
QUANTUM MECHANICAL STUDIES OF NONADIABATIC

MOLECULAR PROCESSES

A Thesis

Submitted for the Degree of

DOCTOR OF PHILOSOPHY

By

SUSANTA GHANTA

SCHOOL OF CHEMISTRY

UNIVERSITY OF HYDERABAD

HYDERABAD 500 046

INDIA

June 2011



List of Abbreviations

BO Born-Oppenheimer

cc-pVDZ Correlation consistent polarized valence double - ζ
aug-cc-pVTZ Augmented correlation consistent polarized valence triple - ζ
CIs Conical intersections
CRDS Cavity ringdown spectroscopy
DIBs Diffuse interstellar bands
FC Franck-Condon
FWHM Full-width at half-maximum
MATI Mass analysed threshold ionization
MCTDH Multiconfiguration time-dependent Hartree
MIS Matrix isolation spectroscopy
MP2 Second order Møller-Plesset perturbation theory
An Anthracene
An+ Anthracene radical cation
OVGF Outer valence Green’s function
MC Phenylacetylene
MC+ Phenylacetylene radical cation
PAHs Polycyclic aromatic hydrocarbons
PES(s) Potential energy surface(s)
SPFs Single particle functions
UIR Unidentified infrared emission
WP Wave packet
Pym pyrimidine
Pym+ pyrimidine radical cation
Bl barrelene
Bl+ barrelene radical cation
CASSCF complete active space self consistent field
MRCI multi reference configuration interaction
EOM -CCSD Equation of motion coupled cluster singles and perturbative doubles



Contents

1 Introduction 1

1.1 Vibronic coupling and Jahn-Teller effect . . . . . . . . . . . . . . 1

1.2 Occurrence of CIs and their implications in quantum dynamics . . 4

1.3 Brief overview of the physics, chemistry and biology of interstellar

medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Sequential architecture of the thesis . . . . . . . . . . . . . . . . . 8

2 Theoretical Methodology 11

2.1 Theory of Vibronic-Coupling . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Adiabatic approximation and diabatic basis . . . . . . . . 11

2.1.2 Diabatic electronic representation . . . . . . . . . . . . . . 14

2.1.3 Normal Coordinates . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Linear Vibronic Coupling Scheme . . . . . . . . . . . . . . 17

2.2 Electron-Nuclear coupling parameters . . . . . . . . . . . . . . . . 19

2.2.1 Vibronic coupling involving degenerate vibrational modes

and degenerate electronic states . . . . . . . . . . . . . . . 20

2.2.2 Influence of additional modes . . . . . . . . . . . . . . . . 23

2.2.3 The pseudo-Jahn-Teller effect involving degenerate elec-

tronic states . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Discussion of the static aspect of the problem under investigation,

Symmetry Breaking and Conical Intersection . . . . . . . . . . . . 28

ii



Contents iii

2.4 Calculation of Spectra . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Time-Independent Approach . . . . . . . . . . . . . . . . . 36

2.4.2 Time-Dependent Approach . . . . . . . . . . . . . . . . . . 37

3 Vibronic dynamics in the low-lying coupled electronic states of

methyl cyanide radical cation 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Parameters of the vibronic Hamiltonian: Electronic Structure Cal-

culations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The Vibronic coupling model . . . . . . . . . . . . . . . . . . . . 50

3.4 Topography of the adiabatic potential energy surfaces: the JT and

PJT conical intersection . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Dynamical observables: Vibronic spectra and time-dependent dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Non-adiabatic transitions: Internal Conversion Rate . . . . . . . . 63

3.7 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Static and dynamic aspects of electronically excited anthracene

radical cation as archetypical models for astrophysical observa-

tions 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Details of Electronic structure calculations . . . . . . . . . . . . . 72

4.3 Vibronic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Adiabatic potential energy surfaces: Topography and sta-

tionary points . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Vibronic band structures of X̃ , Ã , B̃ , C̃ , D̃ and Ẽ elec-
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Chapter 1

Introduction

1.1 Vibronic coupling and Jahn-Teller effect

The Born-Oppenheimer approximation [1, 2] is a very successful tool to under-

stand the chemical process that occur on the electronic ground state of the sys-

tem. Within this approximation the electronic state is described at a set of rigid

molecular configuration. The resulting electronic surface is then utilized to inves-

tigate the nuclear motion in a molecular system. This is successfully applied in

many areas in molecular physics and chemistry like (a) local versus normal modes

description of molecular vibration [3], (b) the chaotic behavior of multi-mode dy-

namics [4], (c) the decay of excited vibrational levels in polyatomic molecules [5],

(d) the calculation of reaction cross section in atom-molecule collisions [6]. The

basic idea behind this BO approximation is that the spacing of electronic eigen-

values is generally large compared to typical spacings associated with nuclear

motion. Any violation of this condition leads to a transition between the adia-

batic electronic PESs by the residual kinetic energy operator. In this situation

the nuclear motion is no longer confined to a single “adiabatic ” electronic PES,

rather the electronic transition takes place during nuclear vibration. In fact,

different electronic states can be coupled through suitable nuclear vibration - a

1



1.1. Vibronic coupling and Jahn-Teller effect 2

phenomena is known as “Vibronic Coupling ” (VC) in the literature. The VC

is ubiquitous in polyatomic molecular systems where there are large number of

energetically close-lying electronic states and many nuclear degrees of freedom.

One of the major consequences of VC is the occurrence of Conical Intersection

(CIs) of electronic PESs.

The existence of CIs is inherent in molecules that exhibit Jahn-Teller (JT)

[7–14] effect as “that a nonlinear molecule in an orbitally degenerate state sponta-

neously distorts to a configuration of reduced symmetry ”. This has been one of the

most fascinating phenomena in the physics and chemistry of symmetric nonlinear

molecular systems. Since the classical work of Longuet-Higgins et al. [15–17] on

the JT effect in a doubly degenerate (E) electronic state caused by the degen-

erate (e) vibrational modes (the so-called E×e-JT effect), much effort has been

devoted to elucidate its nature and importance in a wide variety of systems includ-

ing, transition metal complexes [18], solid-state physics and chemistry [19–21], or-

ganic hydrocarbons, radicals and ions [8,12,22–26], and fullerenes [27]. Typically,

the (E × e)-JT problem with linear terms of vibronic interactions, the adiabatic

potentials V± exhibit the threefold symmetry of the point group. The lower

sheet, in particular, exhibits three equivalent local minima which are separated

by three equivalent saddle points. Thus the topography of the lower adiabatic

sheet resembles a “Mexican hat” . In case of multi-mode molecular systems this

often leads to a highly diffuse spectral envelope - the vibrational levels of the

upper surface are completely mixed with the quasi-continuum of vibrational lev-

els of the lower surface [23]. In a time-dependent picture this generally yields a

ultrafast non-radiative deactivation of excited electronic states [23,29–32].

In 1957, Öpik and Pryce first noted that effects similar to the JT effect may

be inherent in systems with near (quasi-degenerate or pseudo-degenerate) elec-

tronic states [16]. This is known as pseudo-Jahn-Teller (PJT) effect in the liter-

ature [13, 23, 33–36]. In the following year in 1958, Longuet-Higgins along with

Öpik, Pryce and Sack worked on the dynamic aspects of the JT effect, that is
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to say, the interaction between the motions of the nuclei and the electrons [15].

In general, the dynamical coupling between the electronic and nuclear motions

presents a complex problem to which the solution can only be obtained by lengthy

numerical methods. However, there is one relatively simple case which can be

studied algebraically, namely that of a doubly degenerate electronic state (E)

whose degeneracy is removed in the first order by a doubly degenerate vibration

(e). This situation occurs rather widely in physics and chemistry [8,12,15]. Other

interesting cases in which non-degenerate vibrational modes involved in the JT

activity are also found in the literature [8, 12, 19, 23, 30, 37, 38]. This can only

be encountered in molecules possessing two- or four- fold axes of symmetry, for

example, C4, C4v, C4h, D4, D2d, D4h, S4, and D4d point groups. This is known

as (E × b)-JT effect since the degeneracy is lifted by vibrational modes of b sym-

metry. Usually the vibrational modes of e symmetry participate in PJT activity

in this case.

Although linear molecules look like exceptions from the JT theorem, they too

experience similar instabilities in their degenerate or pseudo-degenerate states

when quadratic terms of VC are considered. This is known in the literature

as the Renner-Teller (RT) effect, following the original paper of Renner in 1934

[39] that describes the vibronic interactions in degenerate Π electronic states of

linear triatomic molecules. The JT effect as well as the PJT effect have been

studied extensively over the past few decades. This JT effect has played a pivotal

role in one of most important discoveries of modern physics - high temperature

superconductivity (Nobel Prize in 1987) [40].
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1.2 Occurrence of CIs and their implications in

quantum dynamics

The electronic states of same symmetry of a diatomic molecule where the vibra-

tional degree of freedom is one, avoid crossing. This is known as “non-crossing

rule”formulated by Wigner and von Neumann [41]. For polyatomic molecules

where the vibrational DOF is more than two, electronic states of same symmetry

may cross in principle. The crossing of electronic states leads to the formation

of CIs, which is a (3N-6-2)-dimensional seam (or a hyper-line) of the electronic

energy for an N-atom molecule. CIs were reported in early 1930s [7, 39, 42].

Later on, the identification and characterization of different kinds of CIs were

extensively studied by Teller [42] and by Herzberg and Longuet-Higgins [43].

They provide deep insights into the subject predicting a variety of physical phe-

nomena that emerge from PES crossings. The field has undergone a monumen-

tal growth thereafter following the outstanding contributions of several research

groups [8–10,12,19,23,44–47].

Intersections are Symmetry-required when the two electronic states form the

components of a degenerate irreducible representation (IREP). The JT interac-

tion of the electronic states in H3 which corresponds to the components of an E

IREP of D3h symmetry point group. Conical intersections which are not required

by symmetry are accidental intersections. Accidental symmetry-allowed (differ-

ent symmetry) interactions correspond to the intersection of two states of distinct

spatial symmetry. The two lowest excited singlet electronic states (A′′) of H-S-H,

provides an example of this type of CI. For C2v geometries these states are of

1A2 and 1B1 symmetry, so that symmetry allowed accidental CI occurs [48–51].

Likewise when PESs of two states of same symmetry cross, the intersection is

termed as accidental same symmetry CI. An intersection of electronically excited

21A and 31A states of CH3-S-H provides an example of this type of CI [48,51,52].

Based on the shape and orientation of the PESs, CIs are further classified
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as peaked and sloped CI [53–55]. Peaked CIs appear when both the PESs are

elliptical cones pointing towards each other with a common tip. In this case,

the crossing point is the minimum of the upper PES and the topology at this

point looks like a double cone. At slopped CIs, both the PESs have downhill

slope and touch each other at the crossing point in branching space. Here, the

crossing point is always at higher energies compare to the minimum of the upper

PES and the crossing appears as a seam of intersections. While a large variety

of photochemical reactions via excited-state reaction pathways are controlled by

peaked CIs, the sloped CIs are key factor for the unsuccessful chemical reactions

and arrange decay channels for the ultrafast non-radiative deactivation of excited

states [54,55].

Seams of the CI can also be categorized based on the dimension of the branch-

ing space, η, for intersection of two PESs with η = 2, 3 or 5 [56]. Among them

η = 2 is the most common case of a two state CI for even electronic molecular

system at non-relativistic situation.

A typical dynamical outcome that bears the signature of CIs of PESs is the

subpicosecond decay of excited molecular electronic states [23,33,57]. The corre-

sponding electronic transition yieldls seemingly diffuse and overlapping bands

that exhibits highly complex and dense line structure under high resolution.

On the lower electronic state (adiabatic) the phenomena of the geometric phase

[58–60], bifurcation of the wave packet [61] and dissipative vibrational motions

[62] are observed. It is now fairly accepted that CIs serve as the “bottleneck” in

photo-physical and photochemical transitions [63–65] and also referred to as pho-

tochemical funnels in the literature [66]. The book edited by Domcke, Yarkony

and Köppel represents an excellent collection of articles in this emerging area of

chemical dynamics [33].
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1.3 Brief overview of the physics, chemistry and

biology of interstellar medium

In 1919, Mary Lea Heger [67] discovered the first of what would come to be

known as the “Diffuse Interstellar Bands ”(DIBs). The DIBs are a series of ab-

sorption lines that are observed toward just about every star in the galaxy that

has interstellar material in front of it. These lines are generally quite broad and

unresolved (although a few show substructure that looks tantalizingly like a rota-

tional band contour), and they appear “diffuse ”, or fuzzy, on early photographic

plates. They are known to be interstellar, because they do not suffer the periodic

Doppler shifts associated with stellar lines in binary star systems. Hence the term

diffuse interstellar bands [68].

The constancy of the absorption wavelengths implies that the carriers are in

the gas phase, and the fact that they are broad implies that their carriers are

molecular rather than atomic. Despite observations, their assignment to specific

molecular carrier remains an enigmatic problem till date. Currently, this task

is considered a priority in the area of interstellar physics and chemistry. So far,

major attempts towards this endeavor have been made by the stellar and labo-

ratory spectroscopists. The spectra observed by the astronomers are compared

with those recorded in the laboratory under the typical conditions of interstel-

lar medium (ISM) [69, 70]. The latter warrant a collision free environment. It

was not possible to create such an environment in a laboratory until the recent

past. Therefore, most of the studies relied on the laboratory experiment (matrix

isolation spectroscopy (MIS), resonance-enhanced multiphoton dissociation spec-

troscopy (REMPD), photo dissociation of van der Walls complexes) in matrix

environments [69–71]. Understandably, collision with the host matrix causes an

energy shift and broadening of the spectral lines and no unambiguous identifica-

tion of DIBs could be made with the aid of these experimental results obtained in

matrices. In recent years, breakthrough developments in the gas phase measure-
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ments such as cavity ring down spectroscopy (CRDS), made it possible to provide

complementary evidence of interstellar observations [72–75]. In recent years, very

high resolution spectrograph’s on the world’s most powerful telescopes have been

used to observe and analyze DIBs. Iglesias-Groth et al. have discovered three

new DIBs for naphthalene cation [76] and one new broad interstellar band for an-

thracene cation [77]. These experimental findings however awaits unambiguous

confirmation from precise theoretical studies.

Identifying the carriers of DIBs has become one of the classic astrophysical

spectroscopic problems. Recent work suggests they are caused by polycyclic

aromatic hydrocarbons (PAHs), or, most likely, their cations, since PAH ions of all

sizes, long carbon-chain molecules, and fullerenes, absorb in the visible and near

infrared, and such molecules are expected to be ionized by the intense ultraviolet

field present in much of the interstellar medium. PAH molecules appears to have

profound implications in the physics, chemistry and biology of ISM. Recently

nitrogenated PAH molecule (PANH) also found in astrophysical environment.

The observed broad and diffuse vibronic band, ultrafast internal conversion rate

of low-lying excited electronic state and lack of fluorescence are in favour of PAH

hypothesis. The PAH cation is highly photostable than their neutral counterpart.

Their formation, fragmentation and reactions with the small molecules are being

studied both theoretically and experimentally [78–84] in recent years.

Methyl cyanide exists in astrophysical environment. So, the study of electronic

transition in their low-lying electronic states is a choice of theoretical interest.

From the absorption spectroscopy [71, 74, 75, 85] of anthracene cation (An+ )

and photoelectron spectroscopy [86–89] of anthracene molecule reveals broad vi-

bronic band for the D2 electronic state of An+ . These experiments revealed

diffuse vibronic bands and subpicosecond dynamics of their low-lying electronic

states. Very recently, spectroscopic measurements of moderately reddened star

Cernis 52 located in the Perseus molecular cloud lead to the discovery of new

broad DIBs [77]. Aided by the laboratory measurements these are assigned to
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the electronic transitions in the anthracene radical cation.

DNA molecule is stable under strong UV radiation. The nucleo bases are

mainly responsible for this stability. There are two kind of nucleo bases, pyrim-

idine and purine. Pyrimidine is a prebiological molecule which is predicted to

exist in the astrophysical environments. Thus a study of the photophysics of

pyrimidine and its cation is also attempted.

1.4 Sequential architecture of the thesis

Chapter 2: An overview of the theoretical and computational methodologies is

presented in this chapter to describe the nonadiabatic molecular processes studied

in the thesis. The basic concept of BO approximation is discussed. The impor-

tance of diabatic electronic basis to investigate the static and dynamics aspect of

both the JT and PJT effect and VC effect in multimode molecular processes is

discussed. The normal mode description of vibrational motion and the applica-

tion of symmetry selection rules are in relation to their importance in multi-mode

VC theory is discussed. In this regard a simple heuristic models, the so called lin-

ear vibronic coupling (LVC) scheme is discussed. The VC Hamiltonian involving

degenerate electronic state and degenerate vibrational modes are illustrated. In-

clusions of totally and nontotally symmetric vibrational modes to the VC Hamil-

tonians are also discussed. The adequate level of ab initio electronic-structure

theory to compute the parameters of the electronic part of the VC Hamilto-

nian is discussed. Both the time-independent matrix diagonalization approach

and time-dependent WP propagation approach within the multi-configuration

time-dependent Hartree (MCTDH) scheme to compute the vibronic spectrum

are illustrated.

Chapter 3: Static and dynamic aspects of the JT and PJT interactions

between the ground and first excited electronic states of the methyl cyanide

radical cation are theoretically investigated in chapter 3. The latter involves
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construction of a theoretical model by ab initio computation of electronic po-

tential energy surfaces and their coupling surfaces and simulation of the nuclear

dynamics employing time-independent and time-dependent quantum mechanical

methods. The present system represents yet another example belonging to the

(E + A)⊗ e JT-PJT family, with common JT and PJT active degenerate (e) vi-

brational modes. The theoretical results are found to be in very good accord with

the recent experimental data revealing that the JT interactions are particularly

weak in the ground X̃2E electronic manifold of methyl cyanide radical cation.

On the other hand, the PJT interactions of this ground electronic manifold with

the first excited Ã2A1 electronic state of the radical cation are stronger which

cause an increase of the spectral line density.

Chapter 4: It represents the quantum dynamics of non-adiabatic electronic

transitions in the radical cation of anthracene. Both time-independent and time-

dependent quantum mechanical approach combined with vibronic coupling theory

is utilized to simulate the nuclear dynamics along the relevant vibrational degrees

of freedom on the coupled manifold of the first few electronic states of radical

cation. The results are reported in terms of vibronic spectra and non-radiative

decay of electronic populations. The findings are in very good agreement with the

recent experimental results, establishing for the first time the intricate coupling

between electronic and nuclear motion in such systems, an understanding of which

is of primary importance in astrophysical applications.

Chapter 5: This chapter deals with the static and dynamic aspect of JT

and PJT interactions between ground (X̃2A′
2 ) and first three excited electronic

states ( Ã2E ′ , B̃2E ′′ and C̃2A′
1 ) of bicyclo-[2,2,2]-octatriene (barrelene) radical

cation(BL+). The complex vibronic spectra of the coupled electronic state of

cation is simulated by both time-independent and time-dependent wave packet

propagation method using multi reference time-dependent Hartree scheme. Each

of the degenerate electronic states undergoes JT-split when the cation is distorted

along degenerate vibrational modes of e′ symmetry. The later can also undergoes
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PJT type of crossing between X̃ -Ã and Ã -C̃ electronic state of the cation. The

degenerate vibrational modes of symmetry e′′ are the PJT coupling mode between

B̃ -C̃ and Ã -B̃ electronic states. These generate the multiple multidimensional

curve crossing between the electronic states and complex vibronic spectra. The

energy spacing between the most intense peak of the bimodal photoelectron band

of BL is reported 0.30 eV from the experimental photo-electron spectroscopy

experiment which is nicely corroborated with our theoretically calculated value

of 0.25 eV for the same. The final theoretical results are compared with the

experimental results enlightening the very strong JT and PJT interactions in the

ground and excited electronic states of the cation.

Chapter 6: In this chapter multi-mode quantum dynamics of the coupled

X̃ -Ã -B̃ -C̃ electronic states of pyrimidine radical cation (Pym+) and S1-S2-

S3 electronic states of neutral pyrimidine (Pym) molecule is investigated. The

complex vibronic spectra and the non-radiative decay dynamics of both the neu-

tral and radical cation of pyrimidine are simulated theoretically by both time-

independent and time-dependent wave packet propagation approach using the

multi-configuration time-dependent Hartree scheme. The theoretical results are

compared with the experimental photoelectron spectrum and resolved (< 10

meV) vibrational energy level spectrum of pyrimidine which has good impact

on astrobiology.

Chapter 7: Concluding remarks and some future directions in research in

this field are given in this chapter.



Chapter 2

Theoretical Methodology

2.1 Theory of Vibronic-Coupling

2.1.1 Adiabatic approximation and diabatic basis

A proton is ∼ 1840 times heavier than an electron. Therefore, the typical motion

associated with nuclei is very very slow when compared to the motion of electrons

in a molecule. Thus it is possible to separate the faster moving electrons from

the slow moving nuclei and the molecular Hamiltonian can be written as

H = Te + TN + U(r,R) (2.1)

where Te and TN are the operators for the kinetic energy of the electrons and

nuclei, respectively, and U(r,R) is the total potential energy of the electrons

and nuclei. The vectors r and R collectively denote the set of electronic and

nuclear coordinates, respectively. For fixed nuclei, i.e., TN = 0, the orthonormal

electronic wavefunctions Φn(r; R) and energies Vn(R) defined by


Te + U(r,R)︸ ︷︷ ︸

He

−Vn(R)


 Φn(r,R) = 0. (2.2)

11
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They are known as the BO electronic states and PESs [90], respectively. The

exact eigenstates of the system can be expanded in terms of the BO electronic

states as

Ψ(r,R) =
∑

n

χn(R)Φn(r,R). (2.3)

Inserting this ansatz into the Schrödinger equation

(H − E)Ψ(r,R) = 0 (2.4)

one readily obtains [90] the following set of coupled equations for the expansion

coefficients in Eq. 2.1

[TN + Vn(R)− E] χn(R) =
∑

m

Λ̂nmχm(R). (2.5)

The operators Λnm are known as the non-adiabatic operators, given by [91]

Λ̂nm = −
∫

drΦ⋆
n(r,R)[TN , Φm(r,R)]. (2.6)

If we rewrite the fundamental set of equations given in Eq. (2.5) as a matrix

Schrödinger equation, we have


TN1 + V(R)− Λ̂︸ ︷︷ ︸

H

−E1


 χ = 0. (2.7)

The matrix Hamiltonian H describes the nuclear motion in the manifold of elec-

tronic states. χ is the column vector with elements χn; 1 is the unit matrix, and

V(R) = Vn(R)δnm is the diagonal matrix of electronic energies.

If we neglect the non-adiabatic operator Λ̂ in Eq. (2.7) then we will end up

with the adiabatic approximation which is based on the assumption that the ki-

neticenergy operator of the nuclei can be considered as a small perturbation of
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the electronic Hamiltonian. In the adiabatic approximation the matrix Hamilto-

nian H is diagonal and the total wavefunction (Eqn. 2.3) becomes the product

of the nuclear and electronic wavefunctions

Ψ(r,R) = χn(R)Φn(r,R). (2.8)

The nuclear motion can be thought of as proceeding on the PES Vn(R) of a given

electronic state characterized by the index n.

When the electronic states are energetically very close (within a quantum of

energy of nuclear vibration) then we can not neglect the non-adiabatic operators

Λ̂ in the Hamiltonian H for those electronic indices n and m which belong to

the manifold of closely lying electronic states. These electronic states are now

vibronically coupled via Λ̂nm. In terms of the first- and second-order derivative

couplings, Λ̂nm in Cartesian coordinates can be written as [23,92,93]

Λ̂nm = −
∑

k

~
2

Mk

Fnm
∂

∂Rk

−
∑

k

~
2

2Mk

Gnm, (2.9)

where Mk are nuclear masses and

Fnm = 〈Φn(r)|∆k|Φm(r)〉, (2.10)

Gnm = 〈Φn(r)|∆2
k|Φm(r)〉, (2.11)

in which ∆k ≡ ∂/∂Rk. The matrix elements Fnm can be written according to the

Hellmann-Feynmann type of relation as [23,94]

Fnm =
〈Φn(r)|∆kHel(r,R)|Φm(r)〉

Vn(R)− Vm(R)
, (2.12)

where Hel defines the electronic Hamiltonian for fixed nuclear coordinates. When



2.1. Theory of Vibronic-Coupling 14

the two surfaces are degenerate, Vn(R) = Vm(R), then Fnm exhibit singular be-

havior [23]. As a result, both the electronic wave function and energy become

discontinuous at the seam of CIs which makes the adiabatic electronic representa-

tion unsuitable for dynamical studies. To circumvent this problem an alternative

electronic representation called diabatic representation has been proposed in the

literature [95–108].

2.1.2 Diabatic electronic representation

Divergent coupling terms of the adiabatic electronic representation (cf., Eq. 2.12

above) are a nuisance for the computational treatment of the nuclear dynamics,

on the exact or near degeneracy of electronic PESs. An alternative electronic

representation , the so called diabatic (or quasi-diabatic) representation, which

avoids singular coupling elements has therefore been introduced in the literature.

The diabatic electronic states are defined by a unitary transformation of the adi-

abatic electronic states within an affordable subspace. This transformation is

chosen to render the electronic states in the relevant subspace smoothly varying

as a function of the nuclear coordinates, such that the derivative coupling term

are sufficiently small to be neglected. In contrast to adiabatic representation,

the electronic Hamiltonian becomes non diagonal in this new representation. Ne-

glecting residual derivative couplings in the diabatic representation, the coupled

equations of motion (cf, Eq. 2.5) takes the form [47,57]

{TN(R) + Unn(R)− E}χn(R) =
∑

n6=m

Unm(R)χm(R), (2.13)

where Unn(R) are the diabatic PESs and Unm(R) are their coupling elements.

The latter are given by

Unm(R) =

∫
drφ⋆

n(r,R)[Te + V(r,R)]φm(r,R), (2.14)
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where φ represents the diabatic electronic wave function. The equation (2.13) is

equivalent to the following representation of the molecular Hamiltonian in a basis

of diabatic electronic states

H =
∑

n

|φn〉[TN(R) + Vn(R)]〈φn|+
∑

n6=m

|φn〉Vnm(R)〈φm|, (2.15)

The diabatic electronic states φ(r,R) are defined via a unitary transformation

of the adiabatic electronic states Φ(r,R) through

φ(r,R) = SΦ(r,R), (2.16)

where S is a orthogonal and unitary transformation matrix. For a two-states

problem it is given by

S(Q) =


 cos θ(Q) sin θ(Q)

− sin θ(Q) cos θ(Q)


 . (2.17)

The matrix S(Q) is called the adiabatic-to-diabatic transformation (ADT) ma-

trix and θ(Q) defines the transformation angle. The required condition for such

transformation is the first-order derivative coupling of Eq. (2.12) vanishes in this

diabatic representation for all nuclear coordinates [95,96]

∫
drφ∗

n(r,R)
∂

∂Rk

φm(r,R) = 0. (2.18)

This requirement yields the following differential equations for the transformation

matrix [97–99]

∂S

∂Rk

+ F(k)S = 0, (2.19)

where the elements of the first-order derivative coupling matrix F (k) are given by
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Eq. (2.12). A unique solution of the above equation exists only when [97–99]

∂A
(k)
nm

∂Rl

− ∂A
(l)
nm

∂Rk

= [A(k)
nm,A(l)

nm]. (2.20)

The concept of diabatic electronic basis was introduced quite early in the

literature in the context of describing the electron-nuclear coupling in atomic

collision processes [100] as well as in molecular spectroscopy [17, 101]. However,

construction of the latter for polyatomic molecular systems is a tedious and dif-

ficult since it is a problem depending on multi-coordinates rather than a single

nuclear coordinate. Therefore, various approximate mathematical schemes have

been proposed in the literature [95–97,102–108] to accomplish this task.

2.1.3 Normal Coordinates

Following the traditional approach [10–12, 17], we introduce normal coordinates

[109] to describe small vibrations around the equilibrium geometry of the elec-

tronic ground state (we assume here that we are dealing with a closed-shell

molecule with a well-define structure). The normal coordinates are defined by

q = L−1δR (2.21)

where δR is the 3N − 6 (3N − 5 for linear molecules) dimensional vector of

internal displacement coordinates (changes of bond lengths and bond angles) for

an N atomic molecule, and L is the L-matrix of the well-known Wilson FG-matrix

method [109]. It is convenient to introduce dimensionless normal coordinates via

Qi = (ωi/~)1/2qi (2.22)

where ωi is the harmonic vibrational frequency of the ith normal mode. In the

harmonic approximation, which implies the expansion of the electronic ground
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state potential energy up to second order in the displacements as well as the

approximation of the metric tensor by its value at the equilibrium geometry, the

kinetic-energy and potential-energy operators of the electronic ground state take

the simple form

TN = −1

2

∑

i

~ωi
∂2

∂Q2
i

(2.23)

V0 =
1

2

∑

i

~ωiQ
2
i (2.24)

We proceed by expanding the diabatic excited-state potential-energy functions

and coupling elements in terms of normal mode displacement coordinate Qi.

2.1.4 Linear Vibronic Coupling Scheme

Let us assume that a diabatic basis has been obtained for a given set of vibroni-

cally interacting electronic states n and m. In this basis the matrix Hamiltonian

is given by [23]

H = TN1 + W(Q). (2.25)

The matrix elements of the potential matrix W(Q) read

Wnm(Q) =

∫
drφ⋆

n(r,Q)Heφm(r,Q). (2.26)

The φn(r,Q) are the diabatic wave functions for an electronic state of index n. For

a polyatomic molecule, the accurate solution of the matrix Hamiltonian (Eq. 2.25)

is very tedious and often impossible. Therefore, an approximate form of the

matrix Hamiltonian is commonly considered for which the Schrödinger equation

can be accurately solved. The simplest, yet elegant approximation is to expand

the potential-energy matrix W(Q) about a reference nuclear configuration Q0 and

retaining the terms linear in Q for the off-diagonal terms. This method is known
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as the linear vibronic coupling (LVC) scheme [23,92]. The linear approximation is

often sufficient since the elements of the W(Q) matrix are, by definition, slowly

varying functions of Q. Without any loss of generality it is assumed that the

diabatic and adiabatic states are identical at the reference geometry Q0.

For the interacting electronic states n and m, the elements of the matrix

Hamiltonian in the linear approximation are

Hnn = TN + V0(Q) + En +
∑

s

κ(n)
s Qs (2.27)

Hnm = Hnm(0) +
∑

c

λ(n,m)
c Qc. (2.28)

The energies En which appear in the diagonal of H are constants given by

Wnn(Q0). The κ
(n)
s represent the gradients of the excited-state potential functions

at the equilibrium geometry of the ground state and are referred to as first-order

intra-state electronic-vibrational coupling constants. The Hnm(0) is zero if the

two interacting electronic states n and m, are transformed according to differ-

ent irreducible representations. The λ
(n,m)
c are correspondingly called first-order

interstate coupling constants.

κ(n)
s =

(
∂Vn(Q)

∂Qs

)

Q0

, (2.29)

λ(n,m)
c =

(
∂Vnm(Q)

∂Qc

)

Q0

. (2.30)

The non-vanishing interstate coupling constants λ
(n,m)
c are those for which the

product of the irreducible representations of electronic states φn and φm, and

of the nuclear coordinate Qc contains the totally symmetric representation ΓA,

i.e. [23],

Γn × ΓQc
× Γm ⊃ ΓA. (2.31)
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The analogous condition for the intrastate coupling constants κ
(n)
s is

Γn × ΓQs
× Γn ⊃ ΓA. (2.32)

Certainly all totally symmetric modes can couple to the electronic motion which

emphasize the important role of these modes in the VC problem. From the above

symmetry selection rules (Eqs. 2.31 and 2.32), we can say that, only the totally

symmetric modes give rise to nonzero intrastate coupling constants and only non

totally symmetric modes to nonzero interstate coupling constants.

2.2 Electron-Nuclear coupling parameters

In this thesis mostly the closed-shell electronic ground state systems are treated

to define the reference state for the photoinduced process. The equilibrium geom-

etry and the harmonic force field in Cartesian displacement coordinates can rou-

tinely be obtained for electronic structure models for which analytic derivatives

of the energy are available, e.g., restricted Hatree-Fock (RHF) [110] augmented

by second-order Møller-Plesset Perturbation Theory [111]. Geometry op-

timization and normal-mode analysis at the MP2 level with at least Dunning’s

polarized valence double-zeta basis set [112] (cc-pVDZ) for large polyatomic sys-

tem.

The first-order and second-order coupling parameters of the model vibronic

Hamiltonian are basically the first and second derivatives of the ionization or ex-

citation energy with respect to ground state normal coordinates. Thus we need a

reliable electronic structure model which can accurately describe the ionized (ex-

cited) electronic state. We have used the outer valence Green’s function method

(OVGF) [113] for the direct calculations of vertical ionization energies (VIE).

For complicated systems we generally used Complete Active Space Self-consistent

Field (CASSCF) [114]/Multi-reference configuration-interaction (MRCI) [115]
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method for the same. We have employed Equation-of-motion Couple-Cluster-

Single and Double (EOM-CCSD) [116] method also for the generation of excited

electronic state.

2.2.1 Vibronic coupling involving degenerate vibrational

modes and degenerate electronic states

The presumably most widely known example of vibronic coupling is the JT effect

of a doubly degenerate electronic state, that is, the coupling of the two com-

ponents of the degenerate state by degenerate vibrational mode. In the case of

linear molecules the VC problem is known as the RT effect [39]; otherwise, it is

known as the JT effect [7].

2.2.1.1 The Jahn-Teller Effect

The JT effect is nowadays forms a whole trend in the theory of structure and

properties of molecules. Let us consider a twofold degenerate (E) electronic state

of a nonlinear molecule. In this there should present a non totally symmetric

vibrational mode which can lift the orbital degeneracy in first order [7] when

the molecule is distorted along those non totally symmetric vibrational modes.

The symmetry of the desired vibrational mode for VC should be such that it is

contained in the decomposition of the symmetrized product (E)2. It is then found

that in all but seven molecular-point groups (with two-fold and four-fold principal

rotational axes of symmetry, e.g., D2d, D4h, C4v, etc., where non- degenerate

vibrational modes participate in the JT activity, the so-called (E × b)-JT effect)

degenerate vibrations can be JT active, leading to the (E× e)-JT effect [8,11,12,

19,23].
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2.2.1.2 The single-mode E ⊗ e Jahn-Teller effect

Now we will focus on a simple case by considering a degenerate electronic state

with the two component of the degenerate vibrational mode (Qx and Qy). The

molecules possesses three-fold principal axis of rotation, will exhibit this kind of

JT effect. In this system there are always doubly degenerate vibrational modes

that are (linearly) JT-active, that is, the derivatives ∂Vαα′/∂Qi do not vanish

for their (Cartesian) displacement components Qx and Qy. Now considering the

elementary symmetry selection rule mentioned above, the corresponding 2×2 JT

matrix Hamiltonian takes the form [8,14,15]

HE⊗e = H01+λ


 Qx Qy

Qy −Qx


+

γ

2


 Q2

x + Q2
y 0

0 Q2
x + Q2

y


+

η

2


 Q2

x −Q2
y 2QxQy

2QxQy Q2
y −Q2

x


 .

(2.33)

H0 =
ω

2

(
− ∂2

∂Q2
x

− ∂2

∂Q2
y

+ Q2
x + Q2

y

)
. (2.34)

H0 is seen to represent the Hamiltonian of the isotropic two-dimensional harmonic

oscillator (with frequency ω), and the electronic energy at the origin Qx = Qy = 0

has been chosen to be zero. 1 denotes the 2× 2 unit matrix. The parameters λ,

and γ and η are called the first-order (or linear) and second-order (or quadratic)

coupling constants, respectively.

To start with, let us first consider the second-order coupling constants (γ and

η) to zero. This then reduces the Eq. (2.33) to the well-known Hamiltonian of the

linear E ⊗ e JT effect which has been studied in the literature (see, for example,

Refs. [8, 12, 23] and references therein). Diagonalization of the potential energy

part leads to the famous “Mexican hat” potential energy surfaces

V± =
ω

2
ρ2 ± λρ, (2.35)

ρ2 = Q2
x + Q2

y. (2.36)

These rotationally symmetric surfaces are characterized by the JT stabilization
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energy

EJT =
λ2

2ω
, (2.37)

occurring at the optimum distortion

ρ0 = λ/ω. (2.38)

The so-called pseudo rotational angle φ is defined as

φ = arctan (Qy/Qx) . (2.39)

The corresponding eigenvector matrix reads

S =


 cos (φ/2) − sin (φ/2)

sin (φ/2) cos (φ/2)


 , (2.40)

where the two columns represent the expansion coefficients of the adiabatic wave

functions in the diabatic electronic basis. Transforming the complete Hamiltonian

(2.33) to the adiabatic basis leads to

HE⊗e
ad = S†HE⊗eS = H01 +


 V+ 0

0 V−


 + Λ, (2.41)

with the non adiabatic coupling operator

Λ =
ω

2ρ2




1
4

i ∂
∂φ

i ∂
∂φ

1
4


 , (2.42)

which is seen to diverge at the origin ρ = 0, where the two adiabatic potential

energy surfaces exhibit the JT intersection.
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2.2.2 Influence of additional modes

Most systems exhibiting the JT effect possess more than one degenerate vibra-

tional mode (except for the triatomic systems, such as H3, Li3, etc.). The above

presentation of the single-mode E ⊗ e JT serves as the basis for the discussion of

related and more general systems. These will be discussed more briefly, focusing

on their similarities and differences with respect to the prototype case. We start

with the inclusion of additional vibrational modes.

2.2.2.1 Additional e vibrational modes

In this case the Hamiltonian (2.33) is given by

H =
∑

i

Hi (2.43)

Thus the additional e modes are included in the Hamiltonian (2.33) by replacing

the corresponding single-mode terms by summations over all relevant vibrations,

e.g.

λQx →
∑

i

λiQ
i
x, λQy →

∑

i

λiQ
i
y, (2.44)

in a self-explanatory notation (and an analogous extension in the zero-order

Hamiltonian H0). Since virtually all molecules exhibiting the E ⊗ e JT effect

possess several e modes this generalization is of immediate relevance. Although

the total JT stabilization energy EJT is additive, i.e.

EJT =
∑

i

λ2
i

2ωi

≡
∑

i

E
(i)
JT , (2.45)

the Hamiltonians HE⊗e
i for the various modes do not commute (i 6= j):

[
HE⊗e

i ,HE⊗e
j

]
6= 0. (2.46)

Thus, the eigenvalue problem of the individual Hamiltonians cannot be solved
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separately. Rather, the multi-mode vibronic secular matrix has to be diagonalized

as a whole [23].

The non separability of the JT active modes makes it necessary to sum over all

contributions Hj of the individual modes and treat the total matrix Hamiltonian

H as a whole rather than the individual terms separately. As a consequence, the

vibronic symmetries are reduced considerably. The individual vibronic angular

momenta

Jj =
1

i

∂

∂φj

12 +
1

2


1 0

0 −1


 (2.47)

are no longer constants of the motion. It is only the total vibronic angular

momentum

J =
M∑

j

1

i

∂

∂φj

12 +
1

2


1 0

0 −1


 (2.48)

that commutes withH [23]. In the adiabatic PESs this manifests itself in a depen-

dence of V± on the azimuthal angles φj of the individual modes. The potentials

are invariant only under a common change of the angles of all vibrational modes

otherwise of a very complicated shape. In addition, the locus of intersection is

no longer a single point in coordinate space, but rather a subspace of dimension

2M - 2. It must be evident from these remarks that the multimode JT problem

leads to much more complicated nuclear dynamics than the single-mode problem.

We note that it is important to take these multimode effects into consideration

in order to arrive at a realistic treatment of actual molecules [23].

2.2.2.2 Inclusion of totally symmetric vibrational modes

From Eq. (2.27) it is clear that displacements along totally symmetric vibrations

can tune the energy gap (|E2 − E1|) between two electronic states and generally
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lead to intersections of the potential-energy functions, which are allowed by sym-

metry. These vibrational modes have therefore been termed tuning modes [23].

On the other hand, the non totally symmetric modes satisfying Eq. (2.31) de-

scribe the coupling between two electronic states. Therefore, they are termed

as coupling modes [23]. Within the LVC approach, the tuning modes contribute

only to the diagonal elements of the electronic Hamiltonian matrix, see Eq. (2.27).

Therefore, the inclusion of these modes to the VC models described earlier be-

comes straightforward.

In the (E × e)-JT case the Nt tuning modes are represented by

H t
JT =

Nt∑

i=1




(
∂2

∂Q2
i

+ Q2
i

)
12 +


κE

i 0

0 κE
i


 Qi


 , (2.49)

where the normal coordinates Qi, i = 1 · · ·Nt, are the totally symmetric modes

and the κE
i are the gradients of the adiabatic potential-energy functions of the E

state with respect to the ith tuning mode.

From Eqs. (2.33) and (2.49), we have

[
HE⊗e, H t

JT

]
= 0. (2.50)

For this reason a1 modes are usually omitted from JT treatments and included

in the computation of vibronic spectra.

2.2.3 The pseudo-Jahn-Teller effect involving degenerate

electronic states

Now we will discuss what happened when two degenerate electronic states interact

with each other through suitable vibrational modes or one degenerate electronic

state interacts with a non-degenerate electronic state via proper nuclear displace-

ment coordinates. This kind of VC interaction is termed as pseudo-Jahn-Teller
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(PJT) effect in literature. Let us consider a simple case where the interaction of

degenerate E electronic state with a non degenerate state, characterized by the

symmetry label A.

2.2.3.1 The single-mode (E + A)⊗ e pseudo-Jahn-Teller effect

Considering the same general principles and symmetry selection rule for the con-

struction of the vibronic Hamiltonian as indicated above and discussed in section

(2.1.4), the Hamiltonian for the linear (E + A) ⊗ e pseudo-Jahn-Teller effect is

found to be [23,34]

H = H01 +




EE 0 λQx

0 EE λQy

λQx λQy EA


 . (2.51)

Here EE and EA denote the E and A state energies for the undistorted nuclear

configuration (Qx = Qy = 0) and 1 represents the 3× 3 unit matrix.

We note that the Hamiltonian (2.51) shares many features with the general

vibronic coupling problem for two non degenerate electronic states, discussed

amply in the literature. We also note that the notion “pseudo-Jahn-Teller” (PJT)

interaction has been used for systems where one of the interacting states as well as

the coupling mode are degenerate and unlike general vibronic coupling systems,

the totally symmetric modes are non separable from the PJT problem and play

an important role already in first order. Although they are neglected in Eq. (2.51)

for simplicity but are included in the examples discussed in this thesis whenever

applicable.

The adiabatic eigenvectors corresponding to Eq. (2.51) involve either the

asymmetric (potential surface V0) or symmetric (potential surfaces V+ and V−)

linear combinations of the E component basis states. The eigenvalues are
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V0 =
ω

2

(
Q2

x + Q2
y

)
+ EE

V± =
ω

2

(
Q2

x + Q2
y

)
+

EE + EA

2
(2.52)

±

√(
EE − EA

2

)2

+ (λ′)2
(
Q2

x + Q2
y

)
.

It depends on the sign of EE −EA whether V+ or V− correlates with the E state

for Qx = Qy = 0 and becomes degenerate there with the “unperturbed” surface

V0.

2.2.3.2 The single-mode (E ⊗ e + A)⊗ e pseudo-Jahn-Teller effect

Let us now address the more general case of systems with simultaneous JT and

PJT vibronic interactions. Depending on the particular symmetries prevailing,

the same vibrational mode may be JT and PJT active in first order. This is,

quite likely the case, for example, in trigonal point groups with a single doubly

degenerate irreducible representation (it follows necessarily, if there exists a single

mode of this symmetry only). Then the relevant Hamiltonian is obtained by

adding Eqs. (2.33, 2.34, 2.51) for the same mode [23,34,117]:

HPJT = H01 + λ




Qx Qy 0

Qy −Qx 0

0 0 0


 +

γ

2




Q2
x + Q2

y 0 0

0 Q2
y + Q2

x 0

0 0 0




+
η

2




Q2
x −Q2

y 2QxQy 0

2QxQy Q2
y −Q2

x 0

0 0 0


 +




EE 0 λ′Qx

0 EE λ′Qy

λ′Qx λ′Qy EA


 .(2.53)

As in the preceding subsection, the second-order PJT couplings have been

suppressed. (While their form is straightforward to work out, they may often
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be less important, if the E-A energy gap is not too small). The meaning of

the zero-order Hamiltonian H0 and of the coupling constants is also the same as

above. Although the totally symmetric modes has an important influence on the

system dynamics, they are not included in the Hamiltonian (2.53) for simplicity.

However, they may be not only Condon-active through finite first-order coupling

constants, but also modulate the E − A energy gap through different first-order

constants in the two electronic states. This is the same behavior as in vibronic

coupling systems with non-degenerate states [23] and as in the (E + A)⊗ e PJT

coupling systems discussed above. It may lead to additional conical intersections

with two or three (for PJT systems) intersecting potential energy surfaces.

2.3 Discussion of the static aspect of the prob-

lem under investigation, Symmetry Break-

ing and Conical Intersection

The adiabatic electronic PES has numerous implications for the explanation of

several phenomena in molecular physics and chemistry. Thus, it is worthwhile

to investigate on the adiabatic PESs associated with different kind of problem

under consideration.

Case 1: Let us consider two no-degenerate electronic states X̃ and Ã with

their VIE E0
X and E0

A. For simplicity, we consider one tuning mode (Qg) with the

linear intra state coupling parameter κ and κ′ for the X̃ and Ã electronic state,

respectively and these two state is coupled by the one coupling mode (Qc) with

the interstate coupling parameter λ. With this description the form of the model

vibronic Hamiltonian takes the following form

H = (TN + V0)1 +


 E0

X + κQg λQc

λQc E0
A + κ′Qg


 (2.54)
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TN = −1

2
ωg

∂2

∂Q2
g

− 1

2
ωc

∂2

∂Q2
c

(2.55)

V0 =
1

2
ωgQ

2
g +

1

2
ωcQ

2
c (2.56)

To get the adiabatic PESs we have to diagonalized H in the fixed nuclei limit,

TN → 0 or we have to calculate the eigenvalues of (H - TN1). Thus we have

S†(H− TN1)S = V (2.57)

(2.58)

V =


 V1(Q) 0

0 V2(Q)


 (2.59)

Where V1(Q) and V2(Q) are the adiabatic PESs of the Hamiltonian (2.54). The

unitary 2 × 2 matrix S transforms from the diabatic electronic basis, | φx 〉 and

| φa 〉, to the adiabatic electronic basis, | Φx 〉 and | Φa 〉, via


 |Φx〉
|Φa〉


 = S†


 |φx〉
|φa〉


 (2.60)

Her S is the function of all nuclear coordinates Q. If we rewrite the Hamiltonian

(2.54) in this form

H = H01 +


 −d c

c d


 (2.61)
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H0 = TN + V0 +
∑

+σQg (2.62)

∑
=

E0
X + E0

A

2
(2.63)

∆ =
E0

A − E0
X

2
(2.64)

σ =
κ + κ′

2
(2.65)

δ =
κ′ − κ

2
(2.66)

d = ∆ + δQg (2.67)

c = λQc (2.68)

The adiabatic potential then read

V1,2(Q) = V0(Q) +
∑

+σQg ±W (2.69)

where

W =
√

(d2 + c2) (2.70)

The V1(Q) and V2(Q) are the lower and upper adiabatic PESs. The lower adi-

abatic PES V1(Q) exhibits a characteristic and important phenomenon, namely,

the breaking of the molecular symmetry. Symmetry breaking suggests that min-

imum of the lower surface V1(Q) occurs at a nuclear geometry that is of lower

symmetry than the equilibrium geometry of the molecule in its electronic ground

state. The symmetry breaking is simply a consequence of the repulsion of the

diabatic surfaces via the vibronic coupling. Therefore, the lower surface can only

develop a new minima, whereas the upper surface V2(Q) can only become steeper.

If we set κ and κ′, are zero.Thus the minimum of V1(Q) occurs at Q
(0)
g and

we assume one dimensionless quantity x as follows

x =
λ2

ωc∆
(2.71)
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For x 1 we have two equivalent minima with Q
(0)
c 6= 0 and the previous minima

Qc = 0 is converted to a local maximum. The barrier height Es, that is, the

energy difference between V1(Qc = 0) and V1(Q
(0)
c ), is given by

Es

∆
=

0, x ≤ 1

(1−x)2

2x
, x ≥ 1

(2.72)

Here Es may also be called the stabilization energy; it showing the relative low-

ering of the minimum of V1(Q) compared to the minimum in the absence of

vibronic coupling (λ = 0). For x ≤ 1 no symmetry breaking occurs. Just above

the ”threshold” x=1, the stabilization energy increases quadratically with x, ap-

proaching a linear dependence on x for large x. Including the tuning mode, we

obtained the stationary point Q of V1(Q)

Q(0)
g =

∆− F

L−D

δ

ωg

− σ

ωg

(2.73)

Q(0)
c = ±(

λ

ωc

)

[
1− (

∆− F

L−D
)2

] 1
2

(2.74)

Where

D =
δ2

ωg

=
(κ′ − κ)2

4ωg

(2.75)

F =
δσ

ωg

=
(κ′ − κ)(κ + κ′)

4ωg

(2.76)

L =
λ2

ωc

(2.77)

So, the stabilization energy is

Es =
(∆ + D − L− F )2

2(L−D)
(2.78)
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The criteria for the existence of a stabilized minimum with Q
(0)
c 6= 0 are

|∆− F

L−D
| ≤ 1 (2.79)

L ≥ D (2.80)

The additional condition indicates that there is a certain competition between

the coupling mode and tuning mode concerning the symmetry-breaking effect.

(a) If κ and κ′ have different signs, the symmetry-breaking effect of the coupling

mode is reduced by the totally symmetric mode; that is, Q
(0)
c and Es are smaller

than in the case κ = κ′ =0. This is a consequence of the fact that the tuning

tends to increase the separation of the interacting electronic states near the new

equilibrium geometry Q
(0)
g . (b) If κ and κ′ have same sign and | κ | ≤ | κ′

|, the energy separation of the interacting states near the new minimum will

decrease and the symmetry-breaking effect is enhanced by the tuning mode. If the

additional condition (2.80) is not fulfilled, the stationary points (2.74) represent

saddle points rather than local minima.

When we considered a surface in three-dimensional space, V1(Qg, Qc) and

V2(Qg, Qc) form an elliptical double cone near the point of intersection which is

known as CI. The adiabatic PESs V1,2(Qg, Qc) are shown in the figure. The CI

is the single point where the upper surface V2 touches the lower surface V1. The

double-minimum character of the lower surface is also noticeable. The adiabatic

PESs V1,2(Qg, Qc) are strongly anharmonic, although they are generated from the

diabatic harmonic potentials. Thus we seen that the lowering of the symmetry

of the equilibrium position of the lower surface and the existence of a CI.

Now we have to determine the location of the seam of the CI after including

additional modes. So, we have to rewrite the Eqn. 2.69 and sum over the all the

specific quantity under consideration. The location of the minima of the seam of
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CI is given by

V
(c)
min =

∑
+

(F −D)2

2D
− 1

2

N∑

i=1

σ2
i

ωgi

(2.81)

The position of the minimum in the space of the tuning modes is

(Q
(c)
gi )min =

(δi/ωgi)(F −∆)

D
− σi

wgi

, i = 1, ..., N (2.82)

The minimum of the seam of the CIs relative to the minimum of the upper

adiabatic PESs is given by

V
(c)
min − (V2)min =

1

2D
(∆−D − F )2 (2.83)

Case 2. In the case of degenerate electronic state, the degeneracy of the

electronic state is spited when the molecule is distorted along the degenerate

vibrational modes but degeneracy of the electronic state is restored along the

totally symmetric modes of vibration. The locus of this degeneracy takes place

at the equilibrium symmetry configuration defines the seam of CIs of the two

PESs. The minimum value of the potential energy on this seam is given by

V(c)
min,JT = E0

E −
1

2

N∑

i=1

κ2
i

(ωi + γi)
, i = 1, ..., N (2.84)

occurs for, Q0
i = - κi

(ωi+γi)
, i = 1, ..., N. The degeneracy of the two surfaces

splits on distortion along the degenerate vibrational modes, resulting the global

energy minimum on the lower adiabatic PESs, V− changes to a cusp. However

the minimum of the upper adiabatic PES, Vsp remains at the minimum of the

seam of CIs and new minima appear on V− at Q0
i values as given above for i =

1, ..., N. Along the degenerate vibrational modes the two solution are obtained,

Q0
pj (p=x/y, j=1,...M), one of them define the minima and the other defines the
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saddle points with energies

V0
− = E0

E −
1

2

N∑

i=1

κ2
i

(ωi + γi)
− 1

2

M∑

j=1

λ2
j

(ωj + γj − ηj)
(2.85)

and

V0
sp = E0

E −
1

2

N∑

i=1

κ2
i

(ωi + γi)
− 1

2

M∑

j=1

λ2
j

(ωj + γj + ηj)
(2.86)

respectively. In multidimensional space this leads to a topography of three min-

ima and three saddle points on V−. Each saddle point appears in between two

minima. The JT stabilization energy is the difference in energy between the

V(c)
min,JT and V−, that is basically 1

2

∑M
j=1

λ2
j

(ωj+γj−ηj)
.

Case 3. Now we will estimate the location of minimum of the seam of the

CI between the two degenerate electronic state and these states are vibronically

coupled by degenerate vibrational modes (Qj). The linear JT coupling parameters

for the degenerate electronic states are λj and λ′
j. Then the equation of minimum

of the seam of the CI (Eqn. 2.81 and Eqn. 2.82) is modified and takes the form

V(c)
min,PJT = Σ +

(F −∆)2

2D
− 1

2

N∑

i=1

σ2
i

ωi

− 1

2

M∑

j=1

σ′2
i

ωj

, (2.87)

where

F =
N∑

i=1

δiσi

ωi

+
M∑

j=1

δ′iσ
′
i

ωj

, (2.88)

D =
3∑

i=1

δ2
i

ωi

+
N∑

j=1

δ′2i
ωj

. (2.89)
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2.4 Calculation of Spectra

The photoelectron spectrum for a transition to the coupled manifold of electronic

states is described by the Fermi’s Golden rule. According to this rule, the spectral

intensity is given by

P (E) =
∑

v

∣∣∣〈Ψv|T̂ |Ψ0〉
∣∣∣
2

δ(E − Ev + E0), (2.90)

where |Ψ0〉 is the initial electronic and vibrational ground state of the molecule

with energy E0. |Ψv〉 is the final vibronic state in the coupled electronic manifold

and Ev is the vibronic energy. The quantity T̂ represents the transition dipole

operator for the photo-ionization process and E is the energy of the incident

photon. The initial and final states are given by

|Ψ0〉 = |Φ0〉|χ0
0〉, (2.91)

|Ψv〉 = |Φ1〉|χ1
v〉+ |Φ2〉|χ2

v〉, (2.92)

where |Ψ〉 and |χ〉 represent the diabatic electronic and vibrational part of the

wave function, respectively. The superscripts 0, 1, and 2 refer to the ground

and the two interacting diabatic electronic states, respectively. With the use of

Eqs. (2.91, 2.92), the excitation function of Eq. 2.90 can be rewritten as [23]

P (E) =
∑

v

∣∣τ1〈χ1
v|χ0

0〉+ τ2〈χ2
v|χ0

0〉
∣∣2δ(E − Ev + E0), (2.93)

where

τm = 〈Φm|T̂ |Φ0〉, (2.94)

represent the matrix elements of the transition dipole operator of the final elec-

tronic state m. Upon rewriting Eq. (2.93), elements of the transition dipole matrix

between the bound and scattering states are slowly varying functions of Q in a
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diabatic representation [118]. Following standard practice, these are treated as

constants of equal modulus utilizing the generalized Condon approximation [23].

An ab initio computation of these elements is highly cumbersome and techniques

are lacking. The highly oscillatory wavefunction of the outgoing electron possesses

very small components in the Franck-Condon region. Previous studies with this

approximation of branching ratios have given results in excellent agreement with

the experiment indicating its reliability [23].

2.4.1 Time-Independent Approach

In a time-independent quantum mechanical approach the photoelectron spectrum

is calculated by solving the eigenvalue equation

H|Ψv〉 = Ev|Ψv〉 (2.95)

numerically, by representing the vibronic Hamiltonian H in a direct product basis

of harmonic oscillator eigenstates of H0. In this basis, |χm
v 〉 takes the following

form [23]:

|χm
v 〉 =

∑

n1,n2,...,nk

am
v,n1,n2,...,nk

|n1〉|n2〉...|nk〉. (2.96)

Here m is the electronic state index, nl is the quantum number associated with the

lth vibrational mode, and k is the total number of such modes. The summation

runs over all possible combinations of quantum numbers associated with each

mode. For each vibrational mode, the oscillator basis is suitably truncated in

the numerical calculations. The maximum level of excitation for each mode is

approximately estimated from the corresponding Poisson parameter [1
2

(κorλ
ω

)2].

The Hamiltonian matrix written in such a direct product basis is usually highly

sparse, and is tridiagonalized using the Lanczos algorithm prior to diagonalization

[119]. The diagonal elements of the resulting eigenvalue matrix give the eigen
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energies of the vibronic energy levels and the relative intensities of the vibronic

lines are obtained from the squared first components of the Lanczos eigenvectors

[57,119].

Finally, the spectral envelope is calculated by convoluting the line spectrum

with a suitable Lorentzian line-shape function of appropriate width of the follow-

ing:

L(E) =
1

π

Γ/2

E2 + (Γ/2)2
. (2.97)

The quantity Γ represents the full width at the half maximum (fwhm) of the

Lorentzian.

2.4.2 Time-Dependent Approach

In a time-dependent approach the Fourier transform representation of the Dirac

delta function is used in the Golden formula (Eqs. 2.90,2.93) to calculate the

spectral intensity. In this representation the delta function is expressed as

δ(x) =
1

2π

∫ +∞

−∞

eixt/~δt. (2.98)

Using this the spectral intensity (Eq. (2.90)) transforms into the following useful

form, readily utilized in a time-dependent picture

P (E) ≈ 2Re

∫ ∞

0

eiEt/~〈Ψf (0)|τ †e−iHt/~
τ |Ψf (0)〉dt, (2.99)

≈ 2Re

∫ ∞

0

eiEt/~ Cf (t) dt, (2.100)

where the elements of the transition dipole matrix τ
† is given by, τ

f = 〈Φf |T̂ |Φi〉.
The above integral represents the Fourier transform of the time-autocorrelation
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function [23,120]

C(t) = 〈Ψi(0)|e−iHt/~|Ψf (0)〉 = 〈Ψi(0)|Ψf (0)〉, (2.101)

of the WP, initially prepared on the f th electronic state and, Ψf (t) = e−iHt/~ Ψi(0).

In the time-dependent calculations, the time autocorrelation function is damped

with a suitable time-dependent function before Fourier transformation. The usual

choice has been a function of type

f(t) = exp[−t/τr] , (2.102)

where τr being the relaxation time. This leads to a Lorentzian broadening of the

spectrum with Γ (fwhm ) = 2/τr.

Huge requirement of computer hardware prevents to use this matrix diag-

onalization approach with an increase in the electronic and nuclear degrees of

freedom. In this situations reliable and converged results can not be obtained by

this method. The WP propagation approach within the multi-configuration time-

dependent Hartree (MCTDH) scheme has emerged as an alternative tool for such

situations [121–125]. This is a grid based method which utilizes discrete variable

representation (DVR) basis combined with fast Fourier transformation and pow-

erful integration schemes. The efficient multiset ansatz of this scheme allows for

an effective combination of vibrational degrees of freedom and thereby reduces

the dimensionality problem. In this ansatz the wave function for a nonadiabatic

system is expressed as [122]

Ψ(R1, ..., Rp, t) =
σ∑

α=1

n
(α)
1∑

j1=1

...

n
(α)
p∑

jp=1

A
(α)
j1,...,jp

(t)

p∏

k=1

ϕ
(α,k)
jk (Rk, t)|α〉. (2.103)

Where, R1,..., Rp are the coordinates of p particles formed by combining
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vibrational degrees of freedom, α is the electronic state index and ϕ
(α,k)
jk are

the nk single-particle functions for each degree of freedom k associated with

the electronic state α. Employing a variational principle, the solution of the

time-dependent Schrödinger equation is described by the time-evolution of the

expansion coefficients A
(α)
j1,...,jp

. In this scheme all multi-dimensional quantities

are expressed in terms of one-dimensional ones employing the idea of mean-field

or Hartree approach. This provides the efficiency of the method by keeping the

size of the basis optimally small. Furthermore, multi-dimensional single-particle

functions are designed by appropriately choosing the set of system coordinates

so as to reduce the number of particles and hence the computational overheads.

The details of the MCTDH method and algorithm are discussed in the litera-

ture [122] and we do not further reiterate them here. The Heidelberg MCTDH

algorithm [121] is employed in the WP propagation.

Here we provide a brief overview on the memory requirement for the MCTDH

method. The memory required by standard method is proportional to N f , where

N is the total number of grid points or primitive basis functions and f is the

total number of degrees of freedom. In contrast, memory needed by the MCTDH

method scales as

memory ∼ fnN + nf (2.104)

where, n represent the SPFs. The memory requirements can however reduced if

SPFs are used that describe a set of degrees of freedom, termed as multimode

SPFs. By combining d degrees of freedom together to form a set of p=f/d

particles, the memory requirement changes to

memory ∼ fñNd + ñf (2.105)

where ñ is the number of multimode functions needed for the new particles. If



2.4. Calculation of Spectra 40

only single-mode functions are used i.e. d=1, the memory requirement, Eq. 2.105,

is dominated by nf . By combining degrees of freedom together this number can

be reduced, but at the expense of longer product grids required to describe the

multimode SPFs.



Chapter 3

Vibronic dynamics in the

low-lying coupled electronic

states of methyl cyanide radical

cation

3.1 Introduction

Static and dynamic aspects of the Jahn-Teller and pseudo-Jahn-Teller interac-

tions between the ground and first excited electronic states of the methyl cyanide

radical cation [126] are theoretically investigated in this chapter. This system

belongs to the (E + A) ⊗ e JT-PJT family, with common JT and PJT active

degenerate (e) vibrational modes. Methyl cyanide (MC) belongs to the C3v sym-

metry point group at the equilibrium geometry of its electronic ground state. The

ionization of an electron from the first two highest occupied molecular orbitals

of symmetry e and a1 generates the ground (X̃2E ) and first excited ( Ã2A1 )

electronic states of MC+. One of the two components of the HOMO and the

HOMO-1 are shown in Figure. 3.1. It can be seen that the HOMO is a π type

41
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Figure 3.1: Schematic drawing of the highest occupied molecular orbital (HOMO)
and the one below it (HOMO-1) of methyl cyanide.
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of orbital of C-N bond where as HOMO-1 represents predominantly lone pair

orbital of N atom. The twelve vibrational modes of MC decompose into 4a1 + 4e

irreducible representations of the C3v symmetry point group. The symmetrized

direct product of two E representations in the C3v point group in first-order

yields [109],

(E)2 = a1 + e (3.1)

Similarly, the direct product of E and A1 electronic states in the C3v symmetry

point group yields

E ⊗ A1 = e (3.2)

The symmetry selection rules stated above imply that the degenerate e vibra-

tional modes can split the degeneracy of the E electronic manifold and lead to

(E ⊗ e)-JT effects. The same vibrational modes can also cause PJT coupling

between the E and A1 electronic states. This is generally the case for molecules

possessing a three-fold principal rotational axis. In contrast, the totally symmet-

ric a1 vibrational modes restore the degeneracy of the E electronic manifold.

Experimentally, the vibronic structures of the low-lying electronic states of

MC+ have been observed by photo-ionization of MC by various groups [127–130].

The photoelectron bands observed in the 11.5-40.0 eV electron binding energy

range revealed ionization from various outer valence molecular orbitals of MC.

The high-resolution HeI photoelectron spectrum [128] of acetonitrile is shown

in Figure. 3.2. The first two photoelectron bands obtained in the 12-14 eV

ionization energy range are considered here and the nuclear dynamics underlying

their complex vibronic structure is examined. The first two bands result from

ionization from the outer valence, degenerate 2e (HOMO) and non-degenerate

7a1 (HOMO-1) molecular orbitals of MC, respectively.
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Figure 3.2: HeI photoelectron spectrum of methyl cyanide.

A quantum dynamical study to elucidate the observed vibronic structures of

the photoelectron bands of MC+ is missing in the literature. There are, however,

reports available on the electronic structure and vertical ionization energies, in

an effort to explain the observed structure of the photoelectron bands [131–133].

These theoretical investigations are far from quantitative and do not account for

the important contributions of electronic non-adiabatic interactions relevant to

understand the detailed vibronic structure of the observed photoelectron bands.

We here attempt to make progress on this missing aspect of the problem and

aim to uncover it by carrying out elaborate electronic structure calculations and

quantum dynamical simulations of nuclear motion.

To accomplish this goal a model diabatic Hamiltonian is constructed through

Taylor expansion and terms up to second-order coupling for the Condon active

(a1 symmetry) and the JT active (e symmetry) vibrational modes are considered.

A first-order coupling is assumed for the PJT activity of the e vibrational modes.

The various coupling parameters of the Hamiltonian are derived from electronic
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Table 3.1: Equilibrium geometry of methyl cyanide in its ground elec-
tronic state (1A1) along with the experimental results [135].

∠ H-C-H ∠ C-C-H C-H C-C C-N
(deg) (deg) (Å) (Å) (Å)

MP2/aug-cc-pVTZ 109.03 109.24 1.09 1.46 1.17
Expt. [135] 109.50 109.44 1.10 1.46 1.16

structure results calculated at the Möller-Plesset perturbation (MP2) level of

theory using the augmented correlation consistent polarized valence triple - ζ

(aug-cc-pVTZ) basis set of Dunning [112]. The photoelectron bands are computed

by solving the eigenvalue equation using the Lanczos algorithm [119] as well

as by a wave packet propagation approach employing the multi-configuration

time-dependent Hartree algorithm [121–123, 125]. Our findings reveal that the

CH3 deformation modes of a1 and e symmetries and C-N stretching mode of a1

symmetry, particularly play crucial roles in the nuclear dynamics in the 2E -

2A1 coupled electronic manifold of MC+. They form the dominant progressions

in the photoelectron band at low energies and the more diffuse structure at high

energies results from the PJT interactions of the 2E and 2A1 electronic states

mainly through the degenerate bending and CH3 deformation modes.

3.2 Parameters of the vibronic Hamiltonian: Elec-

tronic Structure Calculations

The optimized equilibrium geometry of the electronic ground state (1A1) of MC

is calculated at the MP2 level of theory employing the aug-cc-pVTZ Gaussian

basis set of Dunning [112]. The calculations were performed using the Gaussian-

03 program package [134]. These optimized geometry parameters are given in

Table 3.1 along with the available experimental results [135]. It can be seen from

the Table 3.1 that the MP2 equilibrium geometry parameters are in good accord
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Figure 3.3: The normal vibrational modes of methyl cyanide (see, Table 3.2 and
text for details).

with the available experimental data. The harmonic vibrational frequencies (ωj)

of 12 vibrational modes of the electronic ground state of MC are obtained by di-

agonalizing the MP2 force field calculated using the aug-cc-pVTZ basis set [112].

These normal vibrational modes of MC are schematically drawn in Figure. 3.3.

The nature of these vibrational modes, their symmetry and harmonic vibrational

frequencies are reported in Table 3.2, along with the available experimental re-

sults [136] for comparison. It is observed that the theoretically calculated har-

monic frequencies are in good accord with their fundamental values extracted

from experimental data [136]. The mass-weighted normal coordinates are calcu-

lated along with the harmonic vibrational frequencies and they are transformed

to the dimensionless form (referred as Qj, for the jth vibrational mode) by mul-

tiplying with
√

ωj (in atomic units used here) [109]. The equilibrium geometry

of MC in its ground electronic state corresponds to Q=0, and therefore, each Qj

here represents the displacement from this equilibrium configuration along the
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Table 3.2: Symmetry, frequency and description of the vibrational
modes of the electronic ground state of methyl cyanide. The ex-
perimental results are reproduced from Ref. [136].Note that, the-
oretical frequencies are harmonic, whereas, experimental ones are
fundamental.

Symmetry Mode Vibrational Frequency (ωj)(in eV) Description coordinate
Theory Experiment

a1 ν1 0.3838 0.3663 C-H Sym-Stretching Q1

ν2 0.2738 0.2811 C-N Stretching Q2

ν3 0.1761 0.1717 CH3umbrella bend Q3

ν4 0.1159 0.1140 C-C Stretching Q4

e ν5 0.3954 0.3731 C-H Asym Stretching Q5x, Q5y

ν6 0.1859 0.1795 Antisym-CH3 deformation Q6x, Q6y

ν7 0.1323 0.1291 Sym-CH3 deformation Q7x, Q7y

ν8 0.0445 0.0449 C-C-N+H-C-H Bending Q8x, Q8y

jth vibrational mode.

To calculate the coupling parameters of the vibronic Hamiltonian of Sec. 3.3,

we perform direct calculations of vertical ionization energies of MC by the outer-

valence Green’s function method [113] employing the aug-cc-pVTZ basis set [112].

The electronic structure calculations are carried out along the dimensionless nor-

mal displacement coordinates Qj (j = 1-8 ) = ±0.10, ±0.25 (±0.25) ±1.50,

using the Gaussian-03 program package [134]. The vertical ionization energies

thus obtained provide the adiabatic potential energy of the electronic states of

MC+ relative to the electronic ground state of MC. These energies are then fitted

to the adiabatic form of the diabatic electronic Hamiltonian ∆H of Eq. (3.3),

using a least squares procedure and the coupling parameters are obtained. These

coupling parameters represent derivatives of various order in the Taylor series

expansion of the matrix elements of the electronic Hamiltonian ∆H of Eq. (3.3).

We used numerical finite difference approach also to estimate them and obtained

consistent results. The numerical values of all coupling parameters of the Hamil-

tonian of Eq. (3.3), are given in Table 3.3 The vertical ionization energies of
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the X̃ and Ã electronic states of MC+ are also included in Table 3.3 These

parameters are utilized in the nuclear dynamical simulations, discussed below.
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Table 3.3: Ab initio calculated linear and second-order coupling parameters for the X̃2E and Ã2A1 elec-
tronic states of methyl cyanide radical cation. The vertical ionization energies of these two electronic
states and the harmonic frequencies of the vibrational modes of the electronic ground state of methyl
cyanide are also given in the table. All quantities are in eV. The dimensionless Poisson parameters,
(κi/ωi)

2/2, (λi/ωi)
2/2, (κ′i/ωi)

2/2 and (λ′i/ωi)
2/2 are given in parentheses.

Mode κi or λi κ′
i γi γ′

i ηi ωi λ′
i

(symmetry) X̃2E Ã2A1 X̃2E Ã2A1 X̃2E MP2/aug-cc-pVDZ X̃2E ⊗ Ã2A1

ν1(a1) -0.0705(0.017) 0.0113(0.001) -0.0065 0.0014 – 0.3838
ν2(a1) 0.3638(0.883) -0.0293(0.006) 0.0169 -0.0083 – 0.2738
ν3(a1) 0.0315(0.016) 0.0892(0.128) -0.0292 -0.0134 – 0.1761
ν4(a1) -0.0030(0.0003) -0.0131(0.006) -0.0209 -0.0178 – 0.1159
ν5(e) 0.0401(0.005) – -0.0022 0.0094 0.0010 0.3954 0.0534(0.009)
ν6(e) 0.0565(0.046) – -0.0380 -0.0083 0.0045 0.1859 0.0841(0.102)
ν7(e) 0.0476(0.065) – -0.030 0.0010 0.0060 0.1323 0.07(0.140)
ν8(e) 0.0101(0.026) – -0.009 0.010 -0.0016 0.0445 0.05(0.631)
E0

E 12.3441
E0

A 13.34185
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3.3 The Vibronic coupling model

The photo-ionization of MC from its electronic ground state (1A1) to the low-

lying X̃2E and Ã2A1 electronic states of MC+ is examined here. Symmetry

selection rules stated above allow coupling of these electronic states of MC+

through the vibrational modes of e symmetry. In addition to the PJT type of

coupling, these vibrational modes also act as JT coupling modes within the 2E

electronic manifold. The X̃ and Ã electronic states are vertically ≈1.0 eV

apart from each other. This implies that the PJT coupling may have profound

impact on the nuclear dynamics underlying the complex vibronic structures of

the X̃ and Ã electronic states. It is clear from the above discussion that a

(E + A)⊗e type of coupling mechanism would be more appropriate to describe

the observed vibronic structure of the low-lying electronic states of MC+. Such a

vibronic Hamiltonian is used in the literature [36, 137–139] and is reconstructed

here with the aid of electronic structure results obtained for MC+. The four

totally symmetric (a1) vibrational modes, j = 1-4, are Condon active in all ionic

states. The four degenerate (e) vibrational modes, j = 5-8, on the other hand,

act as the JT coupling modes within the X̃2E and the PJT coupling modes in the

X̃2E - Ã2A1 electronic states. With these descriptions the (E + A)⊗ e diabatic

vibronic Hamiltonian can be written as

H = H01 + ∆H, (3.3)

where

H01 = TN + V0, (3.4)



3.3. The Vibronic coupling model 51

with

TN = −1

2

4∑

j=1

ωj

(
∂2

∂Q2
j

)
− 1

2

8∑

j=5

ωj

(
∂2

∂Q2
jx

+
∂2

∂Q2
jy

)
(3.5)

,

V0 =
1

2

4∑

j=1

ωjQ
2
j +

1

2

8∑

j=5

ωj

(
Q2

jx + Q2
jy

)
, (3.6)

is the Hamiltonian for the unperturbed harmonic electronic ground state and

∆H = ∆H0 + ∆Hls + ∆HlJT + ∆HlPJT + ∆Hqs + ∆HqJT , (3.7)

represents change in the electronic energy upon ionization. The elements of this

Hamiltonian are expanded in a Taylor series around the equilibrium geometry of

the electronic ground state as follows:

∆H0 =




Eo
E 0 0

0 Eo
A1

0

0 0 Eo
E


 , (3.8a)

∆Hls =




∑4
j=1 κjQj 0 0

0
∑4

j=1 κ′
jQj 0

0 0
∑4

j=1 κjQj


 , (3.8b)

∆HlJT =




∑8
j=5 λjQjx 0

∑8
j=5 λjQjy

0 0 0
∑8

j=5 λjQjy 0 −∑8
j=5 λjQjx


 , (3.8c)
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∆HlPJT =




0
∑8

j=5 λ′
jQjx 0

∑8
j=5 λ′

jQjx 0 −∑8
j=5 λ′

jQjy

0 −∑8
j=5 λ′

jQjy 0


 , (3.8d)

∆Hqs =




1
2

∑4
j=1 γjQ

2
j 0 0

0 1
2

∑4
j=1 γ′

jQ
2
j 0

0 0 1
2

∑4
j=1 γjQ

2
j


 , (3.8e)

∆H
qJT

=

0

B

B

B

@

1
2

P8
j=5

h

γj(Q2
jx + Q2

jy) + ηj(Q2
jx − Q2

jy)
i

0 −
P8

j=5 ηjQjxQjy

0 1
2

P8
j=5 γ′

j

“

Q2
jx + Q2

jy

”

0

−
P8

j=5 ηjQjxQjy 0 1
2

P8
j=5

h

γj(Q2
jx + Q2

jy) − ηj(Q2
jx − Q2

jy)
i

1

C

C

C

A

,(3.8f)

The letters l, q and s in the abbreviations denote linear, quadratic and symmet-

ric, respectively. ∆H is a non-diagonal (3×3) matrix in the diabatic electronic

basis, elements of this matrix represent the diabatic potential energies of the X̃

and Ã electronic states of the MC+ and the JT and PJT couplings as stated

above. The quantities Eo
E and Eo

A1
are the vertical ionization energies of the

E and A1 electronic states of MC+, respectively. The intrastate linear coupling

parameters for the totally symmetric vibrational modes are given by κj and κ′
j in

the E and A1 electronic states, respectively. The linear JT coupling parameters

for the degenerate vibrational modes in the E electronic manifold are denoted

by λj. The quantities λ′
j define the linear E − A1 PJT coupling parameters of

these degenerate vibrational modes. The second-order coupling parameters for

the totally symmetric vibrational modes are denoted by γj and γ′
j in the E and

A1 electronic states, respectively. The diagonal second-order and quadratic JT

parameters within the E electronic manifold are denoted by γj and ηj, respec-

tively. All the coupling parameters of the above Hamiltonian are shown in Table

3.3 in Sec. 3.2.
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3.4 Topography of the adiabatic potential en-

ergy surfaces: the JT and PJT conical in-

tersection

In the following, we discuss the topography of the adiabatic potential energy

surfaces of the X̃2E and Ã2A1 electronic states of the MC+ obtained within the

quadratic vibronic coupling scheme of Sec. 3.3 employing the coupling parameters

of Table 3.3. These potential energy surfaces are obtained by diagonalizing the

electronic Hamiltonian, V0 + ∆H, given in Eqn. (3.3). In the following, we discuss

one dimensional cuts of the multi-dimensional potential energy hyper surfaces for

the coupled manifold of X̃ -Ã electronic states along each vibrational mode. In

Figure. 3.4, the adiabatic potential energy curves for the X̃ -Ã coupled electronic

manifold are shown. The potential energies along the four symmetric (ν1 − ν4)

and four degenerate (ν5−ν8) vibrational modes (indicated in the panel) are shown

in the left and right column of the figure, respectively. The lines in the figure

indicate the potential energy obtained by the present vibronic coupling model

and the points superimposed on them represent the computed ab initio energies.

The potential energies of the X̃ and Ã states are shown by the solid and

dashed lines, respectively. It can be seen that the computed ab initio energies

are well reproduced by the model. The totally symmetric vibrational modes

cannot lift the degeneracy of the X̃2E electronic manifold, however, they shift

the potential energy minimum considerably away from the equilibrium geometry

of the neutral MC (Q=0) and therefore alter the energy gap between electronic

states. This shift amounts to -κj/(ωj + γj) for the symmetric vibrational mode

νj [23]. Furthermore, the coupling constants κ and κ′ for the vibrational modes ν1

and ν2 have opposite signs. Therefore, the minimum of the X̃ and Ã states shifts

in the opposite directions relative to the minimum of the electronic ground state

of MC along these modes. As a result the X̃2E and Ã2A1 electronic states of the
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Figure 3.4: Adiabatic potential energies of the X̃2E and Ã2A1 electronic states
of MC+ plotted along the dimensionless normal displacement (from equilibrium
configuration at Q=0) coordinates of the four symmetric vibrational modes ν1-ν4

(left column) and the x-component of four degenerate vibrational modes ν5 − ν8

(right column). The solid lines represent potential energies of the X̃2E electronic

manifold and the dashed lines represent the same of the Ã2A1 electronic state
obtained from the vibronic model of Sec. 3.3. The computed adiabatic potential
energies superimposed on the respective curves and shown as points in the figure.
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radical cation exhibit degeneracies along ν2 (cf., Figure. 3.4) and would result into

conical intersections when PJT coupling modes are included. The shift of these

minima along ν1 is negligibly small and therefore no such curve crossings are seen

along this mode in the given energy range. The vibrational modes of e symmetry

are both JT and PJT active. The adiabatic potential energy curves of the X̃

and Ã electronic states of MC+ are plotted as a function of the dimensionless

normal coordinate of the x-component of these degenerate vibrational modes in

the right column of Figure. 3.4. Along this component the adiabatic potential

energies of the three electronic states are given by

V1,2(Qjx) = Vo(Qjx) +
Eo

Eg
+ Eo

A1g

2
+

λj

2
Qjx +

(γjx + γ′
jx + ηjx)Q

2
jx

4
(3.9a)

∓

√(
(Eo

Eg
+ λjQjx +

1

2
γjxQ2

jx +
1

2
ηjxQ2

jx − Eo
A1g
− 1

2
γ′

jxQ
2
jx)/2

)2

+ (λ′
jQjx)2

V3(Qjx) = Vo(Qjx) + Eo
Eg
− λjQjx +

(γjx − ηjx) Q2
jx

2
(3.9b)

Where V1,2 refer to one component of the JT split X̃2E and Ã2A1 electronic states,

respectively, and V3 represents the second component of the former electronic

manifold. It can be seen from Figure. 3.4 that the JT splitting is small along all

degenerate vibrational modes, which is also revealed by their coupling parameters

given in Table 3.3. With the parameters set of Table 3.3, the relevant stationary

points of the multi-dimensional potential energy surfaces are determined [23,

137–139]. First, we estimate these stationary points in absence of X̃ - Ã PJT

coupling. The two sheets of the X̃2E electronic manifold remain degenerate along

the coordinate of the symmetric vibrational modes (cf., Figure. 3.4). The locus of

this degeneracy defines the seam of conical intersections between the two sheets

of the X̃2E electronic manifold, occurring at the C3v symmetry configuration

of MC+. The minimum of this seam is found at an energy of ≈ 12.11 eV for
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Q1= -0.102, Q2= -0.371, Q3= -0.440 and Q4= -0.291. The degeneracy of these

two sheets is split (cf., Figure. 3.4) when distorted along the coordinates of the

degenerate vibrational modes. In this situation, the lower adiabatic sheet exhibits

a ”Mexican hat” type of topography within a linear vibronic coupling scheme.

The lower adiabatic sheet is described by three equivalent minima separated by

three equivalent saddle points. This ”Mexican hat” acquires a distorted shape

when the higher order coupling parameters are included in the Hamiltonian. For

the second-order vibronic Hamiltonian of Eqn. (3.3), the minima and the saddle

points occur at ≈ 12.080 eV and ≈ 12.082 eV, respectively. This correspond to

a JT stabilization energy of ≈ 0.03 eV.

An approximate estimate of the energetic minimum of the seam of the PJT

conical intersections is obtained by considering the (E + A)⊗ e coupling matrix

along the x-component of the degenerate electronic state and the vibrational

modes [137–139]. Within a linear coupling scheme and using the parameters of

Table 3.3 we find the energetic minimum of this seam between the X̃ and Ã

states occur at ≈ 12.79 eV, for Q1=0.351, Q2= -2.453, Q3=0.078 and Q4=-0.042.

This minimum occurs well within the range of the second photoelectron band and

only ≈ 0.68 eV above the minimum of the JT conical intersections.

3.5 Dynamical observables: Vibronic spectra and

time-dependent dynamics

In this section we discuss on the vibronic structure of the first two photoelectron

bands of MC pertaining to the X̃2E and Ã2A1 electronic states of MC+. The

theoretical results discussed below are obtained with the matrix Hamiltonian of

Eqn. (3.3) at various levels of approximation in order to unambiguously identify

the vibrational progressions and elucidate role of JT and PJT interactions in the

observed complex spectral pattern [127–129]. We begin with the simplest linear



3.5. Dynamical observables: Vibronic spectra and time-dependent
dynamics 57

vibronic coupling approach and then consider the higher order coupling terms to

accomplish this goal. In absence of any bilinear coupling terms (which are found

not important in the present case) in the Hamiltonian and the PJT coupling with

the Ã2A1 electronic state, the Condon activity of the totally symmetric a1 vibra-

tional modes is separable from the JT activity of the degenerate e vibrational

modes within the X̃2E electronic manifold of MC+. We, therefore, calculate the

two partial spectra for the a1 and e vibrational modes first and then convolute

them to generate the complete spectrum for the X̃2E electronic manifold. This

reduces the computational effort by effectively reducing the dimensionality of

the secular matrix in each calculations and the matrix diagonalization approach

discussed above is readily applicable for the purpose. The vibronic energy level

spectrum of X̃2E electronic manifold is shown in Figure. 3.5. The two partial

spectra of the a1 and e vibrational modes are shown in panels a and b, respec-

tively. The results of convolution of the two partial spectra are shown in the

panel c. A careful analysis of the two partial spectra (shown in panel a and b)

obtained within the linear coupling approach revealed dominant excitation of the

symmetric vibrational mode ν2 up to its third overtone level. The peaks are ≈
0.274 eV spaced in energy corresponding to the frequency of this vibrational mode

(cf. Table 3.2). Much weaker excitation of the ν1, ν3 and ν4 vibrational modes

are also seen. The excitation probability of the ν1 and ν3 vibrational modes is

about two and that of the ν4 vibrational mode is about three orders of magnitude

less than that of the ν2 vibrational mode. As revealed by the parameters of Table

3.3, the JT interactions due to the degenerate vibrational modes are not strong

in the X̃2E electronic manifold. Fundamental transitions due to ν6 and ν7 vibra-

tional modes are observed in the partial spectrum for the degenerate vibrational

modes. Very weak excitations of the ν8 vibrational mode is also observed. Lines

are ≈ 0.111 eV, 0.148 eV and 0.035 eV spaced in energy which nearly correspond

to the frequency of the ν7, ν6 and ν8 vibrational modes, respectively. These peak

spacings are again modified when the second-order coupling parameters are in-
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Figure 3.5: The vibronic spectra of the X̃2E electronic states of MC+ obtained
with a linear coupling model. The relative intensity in arbitrary units is plotted
as a function of the energy of the final vibronic levels. Energy is measured relative
to the minimum of the ground electronic state of MC: (a) partial calculated with
the four totally symmetric a1 vibrational modes ν1-ν4, (b) partial spectrum for the
degenerate e vibrational modes ν5-ν8, and (c) the composite theoretical spectrum
obtained by convoluting the above two partial spectrum.
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Figure 3.6: The uncoupled state vibronic spectrum of Ã2A1 electronic state of
MC+ with LVC scheme.

cluded in the simulation. In this case the partial spectrum for the symmetric

vibrational modes does reveal an increase in the intensity of the individual peaks.

Peak spacings of ≈ 0.29 eV, 0.147 eV, 0.095 eV and 0.301 eV, respectively, are

observed for ν2, ν3, ν4 and ν1 vibrational modes. The spectrum for the JT modes

does not undergo major changes, the peaks become slightly broader and diffuse.

Similar to the linear coupling spectrum dominant excitations of the ν6 and ν7

vibrational modes are observed. The spectrum for the uncoupled Ã2A1 electronic

state reveal dominant excitation of the ν3 vibrational mode. The ν2 and ν4 vibra-

tional modes are only weakly excited in this case. The uncoupled state vibronic

spectrum of Ã2A1 electronic state is shown in Figure 3.6. Furthermore, the spec-

tra obtained within the linear and second-order coupling schemes show essentially

identical structures. In each case the stick vibronic spectrum is convoluted with

a Lorentzian function of 20 meV full width at the half maximum (FWHM) to

generate the spectral envelope. The relative intensity in arbitrary units is plotted

as a function of the energy of the final vibronic levels in Figure. 3.5. It is observed



3.5. Dynamical observables: Vibronic spectra and time-dependent
dynamics 60

that when the second-order coupling (particularly for the e vibrational modes)

causes a slight increase of the density of spectral lines which is not shown here.

The effect of X̃ -Ã PJT coupling on the above spectra is examined next. In

this case the complete Hamiltonian of Eq. (3.3) is employed in the spectral simula-

tions. Simulations are carried out by both time-independent and time-dependent

methods. The latter is used particularly to check the convergence of the spec-

tral envelope and also to examine the non-radiative decay of excited electronic

states. We note that the vertical energy gap between the X̃ and Ã electronic

states had to be reduced by ≈ 0.3 eV in order to reproduce the adiabatic ion-

ization positions at their experimental values in the composite theoretical bands.

The time-independent matrix diagonalization approach becomes computationally

impracticable with increase in the size of the basis set and an unambiguous ver-

ification of the numerical convergence of the spectrum becomes impossible. In

Figures. 3.7(a-c) we show the vibronic spectrum of the X̃ -Ã coupled electronic

manifold. The experimental spectrum (reproduced from Ref. [128]) is shown in

panel a and the theoretical results obtained by Hamiltonian matrix diagonal-

ization and wave packet propagation approaches are shown in panel b and c,

respectively. In the matrix diagonalization approach 2, 6, 15, 6, 2, 5, 4 and 2

harmonic oscillator basis functions are used along the ν1, ν2, ν3, ν4, ν5, ν6, ν7 and

ν8 vibrational modes, respectively. This leads to a secular matrix of dimension

≈ 2.66 × 107, which is diagonalized with 10000 Lanczos iterations to obtain the

stick spectrum. The stick spectrum is convoluted with a Lorentzian function of

20 meV FWHM to generate the spectral envelope shown in panel b. It can be

seen that the overall shape of the spectral envelope in the panel b is very similar

to the uncoupled X̃ -Ã states results shown in the bottom panel of Figure. 3.7.

Significant differences however can be seen in the density of the lines underneath

the two spectra. Mixing of the lines of E and A1 vibronic symmetries through the

PJT coupling causes a large increase of the spectral line density and broadening

of the spectral envelope. As discussed above that the minimum of the seam of
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Figure 3.7: The X̃2E -Ã2A1 , photoelectron bands of MC+. The experimental
results reproduced from Ref. [128] are shown in panel a. The results from the full
dimensional theoretical simulations (see text for details) by the time-independent
and time-dependent methods are shown in panel b and c, respectively.
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PJT conical intersections occurs at ≈ 12.79 eV, therefore the low-lying vibra-

tional levels of the Ã state mix with the higher vibrational levels of the X̃ state

and this mixing causes the observed increase in the density of spectral lines.

The spectral envelope shown in panel b of Figure. 3.7 is regenerated by a wave

packet propagation approach employing the MCTDH algorithm [121–123, 125].

This allows a proper check of the convergence of the numerical results and also to

understand the non-radiative decay of the excited molecular electronic states (see

the discussion below). The details of the mode combinations, sizes of the primi-

tive and SPF bases used in the MCTDH simulations are given in Table 3.4. The

spectral envelope shown in Figure. 3.7(c) represents a sum of contributions from

all three component electronic states of the X̃ - Ã coupled electronic manifold.

These contributions refer to the Fourier transform of the time autocorrelation

functions, computed by locating the initial wave packet on three component elec-

tronic states separately and propagating them in the coupled manifold of three

electronic states. The resulting autocorrelation function functions were damped

with a relaxation time of 66 fs, before Fourier transformation. This approxi-

mately corresponds to a Lorentzian line shape function of 20 meV FWHM. In

each case the wave packet is propagated for 150 fs which effectively yields the au-

tocorrelation function up to 300 fs, using the prescription, C(t) = 〈Ψ∗( t
2
)|Ψ( t

2
)〉,

applicable to a real initial wave packet. It can be seen from Figure. 3.7, that the

spectral envelopes of panel b and c are in good accord with each other although

there remains slight variations in the intensity of individual peaks. This compar-

ison confirms that the stick spectrum in panel b is nearly converged. The two

theoretical envelopes shown in panel b and c are in very good accord with the

experimental envelope of panel a. We note that the convergence of the envelope

of panel c is checked by varying the parameters given in Table 3.4. Considering

the slight variations in the spectral intensities it is can be concluded that the

stick spectrum in panel b is not fully, but nearly converged, and provides a re-

liable description of the vibronic energy levels in the X̃ -Ã coupled electronic
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manifold. As discussed above the main progressions in the theoretical spectrum

are formed by the totally symmetric vibrational modes ν3 and ν2 and the degen-

erate vibrational modes ν6 and ν7. The JT effect is weak in the X̃2E electronic

manifold, however, the PJT coupling of the latter with the Ã2A1 electronic state

is relatively stronger. This causes the observed increase of the density of spectral

lines and a broadening of the corresponding envelope.

3.6 Non-adiabatic transitions: Internal Conver-

sion Rate

The time-dependence of the diabatic electronic populations in the coupled X̃ -

Ã states dynamics discussed above are shown in Figures. 3.8(a-b). For the dy-

namical simulations the wave packet is initially located on one of the JT split

component of the X̃ state (panel a) and on the Ã state (panel b). The decay

and growth of the population of all three electronic states in each case are shown

by the distinct line types (indicated in panel a). In each case the wave packet ap-

proaches all the JT and PJT conical intersections during its evolution in time. It

can be seen from panel a that a very small fraction of the wave packet reaches the

Ã electronic state when it is the initially launched on one of the two components

of the X̃ state. This is because the minimum of the seam of PJT conical inter-

sections occurs ≈ 0.68 eV above the minimum of the JT crossing seam. In this

situation, the wave packet mostly undergoes nonadiabatic transitions back and

forth in between the two JT split components of the X̃ state. The population of

these two component states fluctuate around 0.7 and 0.3, respectively at longer

times. The initial decay of the electronic population relates to a non-adiabatic

decay rate of ≈ 50 fs of the JT split components of the X̃2E electronic manifold.

The above population dynamics changes dramatically when the wave packet is

initially prepared on the Ã electronic state, as shown in panel b of Figure. 3.7.
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Figure 3.8: Time dependence of diabatic electronic populations in the X̃2E -
Ã2A1 , coupled states nuclear dynamics of MC+. The results obtained by initially
locating wave packet on one of the two components of the X̃ electronic manifold
and the Ã electronic state are shown in panel a and b, respectively.
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Table 3.4: The number of harmonic oscillator (HO) basis functions along each
vibrational mode and the dimension of the secular matrix used to calculate the
converged theoretical stick spectrum shown in various figures noted below.

Dimension of the
No. of HO basis functions secular matrix Figure(s)

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8

2 6 15 2 - - - 2160 Figure. 3.5 (a)
- - - - 4 10 7 2 627200 Figure. 3.5 (b)
4 20 4 9 - - - - 2280 Figure. 3.6

In this case the populations of the Ã electronic state decay very fast (decay

rate 28 fs ) to the X̃ electronic manifold through the PJT conical intersections.

Both the components of the JT split X̃2E electronic manifold are almost equally

populated in time.

3.7 Summary and outlook

A theoretical account of the multi-mode static and dynamic Jahn-Teller and

pseudo-Jahn-Teller coupling effects in the photoelectron spectroscopy of methyl

cyanide is presented in this article. The ground (X̃2E ) and first excited (Ã2A1 )

electronic states of methyl cyanide radical cation are calculated ab initio along

the dimensionless normal coordinates of the electronic ground state of methyl

cyanide. A second-order (E + A) ⊗ e vibronic Hamiltonian is constructed in a

diabatic electronic basis. The nuclear dynamics on the coupled electronic states is

simulated by time-independent and time-dependent quantum mechanical meth-

ods to calculate the vibronic spectra and examine the non-radiative decay of

the excited electronic states. The details of the vibronic structure of the photo-

electron bands are systematically analyzed. The role and importance of all 12

vibrational modes in the nuclear dynamics is examined. It is found that the JT

effects due to the degenerate vibrational modes in the X̃2E electronic manifold

of MC+ is weak, however, the PJT coupling of these vibrational modes with the



3.7. Summary and outlook 66

Ã2A1 electronic state is somewhat stronger. The latter leads to a mixing of the

spectral lines of two different vibronic symmetries and an increase in the den-

sity of vibronic levels. The minimum of the seam of the JT conical interactions

within the X̃2E electronic manifold occurs at ≈ 12.11 eV and the same of the

PJT conical intersections is located ≈ 0.68 eV above it. The JT stabilization

energy is found to be only ≈ 0.03 eV. The symmetric vibrational mode ν2 (C-N

stretching), ν3 (CH3 umbrella bend) and the degenerate vibrational modes ν6

(antisymmetric CH3-deformation and ν7 (symmetric CH3-deformation) form the

dominant progressions in the photoelectron bands. Particularly, ν3 is the crucial

vibrational mode for the nuclear dynamics in the Ã2A1 state. Excitations of the

remaining vibrational modes are found to be weak in the photoelectron bands.

The final theoretical results are obtained by including all 12 vibrational modes

in the coupled X̃ -Ã electronic states of MC+ employing both time-independent

and time-dependent quantum dynamical methods. While the time-independent

results are not fully converged because of the lack of appropriate computer hard-

wares, the convergence of the time-dependent results are explicitly verified. The

final theoretical results are in very good accord with the experimental findings.

We note that this is the first work of its kind attempting to provide a detail

understanding of the observed vibronic structures of the low-lying photoelectron

bands of MC.



Chapter 4

Static and dynamic aspects of

electronically excited anthracene

radical cation as archetypical

models for astrophysical

observations

4.1 Introduction

Identification of molecular carriers of diffused interstellar bands (DIBs) is a cur-

rent concern to unravel the long-standing debate in astronomical observations.

Recent telescopic measurements in the line of sight of star Cernis 52 in and

HD281159 the Perseus Constellation led to the discovery of new interstellar bands.

Aided by the laboratory measurements under the exotic condition of interstellar

medium, these interstellar features have been ”tentatively” assigned to electronic

transitions in anthracene radical cation [140–142]. We perform a benchmark

theoretical study from first principles and unambiguously validate these assign-

67
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ments. This study establishes that polycyclic aromatic hydrocarbons can be the

molecular carrier of DIBs and ultrafast non-radiative deactivation of their ex-

cited electronic states makes them photostable against strong UV irradiation in

the interstellar medium.

Discovery of carbon containing molecular species seems to have important im-

plication in the origin of life in the chemistry of early universe. Meaningful efforts

have been made in recent years to unearth the polycyclic aromatic hydrocarbon

(PAH) hypothesis in relation to the observed (over 300) diffused interstellar bands

(DIBs) in the spectrum of the interstellar dust clouds [68,143–146]. Aided by the

laboratory measurements they are assigned to the electronic transitions in the

anthracene radical cation (An+ ). The detailed complementary theoretical study

is missing to date.

The experimental photoelectron measurements were carried out by several

groups for An [86–89,147–149]. The high resolution gas phase spectrum recorded

by Sánchez-Carrera et al. [86], shown in Figure. 4.1 reveals well resolved vibronic

structures of the X̃ and Ã electronic states and a broad band for the B̃ state.

The highly overlapping bands for the C̃ and D̃ electronic states show complex

structure in the 10.75-11.75 eV ionization energy range. The broadening of the

B̃ band in the spectrum is attributed to the vibronic coupling of Ã with the

B̃ state.

The gas phase electronic absorption spectrum [71,75,85] of An+ has been the

subject of major interest. The DIBs, the absorption features observed over the in-

terstellar media in the range of ultraviolet and infrared region of electromagnetic

spectrum, are linked to the electronic transitions of An+ . The novel experimental

spectroscopic techniques such as matrix isolation spectroscopy (MIS) (shown in

Figure 4.2), cavity ring down spectroscopy and resonance enhanced multi-photon

dissociation spectra (shown in Figure 4.2 on top of MIS) are developed and uti-

lized to explore the intrinsic band profiles of the low-lying electronic states of

An+ . The vibrational peak positions and widths are measured in the laboratory
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Figure 4.1: The experimental gas phase photoelectron spectrum of anthracene
reproduced from Ref. [86].
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Figure 4.2: The vibrational progression of the D2 (B̃ ) ← D0 (X̃ ) electronic
transition of An+ reproduced from Ref. [85].
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Figure 4.3: The HET and WHT spectra of Cernis 52 corrected for the photo-
spheric and DIB contributions of An+ reproduced from Ref. [77].

experiments and are directly compared with the observed DIBs. A broad band

assigned to the D2 (B̃ )← D0 (X̃ ) electronic transition in An+ has been recorded

in the spectrum of star Cernis 52 [77] and HD281159 [150]. This spectral pro-

file is shown in Figure 4.3. The laboratory experimental data [71, 75, 85] have

been used recently to assign this broad interstellar feature discovered by the as-

tronomers [77]. So far no theoretical data is available to validate this assignment.

The relaxation dynamics of electronically excited An+ is studied in glass

matrix environments using (femto) picoseconds transient grating spectroscopic

techniques [74]. A bi-exponential recovery kinetics of the photo-bleached D0

(X̃ ) state containing a fast (≈ 200 fs) and a slow (≈ 3-20 ps) component is

observed [74]. The faster relaxation is attributed to the D2 (B̃ ) ← D0 (X̃ )

transition and the latter is to the vibrational relaxation of the D0 (X̃ ) state

in the matrix. The D2 state relaxation time was estimated below ≈ 50 fs from
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this experiment. A non-radiative decay rate of ∼ 56 fs (FWHM ∼ 94 cm−1

is estimated for D2 (B̃ ) electronic state from the cavity ring down absorption

spectroscopy measurements [75]. These results reveal that the excited state intra

molecular dynamics of An+ is quite involved and is dominated by ultrafast

internal conversion mechanism. This issue is also unraveled below.

We address some of these unresolved issues here and develop a theoretical

model through ab initio electronic structure calculations and simulate the nuclear

dynamics quantum mechanically.

4.2 Details of Electronic structure calculations

The equilibrium geometry of the reference electronic ground state of An is op-

timized at the second-order Möller-Plesset perturbation level of theory employ-

ing Dunning’s polarized valence double-zeta basis set (cc-pVDZ) [112] using the

Gaussian 03 suite of program [134]. The equilibrium geometry converged to the

D2h symmetry point group. The optimized equilibrium geometry data agree very

well with those available in the literature [151]. These theoretical results along

with the literature data are given in Table 4.1. The atom numbering in the Table

4.1 is shown in Figure 4.5.
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Table 4.1: Ab initio calculated equilibrium geometry parameters of the electronic
ground state of neutral naphthalene along with the experimental data.

An (MP2/cc-pVDZ) our data Expt datab

Bond length (Å)
C1 - C2 1.3844 1.397
C1 - C6 1.4299 1.422
C2 - C3 1.4337 1.437
C3 - C4 1.4511 1.437
C3- C7 1.4103 1.392
C1 - H17 1.0954 –
C2 - H18 1.0966 –
C7 - H16 1.0979 –
Bond Angle (deg)
C1 - C2 - C3 120.815 –
C2 - C3 - C4 118.775 –
C2 - C3 - C7 121.990 122.3
C2 - C1 - C6 120.416 120.4
C5 - C6 - C1 120.410 –
C3 - C7 - C10 121.529 121.0
C7 - C10 - C9 119.236 –
C7 - C3 - C4 119.236 118.4
H17 - C1 - C2 119.938 –
H17 - C1 - C6 119.652 –
H18 - C2 - C3 118.697 –
H18 - C2 - C1 120.488 –
H16 - C7 - C3 119.236 –

By diagonalizing the ab initio force constant matrix of the optimized equi-

librium configuration of the electronic ground state, the harmonic vibrational

frequencies ωi are obtained. These vibrational frequencies along with their sym-

metry and description are given in Table 4.2. The theoretically calculated har-

monic frequencies are also compared with the experimentally [152] determined

fundamental frequencies in the Table 4.2.
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Figure 4.4: The schematic structures of An and atom numbering.
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Table 4.2: Ab initio calculated harmonic vibrational frequencies and their de-
scription of An. The experimentally determined [152] fundamental frequencies
are given in the parentheses.

Mode Freq in eV (Expa) Description of mode Mode Freq in eV (Expa) Description of mode
MP2/cc-pVDZ MP2/cc-pVDZ

ag In Plane b2u In Plane

ν1 0.0491(0.0492) ring(r) breathing ν39 0.0752(0.0745) outer ring bending
ν2 0.0772(0.0775) ring deformation ν40 0.1023(0.1003) C-H and ring CCC bend
ν3 0.0945(0.0935) ring squeezing ν41 0.1286(0.1237) Cb-Cb str, C-H(a,b) bend

ν4 0.1289(0.1249) Cb-Cb str, C-H bend ν42 0.1448(0.1394) C-H bend, r CCC bend
ν5 0.1455(0.1443) C-H(a,b) bending ν43 0.1484(0.1441) C-H(9,10) bend + CC str

ν6 0.1615(0.1567) ring CCC str, C-H bend ν44 0.1787(0.1669) C-C(b,b) and C-C str

ν7 0.1823(0.1751) Cb-Cb and C-C str ν45 0.1837(0.1732) Cb-C str
ν8 0.1890(0.1835) Ca-C str + C-H(a,b) bend ν46 0.1905(0.1854) C-C(a,b)(b,b) and C-C str

ν9 0.1986(0.1929) C-C and Cb-Cb str ν47 0.1977(0.1902) Cb-Cb str, C-H(9,10) bend

ν10 0.3958(0.3746) C-H(9,10) sym str ν48 0.3976(0.3746) sym Ca-H str

ν11 0.3977(0.3779) sym C-Ha + asym C-Hb str ν49 0.4013(0.3779) C-H(a,b) str

ν12 0.4014(0.3796) sym C-H(a,b) str b1g Out of Plane

b3g In Plane ν18 0.0281(0.0300) wave shape r CCCC bend
ν50 0.0476(0.0492) ring deformation ν19 0.0565(0.0591) CCC and C-H bending
ν51 0.0644(0.0646) CCCC bending ν20 0.0936(0.0926) side r CCC and C-H bend
ν52 0.1131(0.1120) outer ring CCC bending ν21 0.1150(0.1185) C-H(a,b) bending

ν53 0.1389(0.1366) CCC bend + C-H bend b2g Out of Plane

ν54 0.1487(0.1472) C-H(9,10) bending ν33 0.0320(0.0352) ring twisting

ν55 0.1583(0.1578) C-H(9,10) and Ca-H bending ν34 0.0485(0.0715) center r chair bending

ν56 0.1738(0.1777) CC str + C-H(a,b) bend ν35 0.0655(0.0956) side r CCC bending

ν57 0.2001(0.1951) Ca-Cb str ν36 0.1023(0.1111) C-H(9,10)(a,b) bending

ν58 0.2093(0.2017) C-C(9,10),(a,b), C-Ca str ν37 0.1038(0.1136) C-H(9,10) and CC bending

ν59 0.3971(0.3726) asym Ca-H str ν38 0.1162(0.1209) side r C-H and CCC bend
ν60 0.3997(0.3787) asym Cb-H str au Out of Plane

b1u In Plane ν13 0.0146(0.0169) diagonal r twist bending
ν22 0.0287(0.02900 outer ring CCCC bend ν14 0.0580(0.0684) C-C and C-H bending
ν23 0.0814(0.0810) ring deformation ν15 0.0674(0.0921) side r chair shape bend
ν24 0.1117(0.1123) ring CCC bending ν16 0.1036(0.1064) C-H(a,b) and side r bend

ν25 0.1437(0.1422) C-H(a,b) bending ν17 0.1165(0.1188) C-H(a,b) bending

ν26 0.1582(0.1577) Ca-H and outer ring bend b3u Out of Plane

ν27 0.1647(0.1633) C-H bend + ring CCC str ν61 0.0109(0.0119) butterfly ring bending
ν28 0.1839(0.1795) C-Ca str + C-H(a,b) bend ν62 0.0451(0.0475) wave shape r bending

ν29 0.2074(0.2009) Ca-Cb str + ring CCC bend ν63 0.0554(0.0625) C-H and CCC bending
ν30 0.3956(0.3728) C(9,10)-H asym str ν64 0.0904(0.0908) C-H bending

ν31 0.3971(0.3785) asym C-H(a,b) str ν65 0.1041(0.1106) r CCC and C-H(9,10) bend

ν32 0.3997(0.3824) C-H str ν66 0.1153(0.1180) C-H(a,b)(9,10) bending

The mass-weighted normal coordinates of these vibrational modes are calcu-

lated using the eigenvectors of the force constant matrix. The dimensionless nor-

mal displacement coordinates (Qi) are obtained by multiplying the mass-weighted

normal coordinates with
√

ωi (in atomic units) [109].

Energies of the low-lying six doublet electronic states of An+ are calculated

ab initio along the normal coordinates of all the vibrational modes mentioned

above. The outer valence Green’s function method [113] and the cc-pVDZ basis

set are used for this purpose. The vertical ionization energies (VIEs) of the

first six highest occupied MOs of An are calculated along each Qi = ±0.10 and

±0.25 (±0.25) ± 1.50. These VIEs plus the harmonic potentials of the reference

electronic ground state are equated with the adiabatic potentials of the first six

low-lying electronic states of An+ , to derive the parameters appeared in Eqs.
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4.5. All these coupling parameters are shown in Tables 4.3 to 4.7.

A care full analysis of the coupling parameters of the Hamiltonian is as follows.

For the totally symmetric vibrational modes, it can be seen from Table 4.4 that

the ν9 vibrational modes is the most crucial in all the electronic states. The

vibrational modes ν1 and ν3 in the Ã , ν1 and ν2 in the B̃ , ν1 and ν7 in the

C̃ , ν3, ν4 and ν8 in the D̃ and ν1, ν3 and ν7 in the Ẽ state are expected to be

strongly excited. The vibrational modes ν7 and ν8 in the X̃ , ν3 and ν5 in the Ã ,

ν2 and ν7 in the B̃ , ν2 in the C̃ state, have moderate excitation strength. The

excitation of the remaining a1g vibrational modes are very weak. The coupling

between X̃ -Ã states are very strong along the vibrational modes ν50, ν51 and

ν58, of b3g symmetry (cf., Table 4.6). The same symmetry vibrational modes can

also coupled the Ã - C̃ and B̃ - D̃ electronic states. The vibrational mode ν57 is

crucial for these couplings. The vibrational modes of b1u symmetry are important

in the Ã - B̃ , C̃ - D̃ and X̃ - D̃ interstate coupling. The vibrational modes cause

strongest coupling of Ã and B̃ electronic states are ν23, ν27 and ν29. The coupling

strengths of ν27 is largest in the C̃ - D̃ electronic states. The X̃ - B̃ , Ã - D̃ and

B̃ - C̃ electronic states are coupled by the vibrational modes of b2u symmetry.

The coupling strength of ν44, ν45 and ν47 vibrational modes in the X̃ - B̃ states

can be seen to be important. The vibrational modes ν39, ν40 and ν46 on the other

hand are strongly active in the B̃ - C̃ electronic states. The ν47 vibrational mode

is the strongest coupling mode in the Ã - D̃ states. The ν19 vibrational mode of

symmetry b1g is responsible for the Ã - Ẽ interstate coupling. The X̃ - Ẽ and C̃ -

Ẽ electronic states are coupled by the vibrational modes of symmetry b2g. The

coupling strengths of these vibrational modes are quite large in the C̃ - Ẽ states.

The vibrational modes ν35 is the strongest in the X̃ - Ẽ states. The vibrational

mode ν16 of symmetry au reveals moderate coupling between B̃ - Ẽ states. The

D̃ and Ẽ states are strongly coupled by the vibrational modes of symmetry b3u.
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Table 4.3: ab initio calculated linear coupling constants for the X̃2B2g , Ã2B1g ,

B̃2Au , C̃2B2g , D̃2B3u and Ẽ2Ag electronic states of An+. The vertical ionization
energies of these three electronic states and the harmonic vibrational frequencies
of the electronic ground state of anthracene are also given in the table. All
quantities are in eV.

Mode κX
i κA

i κB
i κC

i κD
i κE

i ωi

(symmetry) X̃ Ã B̃ C̃ D̃ Ẽ MP2/cc-pVDZ

ν1 0.0004 0.0296 -0.0316 -0.0726 0.0023 -0.0848 0.04906
(0.0001) (0.1823) (0.2072) (1.094) (0.001) (1.49)

ν2 0.0007 0.0185 -0.0387 0.0172 0.0120 0.0275 0.07716
(0.0001) (0.0287) (0.1256) (0.025) (0.034) (0.064)

ν3 0.0032 -0.0939 -0.0112 -0.0124 -0.0572 0.0398 0.09453
(0.0006) (0.493) (0.007) (0.009) (0.183) (0.089)

ν4 0.0101 -0.0444 -0.0129 0.0030 -0.0855 0.0327 0.12893
(0.0031) (0.0594) (0.005) (0.0003) (0.220) (0.032)

ν5 0.0338 -0.0342 0.0348 0.0173 -0.0026 -0.0076 0.14547
(0.0271) (0.0277) (0.0286) (0.007) (0.0002) (0.001)

ν6 -0.0539 -0.0058 0.0692 -0.0205 -0.0455 -0.0170 0.16145
(0.0557) (0.0007) (0.0919) (0.008) (0.039) (0.006)

ν7 0.1060 0.0406 0.0382 -0.0775 0.0678 0.1410 0.18232
(0.169) (0.025) (0.022) (0.09) (0.069) (0.299)

ν8 0.0564 0.0178 -0.0490 0.0075 0.1269 -0.0461 0.18903
(0.045) (0.004) (0.034) (0.001) (0.226) (0.030)

ν9 0.1383 -0.1067 0.1203 0.1080 0.0298 -0.2337 0.19859
(0.243) (0.144) (0.183) (0.148) (0.011) (0.692)

ν10 0.0051 -0.0125 0.0044 0.0063 0.0146 -0.0581 0.39580
(0.0001) (0.0005) (0.0001) (0.001) (0.001) (0.011)

ν11 0.0044 -0.1330 0.0035 0.0045 0.0092 -0.0458 0.39766
(0.0001) (0.056) (0.0001) (0.001) (0.001) (0.007)

ν12 0.0125 -0.0170 0.0159 0.0158 0.0238 -0.0115 0.40138
(0.001) (0.001) (0.001) (0.001) (0.0001) (0.001)

E0
X 7.00462

E0
A 8.22561

E0
B 8.84452

E0
C 10.04423

E0
D 10.11909

E0
E 11.15221
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Table 4. 4: Ab initio Quadratic coupling parameters for the X̃ , Ã , B̃ , C̃ , D̃ and
Ẽ electronic states of An+ . All quantities are in eV.

Mode γX
i γA

i γB
i γC

i γD
i γE

i Freq (eV)
Ag

ν1 -0.0009 0.0004 0.0002 0.0012 -0.0007 0.0029 0.04906
ν2 -0.0048 -0.0010 -0.0034 0.0030 -0.0011 -0.0034 0.07716
ν3 -0.0018 0.0036 -0.0014 -0.0024 -0.0002 -0.0020 0.09453
ν4 0.0001 0.0019 -0.0004 0.0008 0.0005 -0.0013 0.12893
ν5 0.0048 0.0063 0.0049 0.0049 0.0052 -0.0042 0.14547
ν6 -0.0008 0.0043 0.0035 0.0136 -0.0066 -0.0085 0.16145
ν7 -0.0049 0.0204 0.0141 0.0080 0.0023 -0.0285 0.18232
ν8 -0.0010 -0.0045 0.0015 0.0045 0.0002 -0.0344 0.18903
ν9 0.0042 0.0073 0.0026 0.0002 0.0037 -0.0074 0.19859
ν10 0.0039 0.0039 0.0019 0.0025 0.0027 -0.0110 0.39580
ν11 0.0034 0.0038 0.0033 0.0028 0.0029 -0.0006 0.39766
ν12 0.0028 0.0044 0.0024 0.0025 0.0026 0.0009 0.40138
B3g

ν13 -0.0039 0.0015 -0.0014 -0.00184 -0.0014 -0.0050 0.0476
ν14 -0.00402 0.00172 -0.0016 -0.00068 -0.0002 -0.0320 0.06439
ν15 -0.00049 0.0030 -0.00056 0.00044 -0.00124 -0.0162 0.11312
ν16 0.00112 0.00154 -0.0022 -0.0037 0.0046 -0.0260 0.1389
ν17 -0.0009 0.00604 0.00326 0.00448 0.003134 -0.0229 0.14871
ν18 0.00286 0.00144 0.00202 0.00626 0.0044 -0.0252 0.1583
ν19 -0.0018 -0.0010 0.00067 0.0015 0.00169 -0.0262 0.17381
ν20 -0.00076 -0.00986 -0.0178 0.0144 0.0234 -0.0264 0.20013
ν21 -0.0381 0.03864 -0.0014 0.00129 0.20929 0.3860 0.20929
ν22 0.0038 0.00372 0.0370 0.0034 0.00352 -0.0071 0.39706
ν23 0.0038 0.0034 0.0370 0.00336 0.0032 -0.0112 0.39973
B1u

ν24 -0.00025 — -0.00405 -0.00244 -0.00092 0.0008 0.02866
ν25 0.00112 -0.0107 0.00814 -0.01637 0.0136 -0.0151 0.08139
ν26 -0.00139 -0.000104 -0.00173 -0.00766 0.0043 -0.0304 0.11172
ν27 0.0022 0.00244 0.00214 -0.0080 0.0155 -0.0124 0.14369
ν28 0.00206 -0.00398 0.00738 -0.00056 0.00367 -0.0175 0.15824
ν29 -0.0002 -0.00324 0.00498 -0.1016 0.0988 -0.0156 0.16474
ν30 -0.00073 -0.00182 0.0036 -0.0781 0.0844 -0.020 0.18387
ν31 -0.00724 -0.0371 0.0392 -0.0090 0.0231 -0.0525 0.20741
ν32 0.00376 0.00289 0.00192 0.00176 0.00386 -0.0144 0.39556
ν33 0.0037 0.0037 0.0036 0.0033 0.0036 -0.0016 0.39712
ν34 0.00374 0.00331 0.0035 0.00328 0.0034 -0.0015 0.39974
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Table 4. 5: Ab initio Quadratic coupling parameters for the X̃ , Ã , B̃ , C̃ , D̃ and
Ẽ electronic states of An+ . All quantities are in eV.

Mode γX
i γA

i γB
i γC

i γD
i γE

i Freq (eV)
B2u

ν35 -0.00273 -0.00029 -0.01023 0.0072 -0.00024 -0.0268 0.07515
ν36 -0.0009 -0.00071 -0.0031 0.00466 0.001983 -0.0055 0.10233
ν37 0.0004 0.0009 -0.004 0.0008 -0.0023 -0.0017 0.12859
ν38 0.0058 0.0076 0.00426 0.0078 0.0072 -0.0039 0.14478
ν39 0.00384 0.00690 0.00371 0.0088 0.0056 -0.0215 0.14837
ν40 -0.0016 0.0150 0.0102 0.00327 0.0098 -0.0728 0.17866
ν41 -0.0066 -0.00040 0.0128 0.0090 -0.0072 -0.0250 0.18366
ν42 0.03382 0.03778 -0.0054 0.0367 0.0302 -0.0996 0.19054
ν43 -0.0102 -0.0064 0.0142 0.0092 0.0132 -0.0709 0.19768
ν44 0.00346 0.0032 0.00348 0.0028 0.00306 -0.0106 0.3976
ν45 0.0029 – 0.0026 0.0026 – -0.0011 0.40133
B1g

ν46 -0.0122 -0.0011 -0.0102 -0.0079 -0.0105 -0.0014 0.0281
ν47 -0.0042 -0.0013 -0.0136 -0.0167 -0.0091 0.0086 0.05652
ν48 0.0039 0.0049 – 0.0002 -0.0024 -0.0064 0.0936
ν49 0.0092 0.0077 0.0028 0.00092 -0.0145 -0.0244 0.11502
B2g

ν50 0.0056 -0.0158 -0.0066 -0.0086 -0.0082 -0.0019 0.03202
ν51 0.0052 0.0008 -0.0006 -0.0325 0.0055 -0.0080 0.04852
ν52 -0.0012 -0.0186 -0.0094 -0.0075 -0.0169 0.0011 0.06545
ν53 0.0047 0.0034 0.0022 -0.0187 -0.0047 -0.0051 0.10233
ν54 0.0144 0.0048 -0.00052 -0.0403 -0.0068 0.0324 0.10383
ν55 0.0080 0.0034 -0.0033 -0.0072 -0.0109 0.0136 0.11615
Au

ν56 0.00608 -0.0146 -0.00015 -0.0061 -0.0102 -0.0017 0.01464
ν57 -0.0048 -0.0152 -0.0052 -0.0062 -0.0157 -0.0112 0.0580
ν58 0.0031 0.00124 -0.0062 -0.0118 -0.0138 -0.0066 0.06739
ν59 0.0116 0.0042 -0.0017 -0.0075 -0.0093 0.0009 0.10362
ν60 0.0073 0.0038 -0.0031 -0.0031 -0.0204 0.0078 0.11646
B3u

ν61 -0.0058 0.0023 -0.0143 -0.0073 -0.0049 -0.0021 0.01088
ν62 -0.0035 -0.0096 -0.0139 -0.0213 -0.0126 0.0091 0.04507
ν63 -0.0091 — -0.0095 -0.0175 -0.0037 0.0140 0.0554
ν64 0.01004 0.00366 0.00058 -0.0056 – -0.0080 0.09036
ν65 0.0134 0.008 0.00172 -0.0056 -0.0172 -0.0230 0.10405
ν66 0.0091 0.00767 0.0026 0.0026 -0.0129 -0.0087 0.11527
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Table 4. 6: Ab initio The interstate linear coupling parameters of An+ . All quantities
are in eV. The dimensionless Poisson parameters (λi/ωi)

2/2 are given in parentheses.

Mode λi−j λi−j λi−j

B3g i - j ∈ X̃ - Ã i - j ∈ Ã - C̃ i - j ∈ B̃ - D̃
ν13 0.0416 (0.382) – –
ν14 0.0421 (0.214) – 0.0221 (0.059)
ν15 – 0.0376 (0.055) –
ν16 – – –
ν17 0.0456 (0.047) – –
ν18 – 0.0458 (0.042) 0.0272 (0.015)
ν19 – 0.0276 (0.013) 0.0192 (0.006)
ν20 – 0.1052 (0.138) 0.1154 (0.166)
ν21 0.1535 (0.269) – 0.0220 (0.006)
ν22 – – –
ν23 – 0.0027 (0.00002) –

B1u i - j ∈ X̃ - D̃ i - j ∈ Ã - B̃ i - j ∈ C̃ - D̃
ν24 – – –
ν25 0.1015 (0.777) 0.0539 (0.219) 0.0250 (0.047)
ν26 0.0651 (0.170) – 0.0153 (0.009)
ν27 0.1035 (0.259) – 0.0219 (0.012)
ν28 0.0361 (0.026) 0.0392 (0.031) 0.0093 (0.002)
ν29 0.3264 (1.964) 0.0347 (0.022) 0.0840 (0.130)
ν30 0.2930 (1.26) – 0.0719 (0.076)
ν31 0.1553 (0.280) 0.1107 (0.142) 0.0260 (0.008)
ν32 0.0094 (0.0003) – –
ν33 – – 0.002 (0.00001)
ν34 – – –

B2u i - j ∈ X̃ - B̃ i - j ∈ Ã - D̃ i - j ∈ B̃ - C̃
ν35 – 0.0043 (0.002) 0.0718 (0.456)
ν36 – 0.0346 (0.057) 0.0483 (0.112)
ν37 – – 0.0191 (0.011)
ν38 – – –
ν39 – – 0.0395 (0.035)
ν40 0.0739 (0.086) – –
ν41 0.0941 (0.131) – –
ν42 – – 0.1133 (0.177)
ν43 0.1056 (0.143) 0.0962 (0.118) –
ν44 – – –
ν45 – – –
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Table 4. 7: Interstate linear coupling parameters of An+ . All quantities are in eV.
The dimensionless Poisson parameters (λi/ωi)

2/2 are given in parentheses.

Mode λi−j λi−j

B1g i - j ∈ Ã - Ẽ
ν46 –
ν47 0.0736 (0.849)
ν48

ν49

B2g i - j ∈ X̃ - Ẽ i - j ∈ C̃ - Ẽ
ν50 – 0.0444 (0.963)
ν51 – 0.0834 (1.479)
ν52 0.0487 (0.276) 0.0505 (0.297)
ν53 – 0.0636 (0.193)
ν54 0.1395 (0.903) 0.1433 (0.953)
ν55 0.0775 (0.222) 0.0769 (0.219)

Au i - j ∈ B̃ - Ẽ
ν56 –
ν57 –
ν58 –
ν59 0.0418 (0.081)
ν60 –

B3u i - j ∈ D̃ - Ẽ
ν61 0.0256 (2.758)
ν62 0.0754 (1.398)
ν63 0.0680 (0.753)
ν64 –
ν65 –
ν66 0.0327 (0.040)
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4.3 Vibronic Hamiltonian

In order to treat the nuclear dynamics quantum mechanically in the low-lying

electronic states of An+ , we develop a suitable vibronic Hamiltonian in this sec-

tion. For this purpose we resort to a diabatic electronic basis to avoid the singular

derivative coupling terms of the complementary adiabatic electronic basis. We

employ dimensionless normal displacement coordinates (Q) for the nuclear vibra-

tions to express the Hamiltonian matrix. We focus on the electronic structure

of anthracene (An) and the quantum dynamics on the coupled X̃2B2g -Ã2B1g -

B̃2Au -C̃2B2g -D̃2B3u -Ẽ2Ag electronic states of An+ . The equilibrium geometry

of the An molecule converges to the D2h symmetry point group in its electronic

1Ag ground state. The ionization of an electron from the valance molecular

orbitals of symmetry b2g, b1g, au, b2g, b3u and ag of anthracene produces the

D0(X̃
2B2g ), D1(Ã

2B1g ), D2(B̃
2Au ), D3 (C̃2B2g ), D4 (D̃2B3u) and D5 (Ẽ2Ag)

electronic states of An+ . The molecular orbital (MO) diagrams are shown in

Figures. 4. 5. The nature of the first five MOs(HOMO, HOMO-1, HOMO-2,

HOMO-3, HOMO-4) are of π type and the next MO HOMO-5 is of σ type for

AN. Anthracene radical cation possesses 66 vibrational degrees of freedom and

they belong to the following irreducible representations of the D2h symmetry

point group,

Γvib = 12ag + 5au + 4b1g + 11b1u + 6b2g + 11b2u + 11b3g + 6b3u

The coupling of various electronic states is described by the standard symmetry

selection rules

Γn ⊗Qvib ⊗ Γm ⊃ Ag (4.1)

In the above the indices n and m refer to the electronic states. According to the
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Figure 4.5: The first six highest occupied molecular orbital pictures of An
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above rule the totally symmetric vibrational modes (ag) are always Condon active

within a given electronic state [23]. The possible interstate coupling vibrational

modes between different electronic states of An+ is also derived from the above

rule.

With this description the general form of the vibronic Hamiltonian pertinent

to the X̃ - Ã - B̃ - C̃ - D̃ - Ẽ electronic states of An+ can be given by

H = (TN + V0)16 + ∆H (4.2)

TN = −1

2

f∑

i

ωi

(
∂2

∂Q2
i

)

V0 =
1

2

f∑

i

ωiQ
2
i (4.3)

where 16 is a 6×6 unit matrix and (TN + V0) is the Hamiltonian for the

reference state ( the vibrational and electronic ground state of neutral An). This

reference state is assumed to be harmonic and vibronically decoupled from the

other states. The quantity ∆H in Eqn. 4. 2 represents the change in ionization

and defines the electronic Hamiltonian of the An+ .

∆H =




W eX W eX− eA W eX− eB W eX− eC W eX− eD W eX− eE

W eA W eA− eB W eA− eC W eA− eD W eA− eE

W eB W eB− eC W eB− eD W eB− eE

H.C W eC W eC− eD W eC− eE

W eD W eD− eE

W eE




(4.4)

The elements of this Hamiltonian matrix are written in terms of the dimen-

sionless normal coordinates (Q) of the electronic ground state of PAH which is to
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a good approximation treated as harmonic [23]. The non-diagonal matrix Hamil-

tonian in Eqn. 4. 2 represent the change in the electronic energy upon ionization

and describe the diabatic electronic potentials (diagonal elements) of the X̃ , Ã ,

B̃ , C̃ , D̃ , Ẽ electronic states of An+ and their coupling potentials (off-diagonal

elements). These are expanded in a Taylor series around the reference equilibrium

geometry (Q=0) of the electronic ground state of An as

Wj = E
(j)
0 +

ag∑

i

κ
(j)
i Qi +

1

2

N∑

i

γ
(j)
i Q2

i ; j ∈ X̃, Ã, B̃, C̃, D̃, Ẽ (4.5)

Wj−k =
∑

i

λj−k
i Qi (4.6)

where j - k ∈ X̃ -Ã , X̃ -B̃ , X̃ -C̃ , X̃ -D̃ , X̃ -Ẽ , Ã -B̃ , Ã -C̃ , Ã -D̃ , Ã -Ẽ ,

B̃ -C̃ , B̃ -D̃ , B̃ -Ẽ , C̃ -D̃ , C̃ -Ẽ , D̃ -Ẽ with i ∈ b3g; b2u; - ; b1u; b2g; b1u; b3g;

b2u; b1g; b2u; b3g; au; b1u; b2g; b3u for An+ .

In the above equations the quantity E
(j)
0 represents the vertical ionization

energy of the jth electronic states. κj
i and γj

i are the linear and second-order

vibronic coupling parameters of the ith vibrational mode in the jth electronic state,

respectively. The quantity λ
(j−k)
i describes the first-order coupling parameter

between the j and k electronic states through the vibrational mode i.

4.4 Results and Discussion

4.4.1 Adiabatic potential energy surfaces: Topography

and stationary points

In this section we begin with a discussion on the topography of the adiabatic

potential energy surfaces and the stationary points found on them employing the

vibronic coupling model introduced above. The results of this analysis are related
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to the findings of the nuclear dynamical studies presented later in this section.

The adiabatic potential energies are obtained by diagonalizing the 6 × 6 diabatic

electronic Hamiltonian defined in Eq. 4.2. We show the cuts of the potential

energy surfaces along all the totally symmetric vibrational modes in Figure 4. 6.

The cuts of the potential energy surfaces along ν9 totally symmetric vibrational

modes in Figure 4. 7 for better quality of representation. We note that this rep-

resentative figures display the most important features of the underlying poten-

tial energy hyper-surfaces. The adiabatic potential energies in the above figures

are plotted against the dimensionless normal coordinate of the given vibrational

mode ν9 keeping all others at their equilibrium value ( at Q=0). The solid curves

represent the potential energies obtained from the model and the points super-

imposed on them represent the computed ab initio data. It can be seen that the

vibronic coupling model developed in Sec. 4.3 reproduces the ab initio data very

well. This comparison is most valuable in the vicinity of various curve crossings

in the above figures. These curve crossings develop into conical intersections in

multi-dimensions and these intersections are the mechanistic bottleneck for the

nuclear motion in a given electronic state. The location of the energetic minimum

of these intersections relative to the equilibrium minimum of a given state play

the key role in the subsequent dynamical event. It is important to add that the

two groups comprising of X̃ -Ã -B̃ and C̃ -D̃ -Ẽ electronic states of An+ are

energetically well separated from each other, however, the states within a group

are vertically close in energy. The energetic minimum of various conical intersec-

tions in the six lowest electronic states as well as their equilibrium minimum of

An+ have been estimated within a linear coupling approach [23]. We note that

when a second-order coupling model is considered the relevant equations for the

energetic minimum become nonlinear [153] and their solutions become nontrivial

with an increase in the nuclear degrees of freedom. Despite this, we have at-

tempted to estimate the stationary points including the second-order terms also.

However, no significant difference from the linear coupling results is found when-
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ever a converged solution is obtained in the second-order model. The energetic

minimum of the seam of X̃ -Ã , Ã -B̃ and X̃ -B̃ CIs are found to occur at ∼ 8.82

eV, ∼ 8.86 and ∼ 15.44 eV, respectively. The X̃ , Ã and Ã , B̃ electronic states

are vertically ∼ 1.22 and 0.62 eV spaced, respectively. The energetic minimum

of Ã -B̃ CIs in An+ occurs only ∼ 0.76 and ∼ 0.10 eV above the equilibrium

minimum of its Ã and B̃ state, respectively. The consequence of this energy

lowering in the spectral and dynamical properties is discussed later in the text.

As the X̃ -B̃ CIs of An+ occur at much higher energies, they do not play any

role in the present investigations. The B̃ -C̃ and B̃ -D̃ CIs occur at much higher

energies and expected to have no impact on the dynamics of C̃ and D̃ electronic

states. Interestingly, B̃ -Ẽ CIs occur at ∼ 0.9 eV above the Ẽ state minimum.

The C̃ and D̃ states of An+ are quasi-degenerate at the vertical configuration.

The minimum of the C̃ -D̃ CIs is located nearly at the equilibrium minimum

of the D̃ state and ∼ 0.1 eV above the minimum of the C̃ state. Similarly, the

minimum of the C̃ -Ẽ and D̃ -Ẽ CIs occurs at ∼ 10.97 and 10.93 eV, respectively.

These are very close to the equilibrium minimum of the Ẽ state estimated at ∼
10.86 eV. The effect of the low-energy CIs on the vibronic bands and excited

state relaxation dynamics of An+ are discussed in relation to the astrophysical

observations in the next section. All these energetic minima are given in Table

4.8.

Table 4. 8. Equilibrium minimum (diagonal entries) and minimum of the seam

of various CIs (off-diagonal entries) of the potential energy surfaces of An+ . All

quantities are given in eV.
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Figure 4.6: Adiabatic potential energies of the X̃ , Ã , B̃ , C̃ , D̃ and Ẽ electronic
states of An+ as a function of the dimensionless normal coordinates of the totally
symmetric (ag) vibrational modes, ν1-ν9 are shown by different colour line
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Figure 4.7: Adiabatic potential energy surfaces of the six low-lying electronic
states of An+ along the vibrational modes ν9. A sketch of the vibrational mode
is also shown. The potential energy surfaces are obtained with the quadratic
vibronic coupling scheme. The computed ab initio potential energies of these
states are superimposed and shown by the points on each curve. The equilibrium
geometry of An in its electronic ground state (1Ag) corresponds to Q = 0.
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


X̃ Ã B̃ C̃ D̃ Ẽ

X̃ − 8.82 15.44 22.60 30.90 17.03

Ã 8.10 8.86 11.59 15.65 15.06

B̃ 8.76 12.55 11.29 12.31

C̃ 9.94 10.03 10.97

D̃ 10.01 10.93

Ẽ 10.86




The mentioned various CIs among these electronic states open up complex

pathways for the nuclear motion on them. The effect of the low-energy CIs in

the vibronic bands and excited state relaxation dynamics of An+ are discussed

in relevance to the astrophysical observations in the next section.

4.4.2 Vibronic band structures of X̃ , Ã , B̃ , C̃ , D̃ and

Ẽ electronic states of An+

4.4.2.1 X̃ , Ã , B̃ , C̃ , D̃ and Ẽ uncoupled state spectrum

The uncoupled state spectrum for the X̃ , Ã , B̃ , C̃ , D̃ and Ẽ electronic states of

An+ is calculated by a matrix diagonalization approach using the Lanczos algo-

rithm [23]. The theoretical stick spectra are calculated using 9 totally symmetric

vibrational modes (ν1-ν9) using the vibronic Hamiltonian of Eqn. 4. 2 and the

parameters of Tables 4.3 - 4.4. The results are numerically converged with re-

spect to the number of vibrational basis functions and the number of Lanczos

iteration. In the spectrum of the X̃ state which is shown in Figure 4.8, the se-

ries of peaks are ∼ 0.162, ∼ 0.182, ∼ 0.190 and ∼ 0.199 eV spaced in energy

corresponding to the progression along ν6 (C-H bending), ν7 (outer ring C=C
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stretching), ν8 (inner ring C=C stretching) and ν9 (inter-ring C=C stretching)

vibrational modes, respectively. The ring deformation mode ν2 is also weakly

excited in this state. In the Ã state spectrum of An+ vibrational modes ν1(ring

deformation) and ν3(C-C-C bending) form the major progressions. The peaks

are ∼ 0.049 and ∼ 0.095 eV spaced, respectively, corresponding to the frequen-

cies of these vibrational modes. The inter-ring C=C stretching mode ν9 is also

moderately excited in this state. The uncoupled state spectra of Ã and B̃ states

are shown in Figure 4. 9 and Figure 4. 10, respectively. The vibrational modes

ν1 and ν2 form dominant progressions in the B̃ state of An+ . Peak spacings

of ∼ 0.049 and ∼ 0.077 eV due to these modes, respectively, are extracted from

the spectrum of this electronic state. The inter-ring C=C stretching mode ν9

is also weakly excited in this band. The vibrational spectrum of the uncoupled

B̃ state reveals resolved vibrational structures whereas, a broad and structure-

less band of this state is observed in the experiment [86]. The coupling of the

B̃ state particularly, with the Ã state appears to be extremely important in this

case. We note that the B̃ band of An+ has received special attentions recently.

A signature of this band has been discovered in the spectrum of the star Cernis

52 in the Perseus molecular cloud by the astronomers [77]. This issue is taken

up separately and discussed at length later in Sec. 4. 4. 4. The uncoupled state

vibronic structure of C̃ , D̃ and Ẽ states are shown in Figures 4. 11 to 4. 13,

respectively. The vibrational mode ν1 is highly excited up to its fourth overtone

level in the C̃ band of An+ . Peak spacings of ∼ 0.049 eV due to this mode, is

extracted from the spectrum. The vibrational modes ν3, ν4, ν7 and ν8 form the

major progressions in the D̃ band of An+ . It is found that the vibrational modes

ν1 and ν9 form the detectable progressions in the Ẽ state of An+ . The number of

harmonic oscillator basis functions along each vibrational mode, the dimension of

the secular matrix and the number of Lanczos iterations are used to generate the

uncoupled states vibronic spectra of X̃ , Ã , B̃ , C̃ , D̃ and Ẽ electronic states of

An+ is shown in Table 4. 9. In summary, the inter-ring C=C stretching and the
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C-C-C bending vibrational modes (ν1, ν2, ν3, ν7, ν8 and ν9) play crucial role in

the vibronic dynamics of An+ .
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Figure 4.8: The uncoupled vibronic band of the X̃ electronic state of An+ com-
puted with relevant seven ag (ν1-ν7) vibrational modes within the linear (panel
a) and quadratic (panel b) vibronic coupling scheme. The theoretical stick spec-
trum in each panel is convoluted with a Lorentzian function of 20 meV FWHM
to calculate the spectral envelope.
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Figure 4.9: Same as in Figure. 4.8 shown for the uncoupled vibronic band of
Ã state of An+ .
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Figure 4.10: Same as in Figure. 4.8 shown for the uncoupled vibronic band of
B̃ state of An+ .
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Figure 4.11: Same as in Figure. 4.8 shown for the uncoupled vibronic band of
C̃ state of An+ .
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Figure 4.12: Same as in Figure. 4.8 shown for the uncoupled vibronic band of
D̃ state of An+ .
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Figure 4.13: Same as in Figure. 4.8 shown for the uncoupled vibronic band of
Ẽ state of An+ .
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Table 4. 9

The number of harmonic oscillator (HO) basis functions along each vibrational

mode, the dimension of the secular matrix and the number of Lanczos iterations

used to calculate the converged theoretical stick spectrum shown in Figures. 4.8

- 4.13.
Dimension of the No. of Lanczos

No. of HO basis functions secular matrix iterations Figure(s)

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9

2 2 2 2 2 3 10 3 15 43200 5000 4.8 (a)

6 2 15 2 2 2 2 5 2 28800 5000 4.9 (a)

20 12 2 2 3 9 2 3 18 2799360 5000 4.10 (a)

20 2 2 2 2 2 2 2 4 10240 5000 4.11 (a)

2 2 10 12 2 2 4 12 2 184320 5000 4.12 (a)

25 2 2 2 2 2 5 2 12 96000 5000 4.13 (a)

4.4.2.2 Vibronic spectrum of coupled X̃ -Ã -B̃ -C̃ -D̃ -Ẽ electronic

states

Despite the fact that the uncoupled state spectra discussed above are helpful in

understanding the important roles played by different vibrational modes in each

electronic state, they deviate significantly from the observed bands in practice.

Coupling between states is necessarily be considered to capture most of the fea-

tures of the experimental observations [86]. A careful analyze is of the coupling

strength of 66 vibrational modes of An+ indicates that 31 (9ag + 1au + 1b1g +

5b1u + 3b2g + 5b2u + 5b3g + 2b3u) of them are relevant in the nuclear dynamics on

the coupled manifold of six electronic states. Therefore, in the final calculations

we considered all these 31 vibrational modes and carried out WP propagations

on the coupled manifold of six electronic states using the MCTDH algorithm.

Six WP calculations are carried out by launching the initial WP on each of the

six electronic states separately. The details of the mode combinations and the

sizes of the basis sets are given in Table 4. 10. In each calculation the WP
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Figure 4.14: The vibronic band structure of the coupled X̃ -Ã -B̃ -C̃ -D̃ electronic
states of An+ . The experimental (reproduced from Ref [86]) and the present
theoretical results are shown in the top and bottom panels, respectively. The
intensity (in arbitrary units) is plotted along the energy (measured relative to
electronic ground state (1Ag) of An) of the final vibronic states.
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is propagated for 400 fs. The time autocorrelation function is damped with an

exponential function of relaxation time 33 fs, and then Fourier transformed to

generate the spectrum. The results from six different calculations are combined

with equal weighteage to generate the composite theoretical band shown in Fig.

4.14 (bottom panel) along with the experimental results (top panel) reproduced

from Reference [86]. It can be seen from the figure that except for the first band,

the distinct vibronic structures of the uncoupled state spectrum are completely

blurred in the coupled state spectrum. The non-adiabatic coupling effects are

particularly severe for the third and fourth bands. While the third band could

be related to the vibronic structure of the B̃ state, the fourth one is formed by

highly overlapping C̃ and D̃ electronic states of An+ . It can be seen from Figure.

4. 14 that the present theoretical results are in very good agreement with the

laboratory experiment [86]. We note that experimental band structure of the

Ẽ state is not available. We find that the Ẽ state is coupled with further higher

excited electronic states of An+ . As revealed by Figure 4. 14 that, the Ã band

is structured, B̃ band is broad and structureless and the C̃ and D̃ bands are

overlapping. The results in both the cases are in very good accord with the ex-

periment [86]. These results can be clearly interpreted and understood from the

findings of section 4.3. We reiterate that, the minimum of the Ã -B̃ CIs is closer

to the B̃ state whereas, the minimum of the X̃ -Ã CIs is far from the Ã state

minimum. The minimum of the X̃ -B̃ CIs occurs at higher energies. Therefore,

it is clear that the blurring of the vibronic structure of the B̃ state is mainly

caused by the Ã -B̃ CIs. From the theoretical perspective these are quite novel

findings that contribute significantly to understand the details of experimental

observations.
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Table 4. 10: The normal mode combinations, sizes of the primitive and the single
particle bases used in the wave packet propagation (using the MCTDH algorithm)

on the X̃ -Ã -B̃ -C̃ -D̃ -Ẽ and Ã -B̃ coupled electronic manifold of An+ .

Electronic States Normal modesa Primitive basisb Single particle basisc Figure
(ν1,ν26,ν58,ν34,ν62) (5,5,4,5,5) [7,5,6,7,6,5 ]
(ν2,ν23,ν27,ν35,ν51) (5,5,5,4,5) [5,6,7,6,7,6 ]

X̃ -Ã -B̃ -C̃ -D̃ -Ẽ (ν3,ν29,ν33,ν61) (5,5,4,4) [5,6,6,5,6,5 ]
(31-Vibrational modes) (ν5,ν47,ν45,ν55) (4,5,5,4) [5,6,6,7,6,5 ] 4.14 (b)

(ν7,ν4,ν40,ν57) (4,4,5,5) [6,5,6,7,6,5 ]
(ν8,ν39,ν6,ν46) (5,6,4,5) [6,5,6,7,6,6 ]

(ν9,ν50,ν25,ν16,ν19) (5,5,5,5,4) [6,5,5,6,7,6 ]

(ν1,ν6,ν23) ( 7, 4, 6) [ 5, 6]

Ã -B̃ (ν2,ν7,ν26,ν27) ( 6, 5, 4, 4) [ 6, 7] 4.17 (a)
(10-vibrational modes) (ν3,ν9,ν29) ( 5, 6) [ 5, 6]

4.4.3 Non-radiative decay dynamics

The time-dependent populations of the six diabatic electronic states of An+ in

the coupled state dynamics of section 4.4.1 are shown in Figures 4.15 (a-e). The

results obtained by initially populating the Ã , B̃ , C̃ , D̃ and Ẽ electronic states

are shown in panels a-e, respectively. The six electronic populations are indicated

by six different line types in panel a. It is observed that insignificant population

flows to all the five excited states when the WP is initially prepared on the

X̃ state and the corresponding figure is therefore not included here. This is due

to the fact that the CIs of the X̃ state with all other states are located at higher

energies and are not accessible to the WP during its evolution on this state. This

results into the observed sharp vibrational level structure of the X̃ band (cf.,

Figure 4.8). Time-dependence of diabatic electronic populations in the coupled

X̃ -Ã -B̃ -C̃ -D̃ -Ẽ states dynamics of An+ by initially locating the WP on Ã ,

B̃ , C̃ and D̃ states are shown in the panel a-d, respectively, of Figure 4. 15. As

mentioned before that the Ẽ state is coupled with further higher excited states,

detailed examination of which is beyond the scope of the present investigation.
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Figure 4.15: The populations (diabatic) in time of the X̃ (black lines), Ã (red

lines), B̃ (blue lines), C̃ (violet line), D̃ (green lines) and Ẽ (pink lines) states

for an initial transition of the WP to the Ã (panel a), B̃ (panel b), C̃ (pane c),

D̃ (panel d) and Ẽ (panel e) in the coupled X̃ -Ã -B̃ -C̃ -D̃ -Ẽ states dynamics
of An+ .
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Therefore, the electronic populations for an initial preparation of the WP on the

Ẽ state is not included in the figure. The line types of the population curves

shown in Figure 4.15 are indicated in panel a.

The electronic populations for an initial location of the WP on the Ã state

shown in panel a of Figure 4.15 reveal population transfer to the X̃ state. The

minimum of the X̃ -Ã CIs located ∼ 0.72 eV above the minimum of the Ã state.

Thus the decay of the Ã state population is much slower. The slow decay of

Ã state population relates to a decay rate of ∼ 225 fs, and accounts for the

relatively structured band of this state (cf., Figure 4.14).

The decay of the population of the B̃ state is much faster. A decay rate of ∼
30 fs can be estimated from the initial fast decay of the B̃ state. The occurrence of

the minimum of the Ã -B̃ CIs ∼ 0.1 eV above the minimum of the B̃ state causes

this rapid decay. A decay rate of < 50 fs is predicted in the experiment [75]. We

note that the minimum of the X̃ -B̃ CIs occur ∼ 6.68 eV above the minimum of

the B̃ state. Therefore, it is highly unlikely for the WP to access the X̃ -B̃ CIs

during its evolution on the B̃ state. This implies that the WP evolving on the

B̃ states undergoes internal conversion to the Ã state via the low-energy Ã -B̃ CIs

and subsequently moves to the X̃ state via the X̃ -Ã CIs.

Time-dependence of electronic populations for an initial location of the WP

on the C̃ state is shown in panel c. In this case the internal conversion takes

place first to the D̃ state via the low-lying C̃ -D̃ CIs. The energetic minimum

of the latter occurs only ∼ 0.1 eV above the minimum of the C̃ state. The WP

from the D̃ state moves to the B̃ state via B̃ -D̃ CIs, minimum of which occurs ∼
1.28 eV above the minimum of the D̃ state. The very slow decay of the C̃ state

relates to a decay rate of ∼ 333 fs.

Finally the time evolution of the WP on the D̃ state is shown in panel d. In

this case most of the population flows to the C̃ state via the C̃ -D̃ CIs located

nearly at the minimum of the D̃ state. Some population also flows (as also seen

from panel c) to the B̃ state via the B̃ -D̃ CIs. The initial fast decay of the
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population relates to a life-time of ∼ 38 fs of the D̃ state.

In the panel (e), we show the electronic populations of the six electronic

states when the initial WP launched on the Ẽ state. Within ∼ 25 fs the Ẽ state

population sharply decays and the D̃ state population rises simultaneously. As

already mentioned above that the energetic minimum of the D̃ state occurs at ∼
0.06 above the minimum of the D̃ -Ẽ CIs, and the Ẽ state population flows to the

D̃ state via these CIs. Similarly the minimum of the C̃ -Ẽ CIs occurs at ∼ 0.32

eV above the Ẽ state minimum. Due to this the population of C̃ state increases

to ∼ 0.3 in ∼ 25 fs and remains unchanged for the rest of the propagation time.

Non-radiative decay rates of ∼ 29 fs is estimated for the Ẽ state.

4.4.4 Vibronic dynamics of B̃ state: Astrophysical rele-

vance

The B̃ band of An+ is found to be the strongest in experiments [74,75]. In view

of the coupling of the B̃ state with the neighboring states of An+ (vide supra),

we critically examined how the vibronic structure of the B̃ state is modified by

them. Several reduced dimensional calculations are therefore performed by a

matrix diagonalization (MatD) approach in a direct product harmonic oscillator

basis utilizing the Lanczos algorithm [23]. In all dynamical treatment six (most

relevant) totally symmetric and the strong coupling vibrational modes are con-

sidered. The numerical details of all the reduced dimensional calculations are

presented in Table 4. 11.

Within the BO picture only 480 vibrational levels of the uncoupled B̃ state are

found. Number of vibronic levels increases to 819 when X̃ - B̃ coupling via three

b2u modes are considered. The maximum coupling strength of ∼ 0.14 is found in

this case and is caused by the ν47 mode (ring CC stretch). Number of vibronic

levels dramatically increases to ∼ 3766 when Ã and B̃ coupling is considered.

The coupling in this case is caused by four b1u modes with a maximum coupling
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Table 4. 11: The number of harmonic oscillator basis functions along each vi-
brational mode, the dimension of the secular matrix and the number of Lanczos
iterations used to calculate the converged theoretical stick spectrum of the B̃ state
of An+ in the uncoupled and various coupled state situations (see text for discus-
sion).

State Vibrational Modes No. of HO basis functions Dimension of the No. of Lanczos
secular matrix iterations

B̃ ν1, ν2, ν3, ν6, ν7, ν9 10,6,2,4,2,9 8640 5000

X̃ - B̃ ν1, ν2, ν3, ν6, ν7, ν9, 9,6,2,4,8,8 7962624 5000
ν44, ν45, ν47 4,6,6

Ã - B̃ ν1, ν2, ν3, ν6, ν7, ν9, 10,6,4,5,3,9 40824000 5000
ν23, ν26, ν27, ν29 10,3,3,7

B̃ - C̃ ν1, ν2, ν3, ν6, ν7, ν9, 9,6,2,4,2,5 6912000 5000
ν39, ν40, ν46 20,5,8

B̃ - D̃ ν1, ν2, ν3, ν6, ν7, ν9, 12,8,4,5,2,11 6758400 5000
ν51, ν55, ν57 4,2,10

B̃ - Ẽ ν1, ν2, ν3, ν6, ν7, ν9, 15,9,3,7,7,12 2857680 5000
ν35 6

strength of ∼ 0.22 along ν23 (in-plane ring bending) vibrational mode. The B̃ -

C̃ , B̃ - D̃ and B̃ - Ẽ coupling is caused by the 3b2u, 3b3g and 1au vibrational

modes, respectively. It is found that these couplings increase the number of levels

to 1083, 774 and 660, respectively, in that order. In the 707.0 - 711.0 nm range

of the recorded DIB [77], the Ã - B̃ coupling causes a fifteen-fold increase of

the line density of the B̃ state and contributes most to the intensity maximum

of the origin (0-0) peak. It therefore emerges that it is necessary to include all

relevant couplings in order to precisely describe the location and shape of the

B̃ band of An+ . Understandably, a X̃ - Ã - B̃ - C̃ - D̃ - Ẽ coupled states

dynamical simulation including 31 relevant nuclear DOF is out of the scope of

the matrix diagonalization approach. This task is therefore accomplished by a

WP propagation approach using the multi-configuration time-dependent Hartree

(MCTDH) algorithm [122]. In this case the dynamical calculation is performed by

launching the WP on the B̃ state. The time autocorrelation function is damped



4.4. Results and Discussion 107

by an exponential function, e−
t
τ , (with τ = 127 fs) and Fourier transformed to

calculate the spectrum.

Important theoretical results of the present investigation are plotted in Figure.

4. 16(a-b) along with the experimental resonance enhanced multi-photon disso-

ciation (REMPD) [85] and Ar-matrix [71] spectroscopy results. In panel a, the

(converged) stick lines shown are obtained by diagonalizing the most important

Ã - B̃ coupled states Hamiltonian including the ten relevant vibrational modes.

About ∼ 1272 vibronic levels are obtained in the 707.0 - 711.0 nm wavelength

range of the recorded DIB.

The entire B̃ band of An+ spans over a wavelength range of ∼ 200 nm. Both

the stellar ( [77]) and laboratory spectroscopy ( [75]) experiments probed the most

intense 0-0 peak at a narrow wavelength range of ∼ 4.0 and 23.0 nm, respectively.

The entire B̃ band from two-states (Ã - B̃ ) plus 10 modes (solid line) and

six-states plus 31 modes (dashed line) dynamical calculations is shown in panel

b of Figure 4.16. The calculations are converged with respect to all relevant

numerical parameters. It can be seen that both results agree extremely well with

each other. Expectedly, the six-states results are more diffuse and confirms an

increase of vibronic line density arising from the nonadiabatic coupling to the

higher excited electronic states of An+ . It is gratifying to note that the third

peak at ∼ 582.4 nm is absent in the two-states results, whereas it appears in the

six-states results. Further confirmation of this peak emerges from the REMPD

( [85]) and Ar-matrix spectra ( [71]) shown in the inset of panel b. These two

spectra additionally confirm the energy range of the entire B̃ band of An+ .

The entire B̃ band of An+ spans over a wavelength range of ∼ 200 nm. Both

the stellar [77] and laboratory cavity ring down (CRD) [75] spectroscopy experi-

ments probed the most intense 0-0 peak at a narrow wavelength range of ∼ 4.0

and 23.0 nm, respectively. The entire B̃ band from two-states (Ã - B̃ ) plus 10

modes (solid line) and six-states plus 31 modes (dashed line) dynamical calcu-

lations (cf., Table 4. 10) is shown in panel b of Figure 4. 16. It can be seen
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Figure 4.16: The B̃ band of An+ . Intensity in arbitrary units is plotted as a
function of wavelength in nanometer. Panel (a): The theoretical stick spectrum

is obtained by considering the coupling between the Ã and B̃ states (see text for

details). Panel (b): The complete B̃ band obtained from the two-states plus 10
modes (solid line) and six-states plus 31 modes (dashed line) studies is shown.
The REMPD ( [85]) and Ar-matrix ( [71]) spectroscopy results are presented in
the inset. The numerical details of the theoretical spectra are given in Table 4.
10.
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that both results agree extremely well with each other. Expectedly, the six-states

results are more diffuse and confirms an increase of vibronic line density arising

from the non-adiabatic coupling to the higher excited states of An+ . It is intrigu-

ing to note that the third peak at ∼ 582.4 nm is absent in the two-states results,

whereas it appears in the six-states results. Further confirmation of this peak

emerges from the REMPD [85] and Ar-matrix [71] spectra shown in the inset of

panel b. These two spectra additionally confirm the energy range of the entire

B̃ band. The shift of the spectral lines to higher wavelength in these experimental

spectra perhaps originates from collisions among the fragment ions or with the

host matrix.

The change in the equilibrium geometry of the electronic ground state of

An and An+ is negligible (less than ∼ 1.0 %). This is also evidenced by the

most intense 0-0 peak obtained for the X̃ state of An+ in the photoelectron

spectroscopy experiments [86]. We note that the X̃ and B̃ state of An+ are

vertically ∼ 1.84 and ∼ 1.75 eV spaced at the ground state equilibrium geometry

of the neutral and cation [74, 75], respectively. Therefore, it adds further to the

fact that the equilibrium geometry of the neutral and the cation ground state

remains almost unchanged and preserves the Franck-Condon Zone center from

a transition either from the neutral or from the cation. After a trivial energy

correction, the 0-0 peak of the B̃ band can be located ∼ 708.5 nm relative to

the An+ X̃ state. This is the most intriguing result and closely corresponds to

the band location found in the spectrum of Cernis 52 [77] (at ∼ 708.88 nm) and

HD281159 [150] (at ∼ 708.494 nm). With this theoretical energetic location of

the 0-0 peak, the second and third one appears at ∼ 639.4 nm and 582.4 nm,

respectively. We further note that the band at ∼ 708.5 nm is very asymmetric as

observed in the spectrum of HD281159 [150]. The twin peak as found in the latter

is masked in the convolution procedure of the theoretical spectrum of Figure. 4.

16(b). A stick line however can be found at ∼ 709.275 nm in the theoretical data

of Figure 4. 16(a).
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Figure 4.17: Adiabatic electronic populations during the evolution of the B̃ state
of An+ in the Ã - B̃ coupled state dynamics. Population curves of both the
Ã (dashed line) and B̃ (solid line) state are given in each panel. The numerical
details of the calculations are given in Tables 4. 10.

It is certainly not worthwhile to discuss on the differences in the full width at

half maximum (FWHM) of the recorded DIB [77] vis-a-vis the CRD [75] results,

as they span a narrow energy range of the entire 0-0 peak. Rather, we attempted

to estimate the decay of the (adiabatic) B̃ state of An+ within the viable two-

states and ten modes model. Understandably, starting from a diabatic electronic

Hamiltonian it requires further computationally intensive matrix diagonalization

to calculate the eigenvector matrix to arrive at the adiabatic representation. As

admitted before that such an exercise with the six-states model is out of the

scope of the computer hardware. Rather, given the agreement shown above, we

considered the most important Ã - B̃ CIs to estimate this quantity (cf., Table

4.8). Most importantly, they are the ones immediately drive the WP prepared on

the B̃ state to undergo internal conversion. The results are shown in panel a of

Figure 4.17. The initial fast depletion of population through Ã - B̃ CIs relates to

a decay rate of ∼ 63 fs of the B̃ state. This decay rate corresponds to a spectral
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envelope of ∼ 4.27 nm of FWHM Lorentzian function. We note that this is the

second most important and natural result that provides an estimate of the width

of the anthracene DIB.

4.5 Summary and Outlook

A detailed theoretical study of the nuclear dynamics of An+ in their lowest six

coupled electronic states is presented in this chapter. Topography of energeti-

cally lowest six electronic states of An+ is investigated by performing detailed ab

initio quantum chemistry calculations. The adiabatic electronic structure data

are critically analyzed and numerous conical intersections among the electronic

states are established. Diabatic model Hamiltonians are developed with the aid

of the calculated adiabatic electronic energies and symmetry selection rules in or-

der to treat the nuclear dynamics in the coupled manifold of six electronic states

of An+ . The results obtained from both reduced dimensional and full dimen-

sional studies are presented and discussed in relation to the recent observations

by the stellar and laboratory spectroscopists. In the full dimensional study 31

vibrational degrees of freedom are found to be relevant in the nuclear dynamics

of An+ .

In summary, excellent synergism of the spectral features of the An+ obtained

from the present first principles theoretical studies with those recently recorded by

the astronomers and also by laboratory spectroscopists eloquently demonstrates

that the An+ can be the potential DIB carriers and the electron-nuclear coupling

plays a decisive role in the dynamics of their low-lying excited electronic states.

The detail analysis of the results also provides the mechanism of photostability of

these cations against strong UV absorption from young stars. This study is the

first of its kind and makes an affirmative contribution to the PAH hypothesis in

interstellar physics and chemistry and opens the doorway to further research on

more complex systems recently detected in a planetary Nebula by the astronomers



4.5. Summary and Outlook 112

[154]. Finally, it is gratifying to state that detection of specific PAHs would help

in identifying biogenic compounds like amino acids and would possibly provide a

clue towards the origin of life in the early universe.



Chapter 5

Quantum dynamics through

conical intersections: The

Jahn-Teller and

pseudo-Jahn-Teller effects in

barrelene radical cation

5.1 Introduction

The static and dynamic aspects of JT and PJT interactions of the ground (X̃2A′
2 )

and first three excited electronic states ( Ã2E ′ , B̃2E ′′ and C̃2A′
1 ) of bicyclo-

[2,2,2]-octatriene (barrelene) radical cation(Bl+) is theoretically investigated in

this chapter. This belongs to the well-known (E + A)⊗ e JT-PJT class of com-

pounds as described by the symmetry of the electronic states and the molecular

point group (D3h). The JT effects in the Ã and B̃ electronic state and the PJT

coupling between the B̃ and C̃ electronic states of Bl+ are found very strong.

These complex interactions lead to a complex and diffuse structure of the ob-

113
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served vibronic bands of this cation. The equilibrium geometry of the electronic

ground state of neutral barrelene (Bl), its chemical bonding and the photophysics

and photochemistry have drawn considerable attention of organic chemists as well

as theoretical chemists. Bl is a highly strained and possesses a rigid molecular

structure. Its structure defines a unique model system to study and understand

the ”through space” interaction [155] and ”through bond” interaction. The inter-

actions between its π-molecular orbitals are connected ”through space” interac-

tion [155] and the interactions of its pseudo-σ-molecular orbitals are designated

as the ”through bond” interaction in this molecule. Therefore, the consequences

of these interactions in the photophysics and photochemistry of Bl+ is exam-

ined here in details. We find that the vibronic interactions among lowest four

electronic states play pivotal role in shaping up the overall band structures of

Bl+ . Understandably, a full quantum mechanical treatment of the problem is

highly cumbersome and can not be carried out within the capability of mod-

ern computational resources. We therefore, critically examined various reduced

dimensional theoretical models and considered the most relevant electronic and

nuclear degrees of freedom to arrive at the final results given in this chapter.

The equilibrium geometry of both Bl and Bl+ possesses D3h point group

symmetry. The ionization of an electron from the first four occupied molecular

orbitals (MOs) of symmetry a′
2, e′, e′′ and a′

1 generates the ground (X̃2A′
2 ) and

first three excited ( Ã2E ′ , B̃2E ′′ and C̃2A′
1 ) electronic states of Bl+. These MOs

are shown in Figure 5.1. The highest occupied molecular orbital and one of the

component of HOMO-1 are of π-type. The nature of the one of the component

of HOMO-2 and HOMO-3 are of σ type.

The forty two vibrational modes of Bl decompose into 6a′
1 + a′

2 + 7e′ + 2a′′
1 +

5a′′
2 + 7e′′ irreducible representations of the D3h symmetry point group. The

symmetrized direct product of two E ′ or E ′′ representations in the D3h point
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Figure 5.1: The schematic diagram of the canonical molecular orbitals of barrelene
molecule.
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group in first-order yields [109],

(E ′)2 = (E ′′)2 = a′
1 + e′. (5.1)

Similarly, the direct product of E ′ or E ′′ and A′
1 or A′

2 electronic states in the

D3h symmetry point group yields

A′
2 ⊗ A′

1 = A′
2

E ′ ⊗ A′
1 = e′

E ′ ⊗ A′
2 = e′

E ′ ⊗ E ′′ = a′′
1 + a′′

2 + e′′ (5.2)

The symmetry selection rules stated above implies that the degenerate e′ vibra-

tional modes can split the degeneracy of the E ′ and E ′′ electronic manifold and

can lead to (E ⊗ e)-JT effects. The same vibrational modes can also cause PJT

coupling between the X̃ - Ã and Ã - C̃ electronic states. The e′′ vibrational modes

are the PJT active modes between X̃ - B̃ , Ã - B̃ and B̃ - C̃ electronic states.

In contrast, the totally symmetric a′
1 vibrational modes restore the degeneracy

of the degenerate electronic state. The vibrational mode of symmetry a′
2 can

coupled the X̃ and C̃ electronic states.

The photoelectron spectrum [156] of Bl recorded by Haselbach et al. within

binding energy range of 7 eV to 20 eV is reproduced in Figure 5.2. It can be

seen from Figure 5.2 that the first vibronic band is well resolved and the spacing

between the successive peaks is ∼ 570 cm−1. The second vibronic band exhibits

a bimodal shape and the energy spacing between the two maxima of this profile

is ∼ 0.30 eV. Strong excitation of vibrational mode of frequency ∼ 420 cm−1

is observed in this band. This bears the signature of strong JT interactions in

this state. The first two vibronic bands (discussed above) originate from the

ionization of π-type MOs (cf., HOMO and HOMO-1 of Figure 5.1) of Bl. The
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Figure 5.2: The photoelectron spectrum of barrelene
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third photoelectron band is broad and highly diffuse and the fourth vibronic band

is also quite broad. The third and fourth vibronic bands are produced from the

ionization of σ types of MOs (cf., HOMO-2 and HOMO-3 of Figure 5.1) of Bl.

The third and fourth bands are also highly overlapping. This suggests that strong

PJT interactions between the B̃ and C̃ electronic states of Bl+ .

In the following a model diabatic vibronic Hamiltonian is constructed to study

the nuclear dynamics within the coupled manifold of X̃ -Ã -B̃ -C̃ electronic states

of Bl+ . Extensive ab initio calculations have been performed to obtained the

parameters of this Hamiltonian. The quantum dynamical observables are cal-

culated by solving the time-independent as well as time-dependent Schrödinger

equation. In the time-independent case, Lanczos algorithm [119] is used to di-

agonalize the Hamiltonian matrix expressed in the basis of harmonic oscillator

functions. The diagonal elements of the resulting eigenvalue matrix yield the lo-

cation of the vibronic energy levels and the relative intensities are obtained from

the squared first component of the Lanczos eigenvectors. This matrix diagonaliza-

tion approach becomes computationally very expensive and often intractable for

systems with large number of electronic and vibrational degrees of freedom. The

wave packet propagation approach within the multi-configuration time-dependent

Hartree [121] scheme has emerged as an alternative tool for such situations. The

JT stabilization energy for Ã electronic state is found ∼ 0.30 eV from the pho-

toelectron spectroscopy experiment [156] which is in quite good accord with the

theoretically calculated value of ∼ 0.25 eV for the same. The final theoretical

results are compared with the experimental results and very strong JT and PJT

interactions in the ground and excited electronic states of Bl+ is established.
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Table 5.1: Optimized (MP2/cc-pVDZ) geometry parameters of the
equilibrium minimum configuration of the electronic ground state
of Bl.
parameters Present results Experimental [157] data

C = C Å 1.349 1.335
C − C Å 1.537 1.538
C −H Å 1.093 1.087

C − C = C (deg) 112.99 112.9
C = C −H (deg) 125.4 125.4
C − C − C (deg) 105.7 105.9

5.2 Equilibrium structure and normal modes of

vibration of Bl and adiabatic electronic en-

ergies of Bl+

The equilibrium geometry of the ground electronic state of Bl is optimized at the

second-order Möller-Plesset perturbation level of theory using Dunning’s polar-

ized valence double-zeta basis set [112] utilizing the Gaussian 03 program pack-

age [134]. The optimized geometry parameters of the equilibrium ground elec-

tronic state of Bl are compared with the gas electron diffraction experimental [157]

data available in Table 5.1. It can be seen from the latter that the present theoret-

ical results are in good accord with the experimental data [157]. By diagonalizing

the ab initio force constant matrix of this optimized equilibrium geometry, the

harmonic vibrational frequencies ωi are obtained. These vibrational frequencies

of Bl are compared with their fundamental values extracted from the gas phase

experimental data [158] in Table 5.2. The symmetry and description of these

vibrational modes are also given in this table.
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Table 5. 2: Symmetry, frequency and description of the vibrational modes of electronic ground state of Bl

Symmetry Mode Vibrational Frequency (in cm−1) Description Normal displacement
Theory Experiment coordinate

a′
1 ν1 3270 3072 C-H stretching Q1

ν2 3171 2985 C-H stretching Q2

ν3 1669 1624 C=C stretching Q3

ν4 1138 1128 Olefin C-H bending Q4

ν5 898 870 C-C-C angle bending Q5

ν6 646 640 Ring deformation Q6

a′′
1 ν7 885 out of plane C-H bending Q7

ν8 450 ring deformation Q8

a′
2 ν9 601 out of plane olefin C-H bending Q9

a′′
2 ν10 3243 3086 C-H stretching Q10

ν11 3168 2998 bridgehead C-H stretching Q11

ν12 1351 1338 butterfly C-H bending Q12

ν13 1014 1020 bridgehead C-C-C angle bending Q13

ν14 838 812 in plane olefin C-H bending Q14

e′ ν15 3266 3086 C-H stretching Q15x, Q15y

ν16 1612 1583 C=C stretching Q16x, Q16y

ν17 1246 1218 bridgehead C-H bending Q17x, Q17y

ν18 1088 1084 in plane C-H bending Q18x, Q18y

ν19 936 900 C-C-C angle bending Q19x, Q19y

ν20 702 697 out of plane C-H bending Q20x, Q20y

ν21 422 411 framework deformation Q21x, Q21y

e′′ ν22 3241 3072 C-H stretching Q22x, Q22y

ν23 1302 1258 bridgehead C-H bending Q23x, Q23y

ν24 1280 1228 bridgehead C-H bending Q24x, Q24y

ν25 998 1128 olefin C-H in plane bending Q25x, Q25y

ν26 899 910 olefin C-H out of plane bending Q26x, Q26y

ν27 678 684 olefin C-H out of plane bending Q27x, Q27y

ν28 487 485 ring deformation Q28x, Q28y
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The normal coordinates (Qi) of these vibrational modes are calculated by

using the eigenvectors of the force constant matrix.

In order to obtain the coupling parameter of the model diabatic vibronic

Hamiltonian we have performed direct calculations of vertical ionization energies

(VIE) of Bl by the outer valence Green’s function method [113] employing the

cc-pVDZ basis set. The VIEs are calculated along the normal displacement coor-

dinates Qi ( i = 1 - 42) = ± 0.10, ± 0.25 (±0.25) ± 1.50 of the vibrational modes

of Bl. These VIEs are then equated with the adiabatic potential energies (relative

to the energy of the electronic ground state of neutral Bl) of the electronic states

of Bl+ .

5.3 The Vibronic coupling model

The X̃ -Ã , Ã -B̃ and B̃ -C̃ electronic states of Bl+ are vertically ∼ 1.53, ∼ 1.90

and ∼ 0.26 eV apart respectively, at the equilibrium geometry of the reference

state (Q =0). Because of their close proximity a total of six electronic states

and most relevant vibrational modes are considered for the nuclear dynamics

simulations. Five Condon active modes (ν1 − ν5), six JT active as well as PJT

active vibrational modes (ν15 − ν20), interstate coupling mode of symmetry a′′
1

(ν12) and PJT active vibrational modes (ν22−ν27) of symmetry e′′ are found to be

relevant in dynamical simulations. The model diabatic Hamiltonian is written in

terms of dimensionless normal coordinates ( as introduced above) of the reference

electronic ground state of neutral Bl. With this description the diabatic vibronic

Hamiltonian of the X̃ -Ã -B̃ -C̃ coupled electronic states of Bl+ can be written
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as

H = H016 +




WX WX−A
1 WX−A

2 WX−B
1 WX−B

2 0

WA
1 WA

12 0 0 WA−C
1

WA
2 0 0 WA−C

2

WB
1 WB

12 WB−C
1

h.c. WB
2 WB−C

2

WC




. (5.3)

In Eq. (5.3) the quantity, H0 = TN + V0, is the unperturbed Hamiltonian (which

is uncoupled from the other electronic states and assumed to be harmonic) of the

reference electronic ground state of Bl with

TN = −1

2

∑

i ∈ a′
1, a′′

1 , a′
2, a′′

2

ωi
∂2

∂Q2
i

− 1

2

∑

i ∈ e′, e′′

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (5.4)

and

V0 =
1

2

∑

i ∈ a′
1, a′′

1 , a′
2, a′′

2

ωiQ
2
i +

1

2

∑

i ∈ e′, e′′

ωi

(
Q2

ix + Q2
iy

)
. (5.5)

The nuclear kinetic and potential energy operator of this reference state is denoted

as TN and V0, respectively. The change of electronic energy upon ionization

from this reference state is described by the electronic Hamiltonian matrix with

elements W in Eq. (5.3). The diagonal elements of this matrix represent the

diabatic potential energies of the electronic states and the off-diagonal elements

describe the coupling between them. These elements are expanded in a Taylor

series around the reference equilibrium configuration (at Q=0) as follows

WX(C) = E
X(C)
0 +

∑

i ∈ a′
1

κ
X(C)
i Qi +

1

2

∑

i ∈ a′
1, a′′

1 , a′
2, a′′

2

γ
X(C)
i Q2

i +
1

2

∑

i ∈ e′, e′′

[γ
X(C)
i (Q2

ix + Q2
iy)],(5.6)
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WA(B)
1,2 = E

A(B)
0 +

∑

i ∈ a′
1

κ
A(B)
i Qi ±

∑

i ∈ e′

λ
A(B)
i Qix +

1

2

∑

i ∈ a′
1, a′′

1 , a′
2, a′′

2

γ
A(B)
i Q2

i +

1

2

∑

i ∈ e′

[γ
A(B)
i (Q2

ix + Q2
iy)± η

A(B)
i (Q2

ix −Q2
iy)] +

1

2

∑

i ∈ e′′

[γ
A(B)
i (Q2

ix + Q2
iy)],(5.7a)

WA(B)
12 =

∑

i ∈ e′

λ
A(B)
i Qiy −

∑

i ∈ e′

η
A(B)
i QixQiy, (5.7b)

Wj−k
1 =

∑

i

λj−k
i Qix, (5.7c)

Wj−k
2 = −

∑

i

λj−k
i Qiy, (5.7d)

where, (j-k) ∈ (X̃ -Ã ), (X̃ -B̃ ), (X̃ -C̃ ), (Ã -B̃ ), (Ã -C̃ ), (B̃ -C̃ ) with, i ∈
e′, e′′, a′

2, e′′, e′, e′′ respectively. The quantity Ej
0 is the VIE of the jth electronic

state and κj
i is the first-order intrastate coupling parameter of the symmetric (a′

1)

vibrational modes in this state. The second-order intrastate coupling parameter

of the vibrational modes in the jth electronic state is denoted by γj
i . The first-

order and second-order coupling parameters of JT active vibrational modes are

given by the λj
i and ηj

i for the degenerate electronic states. The first-order PJT

coupling parameter of vibrational modes Qi between the electronic states j and

k is denoted by λj−k
i .

All the coupling parameters defined above are estimated from a least squares

fit of the calculated adiabatic energies (cf., Sec. 5.2) to the adiabatic form of the

diabatic electronic Hamiltonian described above. These parameters are given in

Tables 5.3 to 5.6.
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Table 5. 3: Ab initio calculated linear and quadratic coupling parameters of the symmetric vibrational
modes in the X̃2A′2 , Ã2E ′ , B̃2E ′′ and C̃2A′1 electronic states of Bl+. The vertical ionization energies
(Ej

0) of these electronic states at the reference equilibrium geometry are also given in the table. All
quantities are in eV. The dimensionless Poisson parameters (κi/ωi)

2/2 are given in the parentheses.
Mode κX

i γX
i κA

i γA
i κB

i γB
i κC

i γC
i

(symmetry) X̃2A′
2 Ã2E ′ B̃2E ′′ C̃2A′

1

ν1(a
′
1) 0.0096 0.0047 0.0132 0.0034 -0.0846 -0.0016 -0.0334 -0.00001

(0.00001) (0.001) (0.022) (0.003)
ν2(a

′
1) -0.0167 0.0047 -0.0178 0.0042 0.0508 0.0253 0.1694 0.0228

(0.001) (0.001) (0.008) (0.092)
ν3(a

′
1) 0.1461 -0.0260 0.1115 0.0041 -0.2295 -0.0096 0.1227 0.2018

(0.249) (0.146) (0.615) (0.177)
ν4(a

′
1) 0.0534 0.0050 0.0816 0.0024 0.1266 -0.0160 -0.1165 0.0466

(0.072) (0.169) (0.405) (0.345)
ν5(a

′
1) 0.0173 -0.0012 -0.0401 -0.0008 -0.0881 -0.0009 0.0417 -0.0080

(0.012) (0.065) (0.313) (0.071)
ν6(a

′
1) -0.1044 -0.0036 -0.0357 -0.0036 0.0287 -0.0134 0.0662 0.0142

(0.851) (0.099) (0.064) (0.342)
EX

0 7.93558
EA

0 9.46779
EB

0 11.40068
EC

0 11.66064
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Table 5. 4: Ab initio calculated linear and quadratic coupling parameters of the degenerate e′ vibrational
mode in X̃2A′2 , Ã2E ′ , B̃2E ′′ and C̃2A′1 electronic states of Bl+. All quantities are in eV. The
dimensionless Poisson parameters (λi/ωi)

2/2 are given in the parentheses.
Mode γX

i λA
i γA

i ηA
i λB

i γB
i ηB

i γC
i

(symmetry) X̃2A′
2 Ã2E ′ B̃2E ′′ C̃2A′

1

ν15(e
′) 0.0055 0.0019 0.0036 -0.0001 0.0754 -0.0052 0.0008 -0.0016

(0.00001) (0.017)
ν16(e

′) -0.03222 0.1175 0.0276 -0.0270 0.0993 -0.0108 -0.0063 -0.0740
(0.174) 0.0020 (0.123) 0.00086

ν17(e
′) 0.0044 0.0712 -0.00001 0.00036 0.0602 -0.0310 0.0292 -0.0844

(0.110) (0.076) 0.002
ν18(e

′) 0.0064 0.0127 0.0058 -0.00098 0.0779 -0.0215 0.0137 -0.0252
(0.005) (0.176) 0.0018

ν19(e
′) 0.0003 0.0850 -0.0108 -0.00024 0.09014 -0.0102 -0.0073 -0.0180

(0.269) (0.301)
ν20(e

′) 0.0167 0.0192 0.0001 0.0036 0.0943 -0.0240 0.0101 0.0175
(0.024) 0.0004 (0.584)

ν21(e
′) -0.0229 0.1389 0.0087 -0.0019 0.0331 -0.0060 -0.0004 -0.00196

(3.570) (0.201)
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A careful examination of the coupling strength of the totally symmetric vi-

brational modes of Bl+ given in Table 5.3 suggests excitations of the ν6 mode in

the X̃ and C̃ and ν3 and ν4 modes in Ã and B̃ electronic states. The mode ν3

in the X̃ and B̃ and ν4 in B̃ and the C̃ states are also expected to be excited.

The coupling strength of the ν3 mode is moderate in all other electronic states.

The vibrational mode ν5 can be expected to be excited in the B̃ band of Bl+ .

The degenerate ν21 is a strong JT coupling mode in the Ã state. The coupling

strength of the remaining e′ modes (cf., Table 5.4) is moderate or weak in this

state. The JT coupling strength of all e′ vibrational modes is moderate or weak in

the B̃ state. It is therefore expected that the JT coupling effects will be far more

stronger on the vibronic structure of the Ã state compared to that of the B̃ state.

The second-order coupling parameters of the a′′
1, a′

2, a′′
2 and e′′ vibrational modes

of the Hamiltonian (cf., Eq. (5.3)) are given in Table 5.5.

Among the interstate coupling modes of Bl+ listed in Table 5.6, the strongest

coupling is caused by mode ν21 in X̃ -Ã , ν27 in X̃ -B̃ , ν20 in Ã -C̃ and ν23 in

B̃ -C̃ electronic state. The Ã state is strongly coupled by the vibrational modes

ν7 and ν8 of symmetry a′′
1 and the modes ν25 and ν28 of symmetry e′′ with the

B̃ electronic state.

5.4 Results and Discussion

5.4.1 The topography of the adiabatic potential energy

surfaces

The topography of the adiabatic potential energy surfaces of the X̃ , Ã , B̃ and

C̃ electronic states of Bl+ and the stationary points located on them employing the

vibronic coupling model introduced above are discussed here. The adiabatic po-

tential energies are obtained by diagonalizing the electronic matrix Hamiltonian,

V0 + ∆H, given in Eqn. 5.3. One dimensional cuts of the multi-dimensional po-
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Table 5. 5: Ab initio calculated second-order coupling parameters
of the a′′1, a′2,a

′′
2 and e′′ vibrational modes in the X̃2A′2 , Ã2E ′ ,

B̃2E ′′ and C̃2A′1 electronic states of Bl+ .
Mode γX

i γA
i γB

i γC
i

(symmetry) X̃2A′
2 Ã2E ′ B̃2E ′′ C̃2A′

1

a′′
1

ν7 0.0172 -0.0197 0.00528 -0.0122
ν8 -0.02125 -0.0163 0.002486 -0.010
a′

2

ν9 0.0270 0.0072 -0.0208 0.0106
a′′

2

ν10 0.00496 0.00406 -0.00724 -0.00736
ν11 0.00492 0.00222 0.00514 -0.0562
ν12 0.00128 -0.00892 -0.070 -0.0350
ν13 -0.00188 -0.00454 -0.02962 -0.1002
ν14 -0.00498 -0.00444 -0.00546 -0.01230
e′′

ν22 0.00536 0.0044 -0.0324 0.0624
ν23 0.00144 -0.0226 -0.1462 0.2506
ν24 0.00452 0.0028 -0.0597 0.0383
ν25 0.00066 -0.0165 0.00488 -0.00186
ν26 0.0058 0.0032 -0.0159 -0.0098
ν27 -0.0092 -0.0256 -0.0263 0.0740
ν28 -0.0276 -0.0111 -0.0014 0.0084



5.4. Results and Discussion 128

Table 5. 6: Linear interstate coupling parameters of the e′, a′′1, a′′2
and e′′ vibrational modes of the Hamiltonian (cf., Eq. (5.3) ). All
quantities are in eV. The coupling strength of the vibrational modes
is given in the parentheses.
Mode λX−A

i λX−B
i λA−B

i λA−C
i λB−C

i

e′

ν15 — — — — —
ν16 0.1529 (0.293) — — — —
ν17 — — — — —
ν18 — — — — —
ν19 — — — — —
ν20 — — — 0.0982 (0.637) —
ν21 0.1098 (2.20) — — — —
a′′

1

ν7 — — 0.1106 (0.508) — —
ν8 — — 0.0960 (1.477) — —
a′′

2

ν10 — — — — —
ν11 — — 0.0201 (0.001) — —
ν12 — — — — —
ν13 — — — — —
ν14 — — — — —
e′′

ν22 — — — —- 0.0867 (0.023)
ν23 — — — —- 0.2293 (1.010)
ν24 — — — —- 0.0908 (0.164)
ν25 — 0.0606 (0.120) 0.1023 (0.342) —- —
ν26 — — — —- 0.0201 (0.016)
ν27 — — — —- 0.0907 (0.585)
ν28 — 0.1496 (3.077) 0.0678 (0.632) —- 0.0258 (0.092)
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tential energy hyper-surfaces of the X̃ , Ã , B̃ and C̃ electronic states of Bl+ along

the totally symmetric a′
1 vibrational modes and the JT active e′ vibrational modes

are shown in Figures 5.3 and 5.4, respectively. The adiabatic potential energies

in the above figures are plotted along the dimensionless normal displacement co-

ordinates of the vibrational modes. The solid curves in the figures represent the

potential energies obtained from the constructed vibronic coupling model in Sec.

5.3 and the points superimposed on them represent the computed ab initio data

discussed in Sec. 5.2. It can be seen that the model reproduces the ab initio data

extremely well. This comparison is most valuable in the vicinity of various curve

crossings in the above figures. These curve crossings develop into conical intersec-

tions in multi-dimensions and these intersections are the mechanistic bottleneck

for the nuclear motion in a given electronic state. The tuning modes (a′1) do not

split the electronic degeneracy when the molecule is distorted along them. They

can only modulate the energy gap between the electronic states. It is seen that

there is no curve crossing between the X̃ and Ã electronic states within the FC

region (around Q = 0) but the crossing between the B̃ and C̃ electronic states are

immediately seen along ν2, ν3, ν4 and ν5 vibrational modes. Thus, one can expect

that there may be strong PJT coupling between these electronic states and these

modes can play crucial role in the nuclear dynamics in the B̃ and C̃ electronic

states of Bl+ . When the molecule is distorted along any of the components of

degenerate e′ vibrational modes, the electronic degeneracy is lifted. This is obvi-

ous from the Figure 5.4 the JT splitting can be seen to be larger along ν16, ν17,

ν19 and ν21 vibrational modes in the Ã electronic state and is quite smaller along

ν15, ν18 and ν20 vibrational modes. The JT splitting is quite large along all the e′

vibrational modes (except ν15) in the B̃ electronic state of Bl+ . Multiple curve

crossing between B̃ and C̃ electronic states along ν16, ν17, ν18 and ν19 vibrational

modes can also be seen from the figure. The PJT coupling among these states is

expected to be very strong. Within a linear vibronic coupling scheme the loca-

tion of the energetic minimum of the seam of PJT CIs between X̃ -Ã , X̃ -B̃ and



5.4. Results and Discussion 130

Figure 5.3: Adiabatic potential energies of the X̃ , Ã , B̃ and C̃ electronic states of
Bl+ along the totally symmetric vibrational modes. The energy values obtained
from the present theoretical model and ab initio quantum chemistry calculations
are shown by the lines and points, respectively.
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Figure 5.4: Adiabatic potential energies of the X̃ , Ã , B̃ and C̃ electronic states
of Bl+ along the JT active e′ vibrational modes. The energy values obtained from
the present theoretical model and ab initio quantum chemistry calculations are
shown by the lines and points, respectively.
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X̃ -C̃ electronic states of Bl+ are found at ∼ 21.33 eV, 24.66 eV and 19.97 eV,

respectively. These CIs occurs at very high energies and are not expected to play

any role in the nuclear dynamics in the energy range considered here. The locus

of the electronic degeneracy of the Ã and B̃ electronic states along the totally

symmetric a′
1 vibrational modes defines the seam of CIs within these electronic

states, occurring at the D3h symmetry configuration of Bl+ . The energetic mini-

mum on this seam in the Ã (B̃ ) electronic state is found at ∼ 9.40 eV (11.15 eV),

for Q1= -0.03(0.21), Q2= 0.05(-0.12), Q3= -0.53 (1.16), Q4= -0.57 (-1.01), Q5=

0.36 (0.80) and Q6= 0.47 (-0.43). It is shown above that the electronic degener-

acy is lifted when Bl+ is distorted along any of the JT active vibrational mode

of e′ symmetry. Within a linear coupling scheme the lower adiabatic sheet of

the JT split surfaces develops three equivalent minima separated by three equiv-

alent saddle points and exhibits a ”Maxican hat” type of topography. When the

second-order coupling parameters are considered this ”Maxican hat” acquires a

distorted shape. The estimated energies of the minimum and saddle point are ∼
9.15 eV and ∼ 9.16 eV, respectively, in Ã electronic state and ∼ 10.94 eV and ∼
10.96 eV, respectively, in the B̃ electronic state. These minima (saddle points)

are located at Q15 = 0.01(-0.005), Q16 = 0.52(-0.51), Q17 = 0.46(-0.46), Q18 =

0.09(-0.09), Q19 = 0.81(-0.81), Q20 = 0.22(-0.22) and Q21 = 2.21(2.35) in the

Ã electronic state. The same are located at Q15 = 0.19(-0.19), Q16 = 0.53(-0.52),

Q17 = 0.50(-0.48), Q18 = 0.70(-0.68), Q19 = 0.80(-0.92), Q20 = 1.78(-1.29) and

Q21 = 0.71(-0.72) in the B̃ electronic state. The JT stabilization energy amounts

to ∼ 0.25 eV and ∼ 0.21 eV, respectively, for the Ã and B̃ electronic states of

Bl+ . A twin vibronic band is observed for the Ã electronic state in the photoelec-

tron spectroscopy experiment [156]. The separation between the two maxima of

the bimodal spectral profile of ∼ 0.30 eV is in good accord with our theoretically

calculated value of the JT stabilization of the Ã electronic state. Furthermore,

the minimum of the seam of PJT CIs between the Ã - B̃ and Ã - C̃ occurs at

∼ 11.87 eV and ∼ 14.52 eV, respectively. The energetic minimum of the seam
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of PJT CIs between Ã -B̃ is located ∼ 0.79 eV below to the minimum of the

B̃ electronic manifold. Within the linear vibronic coupling scheme the location

of the minimum of the seam of B̃ - C̃ CIs is found at ∼ 11.54 eV. The minimum

of the C̃ electronic state almost coincides with the minimum of the seam of B̃ -

C̃ CIs (separated by 0.004 eV of energy only). The multiple CIs among these

electronic states are expected to have profound effect on the nuclear dynamics of

these electronic states of Bl+ which is discussed next.

5.4.2 Dynamical Observables

The complex vibronic band structures of the first few low-lying electronic states

of Bl+ are theoretically calculated and discussed here. The precise location of

the vibrational energy levels of the uncoupled electronic states are calculated by

the time-independent matrix diagonalization approach using the Lanczos algo-

rithm [23]. The vibrational energy level spectrum of the X̃ state is shown in

Figure 5.5. The theoretical stick spectrum is calculated using six totally symmet-

ric vibrational modes (ν1-ν6) and the vibronic Hamiltonian of Eqn.5.3 excluding

all interstate coupling elements. The vibrational mode ν6 (ring deformation) form

the dominant progression up to its seventh overtone level in this band. Eight dis-

tinct peaks observed in this band are ∼ 646 cm−1 spaced in energy within a

linear vibronic coupling (LVC) approach. Inclusion of quadratic coupling terms

reduces this spacing to 616 cm−1. A value of ∼ 570 cm−1 was estimated for

this spacing from the photoelectron spectroscopy experiment [156]. The second

vibronic band pertinent to the degenerate Ã electronic state of Bl+ is shown in

Figures 5.6(a-c). The Hamiltonian for the uncoupled degenerate electronic state

commutes along the a′
1 and e′ vibrational modes in absence of any bilinear cou-

pling parameter. In this situation, two partial spectra corresponding to the a′
1

and e′ vibrational modes can be calculated separately and the two can be con-

voluted to generate the final composite energy level structure of the degenerate
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Figure 5.5: The vibrational energy level spectrum of the uncoupled X̃ electronic
state of Bl+ .
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Figure 5.6: The vibronic energy level spectra of the Ã electronic states of Bl+

obtained within a linear coupling model. The relative intensity in arbitrary units
is plotted as a function of the energy of the final vibronic levels. Energy is
measured relative to the equilibrium minimum of the reference state: (a) partial
spectrum calculated including the six totally symmetric a′

1 vibrational modes ν1-
ν6, (b) partial spectrum for the degenerate e′ vibrational modes ν18-ν21, and (c)
the composite theoretical spectrum obtained by convoluting the above two partial
spectrum.
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Ã electronic state. The two partial spectra corresponding to the a′
1 and e′ vibra-

tional modes thus obtained are shown in panels a and b and the final convoluted

spectrum is shown in panel it c of Figure 5.6. These spectra are obtained con-

sidering a linear coupling Hamiltonian only. The symmetric mode spectrum in

panel a reveals dominant progressions of ν3, ν4, ν5 and ν6 vibrational modes.

The corresponding peak spacings of ∼ 1670 cm−1, ∼ 1138, ∼ 898 and ∼ 645,

respectively, can be estimated from this spectrum. As stated above the JT effect

is strong in the Ã electronic state. In the spectrum of e′ vibrational mode shown

in panel b the mode ν21 is strongly excited. The peak spacing with respect to

the origin 0-0 peak of ∼ 427 cm−1 is found and it corresponds to the frequency

of ν21 vibrational modes. A peak spacing of ∼ 420 cm−1 was estimated from the

photoelectron spectroscopy experiment [156]. Similar calculation are carried out

for the B̃ electronic state. The resulting spectra are shown in Figures 5.7(a-c).

Peak spacings of ∼ 1668 cm−1 ∼ 1138 and ∼ 897 corresponding to the excitation

of ν3, ν4 and ν5 vibrational modes, respectively, have been observed in the spec-

trum of panel a. Dominant progressions of ν17, ν18, ν19, ν20 and ν21 vibrational

modes are found from the partial spectrum of the e′ vibrational modes (panel b).

Peak spacings of ∼ 1269 cm−1, ∼ 1054, ∼ 920, ∼ 686 and ∼ 439, respectively,

corresponding to these vibrational modes (in that order) can be estimated from

this spectrum. The vibrational level spectrum of the uncoupled C̃ state is shown

in Figure 5.8. Vibrational modes ν3, ν4 and ν6 form the dominant progression

in this band. Corresponding peak spacing of ∼ 1669 cm−1, ∼ 1138 and ∼ 646

can be estimated from this spectrum. In contrast to the Ã state, both the a′1

and e′ vibrational modes are strongly active in the B̃ state of Bl+ . As a result,

the vibronic band structure of this state is more complex and diffuse. The same

can be correlated with the observed feature of the underlying potential energy

surfaces and the large value of the JT stabilization energy discussed in the Sec

5.4.1. It is observed from the uncoupled state results that the first vibronic band

correlates nicely with the photoelectron spectroscopy experiment but the other
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Figure 5.7: The partial spectrum and the composite spectrum of uncoupled
B̃ electronic state of Bl+ . The designation of the panel are same as in Fig-
ure 5.6.
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Figure 5.8: The uncoupled state vibronic spectrum of C̃ electronic state of Bl+

with LVC scheme.

three vibronic bands are far from the experimental results.

In order to describe the observed structure of these vibronic bands, it ap-

pears to be necessary to consider the interstate couplings terms of the vibronic

Hamiltonian of Eq. 5.3 in the dynamical simulations. Such an exercise includes

six electronic states and thirty vibrational modes in the nuclear dynamics sim-

ulations to arrive at the final results. Understandably, this exercise is beyond

the capability of the matrix diagonalisation method employed above. This task

is therefore attempted by the WP propagation method employing the MCTDH

method [121] as used in other chapters of this thesis.

The vibronic spectrum of the X̃ -Ã -B̃ -C̃ coupled electronic state of Bl+ is

finally calculated by including thirty relevant vibrational modes and six electronic

states. Six separate calculations are carried out by launching the initial WP on

each of these six electronic states. In each calculation, the WP is propagated

up to 150 fs and the resulting time autocorrelation function is damped with an

exponential function [exp (-t/τr); with τr = 66 fs] before Fourier transformation.

This damping corresponds to convolution of spectral lines with a Lorentzian line
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Table 5. 6: Number of basis functions for the primitive as well as the single
particle basis used in the MCTDH calculations.

Normal modes Primitive basisa SPF basisb [X̃ , Ã x, Ã y, B̃ x, B̃ y, C̃ ]
(ν1,ν15x,ν15y,ν22x,ν22y) (9, 9, 9, 6, 6) [8, 9, 9, 7, 7, 6]
(ν2,ν16x,ν16y,ν23x,ν23y) (8, 7, 7, 6, 6) [7, 8, 8, 9, 9, 5]
(ν3,ν17x,ν17y,ν24x,ν24y) (10, 8, 8, 6, 6) [6, 6, 6, 7, 7, 7]
(ν4,ν18x,ν18y,ν25x,ν25y) (8, 7, 7, 6, 6) [8, 8, 8, 6, 6, 8]
(ν5,ν19x,ν19y,ν26x,ν26y) (8, 6, 6, 6, 6) [8, 7, 7, 8, 8, 7]
(ν8,ν20x,ν20y,ν27x,ν27y) (6, 7, 7, 6, 6) [4, 6, 6, 6, 6, 6]

aThe primitive basis is the number of Harmonic oscillator DVR functions, in the

dimensionless coordinate system required to represent the system dynamics along

the relevant mode. The primitive basis for each particle is the product of the

one-dimensional bases; e.g for particle 1 in the primitive basis contains 9 × 9 × 9 ×
6 × 6 = 26244 functions and the full primitive basis consists of a total of 1.3 ×1025

functions. b The SPF basis is the number of single-particle functions used.

shape function of 20 meV FWHM. The results of six different calculations are

combined with a statistical ratio of 1:1 to get the composite theoretical band

structure shown in Figure 5.9 (bottom panel) along with the experimental results

(top panel) reproduced from Reference [156]. The details of the mode combina-

tions and numbers of SPF and PBF used in the MCTDH calculations, are given in

Table 5.6. Six five dimensional particles are formed by combining the vibrational

modes in the MCTDH calculations [121–123]. It can be seen from Figure 5.9 that

the vibronic structure of the X̃ electronic state remains similar to the uncoupled

state results however the vibronic structures of the Ã , B̃ and C̃ electronic state is

heavily modified by the non-adiabatic coupling. We reiterate that the minimum

of the seam of CIs between X̃ state with other states (Ã , B̃ and C̃ ) occur at

high energy (cf., Sec 5.4.1) and therefore do not influence the nuclear dynamics

studied here. Accordingly the results emerged are: (i) the vibronic structure of

the X̃ state will not affected by the nonadiabatic coupling effects; (ii) the bimodal

spectral profile of the Ã band is heavily modified by the strong JT interactions in

this state; (iii) the complex vibronic structure of the overlapping B̃ and C̃ elec-

tronic states is caused by the strong JT and PJT interactions of these states. The
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Figure 5.9: The final theoretical spectra of coupled X̃ -Ã -B̃ -C̃ electronic of
Bl+ with the experimental photo-ionization spectrum. The numerical details of
the theoretical spectra are given in Tables 5.6.
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close proximity of the latter electronic states (separated by ∼ 0.24 eV vertically)

and very strong B̃ -C̃ PJT coupling leads to the observed complex, diffuse and

overlapping B̃ -C̃ vibronic band. The minimum of the seam of the B̃ -C̃ CIs is

located ∼ 0.60 eV above the minimum of the JT crossing seam of the B̃ state

and ∼ 0.004 eV below the minimum of the C̃ state. This leads to a strong mixing

of low-lying vibronic levels of C̃ state with the high-lying vibronic levels of up-

per adiabatic component of B̃ state. It is worth mentioning that the theoretical

results presented in Figure5.9 are in very good accord with the experiment [156].

5.4.3 Ultrafast relaxation dynamics

The nonradiative internal conversion dynamics in the coupled X̃ -Ã -B̃ -C̃ elec-

tronic states of Bl+ is examined here. The time-dependence of the diabatic elec-

tronic populations in the X̃ -Ã -B̃ -C̃ electronic manifold of Bl+ are shown in

Figures 5.10(a-c). The electronic populations are obtained by initially launch-

ing the WP on one of the component of Ã (panel a), one of the component of

B̃ (panel b) and the C̃ state (panel c) of Bl+ . In each case the WP moves to the

JT and PJT CIs during its evolution in time. Six diabatic electronic populations

are indicated by six different line types in panel b. It is observed that the WP

does not move to the other five excited states when it is initially prepared on the

X̃ state and the corresponding figure is therefore not included here. This is due

to the fact that the CIs of the X̃ state with the other states are located at higher

energies and these CIs are not accessible to the WP during its evolution on this

state. This yields the observed sharp vibrational level structure of the X̃ band

(cf., Figure. 5.9).

It is observed from panel a of Figure. 5.10 that very minor population is

transferred to the X̃ state through X̃ -Ã CIs when the WP is initially prepared

on the Ã state. Similarly, population transfer to the remaining excited states

(B̃ and C̃ ) is also very minor in this situation. This suggests that the vibronic
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Figure 5.10: Diabatic electronic populations during the evolution of the Ã , B̃ and
C̃ state of Bl+ in the coupled X̃ -Ã -B̃ -C̃ states dynamics. Population curves of
these state are shown by the different lines indicated in panel b.
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band of Ã state is not significantly affected by its coupling to the C̃ state. It can

be seen from this figure that the WP mostly moves back and forth between the

two JT split component of the Ã state. The initial decay of the population relates

to a nonradiative internal conversion rate of ∼ 50 fs of the Ã state. We conclude

that complex bimodal profile of the vibronic band of Ã state arises due to the

strong JT interactions in this state and the estimated value of JT stabilization

energy of this state is ∼ 0.25 eV.

The diabatic populations of the six electronic states shown in panel (b) for an

initial location of the WP on one of the component of degenerate B̃ state. The

decay and growth of population of the two components of the JT split B̃ state

can be observed from the diagram. The population of these two components

fluctuates around 0.6 and 0.2, during the entire course of evolution. A slow rise

in the population of C̃ and Ã state as time increases indicates that the population

transfer occurs through B̃ -C̃ PJT CIs. A very minor population is transfered

to the X̃ electronic states. A decay rate of ∼ 33 fs is estimated from the initial

decay of population of the B̃ state. The fast relaxation of this state is in par with

the observed broadening of this band in Figure. 5.9.

In the panel (c), we show the electronic populations of the six electronic states

when the initial WP is prepared on the C̃ state. Within ∼ 15 fs the C̃ state

population sharply decays and the B̃ state population rises simultaneously. After

15 fs, the population of C̃ state fluctuates around 0.15 and the population of

both the components of B̃ state remains almost constant around 0.38. As already

mentioned above that the energetic minimum of the seam of the B̃ -C̃ CIs located

only ∼ 0.31 eV above the minimum of the JT crossing seam of B̃ state and the

C̃ state population flows to the B̃ state via these PJT CIs. All other states

remain almost unpopulated. Nonradiative decay rate of ∼ 7 fs is estimated for

the C̃ states. Such an ultrafast internal conversion leads to the observed broad

and diffuse structure of the C̃ band of Bl+ .
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5.5 Summary and outlook

The static and dynamic aspect of JT and PJT effects in the ground (X̃2A′
2 ) and

first three (Ã2E ′ , B̃2E ′′ and C̃2A′
1 ) excited electronic states of Bl+ are exam-

ined with the aid of quantum mechanical methods. A model diabatic vibronic

Hamiltonian is constructed. The coupling parameters of diabatic Hamiltonian

are determined by performing ab initio quantum chemistry calculations. One

dimensional cuts of the multi-dimensional potential energy hyper-surfaces along

dimensionless normal displacement coordinates of symmetric a′
1 and degenerate

e′ modes of vibrations are examined. Curve crossing between B̃ and C̃ electronic

states along ν2, ν3, ν4 and ν5 vibrational modes are found. Within LVC scheme

the estimated JT stabilization energy are ∼ 0.25 eV and ∼ 0.21 eV for the Ã and

B̃ electronic state of Bl+ , respectively. The PJT coupling is very strong between

the B̃ and C̃ electronic states of Bl+ . The detailed of the vibronic energy level

structure of these electronic states are critically examined. The ν6 vibrational

mode is excited strongly in the first vibronic band. The dominant progressions

are formed by the ν6 and ν21 vibrational modes in the second vibronic band. In

the third vibronic band, the ν3, ν4, ν5, ν17,ν18, ν19, ν20 and ν21 vibrational modes

are strongly excited. Excitation of ν3, ν4 and ν6 vibrational modes is observed

in the fourth vibronic band. The uncoupled state results for the X̃ band is in

good agreement with the experiment. This is not true for the remaining elec-

tronic states. The nuclear dynamics is therefore finally studied by considering all

possible coupling in the X̃ -Ã -B̃ -C̃ electronic states including thirty relevant vi-

brational modes. The dynamical simulations are carried out by propagating wave

packets using the MCTDH method. The final theoretical results so obtained are

in good accord with the experiment. The bimodal spectral profile of Ã vibronic

band is observed due to the strong JT interaction in this state. The strong PJT

coupling and close proximity of the B̃ and C̃ electronic state leads to broad, dif-

fuse and overlapping vibronic bands for the B̃ and C̃ electronic states of Bl+ .
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The internal conversion rate for the Ã electronic state is ∼ 50 fs originates from

strong JT intersections in this state. The estimated nonradiative decay rates

of the B̃ and C̃ states are found to be ∼ 33 fs and 7 fs, respectively. Strong

B̃ -C̃ PJT coupling leads to a very fast decay of the C̃ state and also makes the

corresponding vibronic bands broad and diffuse.



Chapter 6

Theoretical investigations of the

photostability of pyrimidine and

its radical cation

6.1 introduction

Pyrimidine (Pym) molecule is of great importance in biochemistry because it

forms the fundamental structure for the bases in the nucleic acids DNA and RNA.

Pym bases are Thymine, Cytosine and Uracil. The photoinduced dynamics of

both pyrimidine cation (Pym+) and Pym are valuable to assess their photophys-

ical (chemical) properties in relation to their existence in the building blocks of

life. Photoelectron spectroscopy study has been useful to understand the na-

ture of molecular orbitals and complex inter electronic interactions underlying

vibronic band structures. Therefore, in conjunction with experimental results, a

theoretical study of multimode vibronic dynamics of X̃ , Ã , B̃ and C̃ electronic

states of Pym+ is attempted here. The experimental band structures of these

ionic states have been recorded by several groups [159–161]. The complex ex-

perimental vibronic band structure of the low-lying electronic states of Pym+ is

146
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Figure 6.1: The experimental gas phase photoelectron spectrum of pyrimidine
reproduced from Ref. [159].

shown in Figure 6.1.

Investigation of the vibrational energy level spectrum of the electronic ground

and excited states of Pym molecule is valuable for understanding its photophysical

properties [162]. Pym molecule is also reported to exist in astrophysical environ-

ment (with less population) specially in the molecular cloud region [163, 164].

When Pym molecule is irradiated with UV light in ice-water mixture it forms

uracil molecule [165]. Thus a study of vacuum UV absorption spectrum [166–168]

of Pym has attracted much attention. The experimental vacuum UV absorption

spectrum of Pym is shown in Figure 6.2. This spectrum is recorded with moder-

ate energy resolution in the region 3.5 - 9.5 eV. The first two bands are assigned

to n to π∗ transitions. Previous theoretical calculations reported that the second

transition observed in the region ∼ 4.3 eV to 4.9 eV, is symmetry forbidden. But

this band can be allowed via vibronic coupling of this state with the lowest ππ∗
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Figure 6.2: The experimental vapor phase UV absorption spectrum of pyrimidine
reproduced from Ref. [166].

(S3) which forms the third band in the absorption spectrum of Pym.

The present chapter is aimed towards accurate quantum dynamical studies of

the nonadiabatic effects in the photo-physics and photochemistry of the excited

electronic states of Pym and its radical cation. This is an example where some of

the electronic states exhibit near degeneracies. Theoretical studies on the nuclear

dynamics on the low-lying electronic states of Pym and Pym+ have not been

attempted so far. Using recently developed techniques it can now be possible to

carry out such studies including all the vibrational degrees of freedom on coupled

multi-sheeted PESs. Efforts towards this goal have been made in this chapter.
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6.2 Electronic structure calculation

Electronic structure calculation for the reference electronic ground state of Pym

molecule is carried out at the second-order Möller-Plesset perturbation level of

theory employing the aug-cc-pVTZ basis set [112] using the Gaussian 03 program

package [134]. In Table 6.1 the parameters of the reference equilibrium geometry

of Pym molecule are shown along with the experimental results [169, 170]. By

diagonalizing the ab initio force constant matrix of the optimized equilibrium

geometry of the electronic ground state, the harmonic vibrational frequencies

ωi are obtained. The transformation matrix from the symmetry coordinates to

the mass-weighted normal coordinates is obtained along with the harmonic vi-

brational frequencies. The dimensionless normal displacement coordinates are

obtained by multiplying the latter with
√

ωi (in atomic units) [109]. The de-

scription of normal modes of vibrations and the theoretically computed harmonic

frequencies along with the experimentally observed fundamental frequencies are

presented in Table 6.2.
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Table 6. 1: Equilibrium geometry of Pyrimidine in its ground elec-
tronic state (1A1) along with the experimental results [169,170].

Geometry Theory Exp-1(ED) Exp-2 (LCNMR)
MP2/aug-cc-pVTZ

C1-N2 1.338 1.340 1.328
C3-N2 1.339 1.340 1.350
C3-C4 1.389 1.393 1.393
C1-H8 1.083 1.099 1.082
C3-H7 1.083 1.099 1.079
C4-H6 1.081 1.099 1.087

N2-C1-N6 127.2 127.6 –
C1-N2-C3 115.1 115.5 –
C4-C5-N6 122.1 122.3 121.2
C3-C4-C5 116.9 116.8 117.8
H8-C1-N2 116.4 – –
H7-C3-N2 116.5 115.3 –
H6-C5-C6 121.5 121.6 –
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Table 6. 2: Symmetry, frequency and description of the vibrational modes of the electronic ground state of Pym. The experimental
results are reproduced from Ref. [?].Note that, theoretical frequencies are harmonic, where as, experimental ones are fundamental.

Symmetry Mode Vibrational Frequency(ωj)(in cm−1) Description coordinate Wilkinson notation
Theory Experiment

A1 ν1 683 681 C-C and C-N in plane bending Q1 6a
ν2 1007 990 Ring deformation Q2 1
ν3 1076 1060 C-N-H in plane bending Q3 12
ν4 1156 1138 C-H bending Q4 9a
ν5 1432 1402 N-C-H bending Q5 19a
ν6 1606 1570 C-N stretching + C-H bending Q6 8a
ν7 3197 3002 Sym C-H stretching Q7 13
ν8 3213 3050 C-H stretching Q8 2
ν9 3240 3078 C-H stretching Q9 20a

B2 ν10 620 621 C-N in plane bending Q10 6b
ν11 1088 1075 C-H in plane bending Q11 18b
ν12 1235 1154 C-H in plane bending Q12 15
ν13 1333 1223 C-N stretching Q13 3
ν14 1391 1355 C-H bending Q14 14
ν15 1487 1466 Sym C-H bending Q15 19b
ν16 1614 1559 C-C stretching + C-H bending Q16 8b
ν17 3201 3095 Asym C-H stretching Q17 7b

A2 ν18 405 394 C-N-H out of plane bending Q18 16a
ν19 994 870 C-H out of plane bending Q19 17a

B1 ν20 351 344 C-C + C-H out of plane bending Q20 16b
ν21 746 709 C-H out of plane bending Q21 4
ν22 821 719 C-H out of plane bending Q22 10b
ν23 982 804 C-H out of plane bending Q23 11
ν24 1022 993 C-C-C out of plane bending Q24 5
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The vertical ionization energies (VIEs) of Pym molecule along each of their

vibrational modes are then calculated for various nuclear displacements, Qi (i =

1-24 ) by MRCI method [115] employing the aug-cc-pVDZ basis set. Similarly the

vertical excitation energy are calculated directly by the EOM-CCSD [116] method

with aug-cc-pVDZ basis set using MOLPRO [172] quantum chemistry package.

These computed energies are then fitted (using a least squares algorithm) to the

adiabatic form of the diabatic electronic Hamiltonian All the coupling parameters

for the cation and neutral pyrimidine are shown in Table-6.3 to Table-6.6 along

with the VIE and VEE.
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Table 6. 3: Ab initio calculated linear and quadratic coupling constants for the X̃2B2 , Ã2B1 , B̃2A2 and C̃2A1 electronic states
of Pym+. The vertical ionization energies of these three electronic states and the harmonic vibrational frequencies of the electronic
ground state of pyrimidine are also given in the table. All quantities are in eV. The dimensionless Poisson parameters (κi/ωi)

2/2
are given in parentheses.

Mode κD0
i κD1

i κD2
i κD3

i γD0
i γD1

i γD2
i γD3

i ωi

(symmetry) X̃2B2 Ã2B1 B̃2A2 C̃2A1 X̃2B2 Ã2B1 B̃2A2 C̃2A1 MP2/aug-cc-pVTZ
ν1 0.1891 -0.0869 0.0853 0.0114 -0.0034 -0.0086 -0.0048 -0.0014 0.0847

(2.492 ) (0.526 ) (0.507 ) (0.009)
ν2 0.1655 -0.0410 -0.1004 0.1894 -0.0100 -0.0040 -0.0004 -0.0066 0.1248

(0.879) (0.054) (0.324) (1.152)
ν3 -0.1641 -0.1187 -0.0845 -0.1523 -0.0060 0.0062 -0.0046 -0.0016 0.1335

(0.755 ) (0.395 ) (0.200 ) (0.651)
ν4 0.1478 -0.0261 0.1037 0.0455 -0.0006 -0.0070 0.0034 -0.0242 0.1433

(0.532) (0.017) (0.262) (0.050)
ν5 -0.0388 -0.0630 0.0782 0.0761 -0.0004 -0.0036 0.0048 -0.0130 0.1776

(0.024 ) (0.063) (0.097 ) (0.092)
ν6 0.0789 0.2300 -0.2137 -0.0766 -0.0198 -0.0036 0.0166 -0.0218 0.1991

(0.079) (0.667) (0.576) (0.074)
ν7 0.0059 0.0018 0.0093 0.0312 0.0146 0.0058 0.0034 0.0124 0.3964

(.0001 ) (0.00001) (0.0003) (0.003)
ν8 -0.0601 -0.0066 -0.0171 0.0347 0.0040 0.0058 0.0032 -0.0210 0.3984

(0.011 ) (0.0001) (0.001 ) (0.004)
ν9 -0.0215 -0.0230 -0.0160 -0.0112 -0.0044 0.0060 0.0034 -0.0056 0.4017

(0.001 ) (0.002 ) (0.0008) (.0004 )
E0

X 9.9885
E0

A 10.3227
E0

B 11.0595
E0

C 11.7252
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6.3 The Vibronic Hamiltonian

In order to investigate the photo-physics, the relevant potential energy surfaces

of Pym and its radical cation need to be determined first. Extensive electronic

structure calculations are carried out for this purpose. We resort to a diabatic

electronic representation [23, 100] in order to explore the smooth nature of the

inter electronic coupling potentials in the nuclear dynamics. Thus model vibronic

Hamiltonians are constructed for these system in a diabatic electronic basis. In

the following we discuss the salient features of the developed theoretical model.

6.3.1 Pyrimidine radical cation

Pym belongs to the C2v symmetry point group at the equilibrium geometry of

its electronic ground state S0(
1A1). The 24 normal modes of vibrations of Pym

decompose into 9 a1 ⊕ 2 a2 ⊕ 5 b1 ⊕ 8 b2 irreducible representations (IREPs)

of the C2v point group. The ground and first three excited electronic states of

Pym+ belong to the X̃2B2 , Ã2B1 , B̃2A2 and C̃2A1 symmetry species of the

equilibrium C2v point group. They result from an ionization from b2, b1, a2 and

a1 MOs of Pym, respectively. These MOs are schematically shown in Figure 6.

3.

For the nuclear dynamical simulations, a vibronic Hamiltonian is constructed

below in terms of the dimensionless normal coordinates of the vibrational modes.

The coupling mechanisms in this Hamiltonian are governed by the following sym-

metry rules

Γm ⊗ ΓQc ⊗ Γn ⊃ ΓA1 , (6.1)

Γn ⊗ ΓQs ⊗ Γn ⊃ ΓA1 , (6.2)

In the above Γ represents the IREPs of the equilibrium symmetry point group of

the system. The indices m, n and Q describe the electronic states and vibrational
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Table 6. 4: Ab initio Interstate linear coupling constants for the X̃2B2 ,
Ã2B1 ,B̃2A2 and C̃2A1 electronic states of Pym+. The harmonic vibrational frequencies
of the electronic ground state of pyrimidine are also given in the table. All quantities
are in eV. The dimensionless Poisson parameters (λi/ωi)

2/2 are given in parentheses.

Mode λx−y
i λx−y

i γX
i γA

i γB
i γC

i ωi

b2 A - B X - C
ν10 0.0580(0.285) 0.1541(2.013) -0.0314 -0.0138 0.0016 0.0272 0.07684
ν11 — 0.0425(0.050) -0.0028 0.0024 -0.0026 0.0018 0.13495
ν12 0.0475(0.048) 0.0154(0.005) -0.0050 -0.0040 0.0062 -0.0044 0.15315
ν13 0.0970(0.172) 0.1017(0.189) -0.0226 0.0462 0.0922 0.0020 0.16531
ν14 0.0228(0.009) – 0.0018 0.0018 0.0042 -0.0190 0.17255
ν15 — – -0.0090 0.0026 -0.0156 -0.0290 0.18438
ν16 0.1412(0.249) 0.0964(0.116) -0.0324 -0.0464 0.0536 -0.0090 0.20012
ν17 — 0.0356(0.004) 0.0104 0.0036 0.0018 0.0136 0.39693
a2 X - A B - C
ν18 – 0.1434(4.080) 0.0000 -0.0578 -0.2156 0.0872 0.05022
ν19 0.0933(0.286) 0.0326(0.035) -0.1120 0.1136 0.0076 0.0184 0.12325
b1 X - B A - C
ν20 — 0.1568(6.500) -0.0013 -0.0608 -0.0208 0.0158 0.04352
ν21 0.1546(1.400) 0.0546(0.174) -0.0558 -0.0258 0.0245 -0.0188 0.09252
ν22 0.0627(0.190) 0.1781(1.530) 0.0025 -0.0526 0.0152 0.0526 0.10182
ν23 0.0487(0.080) 0.1146(0.443) 0.0067 -0.0228 0.0148 0.0216 0.12178
ν24 0.0625(0.122) — -0.0036 0.0126 0.0096 -0.0024 0.12672
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Table 6. 5: Ab initio calculated linear and quadratic coupling constants for the S1,
S2 and S3 electronic states of Pym. The vertical excitation energies of these three
electronic states and the harmonic vibrational frequencies of the electronic ground state
of pyrimidine are also given in the table. All quantities are in eV. The dimensionless
Poisson parameters (κi/ωi)

2/2 are given in parentheses.

Mode κS1
i κS2

i κS3
i γS1

i γS2
i γS3

i ωi

(symmetry) S1 S2 S3 S1 S2 S3 MP2/aug-cc-pVTZ
ν1 0.1297 0.1434 -0.0604 -0.0088 -0.0258 -0.0126 0.0847

(1.172 ) (1.433 ) (0.254)
ν2 0.0731 0.060 -0.1524 -0.0084 -0.0072 0.0012 0.1248

(0.172) (0.116) (0.746)
ν3 -0.1970 -0.1966 -0.1452 -0.0094 -0.0060 0.0014 0.1335

(1.089 ) (1.084 ) (0.592)
ν4 0.1446 0.1513 0.0474 -0.0010 -0.0160 -0.0076 0.1433

(0.509) (0.557) (0.055)
ν5 0.0960 -0.1752 0.0278 -0.0066 -0.0190 -0.0016 0.1776

(0.146 ) (0.487 ) (0.012)
ν6 -0.1132 0.3178 -0.0131 -0.0092 -0.0210 0.0156 0.1991

(0.162) (1.274) (0.002)
ν7 0.0287 -0.0128 0.0308 -0.0032 -0.0006 -0.0012 0.3964

(0.003) (0.001 ) (0.003)
ν8 -0.0304 -0.0743 -0.0142 0.0008 -0.0034 -0.0010 0.3984

(0.003) (0.017) (0.001)
ν9 -0.0093 -0.0340 -0.0249 0.0016 -0.0014 -0.0002 0.4017

(0.0003) (0.004 ) (0.002)
E0

S1
4.756

E0
S2

5.218
E0

S3
5.569
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Table 6. 6: Ab initio Interstate linear coupling constants for the S1, S2 and S3 elec-
tronic states of Pym. The harmonic vibrational frequencies of the electronic ground
state of pyrimidine are also given in the table. All quantities are in eV. The dimen-
sionless Poisson parameters (λi/ωi)

2/2 are given in parentheses.

Mode λS1−S2
i λS1−s3

i λS2−s3
i γS1

i γS2
i γS3

i ωi

a2

ν10 – 0.0822(1.341) – -0.0491 0.0307 -0.0715 0.05022
ν11 – 0.1096(0.395) – -0.1045 -0.0314 -0.0481 0.12325
b1

ν12 – – 0.0306(0.247) 0.0226 -0.060 -0.0531 0.04352
ν13 – – 0.0818(0.391) -0.0558 -0.0879 -0.0274 0.09252
ν14 – – 0.0722(0.252) -0.0263 -0.040 -0.0874 0.10182
ν15 – – 0.0522(0.092) -0.0080 -0.0894 -0.0642 0.12178
ν16 – – 0.0687(0.147) -0.0464 -0.080 -0.0348 0.12672
b2

ν17 0.0537(0.244) – – -0.0568 -0.0248 -0.0257 0.07684
ν18 0.0322(0.029) – – -0.0154 -0.0067 -0.0080 0.13495
ν19 0.0951(0.193) – – -0.0442 0.0304 0.0064 0.15315
ν20 0.0369(0.025) – – 0.0304 0.0416 0.1662 0.16531
ν21 — – – -0.0080 – – 0.17255
ν22 0.0332(0.016) – – -0.0131 -0.0079 -0.0053 0.18438
ν23 0.2029(0.514) – – -0.2118 0.1502 0.0053 0.20012
ν24 — – – -0.0079 – – 0.39693
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Figure 6.3: Schematic drawing of the first four highest occupied molecular orbital
of Pyrimidine.
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mode, respectively. The above rule imply that totally symmetric (a1) vibrational

modes are always active in a given electronic state and the first-order coupling

between the X̃ -Ã , X̃ -B̃ , X̃ -C̃ , Ã -B̃ , Ã -C̃ and B̃ -C̃ electronic states of

Pym+ is caused by the vibrational modes of a2, b1, b2, b2, b1 and a2 symmetry,

respectively. These couplings would lead to multiple multidimensional conical

intersections in the mentioned manifold of electronic states of Pym+. The impact

of the electronic non-adiabatic effects on the vibrational energy level structure of

a state depends on the strength of the associated coupling.

With the above description Hamiltonian of the coupled manifold of X̃ -Ã -

B̃ -C̃ electronic states of Pym+ can be written as

H = (TN + V0)14 +




W eX W eX− eA W eX− eB W eX− eC

W eA W eA− eB W eA− eC

h.c. W eB W eB− eC

W eC




, (6.3)

where 14 is a 4×4 unit matrix and (TN + V0) is the Hamiltonian for the unper-

turbed electronic ground state of the neutral Pym. This reference state is assumed

to be harmonic and vibronically decoupled from the other states. Therefore, TN

and V0 are given by

TN = −1

2

24∑

i=1

ωi
∂2

∂Q2
i

, (6.4)

V0 =
1

2

24∑

i=1

ωiQ
2
i . (6.5)

The non-diagonal matrix Hamiltonian in Eqn. (6.3) represents the change in the

electronic energy upon ionization of Pym and describes the diabatic electronic

PESs (diagonal elements) of the X̃ , Ã , B̃ and C̃ electronic states of Pym+ and
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their coupling potentials (off-diagonal elements). These are expanded in a Taylor

series (excluding the inter-mode bilinear coupling terms) around the equilibrium

geometry of the reference state at (Q=0) as [23]

Wj = E
(j)
0 +

9∑

i=1

κ
(j)
i Qi +

1

2

24∑

i=1

γ
(j)
i Q2

i ; j ∈ X̃, Ã, B̃, C̃ (6.6)

Wj−k =
∑

i

λ
(j−k)
i Qi (6.7)

where j−k ∈ X̃ -Ã , X̃ -B̃ , X̃ -C̃ , Ã -B̃ , Ã -C̃ , B̃ -C̃ with i ∈ a2,b1, b2, b2, b1,

a2 in that order. In the above equations the quantity E
(j)
0 represents the vertical

ionization energy of the jth electronic state and κ
(j)
i and γ

(j)
i are the linear and

second-order coupling parameters of the ith vibrational mode in the jth electronic

state. The quantity λ
(j−k)
i describes the first-order coupling parameter between

the j and k electronic states through the vibrational mode i. All these coupling

parameters are tabulated in the Tables 6.1 and 6.2.

A thorough analysis of the coupling strength (κ2/2ω2) of the totally symmet-

ric vibrational modes of Pym+ of Table 6.1 shows that ν1 is strongly active in

the X̃ , Ã and B̃ electronic states. The vibrational mode ν2 has the strongest

coupling strength in the C̃ electronic states. The vibrational mode ν2, ν3 and ν4

are moderately active in the X̃ and B̃ electronic states. Likewise the coupling

strength of ν3 and ν6 are considerable in the Ã , B̃ and C̃ states. The vibrational

modes ν5 is weakly active in all the electronic states.

Among the interstate coupling modes of Pym+ listed in Table 6.2, the strongest

coupling is caused by ν19 in X̃ -Ã , ν21 in X̃ -B̃ and ν10 in X̃ -C̃ electronic state.

The Ã state is strongly coupled by ν10 and ν13 vibrational modes with the B̃ elec-

tronic state. The B̃ state is also strongly coupled with the C̃ electronic state

through ν18 and ν19 vibrational modes. The modes ν20 and ν22 cause strong

coupling between Ã and C̃ electronic states. The excitation of the nontotally
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symmetric modes ν10, ν11, ν18, ν19, ν20 and ν21 have been found in the MATI

experiment [162]. It can be seen from Table 6.2 that the coupling strength of

all these modes are considerable and are expected to be observed in the vibronic

band of the X̃ state in accordance with the results of Ref. [162].

6.3.2 Pyrimidine molecule

The Hamiltonian for the coupled manifold of S1 (nπ∗)-S2 (nπ∗)-S3 (ππ∗) electronic

states of Pym is constructed in terms of the dimensionless normal displacement

coordinates (Q) of its 24 nondegenerate vibrational modes (introduced in Sec 6.2)

in a diabatic electronic basis as

H = (TN + V0)13 +




WS1 WS1−S2 WS1−S3

h.c. WS2 WS2−S3

WS3


 , (6.8)

where 13 is a 3×3 unit matrix and (TN + V0) is the Hamiltonian for the unper-

turbed electronic ground state (S0) of the neutral Pym (same as in Eqn. 6.3 -

6.5). The non-diagonal matrix Hamiltonian in Eqn. (6. 7) represents the change

in energy upon electronic excitation of Pym and describe the diabatic electronic

PESs (diagonal elements) of the S1, S2 and S3 electronic states and their coupling

potentials (off-diagonal elements). These are expanded in a Taylor series (exclud-

ing the inter-mode bilinear coupling terms) around the equilibrium geometry of

the reference state at (Q=0) as [23]

Wj = E
(j)
0 +

9∑

i=1

κ
(j)
i Qi +

1

2

24∑

i=1

γ
(j)
i Q2

i ; j ∈ S1, S2, S3 (6.9)

Wj−k =
∑

i

λ
(j−k)
i Qi (6.10)
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where j - k ∈ S1-S2, S1-S3, S2-S3 with i ∈ a2,b1, b2 in that order. In the

above equations the quantity E
(j)
0 represents the vertical excitation energy of the

jth electronic state and κ
(j)
i and γ

(j)
i are the linear and second-order coupling

parameters of the ith vibrational mode in the jth electronic state. The quantity

λ
(j−k)
i describes the first-order coupling parameter between the j and k electronic

states through the vibrational mode i. A linear interstate coupling is considered

throughout this study. All these coupling parameters are given in Tables 6.3 and

6.4.

A similar analysis of the coupling parameters of the vibronic Hamiltonian of

Pym reveals the following. For the totally symmetric vibrational modes, it can be

seen from Table 6.3 that the modes ν1 and ν3 are strongly active in the S1, S2 and

S3 electronic states. The vibrational mode ν2 has the highest coupling strength in

the S3 state. The ν2, ν4, ν5 and ν6 vibrational modes in the S1 and S2 electronic

states are moderately active. The vibrational modes ν4 and ν5 are weakly active

in the S3 electronic state. The excitation of the remaining a1 vibrational modes

are very weak in a given electronic state. The coupling between S1-S2 states

is very strong along the vibrational modes ν17, ν19 and ν20 of b2 symmetry (cf.,

Table 6.4). The S2 and S3 electronic states are strongly coupled by the vibrational

modes ν12, ν13, ν14 and ν16 of b1 symmetry. The ν10 and ν11 vibrational modes of

symmetry a2 are responsible for the S1-S3 interstate coupling.

6.4 Results and Discussion

6.4.1 Adiabatic potential energy surfaces and stationary

points:

In this section we begin with a discussion on the topography of the adiabatic

potential energy surfaces and the stationary points found on them employing

the vibronic coupling model introduced above. The results of this analysis are
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related to the findings of the nuclear dynamical studies presented later in this

section. The adiabatic potential energies are obtained by diagonalizing the 4 ×
4 diabatic electronic Hamiltonian defined in Eqn. 6.3. The cuts of the potential

energy surfaces along the symmetric vibrational modes are shown in Figure 6. 4

for Pym+ and Pym.

The adiabatic potential energies in the above figure are plotted along the

dimensionless normal displacement coordinate of the given vibrational mode ( ν1

- ν9 for the neutral and cationic electronic states of Pym) keeping all others at

their equilibrium value (at Q=0). It can be seen that there are several curve

crossings among the electronic states shown in the figure. These curve crossings

develop into conical intersections in multi-dimensions and these intersections are

the mechanistic bottleneck for the nuclear motion in a given electronic state.

The energetic minimum of various conical intersections (CIs) in the four (three)

lowest electronic states and the minimum of excited electronic states of both

Pym+(Pym) have been estimated within a linear coupling approach [23]. These

CIs play the key role in the dynamical events discussed latter in this thesis.

Within the linear coupling scheme the energetic minimum [23] of the seam

of the X̃ -Ã , Ã -B̃ and B̃ -C̃ conical intersections is estimated to occur at ∼
10.26 eV, ∼ 10.98 eV and ∼ 11.22 eV respectively. The minimum of the seam of

the CI between X̃ -Ã states occurs ∼ 0.01 eV above the equilibrium minimum

of the Ã electronic state. The vibrational structure of the Ã state is therefore

expected to be strongly perturbed by the associated non-adiabatic interactions.

The minimum of the Ã -B̃ conical intersections occurs at ∼ 0.63 eV and ∼ 0.01 eV

above the minimum of the Ã and B̃ electronic states, respectively. The minimum

of the B̃ -C̃ conical intersections occurs ∼ 0.05 eV above the global minimum of

the C̃ state. This leads to the complex structure of the vibronic bands of Pym.

All these energetic minima are given below in Table 6.7.

Table 6.7

Equilibrium minimum (diagonal entries) and minimum of the seam of various CIs
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Figure 6.4: Adiabatic potential energies of the X̃ , Ã , B̃ and C̃ for electronic
states of Pym+ and S1, S2 and S3 electronic states of Pym as a function of
the dimensionless normal coordinates of the totally symmetric (a1) vibrational
modes, ν1-ν9 by different color line.
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(off-diagonal entries) of the PESs of Pym. All quantities are given in eV.




X̃ Ã B̃ C̃

X̃ − 10.083 10.962 13.482

Ã 10.072 10.782 11.723

B̃ 10.779 11.481

C̃ 11.453




In case of Pym the energetic minimum of the seam of S1-S2, S1-S3 and S2-S3

CIs are found to occur at ∼ 4.61 eV, ∼ 5.49 eV and ∼ 5.46 eV, respectively. The

minimum of the S1-S2 CIs occurs ≈ 0.10 eV above the minimum of the S2 state.

The minimum of the S2-S3 CIs occurs at ≈ 0.10 eV above the minimum of the

S3 state. The S1-S3 CIs occur ∼ 0.98 and ∼ 0.13 eV above the minima of the S2

and S3 electronic states. All these energetic minima are given below in Table 6.8.

Table 6.8

shows the equilibrium minimum (diagonal entries) and minimum of the seam of

various CIs (off-diagonal entries) of the PESs of Pym. All quantities are given in

eV.




S1 S2 S3

S1 − 4.612 5.493

S2 4.510 5.462

S3 5.363




6.4.2 Vibronic band structures

The vibronic band structures of the mentioned electronic states of Pym and Pym+

are calculated, assigned and the impact of the electronic non-adiabatic interac-

tions on them is examined below. In order to develop a systematic understanding

of the details, we first examined the vibronic energy level structures of the un-
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coupled electronic states, and, subsequently included the coupling between states

to reveal its impact on the energy level structure. A time-independent matrix

diagonalization method is used to calculate the precise location of the energy lev-

els of a uncoupled electronic state. As stated before, because of dimensionality

problem this method can no longer be used in the coupled states situation. The

final spectral envelopes for the coupled states situation are therefore calculated

by a time-dependent wave packet propagation method employing the MCTDH

algorithm.

6.4.2.1 X̃ , Ã , B̃ and C̃ electronic states of Pym+

The uncoupled state spectrum for the X̃ , Ã , B̃ and C̃ electronic states of

Pym+ are calculated by a matrix diagonalization approach using the Lanczos

algorithm [23]. The theoretical stick spectra are calculated using 9 totally sym-

metric vibrational modes (ν1-ν9) using the vibronic Hamiltonian of Eqn. 6.3 and

the parameters of Table 6.1. The results are numerically converged with respect

to the number of vibrational basis functions and the number of Lanczos iteration.

The vibrational modes ν1 (in plane ring deformation), ν2 (in plane NCN bend),

ν3 ( in plane CCC bend) and ν4 (in plane C-H bend) form the dominant progres-

sions in the X̃ state of Pym+. The peaks are ∼ 0.0847 eV, ∼ 0.1248 eV, ∼ 0.1335

eV and ∼ 0.1483 eV spaced in energy and correspond to the vibrational frequen-

cies of these modes, respectively. The vibrational modes ν5 (CN stretch+ C-H

bend) and ν6 (CN stretch) are weakly excited in this band. The peak spacings of

∼ 0.0632, ∼ 0.0968, ∼ 0.1335 eV and ∼ 0.2064 eV corresponding to the excitation

of ν1, ν2, ν3 and ν6 vibrational modes, respectively, have been observed in the

Ã state. These uncoupled state spectra panel a (X̃ state) and panel b (Ã state)

electronic states are shown in Figure 6.5.

The peak spacings of ∼ 0.0632, ∼ 0.0968, ∼ 0.1335 eV and ∼ 0.2064 eV

corresponding to the excitation of ν1, ν2, ν3 and ν6 vibrational modes, respectively,

have been observed in the Ã state.
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Figure 6.5: The uncoupled vibronic band of the X̃ and Ã electronic state of
Pym+ computed with relevant nine a1 (ν1-ν9) vibrational modes within the
linear vibronic coupling scheme in panel a and b respectively. The theoretical
stick spectrum in each panel is convoluted with a Lorentzian function of 20 meV
FWHM to calculate the spectral envelope.
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Figure 6.6: Same as in Figure 5.6 shown for the uncoupled vibronic band of
X̃ state of Pym+.
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Dominant progressions of vibrational modes ν1, ν2, ν3 and ν4 in the B̃ state

are found with the corresponding peak spacings of ∼ 0.0643, ∼ 0.1852, ∼ 0.1874

and ∼ 0.2019 eV, respectively.

It is also found that the vibrational modes ν2 and ν3 in the C̃ state form the

detectable progressions. The uncoupled state spectra of the B̃ and C̃ electronic

states are shown in Figure 6.6.

The vibrational structures of the uncoupled X̃ state reveal close resemblance

with the experimental results [159]. The vibrational spectrum of the uncoupled

Ã state reveals resolved vibrational structures whereas, it is found to be broad

and structureless in the experiment. The coupling of Ã state particularly, with

the X̃ state appears to be extremely important in this case ( also, see, the low-

energy curve crossing in Figure 6.4). Similarly, the spectrum of uncoupled B̃ and

C̃ electronic states are well resolved, whereas, complex and overlapping bands

for these states are found in the experimental measurements [159]. This is due

to the fact that these electronic states are very close in energy and various CIs

occur well within their FC zone centers. These CIs are expected to have profound

effect on the vibrational structure of these electronic states. Therefore, in order

to understand the observed experimental vibronic structures, possible interstate

couplings need to be considered in the nuclear dynamics. Such a dynamical sim-

ulation using the matrix diagonalization approach can no longer be carried out

because of the huge number of electronic and nuclear degrees of freedom of these

systems. A WP propagation approach within the MCTDH framework happened

to be plausible and is therefore undertaken to accomplish the goal. The complete

X̃ -Ã -B̃ -C̃ electronic spectrum of Pym+ is calculated by including the coupling

among these states [cf., Hamiltonian of Eq.(6.3)] and considering 18 most rele-

vant vibrational modes. In the WP calculations using the MCTDH approach [121]

three, four dimensional and two, three dimensional particles are constructed by

combining the vibrational modes. The details of the basis set and mode combi-

nations employed in the WP propagations are given Table. 6. 9. The resulting
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four states vibronic spectrum is presented in Figure 6.6 (bottom panel) along

with the experimental [159] results (top panel). The former represents combined

results of four separate WP propagations for four separate initial transitions to

the X̃ , Ã , B̃ and C̃ electronic states. In each calculation, the WP is propagated

up to 150 fs and the resulting time autocorrelation function is damped with an

exponential function [exp(-t/τr); with τr = 33 fs] before Fourier transformation.

This damping corresponds to convolution of spectral lines with a Lorentzian line

shape function of 40 meV FWHM. While the vibronic structures of the X̃ state

in Figure 6.7 remain almost same as the uncoupled state results, the vibronic

structure of the Ã , B̃ and C̃ states are heavily demolished by the non-adiabatic

coupling. This is due to the fact that the minimum of the seam of X̃ -Ã CIs is

located only ∼ 0.01 eV above the minimum of the Ã state and therefore the low-

lying vibronic levels of this state are strongly mixed with the high-lying vibronic

levels of the X̃ state. It can be seen that the overall broadening and the detail

fine structures of the Ã band are in perfect accord with the experiment [159].

The complex vibronic structures of the overlapping B̃ -C̃ electronic manifold are

also in very good accord with the experiment. The energetic minimum of these

electronic states occurs in the vicinity of the minimum of the seam of various

CIs within the B̃ -C̃ electronic states (cf., Section 6.3.1). The associated non-

adiabatic coupling causes a strong mixing of their vibrational energy levels and

as a result the vibronic bands become highly overlapping and complex.

6.4.2.2 S1, S2 and S3 electronic states of Pym

Similar time-independent quantum mechanical calculations have been performed

to examine the vibrational energy level structure of the uncoupled S1, S2 and S3

electronic states of Pym. All the totally symmetric vibrational modes (ν1 - ν9)

are consider in this case.

In the spectrum of the S1 state, the series of peaks are ∼ 0.085, ∼ 0.133 and

∼ 0.143 eV spaced in energy corresponding to the progression along ν1, ν3 and
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Figure 6.7: The photoelectron spectrum of the coupled X̃ -Ã -B̃ -C̃ electronic
states of Pym+. The experimental (reproduced from Ref [159]) and the present
theoretical results are shown in the top and bottom panels, respectively. The
intensity (in arbitrary units) is plotted along the energy (measured relative to
electronic ground state of Pym) of the final vibronic states.
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Table 6. 9: Number of basis functions for the primitive as well as the single
particle basis used in the MCTDH calculations.

Pym+

Normal modes Primitive basisa SPF basisb [X̃ , Ã , B̃ , C̃ ]
(ν1,ν10,ν19,ν21) (8, 9, 8, 7 ) [13, 8, 10, 8]

(ν2,ν7,ν13) (9, 7, 8, 8 ) [11, 12, 7]
(ν3,ν8,ν10 ) (8, 9, 7, 8) [11, 9, 11]

(ν4,ν5,ν9,ν16) (7, 8, 9, 8 ) [10, 7, 8, 7]
(ν6,ν18,ν14,ν24) (9, 8, 7, 8) [12, 10, 10, 9]

Pyrimidine
(ν1,ν8,ν13,ν15) (8, 9, 8) [10, 4, 8, 10]
(ν2,ν4,ν11,ν19) (9, 7, 8) [12, 10, 10, 10]
(ν5,ν12,ν16) (8, 9, 7) [11, 10, 10]

(ν6,ν9,ν14,ν18) (7, 8, 9) [12, 4, 7, 10]
(ν3,ν7,ν10,ν17) (8, 7, 8) [10, 4, 10, 10]

aThe primitive basis is the number of Harmonic oscillator DVR functions, in the dimen-

sionless coordinate system required to represent the system dynamics along the relevant

mode. The primitive basis for each particle is the product of the one-dimensional bases;

e.g for particle 1 in the set given for Figure 6.6. the primitive basis contains 13 × 8 ×
10 × 8 = 8320 functions and the full primitive basis consists of a total of 3.544 ×1017

functions. b The SPF basis is the number of single-particle functions used.
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ν4 vibrational modes, respectively.

In the S2 state spectrum the vibrational modes ν1, ν3, ν5 and ν6 form the

major progressions. The peaks are ∼ 0.085, ∼ 0.133, ∼ 0.177 and ∼ .199 eV

spaced, respectively, corresponding to the frequencies of these vibrational modes.

The uncoupled state spectra of S1, S2 and S3 electronic state of Pym is shown in

Figure 6.8. The vibrational modes ν1, ν2 and ν3 form dominant progressions in

the S3 state.

The vibrational spectrum of the uncoupled S1, S2 and S3 electronic states

reveal resolved vibrational structures whereas, a broad and structureless band

for the S2 and S3 electronic states are observed in the experiment [166]. The

coupling between S1-S2, S1-S3, and S2-S3 electronic states appears to be extremely

important in this case.

Despite the fact that the uncoupled state spectra discussed above are help-

ful in understanding the important roles played by different vibrational modes

in each electronic state, they deviate significantly from the observed bands in

practice. Coupling between states is necessarily be considered to capture most

of the features of the experimental observations [166]. The MCTDH algorithm

is used for this dynamical simulation. Three WP calculations are carried out by

launching the initial WP on each of the three electronic states separately. The

details of the mode combinations and the sizes of the basis sets are given in Table

6.9. In each calculation the WP is propagated for 150 fs. The time autocor-

relation function is damped with an exponential function of relaxation time 66

fs, and then Fourier transformed to generate the spectrum. The results from

three different calculations are combined with equal weighteage to generate the

composite theoretical band shown in Figure 6.8 (bottom panel) along with the

experimental results (top panel) reproduced from Reference [166]. It can be seen

from the figure that except for the first band, the distinct vibronic structures of

the uncoupled state spectrum are completely blurred in the coupled state spec-

trum. The non-adiabatic coupling effects are particularly severe for the second
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Figure 6.8: The uncoupled vibronic band of the S1, S2 and S3 electronic state
of Pym computed with relevant nine a1 (ν1-ν9) vibrational modes within the
linear vibronic coupling scheme in panel a, b and c respectively. The theoretical
stick spectrum in each panel is convoluted with a Lorentzian function of 20 meV
FWHM to calculate the spectral envelope.
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Figure 6.9: The absorption spectrum of the coupled S1 - S2 - S3 electronic states of
Pym and the experimental (reproduced from Ref [166]) and the present theoretical
results are shown in the bottom and top panels, respectively. The intensity
(in arbitrary units) is plotted along the energy (measured relative to electronic
ground state of Pym) of the final vibronic states.
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and third bands. It can be seen from Figure 6.8 that the present theoretical

results are in very good agreement with the laboratory experiment [166].

6.4.3 Internal conversion rate

6.4.3.1 Electronic states of Pym+

The time-dependent populations of the four diabatic electronic states of Pym+

in the coupled state dynamics of section 6.4.2.1 are shown in Figures 6.10 (a-c).

The results obtained by initially populating the Ã , B̃ and C̃ electronic states are

shown in panels a-c, respectively. The four electronic populations are indicated

by four different line types in panel b. It is observed that insignificant population

flows to all the three excited states when the WP is initially prepared on the

X̃ state and the corresponding figure is therefore not included here. This is due

to the fact that the CIs of the X̃ state with all other states are located at higher

energies and are not accessible to the WP during its evolution on this state. This

results into the observed sharp vibrational level structure of the X̃ band (cf.,

Figure 6.7). A rapid transfer of Ã state population to the X̃ state can be seen

from panel (a) of Figure 6.9. Within ∼ 50 fs, 50% of the population transfers to

the X̃ state through the X̃ -Ã CIs. This is due to the fact that the minimum of

the seam of X̃ -Ã CIs located only ≈ 0.02 eV above the equilibrium minimum of

the Ã state. A decay rate of ∼ 50 fs is estimated from an exponential fit to the

initial decay of population of the Ã state. Very minor population transfer to the

remaining electronic states (B̃ and C̃ ) indicates that the dynamics of Ã state is

not affected by these excited states in the present time scale.

The diabatic populations of the four electronic states are shown in panel (b)

for an initial location of the WP on the B̃ state. The population of B̃ state

decays to ∼ 0.25 within 50 fs and remains almost unchanged during the entire

course of propagation time. A sharp rise in the population of Ã state as time

increases indicates that the population transfer occurs through Ã -B̃ CI. It is
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Figure 6.10: The populations (diabatic) in time of the X̃ (thin lines), Ã (thin

dashed lines), B̃ (thin dotted lines) and C̃ (thick line) states for an initial tran-

sition of the WP to the Ã (panel a), B̃ (panel b) and C̃ (pane c) in the coupled

X̃ -Ã -B̃ -C̃ states dynamics of Pym+.
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clear from the diagram that the remaining excited (X̃ and C̃ ) states do not have

any significantly contribution to the dynamics of the B̃ state. A decay rate of ≈
33 fs is derived from an exponential fit to the population curve of the B̃ state.

This faster relaxation of the B̃ state is in par with the observed broadening of

this band in Figure 6.6. This supports the observed lack of fluorescence emission

from this state and photostability of Pym+.

Finally the time evolution of the WP on the C̃ state is shown in panel d. In

this case most of the population flows to the B̃ and Ã state via the Ã -C̃ and

B̃ -C̃ CIs located nearly at the minimum of the C̃ state. A very minor population

also flows to the X̃ state via the X̃ -C̃ CIs. The initial fast decay of the population

relates to a life-time of ∼ 23 fs of the C̃ state of Pym+.

6.4.3.2 Electronic states of Pym

Time-dependence of diabatic electronic populations in the coupled S1-S2-S3 states

dynamics of Pym by initially locating the WP on S1, S2 and S3 states are shown

in the panel a-c, respectively, of Figure 6.11. The line types of the population

curves are shown in panel a of Figure 6.11. The electron population flows to the

S2 state very slowly when the WP initially prepared on the S1 state. As discussed

in section 6.3.1 that the CIs of S1-S2 state occur at lower energies relative to the

minimum of S2 electronic state. Thus the WP can access the S1-S2 CI during

the evolution of time. As a result the internal conversion rate of 240 fs is found

from an exponential fit of diabatic electronic population.

The electronic populations for an initial location of the WP on the S2 state

shown in panel a of Figure 6.11 reveal population transfer to the S1 state. The

minimum of the S1-S2 CIs located ∼ 0.72 eV above the minimum of the S2 state.

The faster decay of S2 state population relates to a decay rate of ∼ 30 fs, and

accounts for the relatively structureless band of this state (cf., Figure 6.9).

The decay of the population of the S3 state is much faster. A decay rate of ∼
22 fs can be estimated from the initial fast decay of the S3 state. The occurrence
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lines) and B̃ (dashed lines) states for an initial transition of the WP to the S1

(panel a), S2 (panel b) and S3 (pane c) in the coupled S1-S2-S3 states dynamics
of Pym.
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of the minimum of the S2-S3 and S1-S3 CIs ∼ 0.1 eV and ∼ 0.13 eV above the

minimum of the S3 state causes this rapid decay. This implies that the WP

evolving on the S3 states undergoes internal conversion to the S2 state via the

low-energy S2-S3 CIs and subsequently moves to the S1 state via the S1-S3 and

S1-S2 CIs. The ultrafast deactivation of S3 state of Pym relates to the broadening

of the S3 absorption band and lack of fluorescence of this state and photostability

of this state.

6.5 Summary

The vibronic energy level spectrum and dynamics of coupled first three excited

electronic states of Pym and first four excited electronic states of Pym+, are theo-

retically examined. A model diabatic vibronic Hamiltonian is constructed and the

coupling parameters of the model Hamiltonian are obtained from the extensive

ab initio electronic structure calculations. The nuclear dynamical simulations

are carried out by time-independent and time- dependent quantum dynamical

methods. The theoretical observations are in good accord with the experimental

findings.

Relevant electronic ground and excited PESs and their coupling surfaces are

constructed ab initio. Various stationary points on these PESs (minimum of the

seam of CIs and minimum of the state) are estimated and their impact on the

nuclear dynamics is studied in details. The existence of the several low-laying CIs

of the PESs makes the dynamics on the coupled electronic manifold very complex

and the resulting vibronic bands exhibit diffuse and broad structure.

The uncoupled states vibronic spectrum are obtained by matrix diagonaliza-

tion method and full vibronic bands for the coupled electronic states of Pym+

and Pym, are obtained by WP propagation method. The theoretical results are

in good accord with the experimental photoelectron spectrum and UV absorption

spectrum.
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We have estimated the life-time of excited electronic states from the diabatic

electronic state population. The calculated internal conversion rates for the Ã ,

B̃ and C̃ electronic states of Pym+ are ∼ 50 fs, ∼ 33 fs and ∼ 23 fs, respectively.

The ultrafast deactivation of excited electronic states of Pym are ∼ 240 fs, ∼ 30

and ∼ 22 fs for the S1, S2 and S3 electronic states, respectively.



Chapter 7

Summarizing remarks and future

directions

A detailed theoretical study of the photoinduced nonadiabatic quantum dynam-

ics on coupled electronic states of polyatomic molecules and molecular radical

cations is presented in this thesis. It is established in conjunction with observed

experimental data that complex VC of electronic states plays crucial role in all

the studied examples. The most important result of VC is occurrence of coni-

cal intersections of electronic states. Theoretical treatment of VC in polyatomic

molecules of growing size progressively becomes tedious. Thus the essential as-

sumptions and simplifications are often exercised to in a theoretical study. Suit-

able VC model Hamiltonians are developed in the thesis by performing detailed

ab initio electronic structure calculations. These Hamiltonians are used subse-

quently to investigate the nuclear dynamics by quantum mechanical methods.

The final theoretical results are compared with the available experimental results

of all the problems treated. The major findings are the following.

The quantum dynamical study of the coupled X̃2E -Ã2A1 electronic states

of MC+ reveals that the JT interactions are particularly weak in the ground

X̃2E electronic manifold of this cation but the PJT interactions of this ground

182
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electronic manifold with the first excited Ã2A1 electronic state of the radical

cation are stronger which cause an increase of the spectral line density. The

estimated JT stabilization energy for the X̃2E electronic state is ∼ 0.03 eV. The

energetic minimum of this seam of CI between the X̃ and Ã states occur at ≈
12.79 eV. This minimum occurs well within the range of the second photoelectron

band and only≈ 0.68 eV above the minimum of the JT CIs. The CH3 deformation

modes of a1 and e symmetries and C-N stretching mode of a1 symmetry, play

crucial roles in the nuclear dynamics. The nonradiative decay rates of ∼ 50 fs and

∼ 28 fs, are estimated for the JT split components of the X̃ 2E and the Ã 2A1

electronic states of MC+, respectively.

Investigation of the structure and dynamics of the energetically lowest six elec-

tronic states of An+ reveals that 31 (out of 66) vibrational modes are relevant for

the dynamical simulations. One Condon active (ag) mode ν9 (C=C stretching)

is found to contribute mostly to the nuclear dynamics in all the electronic man-

ifold. The strong nonadiabatic coupling between Ã and B̃ states is responsible

for the broad and structureless vibronic band of B̃ state which relates to a decay

rate of ∼ 30 fs. Such an ultrafast decay is the mechanism mechanism underlying

low quantum yield of fluorescence from this state. A rapid noradiative transfer

of this state makes it photostable. The close proximity of C̃ and D̃ electronic

states and the strong nonadiabatic coupling between them leads to the observed

overlapping broad and structureless vibronic bands of these states. Nonradiative

decay of ∼ 333 fs and ∼ 38 fs are estimated for the C̃ and D̃ states, respectively.

The energetic minima of CIs of the X̃ state with the other electronic states are

located at higher energies. Therefore, the vibronic structure of the X̃ band is

not perturbed by the nonadiabatic interactions. The Ã state is weakly coupled

with the X̃ state through the vibrational mode of symmetry b3g which yields the

resolved vibronic structure of the Ã band and a nonradiative decay rate of ∼ 225

fs is estimated for this state.

Vibronic dynamics of coupled X̃ -Ã -B̃ -C̃ electronic states of Bl+ reveals
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that the JT effect is very strong in the Ã and B̃ states, and the PJT coupling

of the B̃ state with the C̃ state is also found to be very strong. The estimated

JT stabilization energy for the Ã and B̃ states is ∼ 0.25 eV and ∼ 0.21 eV,

respectively. The energetic location of the minimum of seam of CIs between the

B̃ and C̃ states is found at ∼ 11.54 eV which is ∼ 0.004 eV below the minimum

of the C̃ electronic state. The ν6 vibrational mode is excited strongly in the X̃ ,

Ã and B̃ electronic states. The dominant progression is formed by the degenerate

ν21 vibrational mode in the second vibronic band. In the third vibronic band,

the ν3, ν4, ν5, ν17, ν18, ν19, ν20 and ν21 vibrational modes are strongly excited.

The nuclear dynamics on the coupled X̃ -Ã -B̃ -C̃ state with thirty vibrational

modes is studied by the WP propagation method. The final theoretical results so

obtained are in good accord with the experiment. The bimodal spectral profile of

Ã vibronic band is observed due to the strong JT interaction in this state. The

strong PJT coupling and close proximity of the B̃ and C̃ electronic state leads to

broad, diffuse and overlapping vibronic bands for the B̃ and C̃ electronic states

of Bl+ . The internal conversion rate for the Ã electronic state is estimated to

be ∼ 50 fs. The later originates from strong JT intersections in this state. The

estimated nonradiative decay rates of the B̃ and C̃ states are found to be ∼ 33 fs

and ∼ 7 fs, respectively. Strong B̃ -C̃ PJT coupling leads to a very fast decay of

the C̃ state and also makes the corresponding vibronic bands broad and diffuse.

Investigation of vibronic dynamics of first three excited electronic states of

Pym and first four electronic states of Pym+ reveals strong VC effects in their

vibronic energy level structure. The theoretical findings are in good accord with

the experimental observations. Relevant electronic ground and excited PESs

and their coupling surfaces are constructed ab initio. Various stationary points

on these PESs (minimum of the seam of CIs and minimum of the state) are

estimated and their impact on the nuclear dynamics is studied in details. The

existence of the several low-laying CIs of the PESs makes the dynamics on the

coupled electronic manifold very complex and the resulting vibronic bands exhibit
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diffuse and broad structure. The calculated internal conversion rates for the Ã ,

B̃ and C̃ electronic states of Pym+ are ∼ 50 fs, ∼ 33 fs and ∼ 23 fs, respectively.

The nonradiative decay rates of excited electronic states of Pym are ∼ 240 fs, ∼
30 and ∼ 22 fs for the S1, S2 and S3 electronic states, respectively.

Identifying the carriers of DIBs has become one of the classic astrophysical

spectroscopic problems. Recent work suggests they are caused by PAHs, or, most

likely, their cations, since PAH ions of all sizes, long carbon-chain molecules,

and fullerenes, absorb in the visible and near infrared, and such molecules are

expected to be ionized by the intense ultraviolet field present in much of the

interstellar medium. PAH molecules appears to have profound implications in the

physics, chemistry and biology of ISM. The observed broad and diffuse vibronic

band, ultrafast internal conversion rate of low-lying excited electronic state and

lack of fluorescence are in favor of PAH hypothesis. The PAH cation is highly

photostable than their neutral counterpart. Recently nitrogenated PAH molecule

(PANH) also found in astrophysical environment. These N-heterocycles are found

in the genetic material of all living organisms on Earth. The work underlying this

thesis is a step forward in theoretical studies of PAH molecules. The developed

strategies can be further extended to more complex systems in order to identify

a large part of the DIBs unambiguously.

The quantum dynamics on coupled electronic manifold of PESs is examined

without incorporating the spin-orbit coupling parameters in the model diabatic

Hamiltonian. It will be worthwhile to include the spin-orbit coupling in the VC

models developed in this thesis.
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(1999).

[39] R. Renner, Z. Phys. 92, 172 (1934).

[40] J. G. Bednorz and K. A. Müller, Perovskite type oxides: The new approach

to high-Tc superconductivity, in: Nobel Lectures, Physics 1981-1990, (World

Scientific, Singapore, 1993).

[41] J. V. Neumann and E. P. Wigner, Physik. Z. 30, 467 (1929).

[42] E. Teller, J. Phys. Chem. 41, 109 (1937).

[43] G. Herzberg and H. C. Longuet-Higgins, Discuss. Farad. Soc. 35, 77 (1963).

[44] T. Carrington, Discuss. Farad. Soc. 53, 27 (1972); Acc. Chem. Res. 7, 20

(1974).

[45] C. A. Mead and D. G. Truhlar, J. Chem. Phs. 70, 2284 (1979).

[46] M. Desouter-Lecomte, C. Galloy, J. C. Lorquet, and M. Vaz Pires, J. Chem.

Phys. 71, 3661 (1979).

[47] W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997).
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