - -

Ref. [20]
4.86 5.38 6.39 7.11 7.70
- 5.66 - - -

Ref. [21] EXPT 4.86 5.38 6.37 7.095 7.70
Ref. [21] TDDFT 4.91 5.05 5.90 - -
Ref. [19] EXPT 4.48 4.34 4.90

Ref. [19] TD/BP86 4.915 4.539 - - -
Ref. [22] TD/BP86 5.025 4.641 5.853 - -

This work 5.168 5.678 6.646 7.542 7.556
Adjusted VEEs 5.032 5.594 6.776 7.256 7.706

6.4 Potential energy surfaces

In this section we examine the topography of the adiabatic PESs of the ground and first
five excited singlet electronic states of HFBz obtained by diagonalizing the electronic
Hamiltonian of the diabatic model developed above. The complex features of the vi-
bronic bands recorded in the experiment [12, 13, 19–22] and the relaxation mechanisms
are governed by the detail topography of these electronic states. One dimensional cuts
of the full dimensional potential energy hypersurfaces of HFBz viewed along the given
vibrational mode keeping others at their equilibrium values at, Q=0, are shown in Fig-
ures 6.2 and 6.3. In these figures the solid curves represent the adiabatic potential energy
functions obtained from the model developed in Sec 6.3 and the points superimposed on
them are obtained from ab initio quantum chemical calculations discussed in Sec. 6.2.

In Figs. 6.2(a-b), the potential energies of the S0, S1, S2, S3, S4 and S5 electronic states
(indicated in the panel) are plotted along the symmetric vibrational modes ν1 and ν2,
respectively. It can be seen that the model reproduces the calculated ab initio data
extremely well. The degeneracy of the S2 and S4 state remains unperturbed upon dis-
tortion along these symmetric vibrational modes. While the crossing of S0 state with S1

seems not very important, the crossing of S1 and S2 electronic states (panel a) appears
to be important for the detailed structure of the first vibronic band. We note that these
states are largely separated in the parent Bz molecule and therefore a structured S1 band
observed for this molecule [13] (cf. Fig. 6.1 drawn at the vertical configuration). The
curve crossing between the S1 and S2 electronic states seen in Fig. 6.2(a) along ν1 leads
to energetically low-lying accessible CIs in multi-dimensions. It is to be noted again
that, the S1 state is of ππ∗ origin where as, the S2 state is of πσ∗ type. The schematic
diagram given in Fig. 6.1 reveals that the πσ∗ state comes down in energy drastically
(compared to the parent Bz molecule) due to perfluoro effect. Now it is intriguing to
note that [cf. Fig. 6.2(a)] S1 and S2 state indeed cross at a distorted (from the reference
equilibrium) geometry of HFBz. A similar situation was encountered in case of PFBz
molecule, although the curve crossing was found at a much larger displacement from
the vertical configuration for this molecule [25, 26]. The S1 and S2 states of HFBz are
coupled (in first-order) through the PJT type of interactions by the vibrational modes
ν19 and ν20 of e2u symmetry (cf. Table 6.4). The two πσ∗ states become energetically
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Figure 6.2: Adiabatic potential energies of ground and low-lying excited singlet elec-
tronic states of HFBz, along the normal coordinates of totally symmetric vi-
brational modes. The potential energies obtained from the present vibronic
model are shown by the solid lines and the computed ab initio energies are
shown by the asterisks.
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6.4 Potential energy surfaces

degenerate and form the JT active S2 state of HFBz. Apart from S2, S4 is also a JT
ative state in HFBz. This state undergoes PJT crossings with the S3 and S5 states as
clearly revealed by the potential energy curves shown in Fig. 6.2(a). In contrast to ν1,
the curve crossings are seldom visible along ν2 in Fig. 6.2(b). The near degeneracy of
the S4 and S5 states around the reference equilibrium configuration can be clearly seen
from both the panels (a and b) of Fig. 6.2.

The locus of the degeneracy of the two components of the S2 and also S4 electronic
states defines the seam of the JT CIs within these degenerate electronic states at the
D6h symmetry configuration of HFBz. Including the second-order diagonal coupling
terms of symmetric modes, the energetic minimum on these seams is found at ∼5.64
and ∼7.42 eV for the S2 and S4 electronic state, respectively. The electronic degeneracy
of the S2 and S4 state is split upon distortion along the degenerate (e2g) vibrational
modes ν15−ν18. This leads to a total of seven states altogether to be considered to treat
the nuclear dynamics in the S1-S2-S3-S4-S5 coupled electronic manifold of HFBz. The
potential energies of these electronic states of HFBz are shown in Figs. 6.3(a-d) along the
x component of the degenerate vibrational modes ν15− ν18, respectively. The symmetry
rule forbids a first-order coupling of these vibrational modes in the nondegenerate S1,
S3 and S5 electronic states. However, these modes are JT active in first-order in the S2

and S4 electronic states. It can be seen from Fig. 6.3 that, the JT splitting is very small
in the S4 electronic state in contrast to a relatively larger splitting found in the S2 state.
Moreover, the quartic term of the Taylor expansion (Eqs. 6.6a) seems to have significant
role in representing the potential energies of the S3 state, along the vibrational mode of
ν15. It is well known that the JT distortion causes a symmetry breaking [34,40] and as a
result the new minima on the lower adiabatic sheet of the JT split S2 and S4 states occur
at ∼5.50 and ∼7.41 eV, respectively. The JT stabilization energies amount to ∼0.14
and ∼0.01 eV, respectively, for these two degenerate electronic states in that order.

It is obvious from the potential energy plots given in Figs. 6.3(a) and 6.3(b) (above)
that, apart from the JT interactions within the degenerate electronic states (S2 and
S4), curve crossings of the nondegenerate electronic states (S1, S3 and S5) either among
themselves or with the components of the JT split degenerate electronic states also exist.
The latter describes the PJT interactions and the energetic minimum of the seam of S1-
S2 PJT CIs is found at ∼ 5.51 eV. This minimum is ∼ 0.13 eV below the seam of JT
CIs within the S2 electronic manifold. The minimum of the S2-S3 CIs is found at ∼ 1.65
eV above the minimum of the JT CIs within the S2 electronic manifold. This minimum
is ∼ 0.60 eV above the minimum of the S3 electronic state. Likewise, the minimum of
the S3-S5 and S4-S5 CIs occurs at ∼ 1.08 and ∼ 0.01 eV above the minimum of the S5

electronic state. We reiterate that the potential energy curves of Fig. 6.3 also confirms
the near degeneracy of the S4 and S5 electronic states around the reference equilibrium
configuration of HFBz. The energetic proximity of the minimum of an intersection seam
to the equilibrium minimum of a state plays very important role in the nuclear dynamics
as discussed below.
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Figure 6.3: Same as in Fig. 6.2, along the dimensionless normal coordinates of the x
component of the degenerate e2g vibrational modes ν15-ν18.
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6.5 Electronic absorption spectrum

As stated in the introduction, spectroscopic [9, 13] and photophysical [5, 7] studies have
revealed that C6Fn with n ≤ 4 exhibits structured S1 ← S0 absorption band where
as,C6Fn with n=5 and 6 exhibits structureless S1 ← S0 absorption band. It is already
established in our previous work [25,26] that the coupling between S1 state with the rest
of the higher excited states occurs much beyond the energy range of the first electronic
absorption band of MFBz, o-DFBz and m-DFBz molecules. The coupling strength of
the relevant vibrational modes is also very weak [25, 26]. These findings explained the
observed structure in the first absorption band of these molecules. Contrary to this, in
case of PFBz occurrence of low-energy CIs between the S1 and S2 states (due to increased
perfluoro effect) the first absorption band becomes structureless and diffuse [25,26]. The
S1-S2 nonadiabatic coupling in PFBz is also much stronger compared to the other three
molecules mentioned above [25,26]. However, in case of HFBz the present findings reveal
that the energetic minimum of S1 − S2 CIs occurs at further lower energy compared to
PFBz. As a result the seam of S1 − S2 CI is expected to be more readily accessible to
the nuclear motion on the S1 electronic state. Therefore, much profound effect on the
spectral envelope of the first and second absorption bands of HFBz can be expected. In
order to confirm this, we in the present study first construct various reduced dimensional
models and examine the vibrational energy levels of each of these electronic states by
excluding the PJT coupling with their neighbors. These results help us to understand
the role of various vibrational modes and electronic states in the complex vibronic struc-
tures of HFBz. The final simulation of nuclear dynamics is, however, carried out by
including all relevant couplings of the Hamiltonian and propagating wave packets using
the MCTDH suite of programs [47–50] to elucidate the nonadiabatic coupling effects on
the spectral envelopes. The theoretical results are finally compared with the available
experimental absorption spectrum of HFBz [13].

The optical absorption spectrum of the uncoupled (without PJT coupling) nondegen-
erate S1, S3 and S5 electronic states is shown in panel a, b and c of Fig. 6.4, respectively.
According to the symmetry selection rule, only totally symmetric vibrational modes can
have non-zero first-order (intrastate) coupling in these nondegenerate electronic states.
We therefore considered both linear and quadratic coupling terms due to these modes in
the nuclear dynamics study on these electronic states. The theoretical stick spectrum of
the S1 state (panel a of Fig. 6.4) is obtained by considering a vibrational basis consisting
of 9 and 27 harmonic oscillator functions along ν1 and ν2 vibrational modes, respectively.
The resulting secular matrix is diagonalized using 5000 Lanczos iterations. The theo-
retical stick spectrum is convoluted with a Lorentzian line shape function of 40 meV
FWHM to generate the spectral envelope. The same convolution procedure is applied
to all later stick data presented in this chapter. The vibronic structure of uncoupled S1

electronic state (panel a) reveals peak spacings corresponding to the frequencies of ν1
and ν2 vibrations of ∼0.1328 and ∼0.0664 eV, respectively. The dominant progression
is formed by the ν2 vibrational mode. Similarly, the spectra of the S3 and S5 states
presented in panels b and c are obtained by diagonalizing the secular matrix employing
5000 Lanczos iterations using 9 and 27 harmonic oscillator functions for S3 and 10 and
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40 harmonic oscillator functions for S5 electronic state, respectively along the ν1 and ν2
vibrational modes. The vibrational mode ν2 forms the dominant progression in both
these electronic states. Peak spacings of ∼ 0.0694 and ∼ 0.0600 eV corresponding to the
frequency of this mode can be extracted from the spectrum of the S3 (panel b) and S5

(panel c) electronic states, respectively. The vibrational mode ν1 is very weakly excited
in all these nondegenerate electronic states.
While the totally symmetric (a1g) vibrational modes are coupled in first-order in the

nondegenerate S1, S3 and S5 states only, the JT active (e2g) vibrational modes can have
non-zero first-order coupling in the degenerate S2 and S4 states in addition. Therefore,
all the a1g and e2g vibrational modes are considered to examine the nuclear dynamics in
the latter two electronic states. We note that in absence of PJT and bilinear coupling
terms, the Hamiltonian for the degenerate (S2 and S4) electronic state is separable in
terms of the a1g and e2g vibrational modes. Therefore, in the dynamics study the partial
spectrum for the a1g and e2g vibrational modes are calculated separately and finally
convoluted to generate a composite vibronic band to describe the overall picture. The
vibrational structure of the S2 electronic manifold of HFBz is shown in Fig. 6.5. The
partial spectra due to a1g and e2g vibrational modes and their composite are presented
in panels a, b and c of Fig. 6.5, respectively. The stick spectra presented in Fig. 6.5
and all latter ones shown below are converged with respect to the size of the harmonic
oscillator basis as well as number of Lanczos iterations. The dominant progression in
the band of panel a is caused by the ν2 vibrational mode. Peak spacing of ∼0.0647
eV corresponding to the frequency of the ν2 vibrational mode can be estimated from
the spectrum. Fundamental transition due to ν15, ν16 and ν18 vibrational modes are
observed in the partial spectrum of the degenerate e2g vibrational modes shown in panel
b. Lines are ∼0.1956, ∼0.0435 and ∼0.0376 eV spaced in energy and correspond to
the frequency of the ν15, ν16 and ν18 vibrational modes, respectively. The clumping
of spectral lines under each peak and a huge increase of line density indicates strong
JT coupling effects due to the vibrational modes ν15, ν16 and ν18, respectively. Such
a coupling leads to the appearance of a long series of resonances corresponding to the
vibrational motion on the lower JT sheet of the S2 electronic manifold for energies below
∼5.6 eV. Similarly for energies above ∼5.6 eV, the upper sheet of S2 electronic manifold
plays a role. Nevertheless, the strong nonadiabatic effects mix the discrete vibrational
levels of upper adiabatic sheet with the quasi-continuum levels of lower adiabatic sheet,
and therefore, the nuclei undergo simultaneous transitions to both sheets of the JT
split PES. The occurrence of higher energy maximum in the spectral envelope of Fig.
6.5(b) is due to metastable resonances of the upper adiabatic cone where as, the lower
energy maximum arises from the lower adiabatic sheet. The broadening mechanism and
the appearance of high energy peaks are just the strong nonadiabatic coupling effects
characteristic for JT intersections [34, 37, 40]. These high energy peaks are referred to
as Slonczewski resonances, and the evidence of these resonances was reported in the
literature for several (E × e)-JT problems [61–63].
Similar spectra of the JT split S4 electronic manifold of HFBz are shown in Figs.

6.6(a-c). The symmetric vibrational modes, ν1, ν2, and their combinations form the
progressions (panel a) in this case also. The excitation strength of the ν1 mode is ∼ 3
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Figure 6.4: S1
1B2u ← S0 (panel a), S3

1B1u ← S0 (panel b) and S5
1A2u ← S0 (panel c)

electronic absorption spectrum (excluding all interstate couplings) of HFBz.
The above spectra are calculated with the symmetric vibrational modes ν1
and ν2 only. The relative intensity (in arbitrary units) is plotted as a function
of the energy of the final electronic state. The zero of the energy corresponds
to the equilibrium minimum of the electronic ground state (S0) of HFBz.
The theoretical stick spectrum in each panel is convoluted with a Lorentzian
function of 40 meV FWHM to generate the corresponding spectral envelope.
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Figure 6.5: Same as in Fig. 6.4 for the S2
1E1g ← S0 electronic transition in HFBz : (a)

partial spectrum computed with the two totally symmetric a1g vibrational
modes ν1 and ν2, (b) partial spectrum computed with the four JT active
degenerate e2g vibrational modes ν15-ν18, and (c) the composite theoretical
spectrum obtained by convoluting the above two partial spectra. The stick
spectrum of panel c is multiplied by a factor of 3 for a better clarity.180
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times weaker than that of the ν2 mode. The intense lines in panel a are ∼0.1874 and
∼0.0662 eV spaced relative to the band origin and correspond to the frequency of the
ν1 and ν2 vibrational modes, respectively, in the S4 state.
In contrast to the S2 state spectrum of Fig. 6.5(a), the spectrum in Fig 6.6(a) exhibits

an extended progression owing to a relatively larger coupling strength of ν1 and ν2 modes
(cf. Table 6.3) in the S4 state. On the other hand,the spectrum for the JT active e2g
vibrational modes for the S2 state, shown in Fig. 6.5(b), exhibits much more complex
structure compared to that for the S4 state (cf. Fig. 6.6(b)). The complex energy level
structure of Fig. 6.5(b) clearly reveals stronger JT coupling effects in the S2 state and
as a result the composite band of this state (panel c of Fig. 6.5) becomes highly diffuse
and structureless. Since the JT effect in the S4 state is extremely weak, the composite
band structure of this state [cf. Fig. 6.6(c)] essentially resembles the symmetric mode
spectrum of Fig. 6.6(a).
While the spectrum of the individual states presented above contains rich informa-

tion on the excitation of various vibrational modes, their overall structure is far from
the one recorded in the experiment [12, 13, 19–22]. Apart from the JT coupling within
the degenerate electronic states, several other interstate couplings (cf. Table 6.4) are
important and need to be considered to arrive at a satisfying agreement with the ex-
periment [12,13,19–22]. The important interstate couplings are discussed in Sec. 6.4 in
terms of the topological characteristics of the adiabatic potential energy surfaces. The
dynamical consequences of these couplings are examined and discussed in the follow-
ing. Twenty three relevant vibrational modes and all relevant couplings of the vibronic
Hamiltonian of Eqs. (6.2-6.3) are considered for this exercise. Such a consideration leads
to a huge increase of the dimension of the vibronic secular matrix and a diagonalization
of it is numerically impossible with the available computer hardware. We therefore use
the Heidelberg MCTDH suite of program [47–50], and propagate WPs to calculate the
broad band spectrum considering all the required degrees of freedom. The numerical
details of these calculations are given in Table 6.6. We note that, it was necessary to
adjust the vertical excitation energies within the error limit of EOM-CCSD data to re-
produce the adiabatic excitation energies at their experimental values [13,20,21]. Apart
from this, no other parameters are adjusted in our theoretical calculations. The adjusted
vertical excitation energies are given in Table 6.5.
Seven calculations are carried out by initially preparing the WP separately on each

component of the S1-S2- S3-S4-S5 electronic manifold. The WP in each case is propagated
for 200 fs . Numerically converged spectra for the S1 and S2 states obtained from these
calculations are shown in panel c of Fig. 6.7 along with the experimental results in panel
a and b reproduced from Ref. [13] and Ref. [20], respectively. The time autocorrelation
function is damped with an exponential function, (e−

t
τ , with τr= 33 fs), prior to its

Fourier transformation to calculate the spectrum. Such a damping is equivalent to a
convolution of the energy spectrum with a Lorentzian lineshape function of 20 meV
FWHM. It can be seen that the theoretical result of panel c is in very good accord
with the old and recent experiments [13, 20,21]. The structured absorption band of the
uncoupled S1 state (cf. Fig. 6.4(a)) becomes essentially structureless upon considering
its coupling with the other states. The PJT coupling of S1 state with S2 along the ν19
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Figure 6.6: Same as in Fig.6.4 for the S4
1E1u ← S0 electronic transition in HFBz
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and ν20 vibrational modes [cf. Table 6.4] is very strong. As discussed in Sec. 6.4 the
energetic minimum of the S1 and S2 CIs occurs at lower energy and the seam of CIs
is therefore readily accessible to the nuclear motion on the S1 electronic state. The
intersections of S1 state with S3, S4 and S5 occur at much higher energies and do not
have any impact on the nuclear dynamics on the S1 state.
The broad band above ∼ 5 eV in Fig. 6.7 represents the vibronic structure of the

JT active S2 state. It can be seen from the spectra plotted in panel b and c of Fig.
6.5 for the S2 state that the JT effect itself is very strong within this state, as a result
a bimodal vibronic band is obtained for this electronic state. The S1-S2 PJT coupling
further broadens the band structure of this state. The energetic minimum of the S1-
S2 curve crossings is very close to the minimum of the JT intersections within the S2

electronic state (cf. Sec. 6.4). The two peaks in the bimodal spectral profile arise from
the two JT split adiabatic electronic sheets of the S2 state. These peaks located at ∼
5.35 and ∼ 5.75 eV and are in excellent accord with their experimental values [cf. Table
6.5 for a detailed comparison].
The third and fourth absorption bands of HFBz obtained with the full Hamiltonian

of Eq. 6.3 are shown in panel b of Fig. 6.8. These bands are formed by the S3, S4

and S5 electronic states of HFBz. All these states are of ππ∗ type (cf. Fig.6.1). The
corresponding experimental results are reproduced from Ref. [13] and shown in panel a
of Fig. 6.8. The two curves in panel a emerged from a decomposition of experimental
spectrum [13]. This was done to eliminate the overlapping components and to correctly
estimate the oscillator strengths of the two curves of 1B1u and 1E1u Bz parentage [13]. It
can be seen from Fig. 6.8 that theoretical results are in satisfactory agreement with the
low-resolution experimental data. In case of Bz the signature of the 1A2u state was not
seen distinctly as it was buried within the spectral envelope of the JT active E1u state.
In case of HFBz the 1A2u state appears vertically at an energy above the JT active 1E1u

state (cf. Fig. 6.1). As a result the distinct feature seen at an energy beyond ∼ 7.5
eV appears due to the 1A2u electronic state of HFBz (cf. Fig. 6.8). This feature was
tentatively assigned at ∼7.7 eV in the experimental results (cf. Table 6.5) originating
from this state and the present findings confirms this assignment. It is important to
note that we carried out various two-coupled states calculations in order to confirm the
assignment of the peaks appeared in the broad envelopes of Fig. 6.8(b).
At this point, it is worthwhile to compare the present theoretical results to those avail-

able in the literature. The lowering of the πσ∗ state energy with increasing fluorination
have been predicted by Zgierski et al. [19] and by Studzinski et al. [22] through TDDFT
calculations. Their results show that this πσ∗ state becomes the lowest excited state in
case of HFBz at the equilibrium geometry of the S0 state. By comparing the features
observed in the fluorescence and absorption spectra of jet cooled PFBz and HFBz with
other FBz derivatives with less number of fluorine atoms Zgierski et al. concluded that
the S1 state of the former molecules deserves a πσ∗ assignment [19]. This assignment
is also supported by performing TDDFT calculations by Studzinski et al. [22]. How-
ever, this assignment differs from that of Motch et al. [20] and Holland et al. [21] who
established with the aid of a combined experimental and computational study that the
LUMO of HFBz is of π∗ character. The present findings reveal that the lowest πσ∗ state
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Figure 6.7: Vibronic bands of the S1-S2 states of HFBz calculated using seven states and
twenty three vibrational modes using MCTDH algorithm with a damping
time of 33 fs . The experimental [13,20] and theoretical results are shown in
panel a, b and c, respectively. The intensity (in arbitrary unit) is plotted
along the energy (relative to minimum of the 1A1g state of HFBz) of the
final vibronic states.184
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Table 6.6: Normal mode combinations, sizes of the primitive and the single particle basis
used in the wave packet propagation within the MCTDH framework in the
seven coupled electronic manifold using the complete vibronic Hamiltonian of
Eq. (6.3). Second column denotes the vibrational DOF which are combined
to particles. Third column gives the number of primitive basis functions for
each DOF. Fourth column gives the number of SPFs for each electronic state.

Molecule Normal modes Primitive basis SPF basis
(ν1, ν18y, ν20y, ν11y) (8, 6, 10, 4, 6) [8,25,25,6,6,6,6]

(ν2, ν16x, ν20x, ν11x, ν12y) (10, 5, 10, 4, 6) [9,6,6,6,12,12,6]
HFBz (ν18x, ν17y, ν19x, ν14x, ν7) (6, 8, 10, 4, 6) [18,18,18,25,6,6,18]

(ν17x, ν16y, ν19y, ν14y, ν8) (8, 5, 10, 4, 8) [18,8,8,18,9,9,18]
(ν15x, ν15y, ν3, ν12x) (8, 8, 4, 6) [8,6,6,6,6,6,6]

becomes S2 in HFBz and the assignments of the structure appearing in photoabsorption
spectrum between ∼4.5 and ∼6 eV in the present study [25,26] are consistent with the
findings of Philis et al. [13], Motch et al. [20] and Holland et al. [21]. It is intriguing to
note that the age old experimental results of Refs. [12, 13] are in very good agreement
with those obtained in the modern experiments [20, 21] and it can be seen form Fig.
6.7 that our theoretical results are in perfect accord with the findings from all these
experiments. In order to reconfirm, we carried out calculations of VEEs using five other
different wavefunction based approaches (as possible for this large system) and also using
the TDDFT method. The magnitude of the VEEs differ in each calculations but they
confirm that S1 and S2 states of HFBz is of ππ∗ and πσ∗ character, respectively. The
TDDFT calculations using the G03 program package [52] indeed gave a reverse energetic
ordering of these two states as reported in Refs. [19, 22]. To save space and brevity we
do not include here all the test results obtained by us using different electronic struc-
ture methods. Instead, we note that the electronic structure results employed in this
work offers the best agreement with the experiment for this “large”molecular system.
The detailed analysis carried out here along with the literature results (both theory and
experiments, see Table 6.5) confirm that the S2 state is πσ

∗ in HFBz at the equilibrium
geometry of the S0 state. This state comes down in energy with increasing fluorination
and forms the lowest energy CIs with the S1 state in HFBz. Further support to the
above assignment of the state order arise from a recent experimental and computation
study on perfluorinated oligophenylenes. For these higher homologues of HFBz the S1

state is found to be of ππ∗ type [64].

Temps et al. have studied ultrafast nonradiative dynamics of electronically excited
HFBz [22]. These authors arrived at the same results as reported by Zgierski et al. [19].
The S1 state was found to be of πσ∗ type (1E1g symmetry) through TDDFT calculations
[22]. Four peaks were reported in the optical absorption spectrum of HFBz recorded by
Temps et al. (cf. Fig. 1 of Ref. [22]) in the ∼ 210-280 nm wavelength region. Apparently,
the weakest one appearing at the longest wavelength was assigned to the S1(

1E1g) ←
S0(

1A1g) transition. This transition is dipole forbidden. The weak absorption and low-
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quantum yield of fluorescence of this optically dark state is attributed to its strong
nonadiabatic coupling with the 1B2u(S2) state of ππ

∗ origin. The next three peaks were
assigned to the S2(

1B2u) ← S0(
1A1g), S3(

1B1u) ← S0(
1A1g) and S4(

1E1u) ← S0(
1A1g)

transition, respectively. The present electronic structure and dynamics results reported
in Figs. 6.1, 6.5 and 6.7 differ considerably from this assignment. We reiterate that the S1

state is a ππ∗ state and NOT a πσ∗ state at the equilibrium configuration the S0 state of
HFBz (cf. Fig. 6.1). A wave function based approach of quantum chemical calculations,
therefore predicted that the S1 state is of 1B2u symmetry. Unlike in Ref. [22], the
three peaks observed in the spectrum plotted in the panel c of Fig. 6.7 are assigned to a
transition to the 1B2u(S1) and

1E1g(S2) electronic states of HFBz. The bimodal structure
of the latter band arises due to strong JT splitting of 11E1g state along the vibrational
modes of e2g symmetry. These assignments are also consistent with the experimental
results of Philis et al. [13], Motch et al. [20] and Holland et al. [21]. The splitting between
the two maxima of the theoretical spectrum of ∼0.40 eV of the S2

1E1g [cf. Fig. 6.7(c)]
state compares well with it’s experimental value [13].

6.6 Internal conversion dynamics

In order to understand the impact of complex nonadiabatic coupling on the dynamics
of the coupled S1-S2-S3-S4-S5 excited electronic states, the time-dependence of diabatic
electronic populations is plotted in Fig. 6.9. These electronic populations are obtained
by initially locating the WP on the S1 state, one component of the JT split S2 state,
the S3 state, one component of the JT split S4 state and the S5 state and shown in Fig.
6.9, respectively. It can be seen from panel a of Fig. 6.9 that the electronic population
transfer occurs only to the S2 state when the WP is initially prepared on the S1 state. It
was found in our previous work [26] that the energetic minimum of S1-S2 CIs decreases
gradually from MFBz to PFBz due to the lowering of S2 state energy by the perfluoro
effect. The present calculations reveal that the minimum of the S1-S2 CIs in HFBz occurs
at ∼5.51 eV, which is even lower in energy compared to that of PFBz occurring at ∼
6.92 eV (see Table VIII of Ref. [25]). Therefore, the S1-S2 CI is more readily accessible
to the WP moving on the S1 state of HFBz when compared to PFBz. The initial decay
of the population relates to a nonradiative internal conversion rate of ∼ 153 fs of the S1

state. The femtosecond time-resolved experiment of Temps et al. [22] predicts a decay
rate of ∼ 172 fs of this initially excited state. We reiterate that this state is designated
as πσ∗ in contrast to our designation as ππ∗.

The CIs of S1 state with S3, S4 and S5 states occur at high energies and these are not
accessible to the WP prepared on the S1 state as clearly indicated by the population
diagram shown in Fig. 6.9. It is discussed above that the S1-S2 CIs are the bottleneck
underlying the broadening of the S1 ← S0 absorption band in HFBz. The WP initially
prepared on the S2 state moves very fast to the S1 state (panel b). A nonradiative decay
rate of ∼22 fs can be estimated from the population curve of S2 state given in panel b.
It is to be noted from the population diagram of Fig. 6.9, that the population of the
second component of the JT split S2 state also grows in time. However, the population
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Figure 6.9: Time-dependence of diabatic electronic populations in the S1-S2-S3-S4-S5

coupled state nuclear dynamics of HFBz. The results obtained by initially
locating the WP on the S1 state, one component of the JT split S2 state,
S3 state, one component of the JT split S4 state and S5 state are shown in
panel a-e, respectively.
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growth of the latter state is much slower than that of the S1 state. This indicates that
the S1-S2 PJT coupling is much stronger than the JT coupling within the S2 electronic
manifold. The electronic structure data given in Tables 6.3 and 6.4 are in accord with
these findings. Therefore it is clear that much of the broadening of the spectral envelope
of the S1 and S2 state is caused by the strong S1-S2 PJT coupling particularly, along the
ν20 vibrational mode of e2u symmetry.

The electron population dynamics becomes more complex and involved when the WP
is initially prepared either on the S3 (panel c), S4 (panel d) or S5 (panel e) electronic
state. In the former case most of the population transfers to S1 state via two consecutive
low-energy S3-S2 and S2-S1 CIs. Similarly, when the WP is prepared on the S4 state
the internal conversion to the S3 and S5 states occurs due to strong S4-S3 and S4-S5

interstate coupling (cf. Table 6.4). The initial sharp decay of the population of the S3

and S4 states in panels c and d relates to the nonradiative decay rate of ∼67 and ∼28 fs
of these states, respectively. When the WP is prepared on the S5 state, the population
transfers to the S3 and S4 states only. A nonradiative decay rate of ∼110 fs is found for
this state.

A few remarks are in order at this point. The electronic structure and quantum
dynamics results presented above revealed excellent agreement with the experimental
findings. The detailed comparative account on the energetic location of the bands pre-
sented in Table 6.5 reveals that the present theoretical results are in perfect accord with
the experimental findings of Frueholz et al. [11,12], Philis et al. [13], Motch et al. [20] and
Holland et al. [21]. Apart from a reverse energetic ordering of the two lowest excited elec-
tronic states of HFBz the other observations made in the experiment of Ref. [19,22] can
very well be understood from the present theoretical results. It is shown that the PJT
coupling between the S1 and S2 states of HFBz is much stronger than the JT coupling
within the S2 electronic state. It is discussed in section 6.4 that the energetic minimum
of the S1-S2 intersection is near degenerate to the minimum of the S2 state. This en-
ergetic minimum of the S2 state occurs at a displaced geometry at Q1=-0.79, Q2=0.66,
Q15x=-0.94, Q16x=-0.41, Q17x=-1.99, Q18x=-1.21, Q19x=0.0, Q20x=0.0 from the original
vertical configuration (at Q=0). It can be seen that ∼ 20 % of the electronic population
flows to the S2 state (cf. panel a of Fig.6.9) upon an initial Franck-Condon transition
to the S1 (ππ∗) state. A part of this 20% population trapped in the vicinity of the
minimum of the S2 (πσ∗) state gives rise to fluorescence emission. Since this part is ex-
pected to be quite small, extremely low quantum yield of fluorescence is obtained in the
experimental measurements [19]. Also, since this emission occurs from a geometry away
from the vertical configuration (as stated above), overlap of the absorption and emission
band is not observed [19]. Strong S1-S2 nonadiabatic interaction causes a mixing of the
energetically low-lying vibronic levels of the S2 state with the continuum levels of the S1

state and gives rise to a large spectral width. The relatively weaker JT coupling within
the S2 state also contributes to the spectral broadening as discussed in Sec 6.5 above.
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6.7 summary

A detailed theoretical account of multi-mode JT and PJT interactions in five lowest
excited singlet electronic states of HFBz is presented in this contribution. Extensive
electronic structure calculations are performed to develop a model diabatic vibronic cou-
pling Hamiltonian (Eqs. 6.2-6.6b), and first-principles dynamics calculations are carried
out both via time-independent and time-dependent quantum mechanical methods. The
calculated adiabatic potential energies of five electronic states are parametrized to estab-
lish the diabatic vibronic Hamiltonian. Using the constructed Hamiltonian the nuclear
dynamics is systematically studied to reveal impact of electronic nonadiabatic coupling
on the dynamics. The electronic structure data reveal multiple CIs among these excited
electronic states of HFBz. The theoretical findings are found to be in good accord with
the available experimental results.

Several issues regarding the complex vibronic dynamics of HFBz (as compared to Bz)
are addressed and resolved in this chapter. The major findings are the following.
1. The S2 state of HFBz is JT active, two πσ∗ states are energetically degenerate in this
case. This is not the case for any other fluoro derivatives of Bz with number of fluorine
atoms less than 6.
2. Some of the earlier works [19, 22] predicted that the S1 state is of πσ∗ type in PFBz
and HFBz. This assignment has been found to be incorrect in the present study. The S1

state is of ππ∗ type for all FBz molecules. This result is also in accord with the recent
findings in the literature [21].
3. The present assignment of the peaks in the photoabsorption spectrum of HFBz is in
agreement with the experimental results of Philis et al. [13] but is in contradiction with
that of Temps et al. [22].
4. The structureless S1 band of HFBz originates from energetically low-lying CIs of the
S1 and S2 states and very strong PJT coupling among them.
5. The bimodal shape of the second photoabsorption band originates from the orbitally
degenerate JT active 1E1g electronic state of HFBz. The energetic location of these two
peaks is in good agreement with the experimental results of Philis et al. [13]. The JT
coupling is strong in this electronic state which causes a bimodal shape of the absorption
profile, the PJT coupling of this state with S1 is even stronger which causes this bimodal
spectral profile structureless. We note that this state is optically dark for a transition
from the electronic ground state of HFBz. The absorption profile of this state seen in
the experiment is due to its vibronic coupling with the optically bright S1 state.
6. The JT coupling in the 1E1u electronic state is far weaker than in the 1E1g state of
HFBz. The 1E1g-

1E1u PJT coupling is symmetry allowed and there exist vibrational
modes of appropriate symmetry to cause this coupling. The symmetry invariance of
1E1g-

1E1u coupling matrix is studied and the relative phases of the coupling elements
are derived. However, thorough analysis of the electronic structure data reveal negligible
coupling among these degenerate electronic states.
7. The third and forth absorption bands of HFBz are formed by three ππ∗ type of
orbitals of 1B1u,

1E1u and 1A2u symmetry. Unlike in case of Bz, the signature of the
1A2u state is clearly seen in the absorption spectrum of HFBz. This state appears at
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∼ 7.7 eV in the experimental spectrum [13] and is in good accord with our theoretical
results.
8. Nonradiative decay rate of ∼ 153 fs and ∼ 22 fs is found for the S1 and S2 state,
respectively. Electronic population transfer occurs to the S1 state via S3-S2 and S3-S1

CIs when the S3 state is initially populated. Likewise, nonradiative electron population
transfer occurs to the S3, S5 and S3, S4 states when the S4 and S5 states are initially
populated, respectively. These nonradiative transfer of electron populations relate to
decay rate of ∼ 67, 28 and 110 fs, respectively, of the S3, S4 and S5 electronic states of
HFBz.

6.8 Appendix: Symmetry analysis of E1g − E1u JT and
PJT Hamiltonian

The symmetry invariance of the vibronic Hamiltonian of Bz+ discussed by Köppel and
coworkers has been found to be applicable in case of HFBz also as both the systems
belong to D6h symmetry point group. In this appendix we examine the symmetry
invariance of the E1g − E1u PJT coupling block of the vibronic Hamiltonian of Eq.
6.3b. Since HFBz belongs to same D6h symmetry point group as Bz+, the JT coupling
matrix derived for the E1g and E1u states in Ref. [35] is applicable to those states of
HFBz also. The D6h symmetry point group can be represented as D6h = D6⊗i; Where i
represents the inversion operation. Like Bz+ the latter operation is trivial for HFBz also.
The principal rotation axis Cϕ can be 2, 3 and 6 fold. The other symmetry operations
are E, C ′

2 and C ′′
2 . It is stated in the introduction that the symmetry rule allows the

vibrational modes of e2u, a2u and a1u to be PJT active in first-order in the E1g − E1u

coupled electronic manifold. Considering only the linear coupling terms the following
analysis can be made.

A coupled Hamiltonian in the E1g and E1u electronic function spaces can be repre-
sented in terms of the electronic projection operators. Let the kets |x1⟩, |y1⟩ and |x2⟩,
|y2⟩ and the corresponding bras represent the first and second rows/columns of the E1g

and E1u representation matrices as given in Ref. [35]. Let us also denote the components
of the degenerate vibrational modes by Qx and Qy. The following transformations hold.

First we will derive the vibronic Hamiltonian for JT active E1g and E1u electronic
states.

[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|]
Cϕ−→ [cos2(ϕ)− sin2(ϕ)][|x1⟩ ⟨x1| − |y1⟩ ⟨y1|]

+(2cos(ϕ)sin(ϕ))[|x1⟩ ⟨x1|+ |y1⟩ ⟨y1|]
= cos(2ϕ)[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|]

+sin(2ϕ)[|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|] (A1)
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|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|
Cϕ−→ −2cos(ϕ)sin(ϕ)[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|]

+(cos2(ϕ)− sin2(ϕ))[|x1⟩ ⟨y1| − |y1⟩ ⟨x1|]
= −sin(2ϕ)[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|]

+cos(2ϕ)[|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|] (A2)

From Eq. (A1) and Eq. (A2),[
|x1⟩ ⟨x1| − |y1⟩ ⟨y1|
|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|

]
Cϕ−→

[
cos(2ϕ) sin(2ϕ)
−sin(2ϕ) cos(2ϕ)

] [
|x1⟩ ⟨x1| − |y1⟩ ⟨y1|
|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|

]
= Qx[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|] +Qy[|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|]

Qx[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|] +Qy[|x1⟩ ⟨y1|+ |y1⟩ ⟨x1|], is invariant with respect to Cϕ. Where
Qx and Qy represent the x and y components of either e2g or e2u mode. Under inversion
operator (|x1⟩, |y1⟩) and (Qx, Qy) transform as (|x1⟩, |y1⟩) and (±Qx, ±Qy). To make
the function Qx[|x1⟩ ⟨x1| − |y1⟩ ⟨y1|] + Qy[|x1⟩ ⟨y1| + |y1⟩ ⟨x1|] invariant with respect to
inversion, (Qx, Qy) should transform as (Qx, Qy) and hence the normal mode is a gerade
e2g representation. Similarly, this function can be shown to invariant with respect to the
operations C ′

2 and C ′′
2 .

Considering the symmetry invariance with respect to the operations given above, the
E1g JT coupling matrix for the e2g vibrational mode is given by

HJT
e2g

=

(
λQx λQy

λQy −λQx

)

|x1⟩ ⟨x1|+ |y1⟩ ⟨y1|
Cϕ−→ [cos2(ϕ) + sin2(ϕ)][|x1⟩ ⟨x1|+ |y1⟩ ⟨y1|]
= [|x1⟩ ⟨x1|+ |y1⟩ ⟨y1|] (A3)

|x1⟩ ⟨y1| − |y1⟩ ⟨x1|
Cϕ−→ [cos2(ϕ) + sin2(ϕ)][|x1⟩ ⟨y1| − |y1⟩ ⟨x1|]
= [|x1⟩ ⟨y1| − |y1⟩ ⟨x1|] (A4)

It can be proved that Qa1g [|x1⟩ ⟨x1|+ |y1⟩ ⟨y1|] and Qa1u [|x1⟩ ⟨y1|− |y1⟩ ⟨x1|] are invariant
with respect to all symmetry operations of D6 point group. The E1g JT coupling matrix
for the a1g and a1u vibrational modes is given by

HJT
a1g&a1u

=

(
κQa1g βQa1u

−βQa1u κQa1g

)
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6.8 Appendix: Symmetry analysis of E1g − E1u JT and PJT Hamiltonian

The hermitian property of Hamiltonian requires

H12 = H∗
21

βQa1u = (−βQa1u)
∗

βQa1u = −βQa1u since the Hamiltonian is real

2βQa1u = 0

β = 0 since Qa1u ̸= 0

Similarly the JT hamiltonian for E1u can also be deduced from the symmetry prop-
erties. Now we proceed to deduce the E1g-E1u PJT coupling matrix.

[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|]
Cϕ−→ [cos2(ϕ)− sin2(ϕ)][|x1⟩ ⟨x2| − |y1⟩ ⟨y2|]

+(2cos(ϕ)sin(ϕ))[|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|]
= cos(2ϕ)[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|]

+sin(2ϕ)[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|] (A5)

|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|
Cϕ−→ −2cos(ϕ)sin(ϕ)[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|]

+(cos2(ϕ)− sin2(ϕ))[|x1⟩ ⟨y2| − |y1⟩ ⟨x2|]
= −sin(2ϕ)[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|]

+cos(2ϕ)[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|] (A6)

From Eq. (A5) and Eq. (A6),[
|x1⟩ ⟨x2| − |y1⟩ ⟨y2|
|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|

]
Cϕ−→

[
cos(2ϕ) sin(2ϕ)
−sin(2ϕ) cos(2ϕ)

] [
|x1⟩ ⟨x2| − |y1⟩ ⟨y2|
|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|

]
= Qx[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|] +Qy[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|]

Qx[|x1⟩ ⟨x2|−|y1⟩ ⟨y2|]+Qy[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|], is invariant with respect to Cϕ. Where
Qx and Qy represent the x and y components of the e2u mode.

Now a C ′
2 rotation transforms (|x1⟩ , |y1⟩), (|x2⟩ , |y2⟩) and (Qx, Qy) to (− |x1⟩ , |y1⟩),

(|x2⟩ ,− |y2⟩) and (−Qx, Qy), respectively. Therefore,

Qx[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|] +Qy[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|]
C′2−→ (−Qx)[(− |x1⟩) ⟨x2| − |y1⟩ (−⟨y2|)]

+Qy[(− |x1⟩)(−⟨y2|) + |y1⟩ ⟨x2|]
= Qx[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|] +Qy[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|]

is also invariant with respect to C ′
2 rotation.

Similarly a C ′′
2 rotation transforms (|x1⟩ , |y1⟩), (|x2⟩ , |y2⟩) and (Qx, Qy) to (|x1⟩ ,− |y1⟩),
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(− |x2⟩ , |y2⟩) and (−Qx, Qy), respectively. and

Qx[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|] +Qy[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|]
C′′2−→ (−Qx)[|x1⟩ (−⟨x2|)− (− |y1⟩) ⟨y2|]

+Qy[|x1⟩ ⟨y2|+ (− |y1⟩)(−⟨x2|)]
= Qx[|x1⟩ ⟨x2| − |y1⟩ ⟨y2|] +Qy[|x1⟩ ⟨y2|+ |y1⟩ ⟨x2|]

is invariant with respect to C ′′
2 rotation also.

Considering the symmetry invariance with respect to the operations given above the
E1g − E1u PJT coupling matrix for the e2u vibrational mode is given by

HPJT
e2u

=


Ex

E1g
0 λQx λQy

0 Ey
E1g

λQy −λQx

λQx λQy Ex
E1u

0
λQy −λQx 0 Ey

E1u


The PJT coupling matrix for the a2u mode can be derived similarly as follows.

|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|
Cϕ−→ [cos2(ϕ) + sin2(ϕ)][|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|]
= [|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|] (A7)

|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|
E−→ |x1⟩ ⟨x2|+ |y1⟩ ⟨y2|

|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|
Cϕ−−−−→

ϕ=6,3,2
|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|

|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|
C′2−→ − |x1⟩ ⟨x2|+ |y1⟩ (−⟨y2|) = −[|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|]

|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|
C′′2−→ −[|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|]

|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|
i−→ −[|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|]

The characters of the a2u mode are (1,1,1,1,-1,-1,-1) for (E, C6, C3, C2, C
′
2, C

′′
2 , i)

operations in the D6h symmetry point group. Thus [|x1⟩ ⟨x2|+ |y1⟩ ⟨y2|]Qa2u is invariant
with respect to all symmetry operations of the D6h point group. Similarly, it can be
trivially shown that [|x1⟩ ⟨y2|−|y1⟩ ⟨x2|]Qa1u is invariant with respect to all the symmetry
operations of the D6h point group. The PJT coupling Hamiltonian for the a2u and a1u
vibrational modes is therefore given by

HPJT
a2u,a1u

=


Ex

E1g
0 λ′Qa2u λ′′Qa1u

0 Ey
E1g

−λ′′Qa1u λ′Qa2u

λ′Qa2u −λ′′Qa1u Ex
E1u

0
λ′′Qa1u λ′Qa2u 0 Ey

E1u

 (A8)

We mention that analysis of the ab initio electronic structure data reveal that the E1g-
E1u PJT coupling is not relevant for HFBz.
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[47] G. A. Worth, M. H. Beck, A. Jäckle and H. -D. Meyer, The MCTDH Package,
Version 8.2, 2000, University of Heidelberg, Germany. H. -D. Meyer, Version 8.3,
2002. Version 8.4 (2007), See http://www.pci.uni-heidelberg.de/tc/usr/mctdh/

[48] H. -D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).

[49] U. Manthe, H. -D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).

[50] H.-D. Meyer and G. A. Worth, Theor. Chem. Acc. 109, 251 (2003).

[51] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

[52] M. J. Frisch et al., Gaussian 03, revision B.05; Gaussian, Inc., Pittsburgh, PA, 2003.

[53] A. Almenningen, O. Bastiansen, R. Seip, M. Hans, Acta Chem. Scand. 18, 2115
(1964).

[54] E. B. Wilson Jr., J. C. Decius and P. C. Cross, Molecular vibrations (McGraw-Hill,
New York, 1955).

[55] G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Vol.2 of Molec-
ular Spectra and Molecular Structure (Van Nostrand, New York, 1945) p. 183.

[56] E. B. Wilson, Jr., Phys. Rev. 45, 706 (1934).

[57] D. Steele and D. H. Whiffen, Trans. Faraday Soc., 55, 369 (1959)

197



References

[58] A. Bergner, M. Dolg, W. Kuechle, H. Stoll, and H. Preuss, Mol. Phys. 80, 1431
(1993).
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7 Conclusions and future directions

A detailed description of the photoinduced quantum nonadiabatic dynamics of the low
lying electronic states of neutral boron Bn (where n=4, 5 and 7) clusters and carbon clus-
ter C15 is presented in this thesis. The theoretical study involves construction of vibronic
Hamiltonians of the electronic ground and excited states of the corresponding neutral
clusters through state-of-the-art ab initio quantum chemistry calculations. Employing
these Hamiltonians the nuclear dynamics is studied subsequently from first principles
by solving quantum eigenvalue equation. Theoretically calculated vibronic structures of
the photodetachment bands are reported and compared with the available experimental
recordings. The theoretical results are generally found to be in good accord with the
experiment. The main findings of the present work are given below.

B4:
(a) The symmetric vibrational mode ν1 and ν2 forms progression in all the six

low-lying electronic states of B4 considered here.
(b) Peak spacing of ∼423 cm−1 corresponding to the mode ν2 was found from the

stick spectrum of X̃ state of B4. In addition the combination (ν1+ν2) mode
also forms the ∼1590 cm−1 progression in this band.

(c) The vibrational mode ν2 forms the major progression (∼741 cm−1) in the ã

state while ν1 forms very weak excitations (∼1150 cm−1) in the b̃ state.

(d) The vibrational mode ν2 in the Ã and ν1 in the c̃ and B̃ electronic states from
dominant progressions. Peak spacings of ∼ 767, ∼ 1234 and ∼ 1237 cm−1

are found corresponding to the frequency of these modes in the mentioned
electronic states, respectively.

(e) The nonadiabatic coupling effects are small in the electronic states of B−
4 .

Some significant effect of this coupling is found in the ã3B2u and b̃3B1u states
of B4 only. The excitation of non totally symmetric mode ν6 with an energy
spacing of ∼ 1004 cm−1 is estimated from the irregular spectral progression of
coupled b̃ electronic state.

(f) The photodetachment spectra calculated by employing reference equilibrium
geometries calculated by the UB3LYP and ROMP2 methods are in excellent
agreement with experiment indicating negligible effect of spin-contamination
in theoretical results.

(g) The effect of ã-̃b CIs on the adiabatic electronic population of b̃ electronic
state when the WP prepared on b̃ state is studied in detail. The initial sharp
decrease of population of b̃ electronic state relates to a decay rate of of ∼ 14
fs (∼ 7 fs) in the diabatic (adiabatic) picture.
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B5:
(a) Line spacings of ∼ 724 and ∼ 658 cm−1 corresponding to the frequency of ν3

and ν4 modes, respectively, extracted from the theoretical spectrum. A vibra-
tional progression of ∼ 550 cm−1 has been estimated from the experimental
band structure of the X̃ state.

(b) The progression of ν4 vibrational mode with an energy spacings of ∼ 530 cm−1

found in theoretical stick spectrum of Ã state. An energy spacing of ∼ 530
cm−1 was reported in the experiment.

(c) Peak spacings of ∼1242, ∼901, ∼723 and ∼337 cm−1 corresponding to the
modified frequency of ν1, ν2, ν3 and ν4 vibrational modes, respectively, in the
B̃ state are extracted from the stick line spectrum. The excitation of the mode
ν3 is strongest.

(d) Vibrational modes ν1 & ν4; ν2; ν1, ν3 & ν4 form progression in the C̃, D̃ and
Ẽ states, respectively.

(e) In contrast to B4, the nonadiabatic coupling effects are far more significant
in the photodetachment bands of B5. In addition to the totally symmetric
modes, coupling vibrational modes are also excited in the vibronic bands of
B5.

(f) Nontotally symmetric vibrational modes ν7, ν8 and ν9 are weakly excited in
the X̃ band. Weak excitation of ν9 vibrational mode is found in Ã band.

(g) The effect of Ã-B̃ coupling on the structure of the B̃ band is found to be the
strongest. It causes a huge increase in the vibronic line density. therefore the
entire B̃ band is perturbed by the associated nonadiabatic coupling.

(h) The complex C band is formed by the overlapping C̃, D̃ and Ẽ electronic states
of B5.

(i) A decay rate of ∼12 fs of the adiabatic electronic population is obtained for
both B̃ and Ẽ electronic states.

B7:
(a) Three isomers of B−

7 viz., a triplet hexagonal pyramidal (C6v,
3A1), a singlet

pyramidal (C2v,
1A1) and a singlet planar (C2v,

1A1) contribute most to the
recorded photodetachment band structure.

(b) The JT stabilization energies of X̃2E1 , Ã4E1 and B̃2E1 electronic states of
isomer I of B7 estimated to be ∼0.11, ∼0.07 and ∼0.06 eV, respectively. The
JT activity of Ã4E1 and B̃2E1 electronic states is weak in comparison to that
of X̃2E1 state.

(c) The vibrational modes ν2 and ν10 forms dominant progressions in X̃2E1 state
with spacings ∼206 and ∼477 cm−1, respectively.

(d) Analysis of vibronic structure of the electronic states of isomer II without
including the coupling with their neighbors revealed dominant excitation of
the symmetric ν5 vibrational mode in all of them except in the C̃ state. Line
spacings of ∼ 288, ∼ 156, ∼ 233, ∼ 290 and ∼ 171 cm−1 corresponding to the
progression of ν5 vibrational mode in the X̃, Ã, B̃, C̃ and D̃ electronic states,
respectively, are extracted from the spectrum of these states.
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(e) Excitation of coupling modes are extracted from various coupled spectra of
the the electronic states of isomer II and isomer III.

(f) Excitation of the ν4 vibrational mode is stronger in the C̃ electronic state
of isomer II. Line spacings of ∼ 1116 and ∼ 350 cm−1 corresponding to the
progressions of ν1 and ν4 vibrational modes, respectively, are also extracted
from the spectrum of the C̃ state

(g) Peak spacings of 1331 & 354, 1411 & 301, 1535 & 409, 1280 & 323 and 1337 &
440 cm−1 due to ν1 & ν6 vibrational modes are found in the vibronic structure
of the X̃ ′, Ã′, B̃′, C̃ ′ and D̃′ states of isomer III, respectively.

C15:
(a) A detailed theoretical account of the multimode RT and PJT interactions

in some selected electronic states of linear C15 cluster is presented here to
elucidate the lifetimes of its excited electronic state S7

1Σ+
u .

(b) The RT effect in the S5 and S6 electronic states of C15 is very weak. The PJT
coupling between the S5 and S6 dominates the RT coupling.

(c) The vibrational modes ν2 and ν3 forms dominant progression in both S5 and
S6 states. Very weak fundamental transition due to the bending modes is
observed in the spectrum of πg and πu modes.

(d) The excitation of vibrational modes ν3, ν4 and ν5 with line spacings of ∼ 607, ∼
429 and ∼ 288 cm−1, respectively, are extracted from the theoretical spectrum
of S7 .

(e) The spectrum of S12
1Σ+

g electronic state reveals progressions ∼286 and ∼816
cm−1 along the vibrational modes ν6 and ν5, respectively.

(f) The initial decay of the diabatic electronic population of S5 , S6 , S7 and
S12 states amounts to a nonradiative decay rate of ∼56, ∼25, ∼110, ∼63 fs,
respectively.

HFBz:
(a) The S2 state of HFBz is JT active, two πσ∗ states are energetically degenerate

in this case. This is not the case for any other fluoro derivatives of Bz with
number of fluorine atoms less than 6.

(b) Some of the earlier works (J. Chem. Phys. 122, 144312 (2005) and J. Chem.
Phys. 128, 164314 (2008)) predicted that the S1 state is of πσ∗ type in PFBz
and HFBz. This assignment has been found to be incorrect in the present
study. The S1 state is of ππ

∗ type for all fluoro-benzene molecules. This result
is also in accord with the recent findings in the literature (J. Phys. B: At.
Mol. Opt. Phys. 42, 245201 (2009)).

(c) The present assignment of the peaks in the photoabsorption spectrum of HFBz
is in agreement with the experimental results of Philis et al. (J. Phys. B: At.
Mol. Phys. 14, 3621 (1981)) but is in contradiction with that of Temps et
al. ( J. Chem. Phys. 128, 164314 (2008)).

(d) The structureless S1 band of HFBz originates from energetically low-lying CIs
of the S1 and S2 states and very strong PJT coupling among them.
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7 Conclusions and future directions

(e) The bimodal shape of the second photoabsorption band originates from the
orbitally degenerate JT active 1E1g electronic state of HFBz. The energetic
location of these two peaks is in good agreement with the experimental results
of Philis et al. . The JT coupling is strong in this electronic state which causes
a bimodal shape of the absorption profile, the PJT coupling of this state with
S1 is even stronger which causes this bimodal spectral profile structureless. We
note that this state is optically dark for a transition from the electronic ground
state of HFBz. The absorption profile of this state seen in the experiment is
due to its vibronic coupling with the optically bright S1 state.

(f) The JT coupling in the 1E1u electronic state is far weaker than in the 1E1g

state of HFBz. The 1E1g-
1E1u PJT coupling is symmetry allowed and there

exist vibrational modes of appropriate symmetry to cause this coupling. The
symmetry invariance of 1E1g-

1E1u coupling matrix is studied and the relative
phases of the coupling elements are derived. However, thorough analysis of
the electronic structure data reveal negligible coupling among these degenerate
electronic states.

(g) The third and forth absorption bands of HFBz are formed by three ππ∗ type of
orbitals of 1B1u,

1E1u and 1A2u symmetry. Unlike in case of Bz, the signature
of the 1A2u state is clearly seen in the absorption spectrum of HFBz. This
state appears at ∼ 7.7 eV in the experimental spectrum and is in good accord
with our theoretical results.

(h) Nonradiative decay rate of ∼ 153 fs and ∼ 22 fs is found for the S1 and S2 state,
respectively. Electronic population transfer occurs to the S1 state via S3-S2

and S3-S1 CIs when the S3 state is initially populated. Likewise, nonradiative
electron population transfer occurs to the S3, S5 and S3, S4 states when the S4

and S5 states are initially populated, respectively. These nonradiative transfer
of electron populations relate to decay rate of ∼ 67, 28 and 110 fs, respectively,
of the S3, S4 and S5 electronic states of HFBz.

In conclusion, the effect of nonadiabatic interactions on the photoinduced processes
of (boron and carbon) clusters and HFBz molecule is examined by establishing model
diabatic Hamiltonians. First principles nuclear dynamical simulations are carried out
both within the time-independent and time-dependent frameworks. The present study
clearly indicates the importance of electronic nonadiabatic interactions in the broad
and diffuse nature of the observed vibronic bands, ultrafast nonradiative decay of elec-
tronically excited states of boron and carbon clusters. The fluorescence quenching of
the excited electronic states of HFBz is also a signature of the vibronic interactions.
The chemical impact of increasing fluorine substitution on the electronic structure and
nuclear dynamics of HFBz is established.

To this end the we mention that the present work is restricted to the VC of electronic
states with same spin multiplicities (e.g., singlet-singlet or triplet-triplet VC). This study
can be further extended to the systematic investigation of VC for electronic states of
different spin multiplicities (e.g., singlet-triplet VC). An initiative in this direction is
taken by us and is presented in Chapter 3. The selection rules for static and dynamics
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spin-orbit coupling are derived. Another possible extension of this work is the inclusion of
rotational degrees of freedom in the present model VC Hamiltonian to obtain information
on rovibronic levels of isolated molecules.
The photophysics study of C15 in Chapter 5 is carried out by considering S5

1Πg , S6
1Πu

, S7
1Σ+

u and S12
1Σ+

g electronic states only. For an ideal description of the photophysics all
the relevant low-lying excited states have to be included in the nuclear dynamics. This
study can further be extended to the investigation of photo-physics of the low-lying
excited states of carbon chains with carbon atoms 17, 19 and 21. While the nuclear
dynamics of S7

1Σ+
u electronic state is more sought in C15, in C17, C19 and C21 clusters

the nuclear dynamics of S5
1Σ+

u electronic state is more important. Further more, this
problem can be extended to design a suitable laser pulse to control the diabatic electronic
population decay of 1Σ+

u electronic state using optimal control theory.
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