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radical cation 155

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 The Vibronic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 158

5.2.1 Electronic structure calculations . . . . . . . . . . . . . . . 161

5.3 Nuclear dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.1 Adiabatic potential energy surface : RT and X̃ - Ã conical
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Chapter 1

Introduction

Study of nuclear motion on coupled multi-sheeted electronic potential energy

surfaces (PESs) is a growing field of research in chemical dynamics. The study

encompasses a wide variety of physico-chemical process like photochemistry, colli-

sions dynamics of electronically excited species, chemiluminescence excited state

processes like radiationless decay, energy and charge transfer and recombina-

tion reactions, heterocyclic dissociations, and electron transfer processes etc. to

a name few. Understanding of coupling between the electronic states and the

associated nonadiabatic effects is important in these investigations. On the dy-

namical front much of the challenge lies in monitoring nuclear motion on mul-

tiple electronic states concurrently from first principle. The adiabatic Born-

Oppenheimer (BO) approximation [1–4], breaks down in this situation,

which represents one of the cornerstones of molecular physics and chemistry.

Within the BO approximation electronic motion and nuclear motion are treated

separately i.e. they are independent to each other. According to this approxi-

mation, the calculation of dynamical processes in molecules can be divided into

two steps. The first step involves the solution of the electronic Schrödinger equa-

1
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tion by keeping the nuclei fixed in space, which gives adiabatic potential energy

surfaces corresponding to the different electronic states. While in the second step

the treatment of nuclear motion on the calculated electronic potential-energy

surface (PES) is performed. Mainly this approximation is based on the fact that

the spacing of electronic states is generally large. Also the electrons with much

lighter mass move very fast as compared to the nuclei (a factor of 103 heavier)

and therefore a small displacement in nuclear coordinate is quickly adjusted by

the electrons completing a cycle of their motion. Therefore, it can be assumed

that every instantaneous position (fixed) of the nuclei corresponds to a station-

ary electronic state and the average field of electrons governs the nuclear motion

which is confined to a single adiabatic potential energy surface in the space of

nuclear coordinate.

The BO approximation remains no longer valid when two or more electronic

states becomes very close in energy i.e when the electronic states are degenerate.

In this situation the electronic states change its character rapidly as a function

of the nuclear geometry and it becomes necessary to go beyond the single sur-

face approximation or in other words to consider the coupling between electronic

and vibrational motion, which is neglected within the BO approximation. This

coupling between vibrational and electronic motions is termed as vibronic cou-

pling (VC). It is mentioned that solving for the nuclear-electronic eigenstates

variationally using the Hamiltonian for all the electrons and nuclei is computa-

tionally limiting. A practical way is to use a vibronic model Hamiltonian, which

approximately describes the simultaneous nuclear dynamics on multiple potential

energy surfaces and represents a nonadiabatic dynamical situation.

VC has great importance in molecular spectroscopy and it is ubiquitous in

polyatomic molecular systems where there are large number of energetically close-
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lying electronic states and many nuclear degrees of freedom (DOF) present. To

name a few, VC covers a wide range in molecular spectroscopy, in particular, opti-

cal absorption and photoelectron spectroscopy. Vibronic coupling determines the

splitting of degenerate electronic states. Nonadiabatic radiationless transitions

between the states occur through vibronic coupling which are very important in

photophysics and photochemistry.

The most significant deviations from the adiabatic BO approximation are the

orbitally degenerate electronic states in polyatomic molecules. There are two

different types of degeneracies observed depending on the dependence of elec-

tronic energy on the nuclear coordinate near their vicinity. When two electronic

states cross and it forms a double cone topography, known as Conical Inter-

sections (CIs). In other case, where two states do not cross but coincide and

results a glancing topography which leads to Renner effect or RT coupling. Elec-

tronic degeneracies in molecules mostly yield CIs. Point group symmetry allows

a classification of different types of CIs, the RT case is unique for the degenerate

electronic states of linear polyatomic molecules with axial symmetry.

To discuss about conical intersection in detail one has to start from the non-

crossing rule of Wigner and von Neumann [5], which showed that PESs of di-

atomic molecules do not cross unless the electronic states differ either in their

symmetry or in their spin multiplicity. Minimum two nuclear DOF are required

for two electronic states to be degenerate, when spin-orbit coupling is not taken

into consideration. But for polyatomic molecules due to the presence of three

or more nuclear DOF the noncrossing rule is not applicable. When two PESs of

polyatomic molecules cross, a hyperline is formed in the vicinity of the crossing

in the multidimensional nuclear coordinate space, known as conical intersections

(CIs). CIs is a (3N-6-2)-dimensional seam of the electronic energy for an N-atom
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molecule. In the early 1930s, CIs were reported [6–8] first. In 1934 Renner wrote

about the nonadiabatic coupling in electronically excited states in CO2 [6]. Teller

in 1937 [7] showed that CIs are very important for the nonradiative decay in pho-

tochemical reaction, without performing any quantum dynamical simulation. He

discussed the possibility that one can ‘get a transition in a short time’ by in-

ternal conversion via a CI. Moreover, in a semi-classical framework Landau [9]

and Zener [10] quantified the fast radiationless decay that occur at CI. The first

quantum dynamics simulation of internal conversion via conical intersection was

carried out by Köppel et al. [11], demonstrating the internal deactivation on the

sub-100-fs time scale. Since then, CIs are known to provide the important ul-

trafast mechanism for many photo-chemical reactions [12]. The identification

and characterization of CIs were studied extensively by Teller [6], Herzberg and

Longuet-Higgins [13]. They provide a deep insights into the subject predicting

a variety of physical phenomena that emerge from PES crossing. The field has

undergone an immense growth thereafter following the outstanding contributions

of several research groups [3, 4, 14–16].

It is widely accepted that CIs serve as the bottleneck in photophysical and photo-

chemical transitions [17, 18] and also referred to as photochemical funnels in the

literature [19]. The book edited by Domcke, Yarkony and Köppel represents an

excellent collection of articles in this emerging area of chemical dynamics [12,20].

Strictly speaking, with respect to the mainstream computational chemistry which

considers electronic structure calculations of polyatomic molecules with fixed nu-

clei and the nuclear dynamics along the adiabatic PESs, the CIs and the associ-

ated Jahn Teller (JT) and Pseudo Jahn Teller (PJT) vibronic coupling effects are

important extensions which take into account the coupling between the electronic

and nuclear motions.
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The CIs of electronic PESs are classified into different groups depending on few

factors which are as follows:

a) based on their electronic state symmetry : the noncrossing rule,

b) by topography and

c) by dimension of the branching space.

Molecular point group symmetry plays a very crucial role for the existence

of CIs. Based on this molecular symmetry the CIs of electronic PESs are clas-

sified into as follows: i) symmetry required or symmetry enforced, ii) accidental

symmetry allowed and iii) accidental same-symmetry intersections. Symmetry

required (or enforced) CIs occur when two electronic states form the components

of a degenerate irreducible representation(IREP). JT systems exhibit this type

of CIs. For example, a doubly degenerate E electronic state in D3h symmetry

configuration splits into A1 and B2 when distorted to C2v and forms CIs at the

original undistorted D3h configuration. Conical intersections which does not re-

quire symmetry are called accidental intersection. Accidental intersection which

corresponds to two states of distinct spatial symmetry is known as accidental

symmetry-allowed (different symmetry) CI. The two lowest excited singlet elec-

tronic states (A′′) of H − S −H, generates this type of CI. For C2v point group

symmetry allowed accidental CI occurs as these electronic states are of 1A2 and

1B1 symmetry. Similarly, PESs of two states of same symmetry cross, the inter-

section is known as accidental same symmetry CI. An intersection of electronically

excited electronic states (21A and 31A) of methyl mercaptan (CH3−S−H) gives

an example of this type of CI. [12,20].

Based on the shape and orientation of the PESs, CIs are categorized as peaked

and sloped CI [12, 21]. Peaked CIs originate when both the PESs are elliptical

cones pointing towards each other with a common tip. In this case, the crossing
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point is the minimum of the upper PES and the topology at this point looks like a

double cone. At slopped CIs, both the PESs have downhill slope and touch each

other at the crossing point in branching space. Here, the crossing point is always

at higher energies compared to the minimum of the upper PES and the crossing

appear as a seam of intersections. A large variety of photochemical reactions via

excited-state reaction pathways are controlled by peaked CIs. Ring-opening and

ring-closure reactions, hydrogen transfer reactions and cis − trans isomerization

are the standard photochemical reactions mediated via peaked CIs [12, 21]. The

sloped CIs are the key factor for the unsuccessful chemical reactions and arrange

decay channels for the ultrafast nonradiative deactivation of excited states [12,21].

Seams of the CI can also be categorized based on the dimension of the branch-

ing space, η, for intersection of two PESs with η = 2, 3 or 5 [22]. Among them

η = 2 is the most common case of a two state CI for even electronic molecular

system in a non-relativistic situation.

The first evidence of CIs came from the JT active systems [7]. In 1937,

Jahn and Teller formulated the idea of instability and spontaneous distortion

of the nuclear configuration of a nonlinear molecule in an orbitally degenerate

electronic state (Γ) along the nontotally symmetric vibrational modes [8, 23].

This unique VC is known as the Jahn-Teller (JT) effect. It has great impact

in complex electronic spectra of symmetric molecules. In the presence of the

JT effect, the electrons do not follow the motions of the nuclei adiabatically

and the nuclear states are determined by the averaged field of the electron as

well as by the details of the electronic structure and their changes with nuclear

displacements. The symmetry of the nontotally symmetric mode (e) is such

that it contains in the direct product of Γ ⊗ Γ . This VC is called as Γ ⊗ e

-JT coupling model. For example, the (E ⊗ e)-JT effect, that is, perturbation
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of a doubly degenerate electronic state (E) by a doubly degenerate vibrational

mode (e), has been extensively studied for molecules with trigonal symmetry

[3, 8, 23–27]. In tetragonal systems, the JT perturbation of an E state is caused

by the nondegenerate vibrational modes of b symmetry, known as (E ⊗ b) - JT

effect.

If the energy levels do not cross at Qi =0 but they are very closely spaced,

the molecule is still unstable in the sense of Jahn and Teller, and the termi-

nology used is pseudo-Jahn-Teller (PJT) effect. Pseudo-Renner-Teller (PRT)

effect terminology is used in case of linear molecules. PJT or PRT effect is

the interaction between the degenerate and nondegenerate electronic states in a

molecule that is prone to JT or RT effect. In 1957, Opic and Price [28], ob-

served structural distortions and splitting in systems with near (quasi-degenerate

or pseudo-degenerate) electronic states. While the JT or RT effect is the source of

instability in high symmetry configuration of any polyatomic molecules in degen-

erate electronic states, the PJT or PRT effect is the only source of instability and

distortions of high-symmetry configurations of any polyatomic system in nonde-

generate states [29,30]. The (pseudo) Jahn-Teller vibronic coupling effect can be

described by a model Hamilton operator H. This operator takes the form of a

n× n matrix in the case of n-fold degeneracy.

In the simplest case of two-fold degeneracy, H becomes:

H =

 H11 H12

H∗12 H22


where the diagonal elements correspond to the electronic states, and the non-

diagonal elements give the coupling between the two states.

Both the JT and PJT effect have been studied extensively over the past
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decades [4,14-15,21-24,31-33] Although most of the applications of the JT ef-

fect has been in the field of spectroscopy, stereochemistry, and structural phase

transformations, the JT effect has played the role of guiding idea [34] in one of

the most important (Nobel prize winning) discoveries of modern physics: high-

temperature superconductivity. This effect is also found instrumental in under-

standing the chemical reactions mechanisms, the properties of fullerenes, and the

recent discovery of the colossal magnetoresistance [24].

Linear molecules are the exceptions from the JT theorem but like nonlinear

molecules linear molecules also experience a similar type of instabilities in their

degenerate or pseudo-degenerate states when quadratic terms of VC are con-

sidered [35]. For linear molecules, the nontotally symmetric displacements are

described as ungerade with respect to reflection, whereas the product of wave

functions of the degenerate terms (coming from symmetry considerations) is al-

ways gerade with respect to the same symmetry operation. Consequently, all the

linear Wkm(k 6= m) terms are zero, and only the quadratic terms could play a

role. This VC in linear molecules is known as the Renner-Teller (RT) coupling or

glancing intersection(GI). The RT effect is one of the best characterized violation

of the the BO approximation in molecular spectroscopy. In its simplest manifes-

tation, this vibronic interactions occurs in linear triatomic molecules in orbitally

degenerate Π electronic states, it is caused by a coupling between the electronic

orbital angular momentum and the nuclear vibrational angular momentum asso-

ciated with the bending vibration [36]. Upon bending the molecule an additional

dipole moment is set up in the molecular plane which lifts the electronic degener-

acy. The motion on both potential surfaces remains, however, coupled through a

coriolis type interaction between vibrational and electronic angular momentum.

This interaction behaves singularly at the linear configuration and leads to the
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breakdown of adiabatic approximation. In 1933 Herzberg and Teller [37] recog-

nized that the potential of a triatomic linear molecule in a degenerate electronic

state splits into two when the molecule is bent. A year later this effect was worked

out in detail by Rudolf Renner [6], who gave an explanation of this splitting phe-

nomenon and showed that the bending and electronic motion are coupled. He

predicted that this coupling would give rise to anomalies in the vibrational side

bands of electronic spectra. Herzberg refers to this as the “Renner-Teller” effect

in one of his influential books [38] and consequently the effect is now generally

called after Renner and Teller.

Renner’s original theory [6] was restricted to a perturbation treatment of the

lowest order terms of the Hamiltonian of three-atomic molecules when expanded

in a Taylor series around the linear configuration. Later, his work has been ex-

tended to include higher order terms of this expansion, [23,28] to allow for electron

spin [24] and for the effect of molecular rotation [4], anharmonic coupling and

Fermi Resonances [39] and for the effect of magnetic coupling [40] as well. ∆

electronic states [14] and tetra-atomic molecules [15] have also been considered.

Several interesting applications of the RT effect including processes like protona-

tion, charge transfer, photodissociation, etc. suggest the importance of the RT

effect in chemical and molecular physics. For a detailed overview of the RT effect,

a review by Rosmus and Chambaud [41] is recomended.

In all the above cases perturbation theory is used. Among the nonpertur-

bative, i.e numeric approaches, the reader is directed to the works of Barrow et

al. [42] and Jungen et al. [43]. All the above mentioned works successfully ex-

plained the interactions in an isolated doublet Π or ∆ electronic state of many

triatomic molecules. The perturbative methods known to fail when the respec-

tive nonadiabatic coupling is strong enough. Moreover, the interaction between
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different electronic states is not accounted in these approaches. The quadratic vi-

bronic coupling (QVC) approach developed by Köppel, Domcke and Cederbaum

appears to provide a systematic way to understand the multimode dynamics in

linear polyatomic molecules [44]. The RT effect was not observed until 1959,

when K. Dressler and D. A. Ramsay [45] measured the electronic absorption

spectrum of NH2 and ND2 . They revealed that the first electronically excited

states of these triatomic molecules have a linear geometry and observed in these

excited states an unusual type of vibronic structure: the RT effect. Theoretical

studies on VC effects in molecular systems have been exercised in the literature

with improved level of sophistication [3,11]. The theoretical approach is generally

based on the so-called linear vibronic coupling (LVC) scheme, often augmented

by quadratic vibronic coupling terms [3,24–26]. This is based on the use of a dia-

batic electronic basis, where the potential energy matrix is expanded in a Taylor

series in suitable displacement coordinates, and linear or quadratic terms are re-

tained. The pertinent coupling constants and the nuclear motion are computed

within an ab initio quantum dynamical scheme. Vibrational structures in various

electronic spectra have been studied as time independent observables. Time de-

pendent quantities of interest are often electronic populations in the interacting

manifold of states. Strong nonadiabatic coupling manifest themselves typically

in diffuse (under low resolution) or very irregular (under high resolution) spectral

structures and in the sub-picosecond time scale of electronic population transfer,

thus signaling internal conversion processes [3].

The concept of VC and the associated JT, RT, PJT and PRT coupling effects

is of a much wider relevance, however, and applies to essentially all symmet-

ric polyatomic molecular systems. The applications of VC theory cover the full

range of molecular spectroscopy, including, in particular, optical absorption and
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photoelectron spectroscopy. Typical spectroscopic phenomena associated with

vibronic interactions are the appearance of nominally forbidden electronic bands,

the excitation of nontotally symmetric modes, or unusual and complex vibronic

fine structures of electronic spectra [3,22,46-47] Some consequences of vibronic

coupling interactions in molecular spectroscopy are :

i) loss of mirror symmetry of absorption and emission bands,

ii) appearance of forbidden bands in absorption spectrum,

iii) odd quantum excitation of non-totally symmetric vibrational modes,

iv) irregular and complex vibronic structure,

v) broad and diffuse vibronic bands and

vi) low quantum yield or lack of fluorescence emission.

vii) fluorescence quenching

viii) large stoke’s shift.

As the absorption or photoelectron spectroscopy probes the excited state within

the FC region, these features become dominant when the CIs appear near or

within the FC zone. These phenomena in a wide variety of molecular systems are

successfully explained theoretically within a multi-state and multi-mode vibronic

coupling approach. In chapter 2 of this thesis a detailed theoretical framework of

multistate multimode vibronic coupling scheme is given. The concept of adiabatic

approximation and the necessity of a diabatic electronic basis to investigate the

RT and PRT interactions in multimode molecular systems is discussed. The vi-

bronic coupling involving degenerate vibrational modes and degenerate electronic

states has also been discussed in details in this chapter. Construction of diabatic

electronic Hamiltonian utilizing elementary symmetry selection rules is explained

with few representative examples. The calculation of vibronic eigenvalue spec-

trum by a numerically exact solution of the time-independent Schrödinger equa-



Chapter 1. Introduction 12

tion with the help of Lanczos algorithm [48] is discussed. Finally, the calculation

of complex vibronic spectra of molecules with large electronic and vibrational

DOF by a time-dependent wave packet (WP) propagation approach within the

multi-configuration time-dependent Hartree (MCTDH) scheme [49] is illustrated.

Linear carbon chains and diacetylene radical cation which are supposed to be

important in interstellar medium (ISM), and proposed as a potential diffuse in-

terstellar bands (DIBs) carrier are studied. These linear molecules are RT active

as well. At the same time the photophysics of phenol and fluorine substituted

phenol compound i.e pentafluorophenol is also studied here in order to examine

the fluoroeffect in phenol, known as perfluoro effect in literature.

The diffuse interstellar bands (DIBs) are a set of ubiquitous absorption features

observed in the optical region of the spectra of stars that lie beyond, and are

viewed through, interstellar clouds. The DIBs have been observed in over a

hundred sightlines within our Galaxy [49], in the magellanic Clouds [50] and

at cosmological distances too [51]. The number of known DIBs is more than

500 [52,53]. The term ‘diffuse’ differentiates between the somewhat hazy appear-

ance of DIBs compared with the relative sharpness of atomic transitions in the

interstellar medium. The breadth of the DIBs appears to be an intrinsic property

which is not caused by the physical conditions in the clouds in which they arise.

Because of that diffuse character, it is generally assumed that DIBs are caused by

molecules; the fact that their measured wavelengths do not agree with any known

atomic transitions tends to support that assumption. The constancy of the DIB

central wavelengths and profiles in many different sightlines, and the fine struc-

ture observed in some DIBs, also suggest that the molecular carriers are in the

gas phase. Heger was the first to observe the DIBs at 5780 and 5797 A0 in 1919

at Lick observatory. Later, in the period of 1924-36, Merrill and coworkers at
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Mount Wilson observatory extensively studied DIBs [54]. They showed that the

DIBs are caused by absorbers that are in between the stars (‘interstellar’), rather

than in, or associated with, the stars themselves, and their central wavelengths

were ‘stationary’ in the spectrum of a binary star whose stellar lines were period-

ically Doppler-shifted by the orbital motion of the binary. Despite a tremendous

amount of effort in the intervening for decades (for reviews, see Herbig [55], Snow

and McCall [56], Sarre [57]), very little is known about the carrier of DIBs. Not

a single feature has been positively identified with laboratory spectra, although

there have been some close calls. When the DIBs are ultimately identified, the

inventory of interstellar molecules will probably become more than double, and

open up a new window of interstellar chemistry. Furthermore, it is likely that

the DIBs will prove to be a ‘powerful multidimensional probe’ of the physical

conditions in the interstellar medium [56]. The identification of the DIBs carri-

ers has often been referred to as the longest-standing unsolved mystery in all of

spectroscopy. The spectra observed by the astronomers are compared with those

recorded in the laboratory under the typical conditions of ISM [58, 59], which

is a collision free environment. It was not possible to create such an environ-

ment in a laboratory until the recent past. Therefore, most of the studies relied

on the laboratory experiment (matrix isolation spectroscopy (MIS), resonance-

enhanced multiphoton dissociation spectroscopy (REMPD), photo dissociation

of van der Walls complexes) in matrix environments [58–60]. Understandably,

collision with the host matrix causes an energy shift and broadening of the spec-

tral lines and no unambiguous identification of DIBs could be made with the

aid of these experimental results obtained in matrices. In recent years, break-

through developments in the gas phase measurements such as cavity ring down

spectroscopy (CRDS), made it possible to provide complementary evidence of
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interstellar observations [61–64]. In recent years, very high resolution spectro-

graph’s on the world’s most powerful telescopes have been used to observe and

analyze DIBs.

Identification of the carriers of DIBs has become one of the classic astro-

physical spectroscopic problems. Origin of the DIBs were long believed to be

due to polycyclic aromatic hydrocarbons (PAHs) [65] and there was no defi-

nite understanding of the origin of the additional bands due to carbon-bearing

molecules [66]. The gas phase spectral measurements in the laboratory with

support from theoretical studies of nuclear dynamics offer valuable aid to the

astronomers in unraveling the mystery of the DIBs. Recent work suggests that

they are caused by PAHs, or, most likely, their cations, since PAH ions of all

sizes, long carbon-chain molecules, and fullerenes, absorb in the visible and near

infrared, and such molecules are expected to be ionized by the intense ultraviolet

field present in much of the interstellar medium. PAH molecules appears to have

profound implications in the physics, chemistry and biology of ISM. Recently ni-

trogenated PAH molecule (PANH) also found in astrophysical environment. The

observed broad and diffuse vibronic band, ultrafast internal conversion rate of

low-lying excited electronic state and lack of fluorescence are in favour of PAH

hypothesis. The PAH cation is highly photostable than their neutral counterpart.

Their formation, fragmentation and reactions with the small molecules are being

studied both theoretically and experimentally [67–72] in recent years.

Douglas in his seminal paper, suggested that the bare carbon chains Cn ,

where n may lie in the range 5-15 [66] could show spectroscopic features consis-

tent with the DIB observations as their electronic transitions take place in the

visible region of the spectrum as the majority of the DIBs lying in the 400-800

nm region with a few others to the red and the spectrum gets broadened due
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to intramolecular processes. The first spectroscopic detection of C3 in comets

in the year 1881 [73] triggered curiosity among the astronomers, chemists and

physicists on the structure and spectroscopy of carbon chains. Maier et al. in-

vestigated the spectroscopy of linear carbon chains extensively with the aid of

wide variety of spectroscopic techniques ranging from neon matrix studies, CRD,

R2C2PI, laser-induced fluorescence (LIF), trapped ion photofragmentation, and

electron photodetachment processes [74–77] and concluded that absorptions of

the carbon chains comprising upto 12 atoms do not correspond to any of the

stronger DIB features. The following criteria are furnished by Maier et al. for a

species to be a potential DIB carrier, “(a) absorptions in the 400-800 nm range,

(b) oscillator strength (f) values in the 1-10 range, and (c) an excited electronic-

state lifetime longer than a few picoseconds so that intramolecular broadening

would still be compatible with the typical half-widths of the narrower DIBs (i.e.,

a few wave numbers)”[10]. The longer chains with an odd number of carbon

atoms of length 15, 17, 19 and 21 are expected to satisfy the first two criteria

because their transitions are in the 400-800 nm range and their f values scale

with the chain length. It remains to be seen by doing nuclear dynamics study,

whether the excited electronic state of 1Σ+
u symmetry has a lifetime longer than

a few picoseconds to satisfy the third condition listed above. Taking the men-

tioned facts into consideration the electronic structure and dynamics of C2n+1

(n=7-10) cluster are studied in chapter 3 and 4 in an attempt to examine their

potentiality as a DIB carrier.

Among many hydrocarbons, diacetylene radical cation, has been proposed

to be a potential DIBs carrier. From several spectroscopic and dynamics study of

the 2Π electronic state of this radical cation it is proposed that these are relevant

in plasma chemistry. Inspired by the recent debate on its astrophysical impor-
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tance, in chapter-5 a detailed investigation of vibronic interactions within and

between the doubly degenerate two energetically lowest electronic states (X̃2Πg

- Ã2Πu) of diacetylene radical cation (C4H· +
2 ) and their impact on the vibronic

structure of each state is carried out theoretically. The spectroscopy of these

two electronic states of C4H· +
2 has been a subject of considerable interest and

measured in laboratory by various groups.

The perfluoro effect in phenol is studied in Chapter-6. Fluorine atom sub-

stitution in the aromatic ring leads to a stabilization of the σ type of molecular

orbitals (MO) which consist mostly the fluorine orbitals. This phenomenon is

known as perfluoro effect in the literature. As a result the energetic minimum of

the seam of various CIs and the equilibrium minimum of a state varies with flu-

orine substitution, causing a difference in its absorption and emission properties

for both the cation, neutral hydrocarbons and its fluorinated hydrocarbons. It is

established that along with vibronic coupling, perfluoro effect [78] also plays an

important role on the dynamics of the low-lying excited electronic states of the

fluorobenzene molecules. Spectroscopic [79, 80] and photophysical [81, 82] stud-

ies on fluorobenzene molecules have revealed that the features of the electronic

absorption and emission bands and lifetimes of fluorescence emission strongly de-

pends on the number of substituted fluorine atoms. For example, fluorobenzene,

C6Fn with n ≤ 4 exhibit structured S1 ← S0 absorption band, large quan-

tum yield and nanosecond lifetime of fluorescence. On the other hand, C6Fn

with n = 5 and 6 exhibit structureless S1 ← S0 absorption band, [79, 80] low

quantum yield, [81, 82] picosecond and nanosecond lifetime of fluorescence emis-

sion. [83] Furthermore, a biexponential decay of fluorescence is observed for the

latter molecules. [83] Experimental measurements of Philis et al. [81] revealed

that a lowering of D6h symmetry of benzene (Bz) by fluorine substitution leads
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to the appearance of additional bands within 8.0 eV which do not have a Bz

parentage. For example, apart from three singlet-singlet transitions analogous to

the B2u ← A1g, B1u ← A1g and E1u ← A1g transitions in Bz, one additional band

has been observed in metafluorobenzene (MFBz) and in orthodifluorobenzene (o-

DFBz) in the region of the 1B1u band [81]. This band correlates with the 3s

(1E1g) Rydberg state of Bz molecule [81]. Likewise, one additional band has been

identified in PFBz and HFBz at ∼ 5.85 and ∼ 5.36 eV, respectively, and is desig-

nated as the unassigned C-band. [81] . There is no clear-cut understanding of the

origin of the additional bands (when compared to benzene). It is already estab-

lished from experimental studies [94, 95] that 1,3,5-trifluorobenzene radical cation

(TFBz+) shows considerable emission in contrast to the parent benzene radical

cation (Bz+) and as the number of fluorine substituent increases the absorption

spectra of the neutral fluorinated benzenes becomes increasingly congested and

the well resolved vibrational spectra of its parent compound is almost completely

lost [78]. This highly diffuse and complex pattern of molecular electronic spec-

tra indeed bears the signature of complex entanglement of electronic and nuclear

motion and indicates the paramount importance of the nonadiabatic effects on

the spectral envelope and energy relaxation process [4]. Although the electronic

structure and spectroscopy of these highly symmetric molecules have been col-

lected in several experimental and theoretical studies [79–83], at the same time

this perfluoro effect is not studied in any reduced symmetric molecules. A theo-

retical investigation of these reduced molecules yet to be explored. It is known

from the recent experimental studies that rich vibronic structure of phenol in

its optical absorption spectra completely disappears in pentafluorophenol which

tempted us to do some theoretical investigation in phenol and pentafluorophenol

which is done in chapter 6.



The summarizing remarks and outlook are given in chapter 7.

References

[1] M. Born and R. Oppenheimer, Ann. Phys. 84, 457 (1927).

[2] C. J. Ballhausen and A. E. Hansen, Ann. Rev. Phys. Chem. 23, 15 (1972).
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Chapter 2

Theoretical methodology

2.1 Vibronic coupling in polyatomic molecules

2.1.1 Born-Oppenheimer adiabatic approximation

The time-independent Schrödinger equation describing the quantum chemistry

and dynamics can be illustrated within the Born-Oppenheimer (BO) approxima-

tion in the following way.

H(q,Q)Ψ(q,Q) = EΨ(q,Q) (2.1)

where H(q,Q), Ψ(q,Q) and E are the molecular Hamiltonian, wavefunction and

energy, respectively. The former two quantities depends collectively on the elec-

tronic, q and nuclear, Q coordinates. The molecular Hamiltonian (the operator

symbol ˆ is omitted for simplicity) can be expressed as

H(q,Q) = Tel(q) + TN(Q) + U(q,Q) (2.2)

25
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where Tel and TN represents the electronic and nuclear kinetic energy operators,

respectively. The potential energy term U(q,Q) consists of the total potential

energy between the electrons and nuclei where all electron-electron, nuclei-nuclei

repulsion energy and electron-nuclei attraction energy is included. The Hamil-

tonian in Eq. (2.2) does not allow a separation of variables q and Q due to

the potential energy which corresponds to electron-nucleus attraction. As a con-

sequence, the above Schrödinger equation (2.1) can not be solvable as is. To

overcome this problem of nonseparability of electronic and nuclear motions, the

approximation due to Born and Oppenheimer was remarkable which lead to the

birth of quantum chemistry way back in 1927 [1]. Within this approximation one

computes the electronic wavefunctions for a fixed position of the nuclei. This ap-

proximation is based on the fact that the nuclear mass is much heavier than the

mass of electrons. As a result, the electrons can complete a cycle of their motion

before the nuclei can rearrange to a new configuration. The fast moving electrons

can readjust to the change in the nuclear configurations. Therefore, the electronic

motion is treated first for several fixed nuclear configurations and the electronic

potential thus generated provides the force field for the nuclear motion. While

the electronic wavefunction and energy become parametrically dependent on nu-

clear coordinates the energy becomes a function of the latter [2, 3]. To illustrate

further, in this approximation (TN =0), the orthonormal electronic eigenfunctions

ψn(q;Q) and electronic energy Vn(Q) at a fixed nuclear position which are known

as BO adiabatic electronic states and adiabatic PESs, respectively, are calculated

by solving electronic Schrödinger equation

Hel(q,Q)ψn(q;Q) = (Tel(q) + U(q,Q))ψn(q;Q) = Vn(Q)ψn(q;Q) (2.3)
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The total molecular wavefunction within the adiabatic theorem can be expanded

as a product of electronic eigenfunction (ψn(q;Q)) and nuclear eigenfunction

(χ(Q)) dependent only on the nuclear coordinates

Ψi(q,Q) =
∑
n

ψn(q;Q)χn(Q) (2.4)

In principle, this expansion is exact, since the set ψn(q;Q) is complete. The total

Schrödinger equation can be expressed as

[H− E ] Ψi(q,Q) = 0 (2.5)

From the above equation one readily obtains the coupled differential equations

for the expansion coefficients χn(Q). By inserting the expression for vibronic

wavefunction Ψi(q,Q) which is defined in Eq. (2.4), into Eq. (2.5) and left

multiplying with ψ∗m(q,Q) and integrating over the electronic coordinates leads

to

[TN(Q) + Vn(Q)− E ]χn(Q) =
∑
m

Λnm(Q)χm(Q) (2.6)

where ∑
m

Λnm(Q) = −
∫
dqψ∗n(q;Q) [TN(Q), ψm(q;Q)] (2.7)

The operator Λnm, is known as the nonadiabatic operator in the adiabatic elec-

tronic representation and it defines the coupling of electronic states n and m

through the nuclear kinetic energy operator. The nuclear kinetic energy operator

takes non-diagonal form in this representation due to coupling between electronic
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states. The nonadiabatic operator coupling Λnm(Q) decomposes as [2, 4]

Λnm(Q) = −
∑
i

~2

Mi

A(i)
nm(Q)

∂

∂Qi

−
∑
i

~2

2Mi

B(i)
nm(Q) (2.8)

where Mi are nuclear masses and

A(i)
nm(Q) = 〈ψn(q;Q)|∇i|ψm(q;Q)〉 (2.9)

and

B(i)
nm(Q) = 〈ψn(q;Q)|∇2

i |ψm(q;Q)〉 (2.10)

represent the derivative coupling and scalar coupling, respectively. When Λnm in

Eq. (2.6) is set to zero altogether, one arrives at the well known BO or adiabatic

approximation [1, 3, 5]. The molecular wavefunction is given by

ΨBO
i (q,Q) =

∑
n

ψn(q;Q)χBOni (Q)

The electronic and nuclear eigen value equations are given by

[Tel(q) + U(q,Q)− Vn(Q)]ψn(q;Q) = 0;

[TN(Q) + Vn(Q)− E ]χBOni (Q) = 0;

respectively.

2.1.2 Breakdown of BO approximation

The adiabatic approximation is a very useful approach, but it fails when the PESs

of different electronic states are energetically close. In this case the elements of



2.1. Vibronic coupling in polyatomic molecules 29

the nonadiabatic coupling matrix Λnm become extremely large and significant.

The large ratio of nuclear and electronic mass is outweighted by the large deriva-

tive coupling A
(i)
nm(Q) and the BO approximation remains no longer valid. The

derivative coupling matrix elements diverge at the intersection region of the PESs

according to Hellmann-Feynmann type of relation

A(i)
nm(Q) =

〈ψm(q;Q)|∇iHel(q;Q)|ψn(q;Q)〉
Vn(Q)− Vm(Q)

,

To know a bit details how the above form of A
(i)
nm(Q) arises one should start from

the electronic Schrödinger equation (Eq. 2.3),

〈ψm(q;Q)|Hel(q;Q)|ψn(q;Q)〉 = 〈ψm(q;Q)|Vn(Q)|ψn(q;Q)〉

〈ψm(q;Q)|Hel(q;Q)|ψn(q;Q)〉 = Vn(Q)δmn (2.11)

Differentiating the above equation (2.11) with respect to nuclear coordinate, Q

we arrive at,

∂

∂Q
[〈ψm(q;Q)|Hel(q;Q)|ψn(q;Q)〉] =

∂Vn(Q)

∂Q
δmn

〈 ∂
∂Q

ψm|Hel(q;Q)|ψn〉+ 〈ψm|
∂Hel(q;Q)

∂Q
|ψn〉+ 〈ψm|Hel(q;Q)| ∂

∂Q
ψn〉 = 0

Vn〈
∂

∂Q
ψm|ψn〉+ 〈ψm|

∂Hel(q;Q)

∂Q
|ψn〉+ Vm〈ψm|

∂

∂Q
ψn〉 = 0 (2.12)

Electronic eigenfunctions, ψm and ψn are orthogonal to each other,

〈ψm|ψn〉 = 0 (2.13)
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Differentiating Eq. (2.13) with respect to Q, we get

〈ψm|
∂ψn
∂Q
〉+ 〈∂ψm

∂Q
|ψn〉 = 0

〈∂ψm
∂Q
|ψn〉 = −〈ψm|

∂ψn
∂Q
〉 (2.14)

Substituting Eq. ((2.14) in Eq. (2.12), we reach to an equation like this,

−Vn〈ψm|
∂ψn
∂Q
〉+ Vm〈ψm|

∂ψn
∂Q
〉+ 〈ψm|

∂Hel(q;Q)

∂Q
|ψn〉 = 0

〈ψm|
∂Hel(q;Q)

∂Q
|ψn〉+ (Vm − Vn)〈ψm|

∂ψn
∂Q
〉 = 0

〈ψm|
∂

∂Q
|ψn〉 =

1

(Vn − Vm)
〈ψm|

∂Hel(q,Q)

∂Q
|ψn〉 (2.15)

From Eq. (2.15), A
(i)
nm(Q) can be expressed as [2, 6, 7]

A(i)
nm(Q) =

〈ψm(q;Q)|∇iHel(q;Q)|ψn(q;Q)〉
Vn(Q)− Vm(Q)

, (2.16)

where Hel represents the electronic Hamiltonian for fixed nuclear configuration.

When the two surfaces Vn(Q) and Vm(Q) become degenerate, the derivative cou-

pling elements of Eq. (2.16) exhibit a singularity. This results discontinuity in

both the electronic wavefunction and the derivative of energy at the point of

degeneracy and making the adiabatic representation unsuitable for the nuclear

dynamics study. The derivative coupling, A
(i)
nm(Q), becomes extremely large at

near-degeneracy or at degeneracy of different electronic PESs eventually break-

ing down the BO approximation. Typical phenomena associated with a violation

of the BO approximation are inelastic atom-atom collisions and the radiation-

less decay of excited electronic states [7, 8]. To solve this singularity problem

in the derivative coupling operator, the adiabatic basis functions are replaced by
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smooth, slowly varying functions of nuclear coordinates and correspond to poten-

tial energy surfaces which may cross at the avoided crossings of adiabatic PESs.

These functions are called as diabatic basis [2, 9–12].

2.1.3 Adiabatic to diabatic Transformation

The concept of diabatic electronic representation was introduced to solve the sin-

gularity problem of the adiabatic electronic representation [9–11]. By a suitable

unitary transformation the diverging kinetic energy couplings of the adiabatic

representation transform to smooth potential energy couplings in a diabatic rep-

resentation. This results into a diagonal form for the nuclear kinetic energy

operator and the coupling between the electronic states is described by the off-

diagonal elements of the potential energy operator. In this representation the

coupled equations of motion (as compared to Eq. 2.6) is,

[TN(Q) + Unn(Q)]χn(Q) =
∑
m6=n

Unm(Q)χm(Q), (2.17)

where Unn(Q) are the diabatic PESs and Unm(Q) are their coupling elements.

The latter are given by

∑
m

Unm(Q) =

∫
dqφ∗n(q;Q) [Tel + V(Q)]φm(q;Q) (2.18)

where φ(q;Q) represents the diabatic electronic wavefunction constructed from

the corresponding adiabatic ψ(q;Q) ones via a suitable unitary transformation,

φ(q;Q) = S(Q) ψ(q;Q), (2.19)
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S(Q) is the transformation matrix which reads as

S(Q) =

 cos θ(Q) sin θ(Q)

− sin θ(Q) cos θ(Q)

 . (2.20)

The matrix S(Q) is called the adiabatic-to-diabatic transformation (ADT) ma-

trix and θ(Q) defines the transformation angle. The required condition for such

transformation is that the first-order derivative couplings of Eq. (2.9) vanishes

in the new representation for all nuclear coordinates [13,14] i.e.,

∫
dqψ∗n(q;Q)

∂

∂Qi

ψm(q;Q) = 0. (2.21)

This requirement yields the following differential equations for the transformation

matrix [13,15,16]
∂S

∂Qi

+ A(i)S = 0, (2.22)

where the elements of the first-order derivative coupling matrix A(i) are given

by Eq. (2.9). A unique solution of the above equation can be obtained only

when starting from a finite subspace of electronic states [14]. Therefore, for poly-

atomic molecular systems rigorous diabatic electronic states do not exist [14].

Approximate schemes are therefore developed to construct diabatic electronic

states [15, 17, 18]. The concept of diabatic electronic basis was introduced quite

early in the literature in the context of describing the electron-nuclear coupling

in atomic collision processes [9] as well as in molecular spectroscopy [19] . How-

ever, construction of the latter for polyatomic molecular systems is a tedious and

difficult since it is a problem depending on multi-coordinates rather than a single

nuclear coordinate. Therefore, various approximate mathematical schemes have

been proposed in the literature [13,14,17,18,20–23] to accomplish this task.
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2.1.4 The model diabatic vibronic Hamiltonian

A diabatic electronic basis is used for all the theoretical studies which are pre-

sented in this thesis. The diabatic basis results a diagonal form of nuclear kinetic

energy operator and the coupling between the electronic states is described by

the off-diagonal elements of the potential energy operator. The PESs are smooth,

crossing curves in diabatic basis in contrast to the adiabatic basis where PESs are

non crossing and exhibit a discontinuity at the avoided crossing. The vibronic

Hamiltonian of the final states of the excited species is constructed in terms of

the dimensionless normal coordinates of the electronic ground state of the corre-

sponding (reference) neutral species.

Following the traditional approach [3, 19, 24, 25], normal coordinates [26] are in-

troduced to describe the small amplitude vibrations around the equilibrium ge-

ometry of the electronic ground state (we assume here that we are dealing with

a closed-shell molecule with a well-define structure). The normal coordinates are

defined by

Q = L–1δR (2.23)

where δR is the 3N – 6 (3N – 5 for linear molecules) dimensional vector of inter-

nal displacement coordinates (changes of bond lengths and bond angles) for an

N atomic molecule and L is the L-matrix of the well-known Wilson FG-matrix

method [26]. It is convenient to introduce dimensionless normal coordinates Qi

via the mass-weighted normal coordinates (qi) which are obtained by diagonaliz-

ing the force field, are converted into the dimensionless form [26] by

Qi = (ωi/~)
1
2 qi, (2.24)
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where ωi is the harmonic frequency of the ith vibrational mode. These actually

describes the normal displacement coordinates from the equilibrium configura-

tion, Q = 0, of the reference state.

Let us assume that a diabatic basis has been obtained for a given set of vi-

bronically interacting electronic states n and m. In this basis the vibronic matrix

Hamiltonian which describes the photoinduced molecular processes is given by [2],

H = (TN + V0)1n +W(Q). (2.25)

In the harmonic approximation, which implies the expansion of the unperturbed

reference electronic ground state potential energy up to second order in the dis-

placements as well as the approximation of the metric tensor by its value at the

equilibrium geometry, the kinetic-energy TN and potential-energy V0 operators

of the electronic ground state take the simple form

TN = −1

2

∑
i

ωi

[
∂2

∂Q2
i

]
, (2.26)

and

V0 =
1

2

∑
i

ωiQ
2
i , (2.27)

respectively. The quantity 1n is a (n×n) (where n is the number of final electronic

states) unit matrix and W in Eq. (2.25) describes the change in the electronic

energy upon ionization/excitation. This is a (n× n) non-diagonal matrix.

The matrix elements of the potential matrix W(Q) is,

Wnm(Q) =

∫
dqφ∗n(q;Q)Helφm(q;Q). (2.28)
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The φn(q;Q) are the diabatic wave functions for an electronic state of index n.

For a polyatomic molecule, the accurate solution of the matrix Hamiltonian (Eq.

2.25) is very tedious and often impossible. Therefore, an approximate form of the

matrix Hamiltonian is commonly considered for which the Schrödinger equation

can be accurately solved. The simplest, yet elegant approximation is to expand

the potential-energy matrix W(Q) about a reference nuclear configuration Q0

and retaining the terms linear in Q for the off-diagonal terms is known as linear

vibronic coupling (LVC) scheme [2,27]. The linear approximation is often suf-

ficient since the elements of the W(Q) matrix are, by definition, slowly varying

functions of Q. Without any loss of generality it is assumed that the diabatic

and adiabatic states are identical at the reference geometry Q0.

For the interacting electronic states n and m, the elements of the matrix Hamil-

tonian in the linear approximation are,

Hnn = TN + V0(Q) + En +
∑
s

κ(n)
s Qs. (2.29)

Hnm = Hnm(0) +
∑
c

λ(n,m)
c Qc. (2.30)

The energies En which appear in the diagonal of H are constants given by

Wnn(Q0). The κ
(n)
s represent the gradients of the excited state potential functions

at the equilibrium geometry of the ground state and are referred to as first-order

intra-state electronic-vibrational coupling constants. The Hnm(0) is zero if the

two interacting electronic states n and m, are transformed according to differ-

ent irreducible representations. The λ
(n,m)
c are correspondingly called first-order
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interstate coupling constants.

k(n)
s =

∂Vn(Q)

∂Qs

∣∣∣∣
Q0

(2.31)

λ(n,m)
c =

∂Vnm(Q)

∂Qc

∣∣∣∣
Q0

(2.32)

The non-vanishing interstate coupling constants λc are the product of the irre-

ducible representations of electronic states φn and φm, and of the nuclear coordi-

nate Qc which contains the totally symmetric representation ΓA , i.e. ,

Γn × ΓQc × Γm ⊃ ΓA. (2.33)

where Γm,Γn and ΓQc refer to the IREPs of the electronic states m,n and the

cth vibrational mode, respectively [2]. The analogous condition for the intrastate

coupling constants κns is

Γn × ΓQs × Γn ⊃ ΓA. (2.34)

Certainly all totally symmetric modes can couple to the electronic motion which

emphasize the important role of these modes in the VC problem. From the

above symmetry selection rules (Eqs. 2.33 and 2.34), it can be said that only the

totally symmetric modes give rise to nonzero intrastate coupling constants and

only nontotally symmetric modes to nonzero interstate coupling constants.
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2.1.5 Vibronic Coupling for molecules without degener-

acy

Construction of the molecular Hamiltonian is simple and straightforward when

there is no degeneracy (i.e electronic states or vibrational modes) in the picture.

The Taylor series expansion can be written as follows,

Wnn(Q) = W0(Q) + En +
∑
s

κ(n)
s Qs +

1

2

∑
s,c

γ(n)
sc QsQc + ... (2.35)

and

Wnm(Q) = Wnm(0) +
∑
c

λ(nm)
c Qc + ..., (2.36)

respectively. The linear intrastate coupling parameter, κ
(n)
s and interstate cou-

pling parameter, λ
(nm)
c are same as Eq. 2.31 and 2.32 respectively and the

quadratic intrastate coupling parameter, γ
(n)
sc is expressed as

γ(n)
sc = [(∂2Wnn/∂QsQc)0] (2.37)

Here En denotes the vertical excitation/ionization energy of the nth excited elec-

tronic state from the reference state. Possible coupling between the states is

assessed by the symmetry selection rule which is given in Eq. 2.33. Qs and Qc

represents the normal coordinates along the totally symmetric and nontotally

symmetric vibrational modes, respectively.

2.1.6 Vibronic coupling for molecules with degeneracy

All polyatomic molecules which fall under the non-Abelian point groups (the

Abelian point groups are Cn, Sn, C2v, D2 and D2h ) possess degenerate electronic
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states and degenerate vibrational modes. When the molecules under observation

possess degenerate electronic state and degenerate vibrational modes, the con-

struction of molecular Hamiltonian for the study of VC is not so straight forward

because degenerate electronic states are the outstanding examples of the failure

of the Born-Oppenheimer adiabatic approximation.

For degenerate states in nonlinear molecules, Jahn and Teller have shown that

there always exists a nontotally symmetric vibrational mode that can lift the

degeneracy in first order due to VC within the components of the degenerate

electronic states [28, 29]. Considering a two-fold degenerate (E) electronic state,

the symmetry of the desired vibrational mode for VC should be such that it is

contained in the decomposition of the symmetrized product (E2) . It is then

found that in all but seven molecular-point groups (with four-fold principal ro-

tation axis, e.g.,C4v, C4h etc.) degenerate vibrations can be JT active, leading

to the E × e JT effect. It is thus important to solve the multimode JT coupling

problem in order to arrive at an understanding of the interactions that actually

occur in nonlinear polyatomic molecules. In case of linear molecules such type of

VC problem is known as RT coupling of a doubly degenerate electronic state, is

discussed in detail in this thesis.

Renner Teller effect

For linear molecule the vibronic coupling within degenerate states (Π,∆ etc.)

requires a special treatment, since the lowest order VC terms are at least quadratic

[30–32]. The z component of the electronic orbital angular momentum around

the molecular axis takes one of the values Λ = 0, 1, 2 · ·· in case of linear molecules.

The corresponding electronic states are called Σ,Π,∆ · · · states. For all nonzero

values of Λ, the electronic state is two-fold degenerate. Since linear molecules
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possess a rotational symmetry, the diabatic functions associated with a given

value of Λ are subject to the following transformation under the action of Cφ

CφΨΛ = eiΛφΨΛ, Λ = 0,±1,±2, · · · (2.38)

In the original work of Renner, the VC of the degenerate Π electronic state was

considered. Since then, this work has received a significant attention by several

researcher [19,32–36]. According to Eq. 2.33, the bending vibrational mode of π

symmetry is RT active. The degenerate bending mode can be described by the

cartesian coordinates (Qx, Qy) and polar coordinates (ρ, φ) as :

Qx = ρ cosχ (2.39)

Qy = ρ sinχ (2.40)

The transformation properties of Q± under Cφ

CφQ± = eiΛφQ±. (2.41)

Here in this section by performing the Taylor series expansion of the electronic

part of the Hamiltonian, Eq. 2.25 with respect to Q± and using the symmetry

properties Eqs. 2.38 and 2.41, the vibronic model Hamiltonian for the ∆, Π and

∆ - Π electronic states is derived along the RT active degenerate π vibrational

mode [37].

i) ∆− Π coupling:

Linear molecules belong to D∞h symmetry point group which possess doubly

degenerate electronic state like Π,∆, · · · etc. From the carbon cluster study it is
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seen that linear carbon chains only possess σ+
g , σ

+
u , πg and πu vibrational modes

(it is shown in subsection 2.1.7). Due to the lack of δ vibrational modes in linear

molecules degenerate Π electronic states are second order (quadratic) RT

active and ∆ electronic states are fourth order (quartic) RT active along

the πg and πu bending vibrational modes. The symmetry selection rules are given

below:

Πg ⊗ Πg ⊃ δg + σ+
g + σ−g (2.42)

Πu ⊗ Πu ⊃ δg + σ+
g + σ−g (2.43)

Πg ⊗ Πu ⊃ δu + σ+
u + σ−u (2.44)

∆g ⊗∆g ⊃ φg + σ+
g + σ−g (2.45)

∆u ⊗∆u ⊃ φg + σ+
g + σ−g (2.46)

∆g ⊗∆u ⊃ φu + σ+
u + σ−u (2.47)

Here we are interested to derive the electronic Hamiltonian for the doubly degen-

erate ∆ and Π coupled electronic state. Let φ∆x and φ∆y be the two components

of the ∆ state and φΠx and φΠy be the two components of the Π state.

In spherical coordinates the two components of ∆ states can be written as

φ∆x = ρ cos2φ (2.48)

φ∆y = ρ sin2φ. (2.49)

As we know in quantum mechanics a state can be represented only in complex

plane, so we will make the functions complex. The X axis is spherical coordinates

will be assumed as real part of the function and Y axis is assumed as imaginary

part of the function. In complex coordinates it can be written as:
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φ∆+ = φ∆x + iφ∆y = ρ ei2φ (2.50)

φ∆− = φ∆x − iφ∆y = ρ e−i2φ (2.51)

these are known as step-up and step-down state functions in the literature. Sim-

ilarly, in spherical coordinates the two components of Π states can be written

as

φΠx = ρ cosφ (2.52)

φΠy = ρ sinφ. (2.53)

and in complex coordinates the step-up and step-down state functions for Π

electronic states can be represented as below:

φΠ+ = φΠx + iφΠy = ρ eiφ (2.54)

φΠ− = φΠx − iφΠy = ρ e−iφ (2.55)

The degenerate ∆ and Π states can be coupled through the degenerate πg or πu

vibrational modes. Let us assume that the coupling mode is πg. Here the Hamil-

tonian for πg mode is derived. Similarly the vibrational normal mode which can

split the degeneracy of a ∆ or Π electronic state are the degenerate πg or πu

bending modes.

Here the Hamiltonian is derived by considering the πg vibrational mode and the

derivation for πu vibrational mode will be obvious from πg derivation.

Lets say Qx and Qy are two components of a degenerate πg vibrational mode.

Similar to the state representation, the two components Qx and Qy can be ex-
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pressed as

Qx = ρ cosφ (in spherical coordinates) (2.56)

Qy = ρ sinφ (2.57)

Q+ = Qx + iQy = ρ eiφ (in complex coordinate) (2.58)

Q− = Qx − iQy = ρ e−iφ (2.59)

Here the multiplication of the angle is taken as ‘ φ’. From the above Eq. 2.38, it is

known that for Π electronic state it is 1 and for ∆, it is 2 and so on. These values

are similar to the angular moment value. Now some group theoretical analysis is

done here to show that these functions are invariant w.r.t symmetry operations

(we will make a rotation ‘ θ’ (where ‘ θ’ is small) on these functions), in principle

it can be any angle :

For ∆ electronic state :

Cθφ∆+ = Cθρ e
i2φ = ρ ei2(φ+θ) = e2iθφ∆+ (2.60)

Cθφ∆− = Cθρ e
−i2φ = ρ e−i2(φ+θ) = e−2iθφ∆− (2.61)

For Π electronic state :

CθφΠ+ = Cθρ e
iφ = ρ ei(φ+θ) = eiθφΠ+ (2.62)

CθφΠ− = Cθρ e
−iφ = ρ e−i(φ+θ) = e−iθφΠ− (2.63)
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For πg vibrational mode :

Cθ Q+ = Cθ ρ e
iφ = ρ ei(φ+θ) = eiθQ+ (2.64)

Cθ Q− = Cθ ρ e
−iφ = ρ e−i(φ+θ) = e−iθQ− (2.65)

Now the 4× 4 electronic hamiltonian for the coupling of ∆ and Π electronic states

is :

Hel =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


Here 1 and 2 are the x and y components of ∆ electronic state and 3 and 4 are the

x and y components of Π electronic state. We know that electronic Hamiltonian

is hermitian in nature , so the above Hamiltonian actually becomes :

Hel =


S11 S12 S13 S14

S∗12 S22 S23 S24

S∗13 S∗14 S33 S34

S∗23 S∗24 S∗34 S44


Now we will evaluate each and every terms of this Hamiltonian. To do that we

will expand the electronic Hamiltonian in a Taylor series expansion. By using
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the Taylor series expansion the electronic Hamiltonian can be expanded as :

Hel = W (0) +W (1)Q+ +W (1)Q− +W (2)Q2
+ +W (2)Q2

− +W (2)Q+Q− +

W (3)Q3
+ +W (3)Q2

+Q− +W (3)Q+Q
2
− +W (3)Q3

− +W (4)Q4
+ +

W (4)Q3
+Q− +W (4)Q2

+Q
2
− +W (4)Q+Q

3
− +W (4)Q4

− (2.66)

Now this electronic Hamiltonian terms should be invariant w.r.t symmetry (we

will operate rotation operator upon each and every terms of this Hamiltonian):

Hel = W (0) +W (1)eiθQ+ +W (1)e−iθQ− +W (2)e2iθQ2
+ +W (2)e−2iθQ2

− +

W (2)Q+Q− +W (3)e3iθQ3
+ +W (3)eiθQ2

+Q− +W (3)e−iθQ+Q
2
− +

W (3)e−3iθQ3
− +W (4)e4iθQ4

+ +W (4)e2iθQ3
+Q− +W (4)Q2

+Q
2
− +

W (4)e−2iθQ+Q
3
− +W (4)e−4iθQ4

− (2.67)

Now, it will be shown that every terms of the above Hamiltonian is invariant

w.r.t symmetry :

S11 =< φ∆+ |Hel|φ∆+ >=< e2iθφ∆+|Hel|e2iθφ∆+ >=< φ∆+ |Hel|φ∆+ > (2.68)

To make this term symmetry invariant, collect the terms which does not have

any eiθ terms.

S11 =< φ∆+|Hel|φ∆+ >= W (0) +W (2)Q+Q− +W (4)Q2
+Q

2
− (2.69)

Similarly,

S22 =< φ∆−|Hel|φ∆− >= W (0) +W (2)Q+Q− +W (4)Q2
+Q

2
− (2.70)
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Now

S12 =< φ∆+|Hel|φ∆− >= < e2iθφ∆+ |Hel|e−2iθφ∆− >

= e−4iθ < φ∆+|Hel|φ∆− > (2.71)

To make this term symmetry independent we need to look for the terms with

e−4iθ coefficients (upto quartic terms).

S12 =< φ∆+|Hel|φ∆− >= W (4)Q4
− (2.72)

S33 =< φΠ+ |Hel|φΠ+ >

=< eiθφΠ+|Hel|eiθφΠ+ >

=< φΠ+ |Hel|φΠ+ > (2.73)

To make this term invariant we need to look for the terms with eiθ coefficients

upto quadratic terms.

S33 = W (0) +W (2)Q+Q− (2.74)

Similarly,

S44 = < φΠ−|Hel|φΠ− >= W (0) +W (2)Q+Q− (2.75)
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Now

S34 = < φΠ+|Hel|φΠ− >

= W (2)Q2
− (2.76)

S13 = < φ∆+ |Hel|φΠ+ >

= < e2iθφ∆+|Hel|eiθφΠ+ >

= eiθ < φ∆+ |Hel|φΠ+ >

= W (1)Q+ (2.77)

S14 = < φ∆+|Hel|φΠ− >

= < e2iθφ∆+|Hel|e−iθφΠ− >

= e−3iθ < φ∆+|Hel|φΠ− >

= 0 (2.78)

S23 = < φ∆−|Hel|φΠ+ >

= < e−2iθφ∆−|Hel|eiθφΠ+ >

= e3iθ < φ∆− |Hel|φΠ+ >

= 0 (2.79)
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S24 = < φ∆−|Hel|φΠ− >

= < e−2iθφ∆−|Hel|e−iθφΠ− >

= eiθ < φ∆−|Hel|φΠ− >

= W (1)Q+ (2.80)

So,

S11 = S22 = W (0) +W (2)Q+Q− +W (4)Q2
+Q

2
− (2.81)

S12 = W (4)Q4
− (2.82)

S33 = S44 = W (0) + (W
(2)
+−Q+Q− +W

(2)
−+)Q−Q+ (2.83)

S34 = W (2)Q2
− (2.84)

S13 = W (1)Q− (2.85)

S24 = W (1)Q+ (2.86)

S23 = 0 (2.87)

S14 = 0 (2.88)

we know the step-up and step-down functions are :

Q+ = Qx + iQy

Q− = Qx − iQy
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putting these values in the above equations we get,

S11 = S22 = W (0) +W (2)(Q2
x +Q2

y) +W (4)(Q2
x +Q2

y)
2 (2.89)

S12 = W (4)[Q4
x − 4iQ3

xQy − 6Q2
xQ

2
y + 4iQxQ

3
y +Q4

y] (2.90)

S∗12 = W (4)[Q4
x + 4iQ3

xQy − 6Q2
xQ

2
y − 4iQxQ

3
y +Q4

y] (2.91)

S33 = S44 = W (0) +W (2)(Q2
x +Q2

y) (2.92)

S34 = W (2)(Q2
x − 2iQxQy −Q2

y) (2.93)

S∗34 = W (2)(Q2
x + 2iQxQy −Q2

y) (2.94)

S13 = W (1)(Qx − iQy) (2.95)

S∗13 = W (1)(Qx + iQy) (2.96)

S24 = W (1)(Qx + iQy) (2.97)

S∗24 = W (1)(Qx − iQy) (2.98)

So to get the Hamiltonian in real representation, we need to do a unitary trans-

formation with unitary matrix : A matrix U is called unitary matrix when U−1

= U+ or UU+ = I(identity matrix); and we know that U+ = (U∗)T

U =
1√
2


1 −i 0 0

1 i 0 0

0 0 1 −i

0 0 1 i



U+ = (U∗)T =
1√
2


1 1 0 0

i −i 0 0

0 0 1 1

0 0 i −i


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By doing unitary transformation we get the Hamiltonian in real representation :

Hreal = U+HelU (2.99)

Hreal =
1

2


S11 + S22 + S12 + S∗12 −i(S11 + S∗12) + i(S12 + S22) S13 + S23 + S14 + S24 −i(S13 + S23) + i(S14 + S24)

i(S11 − S∗12) + i(S12 − S22) (S11 − S∗12)− (S12 − S22) i(S13 − S23) + i(S14 − S24) (S13 − S23)− (S14 − S24)

S∗13 + S∗23 + S∗14 + S∗24 −i(S∗13 + S∗23) + i(S∗14 + S∗24) S33 + S∗34 + S34 + S44 −i(S33 + S∗34) + i(S34 + S44)

i(S∗13 − S
∗
23) + i(S∗14 − S

∗
24) (S∗13 − S

∗
23) + (S∗14 + S∗24) i(S33 − S∗34) + i(S34 − S44) (S33 − S∗34)− (S34 − S44)



After some algebra the terms can be written as

S11 =
1

2
[(W

(0)
+W

(2)
(Q

2
x +Q

2
y) +W

(4)
(Q

2
x +Q

2
y)

2
+W

4
(Q

4
x − 6Q

2
xQ

2
y +Q

4
y))] (2.100)

(Hreal)11 = [E∆ + g
(2)

(Q
2
x +Q

2
y) + g

(4)
(Q

2
x +Q

2
y)

2
+ η

(4)
(Q

4
x − 6Q

2
xQ

2
y +Q

4
y)] (2.101)

S22 =
1

2
[(W

(0)
+W

(2)
(Q

2
x +Q

2
y) +W

(4)
(Q

2
x +Q

2
y)

2 −W4
(Q

4
x − 6Q

2
xQ

2
y +Q

4
y))] (2.102)

(Hreal)22 = [E∆ + g
(2)

(Q
2
x +Q

2
y) + g

(4)
(Q

2
x +Q

2
y)

2 − η(4)
(Q

4
x − 6Q

2
xQ

2
y +Q

4
y)] (2.103)

S12 =
1

2
8W (4)(Q3

xQy −QxQ
3
y) (2.104)

(Hreal)12 = 4η(4)(Q3
xQy −QxQ

3
y) (2.105)

and

S33 =
1

2
[W (0) +W (2)(Q2

x +Q2
y) +W (2)(Q2

x −Q2
y)] (2.106)

(Hreal)33 = [EΠ + g(2)(Q2
x +Q2

y) + η(2)(Q2
x −Q2

y)] (2.107)

S44 =
1

2
[W (0) +W (2)(Q2

x +Q2
y)−W (2)(Q2

x −Q2
y)] (2.108)

(Hreal)44 = [EΠ + g(2)(Q2
x +Q2

y)− η2(Q2
x −Q2

y)] (2.109)
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S34 =
1

2
(4W (2)QxQy) (2.110)

(Hreal)34 = 2η(2)QxQy (2.111)

S13 =
1

2
(2W (1)Qx) (2.112)

(Hreal)13 = λQx (2.113)

S14 = −1

2
(2W (1)Qy) (2.114)

(Hreal)14 = −λQy (2.115)

S24 =
1

2
(2W (1)Qx) (2.116)

(Hreal)24 = λQx (2.117)

S23 =
1

2
(2W (1)Qy) (2.118)

(Hreal)23 = λQy (2.119)

ii) Σ− Π coupling:

In addition to the VC of the two components of the degenerate Π electronic

state, the degenerate bending vibrational mode of π symmetry can couple a dou-

bly degenerate Π electronic state with a nondegenerate Σ electronic state in linear

molecules. This coupling is known as Σ− Π coupling. This coupling mechanism

becomes important when a doubly degenerate Π electronic state lies close in en-

ergy to a Σ state [38,40–44,66]. By considering the diabatic basis states Ψ± and
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Ψ0 for the Π and Σ states, respectively, and following the steps described above,

the Σ− Π Hamiltonian is obtained as [37]

HΣ−Π = (TN +
ω

2
Q2)13 +


EΠ 2ηQxQy λQx

EΠ λQy

hc EΣ


where EΠ and EΣ are the energies of the Π and Σ electronic states respectively;

η represents quadratic RT coupling and λ represents the linear interstate (Σ - Π)

coupling.

2.1.7 Lack of δ vibrational mode in Linear molecules :

Here in this section it is proved that linear molecules does not have any δ vi-

brational mode, because of that degenerate Πg or Πu electronic states are second

order RT active and ∆g or ∆u electronic states are fourth order RT active along πg

or πu vibrational modes. For that we are taking an example of linear molecule C3,

(C=C=C) whose point group is D∞h. But Molpro or any other quantum chem-

istry softwares would approximate it to its highest abelian point group (D2h) in

this case. Lets’ say, the molecule is in YZ plane and the molecular axis is along

Z axis. Now, the correlation table of D∞h - D2h symmetry point group is the

following [45]:
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D∞h D2h vib mode

Σ+
g Ag σ+

g

Σ−g B1g σ−g

Σ+
u B1u σ+

u

Σ−u Au σ−u

Πg B2g+B3g πg

Πu B2u+B3u πu

∆g Ag+B1g δg

∆u Au+B1u δu

Now the reducible representation of C3 in D2h point group is :

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Γred 9 -3 -1 -1 -3 1 3 3

A decomposition of the above reducible to the IREPs of the D2h symmetry point

group yields :

ηAg =
1

8
[9− 3− 1− 1− 3 + 1 + 3 + 3] = 1

ηAu =
1

8
[9− 3− 1− 1 + 3− 1− 3− 3] = 0

ηB1g =
1

8
[9− 3 + 1 + 1− 3 + 1− 3− 3] = 0

ηB2g =
1

8
[9 + 3 + 1− 1− 3− 1− 3 + 3] = 1

ηB3g =
1

8
[9 + 3 + 1− 1− 3− 1 + 3− 3] = 1

ηB2u =
1

8
[9 + 3− 1 + 1 + 3 + 1 + 3− 3] = 2

ηB3u =
1

8
[9 + 3− 1 + 1 + 3 + 1− 3 + 3] = 2

ηB1u =
1

8
[9− 3 + 1 + 1 + 3− 1 + 3 + 3] = 2
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Therefore,

Γtotal = 1Ag + 2B1u + 1B2g + 1B3g + 1B2u + 1B3u

= 1σ+
g + 2σ+

u + 1πg + 2πu (2.120)

From the character table D2h point we get,

Γrotational = 1B2g + 1B3g + 1B1g

= 1πg + 0 (2.121)

Since, Cn is linear, rotation along z-axis, Rz should be ignored. So, B1g vanishes

in the above expression. Now,

Γtranslational = 1B2u + 1B3u + 1B1u = 1πu + 1σ+
u (2.122)

Therefore,

Γvibrational = Γtotal − Γrotational − Γtranslational = 1σ+
g + 1σ+

u + 1πu (2.123)

Now, we will extend the above derivation for n odd number of atoms (where,

n= 5, ..., 15,17,19,21). The reducible representation for D2h point group for n

number of atom is as follows

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Γred 3n -n -1 -1 -3 1 n n
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Now the components of D2h point group reduces to :

ηAg =
1

8
[3n− n− 1− 1− 3 + 1 + n+ n] =

1

8
[4n− 4] =

(n− 1)

2

ηAu =
1

8
[3n− n− 1− 1 + 3− 1− n− n] = 0

ηB1g =
1

8
[3n− n+ 1 + 1− 3 + 1− n− n] = 0

ηB2g =
1

8
[3n+ n+ 1− 1− 3− 1 + n− n] =

1

8
[4n− 4] =

(n− 1)

2

ηB3g =
1

8
[3n+ n− 1 + 1− 3− 1 + n+ n] =

1

8
[4n− 4] =

(n− 1)

2

ηB2u =
1

8
[3n+ n− 1 + 1 + 3 + 1 + n− n] =

1

8
[4n+ 4] =

(n+ 1)

2

ηB3u =
1

8
[3n+ n− 1 + 1 + 3 + 1− n+ n] =

1

8
[4n+ 4] =

(n+ 1)

2

ηB1u =
1

8
[3n− n+ 1 + 1 + 3− 1 + n+ n] =

1

8
[4n+ 4] =

(n+ 1)

2

Now,

Γtotal =
(n− 1)

2
Ag +

(n+ 1)

2
B1u +

(n− 1)

2
(B2g +B3g) +

(n+ 1)

2
(B2u +B3u)

=
(n− 1)

2
σ+
g +

(n+ 1)

2
σ+
u +

(n− 1)

2
πg +

(n+ 1)

2
πu (2.124)

Γrotational = 1B2g + 1B3g + 1B1g

= 1πg + 0 (2.125)

Since, Cn is linear, rotation along z-axis, Rz should be ignored. So, B1g vanishes
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from here.

Γtranslational = 1B2u + 1B3u + 1B1u

= 1πu + 1σ+
u (2.126)

Now,

Γvibrational = Γtotal − Γrotational − Γtranslational

=
(n− 1)

2
Ag +

(n− 1)

2
B1u +

(n− 3)

2
(B2g +B3g) +

(n− 1)

2
(B2u +B3u)

=
(n− 1)

2
σ+
g +

(n− 1)

2
σ+
u +

(n− 3)

2
πg +

(n− 1)

2
πu (2.127)

It proves that linear odd numbered molecules do not have any δg or δu vibrational

modes. That’s why the degenerate Π and ∆ electronic states are second order

and fourth order Renner-Teller(RT) active, respectively through degenerate πg

and πu vibrational modes.

2.1.8 Adiabatic potential energy surfaces and conical in-

tersections

The concept of adiabatic electronic potential energy surfaces (PESs) is important

for the interpretation and understanding of all kinds of phenomena in molecular

physics and chemistry. Therefore, we shall consider in some detail of the adiabatic

PESs. To start with, let us consider a 2×2 model diabatic Hamiltonian containing

N tuning modes (totally symmetric, Qsi) and M coupling (non-totally symmetric,

Qcj) vibrational modes and is given as
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H = (TN + V0)1 +

E1 +
∑N

i=1 κ
(1)
i Qsi

∑M
j=1 λjQcj∑M

j=1 λjQcj E2 +
∑N

i=1 κ
(2)
i Qsi

 (2.128)

where,

TN = −1

2

N∑
i=1

ωi(
∂2

∂Q2
si

)− 1

2

M∑
j=1

ωj(
∂2

∂Q2
cj

) (2.129)

V0 =
1

2

N∑
i=1

ωiQ
2
si +

1

2

M∑
j=1

ωjQ
2
cj. (2.130)

The quantities κ and λ represents the intrastate and interstate coupling param-

eters. Here, E1 and E2 (assuming E1 < E2) are ionization or excitation energies

of the coupled electronic states at the reference geometry Q = 0, where Q rep-

resents collectively the set of nuclear coordinates (Qs, Qc). TN is the nuclear

kinetic energy operator and V0 is the potential energy operator. The adiabatic

PESs are obtained by diagonalizing the above Hamiltonian in the fixed-nuclei

limit, TN → 0, as follows [2].

S†(H − TN1)S = V (2.131)

where

V =

V1(Q) 0

0 V2(Q)

 (2.132)

Here S is a 2 × 2 unitary matrix which describes the diabatic to adiabatic

transformation. V1(Q) and V2(Q) are the adiabatic PESs of Hamiltonian (Eq.

2.128). For detail discussion of the static aspects of the adiabatic PESs, it is

convenient to rewrite H of Eq.2.128 in the following general form [2]:
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H = H01 +

−d c

c d

 (2.133)

where,

H = TN + V0 + Σ + σQs (2.134)

Σ =
(E1 + E2)

2
(2.135)

∆ =
(E2 − E1)

2
(2.136)

σi =
(κ

(1)
i + κ

(2)
i )

2
(2.137)

δi =
(κ

(2)
i − κ

(1)
i )

2
(2.138)

d = ∆ +
N∑
i=1

δiQsi (2.139)

c =
M∑
j=1

λjQcj (2.140)

The expression of adiabatic potentials within the linear vibronic coupling (LVC)

model are then read,

V1,2(Q) = V0(Q) + Σ +
N∑
i=1

σiQsi ∓W (2.141)

where

W =
√
d2 + c2 (2.142)

Now the conditions for the occurrence of a CI of the adiabatic PESs of the above
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Hamiltonian are simply d = 0 and c = 0. These conditions define a hypersurface

of dimensional N +M − 2 and N +M dimensional coordinate space i.e in case of

one coupling mode and two tuning modes, for example, we obtain a line of CIs

in three dimensional space.

The minimum of the seam of CIs within LVC scheme is given by

V
(c)
min = Σ +

(F −D)2

2D
− 1

2

N∑
i=1

σi/ωsi (2.143)

The position of the minimum in the space of the tuning mode within LVC scheme

is,

(Q
(c)
si )min =

(δi/ωgi(F −D))

D
− σi
ωsi

, i = 1, · · ·N (2.144)

The minimum of the seam of the CIs relative to the minimum of the upper

adiabatic PESs is given by

V
(c)
min − (V2)min =

1

2D
(∆−D − F )2 (2.145)

where

D =
N∑
i=1

δ2
i

ωsi
(2.146)

F =
N∑
i=1

δiσi
ωsi

(2.147)

Next we shall examine the CI of two diabatic surfaces (j = 1, 2) described by

diabatic potentials containing both linear (κ
(j)
i ) and quadratic (γ

(j)
i ) coupling

term (cf. Eq. 2.133) i.e within QVC scheme

Vj(Q) = Ej +
N∑
i=1

κ
(j)
i Qi + [

ωi
2

+ γ
(j)
i ]Q2

i (2.148)
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Since V1(Q) = V2(Q) at CI, one immediately obtains the equation of the conical

intersection in the Q-space as

∆ +
N∑
i=1

(δiQi + γiQ
2
i ) = 0, (2.149)

γi =
(g

(2)
i −g

(1)
i )

2
. We mention that inclusion of quadratic coupling term in the

diabatic potential, as obtained l.h.s of Eq. 2.149 making the hypersurface to

differ from a hyperline as encountered in the LVC case.

The energies at the conical intersection seam are given by V2(Q) or (V1(Q)),

with Q subjected to the constraint Eq. 2.149. To obtain the minimum of the

seam of the conical intersection, one has to consider the the functional F (Q) ≡

V2(Q) + µG(Q), where µ is a Lagrange multiplier and G(Q) is a shorthand for

the l.h.s of Eq. 2.149. By imposing ∂F (Q)
∂Qi

= 0 one straightforwardly gets [9]

Qi = − κ
(2)
i + µδi

ωi + 2γ
(2)
i + 2µγi

(2.150)

The insertion of the above expression for Qi into Eq. 2.149 yields

∆ +
N∑
i=1

[−δi
κ

(2)
i + µδi

ωi + 2γ
(2)
i + 2µγi

+ γi(
κ

(2)
i + µδi

ωi + 2γ
(2)
i + 2µγi

)2] = 0. (2.151)

To find the seam minimum, we have to solve the above equation for the Lagrange

multiplier µ. Within the LVC model (γi = 0), Eq. 2.151 is linear in µ, possessing

therefore exactly one root. Putting this root value in Eq. 2.150, one can get an

unique solution of the minimization problem irrespective of the number of the

tuning modes. In contrast to this, within QVC model we are lead to the problem

of solving an algebraic equation of order 2N+1, where N is the number of tuning
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modes possessing nonvanishing quadratic couplings (γi 6= 0). In general, out of

the total number 2N+1 of its roots, there are several real roots. To determine the

energy Es of the minimum of the seam of the CI, one has to select thereof that

root for µ, which, inserted into Eq.2.149, leads to the smallest value of V2(Q)

(= Es). To solve the minimization problem along the approach described above,

we used the MATHEMATICA package version 5.1. Fortunately, it succeed to

find the roots of the highly nonlinear equation 2.151 for fluorophenol molecules

where upto 23 tuning modes were accounted for.

2.2 Calculation of excitation spectrum

Lets say, a molecule is initially in the state Ψ0 , is excited by some operator T̂

into a manifold of vibronically coupled electronic state. According to Fermi’s

golden rule, the spectral intensity of photoexcitation and photoelectron spectrum

is calculated which is described by function

P (E) =
∑
v

∣∣∣〈Ψf
v |T̂ |Ψi

0〉
∣∣∣2 δ(E − Ef

v + Ei
0), (2.152)

where the quantity T̂ represents the transition dipole operator that describes

the interaction of the electron with the external radiation of energy E during

the photoionization process. |Ψi
0〉 is the initial vibronic ground state (reference

state) with energy Ei
0 and |Ψf

v〉 corresponds to the (final) vibronic state of the

photoionized/excited molecule with energy Ef
v . The reference ground electronic

state is approximated to be vibronically decoupled from the other states and it

is given by

|Ψi
0〉 = |Φ0〉|χ0

0〉, (2.153)
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The final vibronic state |Ψf
v〉 in the coupled electronic manifold of n interacting

states can be written as

|Ψf
v〉 =

∑
n

|Φn〉|χnv 〉, (2.154)

where |Φ〉 and |χ〉 represent the diabatic electronic and vibrational part of the

wavefunction, respectively. The superscripts refer to the ground and excited

states. With the help of Eqs. (2.153-2.154), the excitation function Eq. (2.152)

can be rewritten as

P (E) =
∑
v

∣∣∣∣∣∑
n

τn〈χnv |χ0
0〉

∣∣∣∣∣
2

δ(E − Ef
v + Ei

0), (2.155)

where

τn = 〈Φn|T̂ |Φ0〉 (2.156)

represent the matrix elements of the transition dipole operator of the final elec-

tronic state n. In diabatic basis, these elements depends very weakly on nuclear

coordinates Q. Hence, in the study of photoinduced processes presented in this

thesis, the transition dipole operator elements are considered as constants. This

approximation is called as Condon approximation [47].

2.2.1 Time-independent approach

In a time-independent matrix diagonalization quantum mechanical approach the

photoinduced electronic spectrum is calculated by solving the eigenvalue equation
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i.e. the time-independent vibronic Schrödinger equation,

H|Ψf
n〉 = En|Ψf

n〉, (2.157)

It is solved by expanding the vibronic eigenstates {|Ψf
n〉} in the direct product

harmonic oscillator basis of the electronic ground state [2]

|Ψf
n〉 =

∑
{|Ki〉}

anK1,...,Kl
|K1〉|K2〉...|Kl〉|φn〉 (2.158)

Here Kth level of ith vibrational mode is denoted by |Ki〉. |φm〉 is the electronic

wavefunction. For each vibrational mode, the oscillator basis is suitably truncated

in the numerical calculations. In practice, the maximum level of excitation for

each mode is estimated from the convergence behavior of the spectral envelope.

The Hamiltonian matrix expressed in a direct product Harmonic oscillator basis is

highly sparse and is tri-diagonalized by the Lanczos algorithm [48]. The diagonal

elements of the resulting eigenvalue matrix give the position of the vibronic lines

and the relative intensities are obtained from the squared first components of

the Lanczos eigenvectors [2, 12]. These calculations are simplified by employing

the generalized Condon approximation in a diabatic electronic basis [47], that

is, the matrix elements of T̂ in the diabatic electronic basis are treated to be

independent of nuclear coordinates and have the equal modulus. To reflect the

inherent broadening of the experimental vibronic spectrum, the stick vibronic

lines obtained from the matrix diagonalization calculations are usually convoluted

[2] with a Lorentzian line shape function

L(E) =
1

π

Γ
2

E2 + (Γ
2
)2

, (2.159)
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with a FWHM Γ.

2.2.2 Time-dependent approach

In a time-dependent picture, the Fourier transform representation of the Dirac

delta function, δ(x) = 1
2π

∫ +∞
−∞ eixt/~, is used in the Fermi’s golden rule equation,

Eq. (2.152) to calculate spectral intensity. The resulting expression for the spec-

tral intensity then rearranges to the Fourier transform of the time autocorrelation

function of the wave packet,

P (E) ≈ 2Re

∫ ∞
0

eiEt/~〈Ψi(0)|τ †e−iHt/~τ |Ψi(0)〉dt, (2.160)

≈ 2Re

∫ ∞
0

eiEt/~ Ci(t) dt. (2.161)

In Eq. (2.160) the elements of the transition dipole matrix τ † is given by,

τ f = 〈φf |T̂ |φi〉. The quantity Cf (t) = 〈Ψf (0)|Ψf (t)〉, is the time autocorre-

lation function of the WP initially prepared on the f th electronic state and,

Ψf (t) = e−iHt/~ Ψf (0). In the time-dependent calculations, the time autocorrela-

tion function is damped with a suitable time-dependent function before Fourier

transformation. The usual choice has been a function of type

f(t) = exp[−t/τr] , (2.162)

where τr represents the relaxation time. Multiplying C(t) with f(t) and then

Fourier transforming it is equivalent to convoluting the spectrum with a Lorentzian

line shape function (cf., Eq. (2.159)) of FWHM, Γ = 2/τr.
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2.2.3 Propagation of wave packet by MCTDH algorithm

The matrix diagonalization approach becomes computationally impracticable with

increase in the electronic and nuclear degrees of freedom. Therefore, for large

molecules and with complex vibronic coupling mechanism this method often be-

comes unachievable. The WP propagation approach within the MCTDH scheme

has emerged as a very promising alternative tool for such situation [49–52]. This

is a grid based method which utilizes DVR combined with fast Fourier transfor-

mation and powerful integration schemes. The efficient multiset ansatz of this

scheme allows for an effective combination of vibrational degrees of freedom and

thereby reduces the dimensionality problem. In this approach the wavefunction

for a nonadiabatic system is expressed as [50–52]

Ψ(Q1, ..., Qf , t) = Ψ(R1, ..., Rp, t) (2.163)

=
σ∑

α=1

n
(α)
1∑

j1=1

...

n
(α)
p∑

jp=1

A
(α)
j1,...,jp

(t)

p∏
k=1

ϕ
(α,k)
jk (Rk, t)|α〉, (2.164)

Where, R1,..., Rp are the coordinates of p particles formed by combining vibra-

tional degrees of freedom, α is the electronic state index and ϕ
(α,k)
jk are the nk SPFs

for each degree of freedom k associated with the electronic state α. Employing

a variational principle, the solution of the time-dependent Schrödinger equation

is described by the time-evolution of the expansion coefficients A
(α)
j1,...,jp

. In this

scheme all multi-dimensional quantities are expressed in terms of one-dimensional

ones employing the idea of mean-field or Hartree approach. This provides the

efficiency of the method by keeping the size of the basis optimally small. Fur-

thermore, multi-dimensional SPFs are designed by appropriately choosing the set

of system coordinates so as to reduce the number of particles and hence the com-
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putational overheads. The operational principles, successes and shortcomings of

this schemes are detailed in the literature [50–52]. The Heidelberg MCTDH pack-

age [49] is employed to propagate WPs in the numerical simulations for present

molecules. The spectral intensity is finally calculated using Eq. (2.160) from

the time-evolved WP. Here we provide a brief overview on the memory require-

ment for the MCTDH method. The memory required by standard method is

proportional to N f , where N is the total number of grid points or primitive basis

functions and f is the total number of degrees of freedom. In contrast, memory

needed by the MCTDH method scales as

memory ∼ fnN + nf (2.165)

where, n represent the SPFs. The memory requirements can however reduced if

SPFs are used that describe a set of degrees of freedom, termed as multimode

SPFs. By combining d degrees of freedom together to form a set of p=f/d

particles, the memory requirement changes to

memory ∼ fñNd + ñf (2.166)

where ñ is the number of multimode functions needed for the new particles. If only

single-mode functions are used i.e. d=1, the memory requirement, Eq. (2.166),

is dominated by nf . By combining degrees of freedom together this number can

be reduced, but at the expense of longer product grids required to describe the

multimode SPFs.
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Chapter 3

Electronic spectroscopy of carbon

clusters (C2n+1, n=7-10). I.

Quantum Chemistry.

Extensive ab initio quantum chemistry calculations are carried out to establish the

electronic potential energy surfaces and their coupling surfaces for carbon clus-

ters containing odd number of carbon atoms (C2n+1, n=7-10). A vibronic coupling

model is established to carry out nuclear dynamics calculations from first princi-

ples. The latter are reported in chapter 4. The mentioned clusters possess linear

cumulenic chain structure at the equilibrium minimum of their electronic ground

state and an excited state of 1Σ+
u term is found to be extremely bright optically

in the visible region of the electromagnetic spectrum. The oscillator strength of

this state linearly increases with an increase of the chain length. There are states

belonging to Πg, Πu, ∆g and ∆u terms, in the immediate vicinity of the 1Σ+
u state,

which are optically dark but can gain intensity through vibronic coupling with this

bright state. Such a coupling scheme is developed in this chapter. The Hamil-

70
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tonian is constructed in a diabatic electronic basis in terms of the dimensionless

normal coordinates of the vibrational modes of the cluster. Both Renner-Teller

and pseudo-Renner-Teller type of couplings are included in the Hamiltonian. The

theoretical results are discussed in relation to the experimental findings.

3.1 Introduction

The electronic structure and absorption spectroscopy of neutral carbon clusters

received renewed attention in the literature because of their apparent importance

in the spectroscopy of interstellar medium [1,2]. The first spectroscopic detection

of C3 in comets in 1881 triggered curiosity among the stellar as well as laboratory

spectroscopists to identify neutral carbon clusters as carrier of diffuse interstellar

bands (DIBs) [3]. Douglas in a seminal paper suggested that the carbon chains

Cn, where n may lie in the range 5-15 could show spectroscopic features consistent

with DIBs [4]. The diffuse structure of these bands is attributed to a short lifetime

of excited electronic states of the carrier molecules [5].

Following the above development, many experimental and computational stud-

ies were carried out on anionic, neutral and cationic bare carbon clusters [6–10].

In this context two reviews, covering the rich history of carbon clusters, by Welt-

ner [11] and Orden [12] are noteworthy. Smaller carbon clusters were predicted to

have linear equilibrium geometry with a cumulenic (:C=C=C=C:) type of bond-

ing with nearly equal bond lengths. Linear chains with odd number of carbon

atoms were predicted to have 1Σ+
g electronic ground term in contrast to a 3Σ−g

electronic ground term for the cluster chains with even number of carbon atoms.

Clusters larger than C10 were proposed to have ring structures as well, because of

the reduction of ring strain and added stability due to extra C−C bond. However,
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the cyclic clusters are reported to be difficult to detect and characterize spectro-

scopically [11, 12]. Therefore, the linear clusters are discussed in majority of the

experiments [28, 29]. The clusters, C2n+1, (n=7-10), also have linear cumulenic

equilibrium structure [15].

Energetically low-lying electronic states of C15, C17, C19 and C21 clusters stud-

ied here belong to 1Σ, 1Π or a 1∆ terms. About twelve excited electronic states

are found to exist to within 4 eV energy. While a Σ state is nondegenerate, the

Π and ∆ states are doubly degenerate. The degeneracy of the latter states split

upon distortion (from equilibrium) along bending vibrational modes of the cluster

and can give rise to Renner-Teller (RT) effect. In addition, the RT split compo-

nents may also undergo symmetry allowed coupling with the nondegenerate (1Σ)

or another RT split component state, giving rise to a pseudo-Renner-Teller (PRT)

type of interaction (equivalent to pseudo-Jahn-Teller interaction in nonlinear sys-

tems) of the electronic states. The 1Σ+
u electronic state is the optically bright

state in all the clusters studied here. It’s oscillator strength scales linearly (cf.

Fig. 3.1) with the cluster chain length. Several optically dark non-degenerate

and degenerate electronic states appear to within 1.0 eV energy range of this

1Σ+
u state. Therefore, elucidation of the coupling mechanism of the latter state

is important in order to understand its detailed vibronic structure. Such studies

are not available in the literature so far. The present effort is aimed to fulfil this

task.

While detailed ab initio electronic structure calculations are carried out to

establish the coupling mechanism and construct a vibronic Hamiltonian in this

chapter, the nuclear dynamics calculations are carried out in chapter 4. The

results are compared with the available experimental findings.
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3.2 Electronic structure calculations

The ground vibrational level of the electronic ground state (S0
1Σ+

g ) of C2n+1

(n=7-10) is taken as the reference state to investigate 1Σ+
u photoabsorption spec-

troscopy of these clusters. The equilibrium geometry of the reference state is

optimized by the Becke-3-parameter (exchange), Lee, Yang, and Parr (B3LYP)

density functional method using the correlation consistent polarized valence dou-

ble - ζ (cc-pVDZ) basis set of Dunning [16]. The Gaussian-09 suite of program [17]

is used for the optimization calculations. The optimized equilibrium geometry

yields an average C=C bond length of ∼ 1.30 A0 in agreement with the literature

data [18]. Harmonic frequency (ωk) of vibrational modes and their dimensionless

normal displacement coordinates (Qk) are calculated by diagonalizing the kine-

matic and force constant matrices of the reference equilibrium geometry, given

in Table 3.3. Symmetry analysis of the normal modes of linear clusters with odd

number of carbon atoms, C2n+1 (say, 2n+1=N), yields (N-1) nondegenerate (σ)

and (N-2) degenerate (π) vibrations. They decompose into the following irre-

ducible representations (IREPs) of the D∞h symmetry point group as shown in

chapter 2 (Sec. 2.1.7).

Γ = ((N − 1)/2)σ+
g ⊕ ((N − 1)/2)σ+

u ⊕ ((N − 3)/2)πg ⊕ ((N − 1)/2)πu. (3.1)

The analysis also reveals that these linear molecules do not contain vibrations

with higher angular momentum like δ, φ etc. The vertical excitation energies

(VEEs) of the electronic states of C15, C17, C19 and C21 are calculated along the

dimensionless normal coordinates of all vibrational modes. The calculations are

carried out using EOM-CCSD method implemented in the MOLPRO suite of pro-

grams [19] and cc-pVDZ basis set. In MOLPRO, the calculations are performed
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in D2h symmetry. The D2h - D∞h correlation table (which is given in Chapter

2, sec. 2.1.7) is utilized to derive electronic terms and symmetry representation

of vibrational modes. The VEEs calculated at the equilibrium geometry of the

reference ground state of energetically low-lying (to within 4 eV relative to refer-

ence equilibrium energy) electronic states are given in Table. 3.1. Along with the

VEEs the oscillator strengths values are also given in the table. It can be seen

that the 1Σ+
u is the only optically bright state in these clusters. The oscillator

strength of this state for clusters containing odd number of C atoms from C5 to

C21 is plotted as a function of the chain length in Fig. 3.1. It can be seen from

this figure that the oscillator strength increases linearly with increasing chain

length.

VEEs are calculated over a range of displacement of normal coordinates (-5.00

≤ Q ≤ 5.00) of the vibrational modes. These energies plus the energy of the

reference state define the adiabatic energies of the excited electronic states of the

clusters. From Table. 3.1, it can be seen that the electronic states of the clusters

studied here have Σ, Π and ∆ terms. All of them have 1Σ+
g electronic ground

term. The energy of the target 1Σ+
u state is lowered with increasing chain length.

This state is energetically very close to its neighboring states (cf. Table 3.1) and

vibronic coupling is expected to play important role in the nuclear dynamics on

this state. The Π and ∆ electronic states are orbitally degenerate at the D∞h

symmetry configuration. This degeneracy is split upon bending the linear cluster

chain and gives rise to Renner-Teller (RT) effect. The RT split component states

may undergo PRT type of coupling with the non-degenerate 1Σ+
u state. Using

elementary symmetry rule the following coupling scheme can be derived from the

character table of D∞h symmetry point group.
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Table 3.1: Vertical excitation energy (VEE in eV) and oscillator strength (f) of ener-
getically low-lying excited singlet electronic states of neutral carbon clusters C15, C17,
C19 and C21. * indicates the states which are considered for nuclear dynamics study.

State VEE f State VEE f

C15 C17

S∗5
1Πg 3.1082 0.00 S∗5

1Σ+
u 2.951 14.81

S∗6
1Πu 3.1097 0.01 S6

1Σ−u 3.060 0.00
S∗7

1Σ+
u 3.2730 12.97 S∗7

1Πu 3.087 0.01
S8

1Σ−u 3.4325 0.00 S∗8
1Πg 3.089 0.00

S9
1Σ−g 3.4485 0.00 S∗9

1∆u 3.132 0.00
S∗10

1∆g 3.4801 0.00 S10
1Σ−g 3.163 0.00

S∗11
1∆u 3.5149 0.00 S∗11

1∆g 3.199 0.00
S∗12

1Σ+
g 3.6133 0.00 S∗12

1Σ+
g 3.346 0.00

C19 C21

S∗5
1Σ+

u 2.6783 16.55 S∗5
1Σ+

u 2.444 18.19
S6

1Σ−u 2.7528 0.00 S6
1Σ−u 2.494 0.00

S∗7
1∆u 2.8144 0.01 S∗7

1∆u 2.546 0.00
S8

1Σ−g 2.9284 0.00 S8
1Σ−g 2.732 0.00

S∗9
1∆g 2.9676 0.00 S∗9

1∆g 2.773 0.00
S∗10

1Πg 3.0712 0.01 S∗10
1Σ+

g 2.939 0.00
S∗11

1Πu 3.0723 0.00 S∗11
1Πu 3.0595 0.01

S∗12
1Σ+

g 3.1252 0.00 S∗12
1Πg 3.0604 0.00
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Figure 3.1: Oscillator strength (f) of linear carbon chains with odd number of carbon
atoms as a function of the number of carbon atoms. The points are obtained from ab
initio quantum chemistry calculations by EOM-CCSD method with a cc-pVDZ basis
set and the solid line represent a linear fit to the ab initio data given by, f= -2.53 +
1.13 nc.
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The first-order coupling between electronic states i and j through vibrational

mode k is governed by the symmetry rule: Γi ⊗ Γk ⊗ Γj ⊃ σ+
g [20]. The sym-

bol Γ represents the IREPs. The symbol σ+
g is the IREP of totally symmetric

vibrational mode of linear molecule. According to this rule the latter vibrational

modes are active within a given electronic states (i = j). Now for the degenerate

Π and ∆ states the symmetrized direct products transform according to : (Πg)
2

= (Πu)
2 = σ+

g + δg and (∆g)
2 = (∆u)

2 = σ+
g + γg. While the totally symmetric

σ+
g vibrational modes can not lift orbital degeneracy, the modes of δg and γg

symmetry can lift the same in first order of the Π and ∆ states, respectively.

The lack of vibrational modes of δg and γg symmetry in linear molecules make

the first-order RT coupling vanish in those states. However, (πg)
2 = (πu)

2 ⊃ δg

and (πg)
4 = (πu)

4 ⊃ γg, therefore, the πg and πu modes can be RT active in

the Π and ∆ states in second-order and fourth-order, respectively. The RT split

components of the Π and ∆ states can undergo PRT type of coupling according

to :

Πg ⊗ Πu = δu + σ−u + σ+
u ; (3.2a)

Πg/u ⊗∆g/u = πg + φg; (3.2b)

Πg/u ⊗∆u/g = πu + φu; (3.2c)

∆g ⊗∆u = γu + σ−u + σ+
u . (3.2d)

The nondegenerate Σ state can undergo coupling with the neighboring Σ or Π

states according to :

Σ+
u ⊗ Σ+

g = σ+
u ; (3.3a)
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Σ+
u ⊗ Πg/u = πu/g (3.3b)

Σ+
g ⊗ Πg/u = πg/u (3.3c)

3.3 The Vibronic Hamiltonian

It can be seen from Table 3.1 that in the immediate neighborhood of 1Σ+
u states,

there are many states of Σ, Π and ∆ symmetry. Consideration of all states listed

in Table II in the dynamics (treated in chapter 4) is computationally impracti-

cable. We therefore selected the states marked with an asterisk in Table 3.1 and

developed a vibronic Hamiltonian in the following. It can be seen from Table 3.1

that in addition to the 1Σ+
u state, 1Πg,

1Πu,
1Σ+

g , 1∆g and 1∆u state one each is

considered. These states are energetically closest to the 1Σ+
u state. With the aid

of the symmetry rules discussed in the previous section and standard vibronic

coupling theory the following vibronic Hamiltonian can be derived in a diabatic

electronic basis

H = H0110 + ∆H, (3.4)

where, H0 = TN + V0, with

TN = −1

2

∑
k ∈ σ+

g , σ
+
u

ωk
∂2

∂Q2
k

− 1

2

∑
k ∈ πg , πu

ωk

(
∂2

∂Q2
kx

+
∂2

∂Q2
ky

)
,
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and

V0 =
1

2

∑
k ∈ σ+

g , σ
+
u

ωkQ
2
k +

1

2

∑
k ∈ πg , πu

ωk
(
Q2
kx +Q2

ky

)
,

is the unperturbed harmonic Hamiltonian of the reference electronic ground state.

110 is a 10 × 10 unit matrix. The components of doubly degenerate vibrational

modes and electronic states are labelled with x and y, respectively. The quantity

∆H defines the change in electronic energy upon excitation. This is a 10 × 10

matrix Hamiltonian in the diabatic electronic basis which can be symbolically

represented as

∆H =



H1 H12 H13 H14 H15 H16 H17 H18 H19 H110

H2 H23 H24 H25 H26 H27 H28 H29 H210

H3 H34 H35 H36 H37 H38 H39 H310

H4 H45 H46 H47 H48 H49 H410

H5 H56 H57 H58 H59 H510

H6 H67 H68 H69 H610

H7 H78 H79 H710

h.c H8 H8,9 H8,10

H9 H910

H10.



(3.5)

In the above equation the states are identified with the index 1 to 10 as 1Σ+
u , 1Πgx,

1Πgy,
1Πux,

1Πuy,
1Σ+

g , 1∆gx,
1∆gy,

1∆ux and 1∆uy, respectively. The elements

of this Hamiltonian matrix are expanded in a Taylor series around the reference

equilibrium configuration in the following way:
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∆Hi =E0
i +

∑
k ∈ σ+

g

κ
i
kQk +

∑
k ∈ σ+

g , σ
+
u

γ
i
kQ

2
k +

∑
k ∈ πg, πu

γ
i
k(Q

2
kx +Q

2
ky) +

∑
k ∈ πg, πu

ρ
i
k(Q

2
kx +Q

2
ky)

2

±
∑

k ∈ πg, πu

η
i,j
k

(Q
2
kx −Q

2
ky)±

∑
k ∈ πg, πu

β
i,j
k

(Q
4
kx −Q

4
ky)±

∑
k ∈ πg, πu

ξ
i,j
k

(Q
4
kx − 6Q

2
kxQ

2
ky +Q

4
ky).

(3.6)

In the above ε0
i defines the VEE, κik first-order and γik and ρik second-order and

fourth order intrastate coupling along mode k of the ith electronic state, respec-

tively. The + and - sign of the last two terms of Eq. 3.6 applies to the x and y

component of the degenerate state, respectively. The quantities, ηi,jk and βi,jk are

the quadratic and quartic RT coupling parameters within the Π states, respec-

tively and the quartic RT coupling parameters within the ∆ states are define as

ξi,jk . The various off-diagonal terms of the Hamiltonian (Eq. 3.5) representing

RT and PRT couplings are listed in Table 3.2.
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In the above table, λi,jk , defines the linear PRT coupling parameter between states

i and j along the vibrational mode k. The quadratic and quartic RT coupling pa-

rameters within the Π states are given by ηi,jk and βi,jk along the vibrational mode

k and within the ∆ electronic states the quartic RT coupling parameters are given

by ξi,jk along vibrational mode k. A rigorous derivation of this vibronic Hamil-

tonian is presented in Chapter-2. All the coupling parameters defined above are

estimated from the calculated adiabatic electronic energies along a given vibra-

tional mode. Non-linear least squares fit of the adiabatic energies to the adiabatic

form of the diabatic Hamiltonian Eq. 3.5 along each vibrational mode is carried

out for this purpose. The complete list of parameters for all four clusters are

given in Tables 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11. A close look at the

parameters given in these tables reveal that the lowest frequency, σ+
g vibrational

modes (ν7 in C15, ν8 in C17, ν9 in C19 and ν10 in C21) possess large excitation

strength in Σ and ∆ states. The vibrational modes, ν1 - ν5 on the other hand

are condon active within the Π states. The excitation strength of these modes is

nearly same in both the 1Πg and 1Πu states of all four clusters. This is because

these states are quasi-degenerate which give rise to same κ and γ values.
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3.4 Results and Discussion

3.4.1 Adiabatic potential energy surfaces

In this section we examine the topography of the adiabatic PESs of ten (includ-

ing degeneracy) excited singlet electronic states (as discussed above) obtained by

diagonalizing the electronic Hamiltonian of the diabatic model developed above.

One dimensional cuts of the potential energy hypersurfaces of C2n+1, (where,

n=7-10) are plotted along the given totally symmetric (σ+
g ) and RT active (πg

and πu) vibrational modes keeping others at their equilibrium values at, Q=0,

are shown in Figs. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13.

In the figure the solid curves represent the adiabatic potential energy functions

obtained from the model developed in Sec 3.2 and the points superimposed on

them are obtained from ab initio quantum chemical calculations discussed in Sec.

3.2. It can be seen from the figures that the ab initio energies are very well

reproduced by the model. The energetic minimum of the seam of various CIs

and the minimum of the upper adiabatic electronic states are estimated with a

QVC(quadratic vibronic coupling) model. The resulting data are collected in

Table 3.12. The diagonal entries in this table are the energy at the minimum of

a state. Whereas, the off-diagonal entries represent the minimum of the seam of

CIs.

The probable impact of this energetics is explained below in detail for all the four

clusters:

In case of C15, 1Σ+
u electronic state is vertically above the 1Πg and 1Πu and

below 1∆g,
1∆u and 1Σ+

g states. 1Πg and 1Πu states intersect with 1Σ+
u state at a

large distance (≈ 3 (Q)). 1Πg and 1Πu states can form low energy conical inter-
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section with 1Σ+
u state along the normal coordinates of the symmetric stretching

modes ν1 (2243 cm−1) and ν4 (1755 cm−1). 1Πg and 1Πu electronic states are

quasi-degenerate at their equilibrium minimum (cf. Fig. 3.2). Vertically these

states are separated by only ∼ 0.002 eV (cf. Table 3.1). The minimum of 1Πg

- 1Πu intersections occurs at ∼ 1.82 eV above the minimum of the upper adia-

batic 1Πu electronic state. From Table 3.5 it can be seen that interstate coupling

between these states is moderately strong along the anti-symmetric stretch, ν10

(2001 cm−1) and ν11 (1924 cm−1) vibrational modes of σ+
u symmetry. Similarly,

the minimum of the 1Σ+
u state is only ∼0.04 eV lower in energy than the minimum

of the 1Σ+
u - 1Πg and 1Σ+

u - 1Πu PRT intersection minimum. This would leads to a

ultrafast nonradiative decay of the excited electronic state. Strong interstate cou-

pling between these states is caused by the πu and πg vibrational modes (cf. Table

3.5). Hence, it is expected that the absorption bands of 1Πg,
1Πu and 1Σ+

u will

be perturbed significantly by the 1Πg - 1Σ+
u and 1Πu - 1Σ+

u interstate couplings.

Similarly, the minimum of 1Πg - 1Σ+
g and 1Πu - 1Σ+

g CIs occurs ∼ 0.12 eV above

the minimum of 1Σ+
g electronic state. The interstate coupling between them is

weak. The 1Σ+
u - 1Σ+

g intersection minimum occurs at much higher energy ∼ 2.7

eV above the 1Σ+
u minimum. This separation is relatively high when compared to

the remaining energetic positions discussed above. However, the strong coupling

between 1Σ+
u - 1Σ+

g along ν10 (2001 cm−1) (anti-symmetric stretch) makes the

nonadiabatic interactions stronger in these coupled electronic states. It can be

seen from the Fig 3.2 that along the coordinates of ν2 (2216 cm−1) and ν3 (2055

cm−1) symmetric stretch vibrational modes low energy crossing among 1Σ+
u - 1Πg

- 1Πu - 1∆g - 1∆u - 1Σ+
g states develop. 1Πg - 1∆g and 1Πu - 1∆g intersection

minimum occurs at ∼ 0.03 eV above the 1∆g state minimum and 1Πg - 1∆u and

1Πu - 1∆u minimum occurs at ∼ 0.14 eV above the 1∆g state minimum. 1∆g -
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1∆u intersection minimum is degenerate with the 1∆u state minimum, shows a

strong coupling along the anti-symmetric stretch vibration, ν8 (2260 cm−1).

In case of C17, optically bright 1Σ+
u electronic state is vertically below the

1Πg,
1Πu,

1∆g,
1∆u and 1Σ+

g states. The minimum of this state occurs close

to the minimum of the seams of intersection with the 1Πg and 1Πu states and

1Πg and 1Πu electronic states are quasi-degenerate and have approximately same

equilibrium minimum (cf. Fig. 3.2 and Table 3.12). From Table 3.7 it can be

seen that interstate coupling between these states is moderately strong along the

anti-symmetric stretch, ν12 (1932 cm−1) vibrational mode of σ+
u symmetry. The

1Σ+
u - 1Πg and 1Σ+

u - 1Πu intersection minimum occurs ∼ 0.08 eV and ∼ 0.09 eV

above the minimum of the 1Πg and 1Πu states, respectively. Interstate coupling

between 1Σ+
u - 1Πg, and 1Σ+

u - 1Πu states is very strong along the low frequency

πu nag πg bending vibrational modes (cf. Table 3.7). It can be seen from Fig.

3.5 that along the symmetric stretch vibrational modes, ν1 (2257 cm−1), ν2 (2182

cm−1), ν3 (2136 cm−1) and ν4 (1925 cm−1) low energy crossing among 1Σ+
u - 1Πg

- 1Πu - 1∆g - 1∆u - 1Σ+
g states develop. The 1Σ+

u - 1Σ+
g intersection minimum

occurs at much higher energy, ∼ 3 eV above the 1Σ+
u minimum. This separation

is relatively large when compared to the remaining energetic positions discussed

above. However, strong coupling between 1Σ+
u - 1Σ+

g along ν12 (1932 cm−1) mode

makes the nonadiabatic interactions stronger in these coupled electronic states.

The minimum of the 1∆u state is degenerate with the minimum of the seam of its

intersections with the 1Πg and 1Πu states. Similarly, the equilibrium minimum of

the 1∆g state is quasi-degenerate with the minimum of its seam of intersections

with the 1Πg state. The minimum of 1∆u - 1∆g conical intersections occur at

∼ 0.01 eV above the minimum of 1∆g state. It shows a strong coupling along
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the anti-symmetric stretch, ν9 (2248 cm−1) vibrational mode of σ+
u symmetry (cf.

Table 3.7).

In case of C19, the 1Σ+
u electronic state is vertically below the 1Πg,

1Πu,
1∆g,

1∆u and 1Σ+
g electronic states. The 1Πg and 1Πu electronic states are quasi-

degenerate and their equilibrium minimum occurs at nearly same location. The

minimum of 1Πg - 1Πu intersections is ∼ 0.43 eV above the minimum of the 1Πu

electronic state and these are strongly coupled along the anti-symmetric stretch

vibrational modes, ν11 (2222 cm−1), ν14 (1869 cm−1), and ν16 (1251 cm−1) (cf.

Table 3.9) of σ+
u symmetry. The minimum of 1Σ+

u - 1Πg and 1Σ+
u - 1Πu intersec-

tions is energetically very close to the minimum of the 1Πg and 1Πu states. These

intersections are just ∼ 0.17 eV above the minimum of the 1Σ+
u state. The in-

terstate coupling between these states are strong along the low frequency πg and

πu vibrational modes (cf. Table 3.9). The minimum of 1Σ+
u - 1Σ+

g conical inter-

sections occurs at much higher energy, ∼ 2.6 eV above the equilibrium minimum

of the 1Σ+
g state. These states are fairly strongly coupled by the anti-symmetric

stretch ν14 (1869 cm−1) vibrational mode of σ+
u symmetry. The 1∆g - 1∆u inter-

section minimum occurs at ∼ 0.15 eV above the 1∆u minimum, coupled through

the anti-symmetric stretch, ν11 (2222 cm−1) vibrational mode of σ+
u symmetry.

It can be seen from the Fig. 3.8 that along the symmetric stretch coordinates of

ν3 (2138 cm−1) and ν4 (2018 cm−1) vibrational modes low energy crossing among

1Σ+
u - 1Πg - 1Πu - 1∆g - 1∆u - 1Σ+

g states develop. From Table 3.9, it is seen that

the interstate coupling between the 1∆g/u - 1Πg/u state is very strong along the

low frequency vibrational modes of πg and πu symmetry. The 1∆u - 1Πg and 1∆g

- 1Πg intersection minimum is ∼ 0.04 and ∼ 0.15 eV above the 1Πg minimum.

Similarly, 1∆u - 1Πg and 1∆g - 1Πu intersection minimum is ∼ 0.15 above the 1Πu
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minimum.

In case of C21, the 1Σ+
u electronic state is vertically below the 1Πg,

1Πu,
1∆g

, 1∆u and 1Σ+
g states. The 1Πg and 1Πu electronic states are quasi-degenerate

and have the equilibrium minimum located nearly at the same place (cf. Table

3.12 and Fig. 3.11). The minimum of the 1Πu-
1Πg intersections occurs ∼ 0.30 eV

above the minimum of the 1Πg electronic state. These states are strongly cou-

pled along the anti-symmetric stretch, ν13 (2166 cm−1), ν15 (1821 cm−1), and ν16

(1784 cm−1) (cf. Table 3.11) vibrational modes of σ+
u symmetry. The 1Σ+

u -1Πg

and 1Σ+
u -1Πu intersection minimum are close to the minimum of the 1Πg and 1Πu

state, with an energy gap of ∼ 0.01 and ∼ 0.03 eV, respectively. These intersec-

tions occur ∼ 0.41 eV above the minimum 1Σ+
u state. The interstate coupling

between these states are strong along the low frequency πg and πu bending vi-

brational modes. The 1Σ+
u -1Σ+

g conical intersection minimum occurs at much

higher energy at ∼ 3.8 eV above the minimum of the 1Σ+
g state. The coupling is

also weak between these states (cf. Table 3.11). The 1∆u and 1∆g intersection

minimum occurs at ∼ 0.39 eV above the minimum of the 1∆g state. They are

coupled through the anti-symmetric stretch, ν12 (2202 cm−1) vibrational mode of

σ+
u symmetry. It can be seen from the Fig 3.11 that along the symmetric stretch

vibrational mode of ν1 (2250 cm−1) and ν4 (2087 cm−1) low energy crossing among

1Σ+
u -1Πg-

1Πu-
1∆g-

1∆u-
1Σ+

g states develop. From Table 3.11, it can be seen that

interstate coupling between the 1∆g/u-
1Πg/u state is very strong along the low

frequency vibrational modes of πg and πu symmetry. The 1∆u -1Πu and 1∆g -1Πu

intersection minimum is ∼ 0.02 eV lower and ∼ 0.04 eV above the minimum of

the 1Πu state. Likewise, 1∆u -1Πg intersection minimum is degenerate with the

1Πg state minimum whereas 1∆g -1Πg intersection minimum is ∼ 0.06 eV above
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the 1Πg state minimum.

Implications of these stationary points on the potential energy hypersurfaces on

the nuclear dynamics is studied and discussed in chapter-4.
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Table 3.12: Estimated equilibrium minimum (diagonal entries) and minimum of the seam of various intersection seams
(off-diagonal entries) of the electronic states of C15, C17, C19 and C21 within a quadratic coupling model. All quantities
are given in eV.

C15 C17
1Πg

1Πu
1Σ+

u
1∆g

1∆u
1Σ+

g
1Σ+

u
1Πu

1Πg
1∆u

1∆g
1Σ+

g

1Πg 2.91 4.73 3.30 3.48 3.62 3.77 1Σ+
u 2.94 2.96 2.96 - - 6.21

1Πu - 2.91 3.30 3.48 3.62 3.77 1Πu - 2.87 3.99 3.11 3.27 3.37
1Σ+

u - - 3.26 - - 5.97 1Πg - - 2.88 3.11 3.17 3.37
1∆g - - - 3.45 3.48 - 1∆u - - - 3.11 3.18 -
1∆u - - - - 3.48 - 1∆g - - - - 3.17 -
1Σ+

g - - - - - 3.60 1Σ+
g - - - - - 3.34

C19 C21
1Σ+

u
1∆u

1∆g
1Πg

1Πu
1Σ+

g
1Σ+

u
1∆u

1∆g
1Σ+

g
1Πu

1Πg

1Σ+
u 2.67 - - 2.84 2.84 5.72 1Σ+

u 2.44 - - 6.73 2.85 2.85
1∆u - 2.79 3.10 2.88 2.89 - 1∆u - 2.53 3.14 - 2.82 2.82
1∆g - - 2.95 2.99 2.99 - 1∆g - - 2.75 - 2.88 2.88
1Πg - - - 2.84 3.27 3.12 1Σ+

g - - - 2.93 2.96 2.96
1Πu - - - - 2.84 3.12 1Πu - - - - 2.84 3.12
1Σ+

g - - - - - 3.12 1Πg - - - - - 2.82
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Figure 3.2: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Πg,

1Πu, 1Σ+
u , 1∆g,

1∆u and 1Σ+
g of C15 along the normal coordinates of

totally symmetric vibrational modes (σ+
g ). The potential energies obtained from the

present vibronic model are shown by the solid lines and the computed ab initio energies
are shown by the asterisk.
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Figure 3.3: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Πg,

1Πu, 1Σ+
u , 1∆g,

1∆u and 1Σ+
g of C15, along the normal coordinates of

RT active vibrational modes (πg). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.4: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Πg,

1Πu, 1Σ+
u , 1∆g,

1∆u and 1Σ+
g of C15, along the normal coordinates of

RT active vibrational modes (πu) . The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.5: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1Πu, 1Πg,
1∆u, 1∆g and 1Σ+

g of C17, along the normal coordinates of
totally symmetric vibrational modes (σ+

g ). The potential energies obtained from the
present vibronic model are shown by the solid lines and the computed ab initio energies
are shown by the asterisk.
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Figure 3.6: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+
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1∆u, 1∆g and 1Σ+

g of C17, along the normal coordinates of
RT active vibrational modes (πg). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.7: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1Πu, 1Πg,
1∆u, 1∆g and 1Σ+

g of C17, along the normal coordinates of
RT active vibrational modes (πu). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.8: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1∆u, 1∆g,
1Πg,

1Πu and 1Σ+
g of C19, along the normal coordinates of

totally symmetric vibrational modes (σ+
g ). The potential energies obtained from the

present vibronic model are shown by the solid lines and the computed ab initio energies
are shown by the asterisk.



3.4. Results and Discussion 106

3

4

3

4

3

4

3

4

3

4

3

4

-4 -2 0 2 4
2.5

3

3.5

-4 -2 0 2 4
2.5

3

3.5

ν19 ∼ 830 cm
-1

Q Q

E
n
er

g
y
 (

eV
)

ν20 ∼ 673 cm
-1

ν21 ∼ 543cm
-1 ν22 ∼ 442 cm

-1

ν23 ∼ 292 cm
-1

ν24 ∼ 196 cm
-1

ν25 ∼ 101 cm
-1

ν26 ∼ 33 cm
-1

a) b)

c) d)

e) f)

g) h)

Figure 3.9: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1∆u, 1∆g,
1Πg,

1Πu and 1Σ+
g of C19, along the normal coordinates of

RT active vibrational modes (πg). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.10: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1∆u, 1∆g,
1Πg,

1Πu and 1Σ+
g of C19, along the normal coordinates of

RT active vibrational modes (πu). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.11: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1∆u, 1∆g,
1Σ+

g , 1Πu and 1Πg of C21, along the normal coordinates of
totally symmetric vibrational modes (σ+

g ). The potential energies obtained from the
present vibronic model are shown by the solid lines and the computed ab initio energies
are shown by the asterisk.
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Figure 3.12: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1∆u, 1∆g,
1Σ+

g , 1Πu and 1Πg of C21, along the normal coordinates of
RT active vibrational modes (πg). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.
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Figure 3.13: Adiabatic potential energies of the low-lying excited singlet electronic
states, 1Σ+

u , 1∆u, 1∆g,
1Σ+

g , 1Πu and 1Πg of C21, along the normal coordinates of
RT active vibrational modes (πu). The potential energies obtained from the present
vibronic model are shown by the solid lines and the computed ab initio energies are
shown by the asterisk.



3.5 Summarizing Remarks

The structures and energetics of the ten (including degeneracy) energetically

closely lying electronic states (viz. 1Σ+
u , 1Πg,

1Πu,
1Σ+

g , 1∆g and 1∆u) of neu-

tral linear carbon clusters, C2n+1, (n=7-10) have been investigated here as a

prerequisite for the dynamics study (presented in chapter 4) to examine the pho-

toabsorption spectrum of the corresponding clusters. The electronic energies are

calculated by the EOM-CCSD method along the normal coordinate of the vibra-

tional modes. The clusters, C2n+1, (n=7-10), have linear cumulenic equilibrium

structure [15] with the 1Σ+
g ground electronic term symbol. For all the clusters

it is seen that 1Σ+
u electronic state is optically bright with a very high oscillator

strength. A model diabatic Hamiltonian is constructed by taking 10 electronic

states, which are in the immediate vicinity of the 1Σ+
u state, to study the nu-

clear dynamics. All intrastate and interstate coupling parameters are extracted

for all the states of all four molecules with the aid of rigorous ab initio calcula-

tions. One dimensional potential energy curves are calculated along σ+
g , πg and

πu vibrational modes of all four clusters. The stationary points, viz., the ener-

getic minimum of the seam of intersections among various electronic states of

carbon clusters, C2n+1, (n=7-10) and the equilibrium minimum of the respective

states are discussed. With the aid of the calculated electronic energies ab initio ,

model vibronic Hamiltonians are constructed in terms of normal coordinates of

vibrational modes and employing a diabatic electronic basis. The expected im-

plications of these energetics of various curve crossing on the nuclear dynamics of

111
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linear carbon clusters, C2n+1, (n=7-10) electronic states is discussed in chapter-4.
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Chapter 4

Electronic spectroscopy of carbon

clusters (C2n+1, n=7-10). II.

Quantum Dynamics

Photoabsorption spectroscopy of neutral carbon clusters, C2n+1, (n=7-10) is the-

oretically studied in this chapter. The model vibronic Hamiltonian developed

through extensive ab initio quantum chemistry calculation in chapter 3 is em-

ployed in the first principles nuclear dynamics calculations. While the precise

location of vibronic lines and progression of vibrational modes within a given elec-

tronic band is derived from time-independent quantum mechanical calculations,

the broadband spectral envelopes and nonradiative decay rate of electronic states

are calculated by propagating wave packets in a time-dependent quantum mechan-

ical framework. A detailed investigation of vibronic interactions among Σ, Π

and ∆ electronic states and their impact on the vibronic structure of each state

is carried out. The theoretical results are found to be in good accord with the

experiment.

114



4.1. Introduction 115

4.1 Introduction

The nuclear dynamics of long chain carbon clusters (C2n+1, n=7-10) is studied in

this chapter. In polyatomic systems crossing of various electronic states leading

to CIs [1,2] often control the nuclear motion primarily on the participating elec-

tronic states and contribute to their overall band structures and time-dependent

properties. The most critical consequence of CIs of electronic PESs is a break-

down of the adiabatic BO theoretical formalism [3, 4]. In such circumstances

it is necessary to go beyond and examine nuclear motion concurrently with the

electronic motion [1, 5–7]. In such circumstances ideally one needs to undertake

a full quantum mechanical treatment of the nuclear dynamics including most of

the relevant electronic and nuclear degrees of freedom.

The photoabsorption spectrum of C2n+1 (n=7-10) studied here has been experi-

mentally recorded by Maier and co-workers [29]. They observed the 1Σ+
u ←− 1Σ+

g

absorption band of C15, C17, C19 and C21 at 419 nm, 460 nm, 503 nm and 544 nm

respectively, in the neon matrix environment at 5 K using the approach that com-

bines mass selection with matrix isolation spectroscopy. In the theoretical study

detailed below, we attempt to identify and assign the specific vibrational modes

that contribute to a given spectral envelope predominantly. The neutral and

anions of bare carbon chains are studied with various spectroscopic techniques

ranging from pulsed and continuous-wave cavity ringdown (CRD), resonant-two-

color-two-photon ionization (R2C2PI), laser induced fluorescence (LIF), trapped

ion photofragmentation, and electron photodetachment processes during the past

decades [8–12]. It followed from the study of Maier et al. that bare carbon chains

Cn upto n=12 can not be carrier for diffuse interstellar bands (DIBs). The follow-

ing criteria were proposed by the authors for a species to have, to be a potential

DIB carrier: “(a) absorptions in the 400-800 nm range, (b) oscillator strength f
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values in the 1-10 range, and (c) an excited electronic-state lifetime longer than a

few picoseconds so that intramolecular broadening would still be compatible with

the typical half-widths of the narrower DIBs (i.e., a few wave numbers)” [11].

The longer chains with an odd number of carbon atoms of the length 15, 17,

19 and 21 are expected to satisfy the first two criteria because their transitions

are in the 400-800 nm range and the f value of the optically bright state 1Σ+
u

scales with the chain length. It remains to be seen by doing nuclear dynamics

study, whether the excited electronic state 1Σ+
u has a lifetime longer than a few

picoseconds to satisfy the third condition listed above. So far there is no experi-

mental evidence appeared on the presence of other electronic states in the vicinity

of 1Σ+
u state. It follows from the results of chapter 3 that energetically close lying

degenerate electronic states exist in the neighborhood of 1Σ+
u state. Therefore,

examination of impact of nonadiabatic interactions is essential to understand the

spectral broadening and estimate the decay rate of the 1Σ+
u state.

For linear systems Renner-Teller effect [15] represents one of the most crucial

factor for the violation of the validity of the BO approximation. It originates

from the splitting of the degeneracy of Π, ∆ etc. states of linear molecule upon

bending. At small distortions from linearity, the two split component electronic

states, lie close to each other, which gives rise to coupling between electronic states

through suitable vibrational modes. It is also necessary to consider the spin-orbit

coupling in addition to electron-nuclear coupling. This is because majority of the

electronic states involved in such vibronic couplings are open-shell systems with

non-zero spin, and that the magnitude of the spin-orbit splitting/shifting of the

energy levels is (at least in molecules involving only relatively light atoms) usually
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comparable in magnitude to that caused by the vibronic coupling. Linear odd

numbered bare carbon clusters (C2n+1, n=7-10) which are investigated here are

all closed shell systems, and spin-orbit coupling is not taken into consideration.

It was discussed in the literature that the RT effect is the driving force behind

bending instability of linear molecules in degenerate states [13]. Upon bending

the molecule, an additional dipole moment is set up in the molecular plane which

lifts the electronic degeneracy. The split component of the electronic states may

undergo symmetry allowed coupling with the neighboring electronic states and

can give rise to PRT (Pseudo Renner Teller) effect [14] (in nonlinear molecule

this is termed as PJT, Pseudo Jahn Teller effect).

The RT effect in triatomic molecules is extensively studied theoretically by pertur-

bative treatment of the Hamiltonian when expanded in a Taylor series around the

linear configuration [15–18]. While there are plethora of studies on the triatomic

RT effect, studies on linear polyatomic molecules with atoms more than three, are

very less. The situation concerning the RT effect in larger linear molecules is quite

different. In this case the theory is much more complicated than in triatomics.

Firstly there are several bending modes involved and secondly, the asymmetric

form of the electronic wave functions, corresponding to small distortion from lin-

earity, is not determined by symmetry as in triatomic molecules. To the best of

our knowledge carbon chains of upto 6 atom length were theoretically studied by

including the RT [19, 20] effect. However perturbation theory is known to fail

in strong coupling case and when the interacting states are very closely spaced.

The quasi-diabatic model proposed by Köppel et al. to avoid the perturbative

treatment of the RT [2,21] intersections seems to be more general. In this study

we exercised this model as discussed in chapter 3.
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4.2 Results and Discussion

In this section the complete broad band spectral envelopes of the electronic states

of carbon clusters, C2n+1, (n = 7− 10) are presented and discussed. These broad

band envelopes are calculated by propagating WPs using the MCTDH program

modules [22–25] and considering the complete Hamiltonian developed in Chapter

3. The ab initio electronic structure parameters reported therein are used. The

theoretical results are compared with the available experimental results [26–29].

Subsequently, each of the broad spectral envelope is critically examined at higher

energy resolution. In this case the precise location of the vibronic levels is calcu-

lated and assigned by a time-independent matrix diagonalization approach em-

ploying the Lanczos algorithm [30]. In order to confirm the assignments, vibronic

wave functions are calculated by the block-improved Lanczos method using the

MCTDH program modules [31, 32]. The resolved band structures are also com-

pared with resolved experimental results whenever available. Importantly, this

exercise enabled us to identify the excitations of the vibrational modes underlying

the broad experimental bands and to assess the impact of electronic nonadiabatic

effects on their overall structure. Finally, the nonradiative decay of excited elec-

tronic states is examined and discussed.

4.2.1 Electronic Absorption spectrum

Vibronic energy levels of the 1Πg,
1Πu,

1Σ+
u , 1∆g,

1∆u and 1Σ+
g electronic states of

C2n+1 where, n=7-10 are shown and discussed here. To start with, we construct

various reduced dimensional models and examine the vibrational energy levels of

each of these electronic states by excluding the PRT coupling with their neigh-

bors. These results help us to understand the role of various vibrational modes
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and electronic states in the complex vibronic structures of these clusters. The

calculations are carried out including the relevant symmetric vibrational modes

only. The numerical details of the calculations, in terms of vibrational modes and

dimension of the secular matrix are given in Table 4.1. The final calculation of

nuclear dynamics is, however, carried out by including all relevant couplings of

the Hamiltonian and propagating wave packets using the MCTDH suite of pro-

grams to elucidate the nonadiabatic coupling effects on the spectral envelopes.

The theoretical results are compared with the available experimental absorption

spectrum of C2n+1, where n=7-10 [26–29].

4.2.1.1 Uncoupled spectra of 1Σ+
u state

The vibronic energy eigenvalues of the 1Σ+
u electronic states are obtained by di-

agonalizing the Hamiltonian matrix using the Lanczos algorithm [30] and are

shown as the stick lines in Figs. 4.1a, 4.2a, 4.3a and 4.4a. For C15 chain the

envelopes are obtained by convoluting these stick lines with a Lorentzian func-

tion of 10 meV FWHM. Further details of the calculations are given in Table

4.1. The vibrational structure of the 1Σ+
u electronic state in absence of coupling

with its neighboring states and the experimental recording of Ref [28,29] in neon

matrix is shown in Fig. 4.1. It can be seen in comparison that the theoretical

results are in very good agreement with the experimental band structure of the

1Σ+
u state. From the data given in Table 3.4 of Chapter-3, the excitation of vi-

brational modes ν2 and ν7 can be expected in this band. The excitation of the ν7

modes is stronger than that of ν2. Line spacings of ∼ 2072 and ∼ 282 cm−1 cor-

responding to the frequency of these modes, respectively, are extracted from the

theoretical spectrum. In addition to energetic location and excitation strength
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analyses, the assignment of the peaks is confirmed through a thorough analy-

sis of the nodal pattern of their eigenvectors. These eigenvectors are calculated

by a block improved Lanczos method as implemented in the MCTDH program

module. To illustrate it we present in Fig. 4.5 a few representative eigenvectors

only. In these figures the wavefunction probability density is plotted in a suitable

reduced dimensional normal coordinate plane. In panel a and b the wavefunction

of the fundamental of ν2 (2072 cm−1) and ν7 (282 cm−1) is shown, respectively.

It can be seen from these plots that the wavefunctions acquire a node along the

respective normal coordinate. In panel c and d the first and second overtone of ν7

at 565 cm−1 and 847 cm−1, respectively revealing two and three nodes along the

respective coordinate is shown. The wavefunction for the combination peaks ν2 +

ν7 (2354 cm−1) is shown in panel e. It can be seen that the latter wavefunctions

show one quantum excitation along both the modes forming the pair.

For C17 chain the envelopes are obtained by convoluting the stick line spectrum

with a Lorentzian function of 10 meV FWHM. Further details of the calcula-

tions are given in Table 4.1. For C17 chain the vibrational structure of the 1Σ+
u

electronic state in absence of coupling with its neighboring states and the exper-

imental recording of Ref [28, 29] in neon matrix is shown in Fig. 4.2a. It can be

seen in comparison that the theoretical results are in very good agreement with

the experimental band structure of the 1Σ+
u state. From the data given in Table

3.6 of Chapter-3, the excitation of vibrational modes ν2 and ν8 can be expected in

this band. The excitation of the ν8 modes is stronger than that of ν2. Line spac-

ings of ∼ 2061 and ∼ 248 cm−1 corresponding to the frequency of these modes,

respectively, are extracted from the theoretical spectrum. As in case of C17 the

eigenvectors of the fundamental of ν2 (2061 cm−1) and ν8 (248 cm−1) are shown,
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respectively, in panel a and b of Fig. 4.6. It can be seen from these plots that the

wavefunctions acquire a node along the respective normal coordinate. In panel

c, d and e of Fig. 4.6 the first, second and third overtone of ν8 occurring at 497

cm−1, 745 cm−1 and 994 cm−1, respectively revealing two, three and four nodes

along the respective coordinate is shown.

For C19 chain the envelope is obtained by convoluting the stick line with a

Lorentzian function of 5 meV FWHM. Further details of the calculations are

given in Table 4.1. For C19 chain the vibrational structure of the 1Σ+
u electronic

state in absence of coupling with its neighboring states and the experimental

recording of Ref. [28, 29] in neon matrix is shown in Fig. 4.3a. It can be seen

in comparison that the theoretical results are in very good agreement with the

experimental band structure of the 1Σ+
u state. From the data given in Table 3.8 of

Chapter-3, the excitation of vibrational modes ν3 and ν9 can be expected in this

band. The excitation of the ν9 mode is stronger than that of ν3. Line spacings of

∼ 2014 and ∼ 223 cm−1 corresponding to the frequency of these modes, respec-

tively, are extracted from the theoretical spectrum. As before the eigenvectors of

the fundamental of ν3 (2015 cm−1), ν9 (223 cm−1), the first (445 cm−1), second

(668 cm−1) and third (891 cm−1) overtone of ν9 and the combination peaks ν3 +

ν9 (2238 cm−1) are shown in Fig. 4.7 (a-f), respectively.

For C21 chain the envelope is obtained by convoluting these stick line with a

Lorentzian function of 10 meV FWHM . Further details of the calculations are

given in Table 4.1. For C21 chain the vibrational structure of the 1Σ+
u electronic

state in absence of coupling with its neighboring states and the experimental

recording of Ref [28, 29] in neon matrix is shown in Fig. 4.4a. It can be seen in
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comparison that the theoretical results are in very good agreement with the ex-

perimental band structure of the 1Σ+
u state. From the data given in Table 3.10 of

Chapter-3, the excitation of vibrational modes ν4 and ν10 can be expected in this

band. The excitation of the ν10 modes is stronger than that of ν4. Line spacings

of ∼ 2021 and ∼ 202 cm−1 corresponding to the frequency of these modes, respec-

tively, are extracted from the theoretical spectrum. As before the eigenvectors of

the fundamental of ν4 (2021 cm−1), ν10 (202 cm−1), the first (403 cm−1), second

(605 cm−1) and third (807 cm−1) overtone of ν10 and the combination peaks ν4

+ ν10 (2223 cm−1) are shown in Fig. 4.8 (a-f), respectively.

The above discussion revealed that there are only two symmetric vibrational

modes which form the primary progression in the vibronic structure of the 1Σ+
u

electronic band of all the clusters.

4.2.1.2 Uncoupled spectra of 1∆g,
1∆u and 1Σ+

g electronic states

The stick vibronic energy eigenvalues and their convoluted spectra of 1∆g,
1∆u

and 1Σ+
g electronic states of C15 are obtained by diagonalizing the Hamiltonian

matrix using the Lanczos algorithm [30] and are shown in the panel a, b and c

of Figs. 4.9. The numerical details of the calculations are given in Table 4.1. In

all these states the lowest frequency totally symmetric vibrational modes (ν7, 282

cm−1) forms dominant the progression.

Similarly, the stick vibronic energy eigenvalues and their convoluted spectra of

1∆u,
1∆g and 1Σ+

g electronic states of C17 are obtained by diagonalizing the

Hamiltonian matrix using the Lanczos algorithm [30] and are shown in the panel

d, e and f of Figs. 4.9. The numerical details of the calculations are given in Ta-

ble 4.1. The lowest frequency totally symmetric vibrational mode (ν8, 249 cm−1)
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forms the dominant progression in this case.

The stick vibronic energy eigenvalues and their convoluted spectra of 1∆u,
1∆g

and 1Σ+
g electronic states of C19 are obtained by diagonalizing the Hamiltonian

matrix using the Lanczos algorithm [30] and are shown in the panel a, b and c

of Figs. 4.10. The numerical details of the calculations are given in Table 4.1.

The lowest frequency totally symmetric vibrational mode (ν9, 223 cm−1) forms

the dominant progression in this case.

The stick vibronic energy eigenvalues and their convoluted spectra of 1∆u,
1∆g

and 1Σ+
g electronic states of C21 are obtained by diagonalizing the Hamiltonian

matrix using the Lanczos algorithm [30] and are shown in the panel d, e and f

of Figs. 4.10. The numerical details of the calculations are given in Table 4.1.

The lowest frequency totally symmetric vibrational modes (ν10, 202 cm−1) form

dominant progression in this case.

4.2.1.3 Uncoupled spectra of 1Πg and 1Πu electronic states : Renner

Teller effect.

The Π electronic states are Renner Teller active in fourth order along the πg and

πu vibrational modes. The RT splitting is small (see. Figs. 3.3, 3.4, 3.6, 3.7, 3.9,

3.10, 3.12 and 3.13 of chapter 3).

Πg and Πu electronic states are quasi degenerate. The theoretical stick line spec-

trum of each Πg/u electronic state (shown in panel a) is calculated with the

vibronic model Hamiltonian, developed in chapter 3 and all relevant totally sym-

metric vibrational modes are included. A Lorentzian line shape function of 10

meV (in case of C19, it is 5meV) full width at the half maximum (FWHM) is used

to convolute the stick line spectrum in each case and to generate the respective
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spectral envelope. In absence of any intermode coupling terms, the Hamiltonian

for the degenerate Π states are separable in terms of the σ+
g , πg and πu modes.

Therefore, the partial spectra calculated with the totally symmetric and degener-

ate vibrational modes separately, can be convoluted to get the composite vibronic

structure of the electronic states. The spectrum of the Πg/u states of C15, C17,

C19 and C21 obtained by including the σ+
g modes only is shown in Figs. 4.11 (a)

and (d), 4.12 (a) and (d), 4.13 (a) and (d) and 4.14 (a) and (d), respectively.

In the Πg/u state of C15, excitation of ν1, ν2, ν3, ν4 and ν5 modes is strong. The

fundamentals of ν1, ν2, ν3, ν4 and ν5 vibrations are 2199 cm−1, 2074 cm−1, 2010

cm−1, 1739 cm−1 and 1306 cm−1 spaced, respectively.

In the Πg/u state of C17, excitation of ν1, ν2, ν3, ν4, ν5 and ν6 are strong. The

fundamentals of these modes are 2210 cm−1, 2042 cm−1, 2079 cm−1, 1889 cm−1

1571 cm−1 and 1170 cm−1 spaced, respectively.

In the Πg/u state of C19, excitation of ν1, ν2, ν3, ν4, ν5 and ν6 are strong. The

fundamentals of these modes are 2208 cm−1, 2157 cm−1, 1967 cm−1, 1981 cm−1,

1766 cm−1 and 1431 cm−1 spaced, respectively.

In the Πg/u state of C21, excitation of ν1, ν2, ν3, ν4, ν5, ν6 and ν7 are strong. The

fundamentals of these modes are 2199 cm−1, 2188 cm−1, 2031 cm−1, 1964 cm−1,

1866 cm−1, 1628 cm−1 and 1313 cm−1 spaced, respectively.

The partial spectra of C15, C17, C19 and C21 calculated with the degenerate RT

modes (πg and πu) are shown in Figs. 4.11 (b) and (e), 4.12 (b) and (e), 4.13 (b)

and (e) and 4.14 (b) and (e) respectively.

The composite spectrum obtained by convoluting the symmetric and degenerate

mode is shown in panel (c) and (f) of this figure. The spectra presented in panel

(b) and (e) reflects a weak contribution of RT coupling in the vibronic structure
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of Πg/u states. As a result, the overall spectral envelop (panel (c) and (f) ) ap-

pears to be very similar and close to that shown in panel (a) and (d) of the above

mentioned figures.

In all the clusters ∆ electronic states are also Renner Teller active in fourth order

along the πg and πu vibrational modes. But the splitting between the two com-

ponents is very small when distorted along the degenerate vibrational modes. It

can be expected that Renner-Teller coupling will have a negligible effect in the

vibronic structure of ∆g/u states. It can also be seen from Figs. 3.3, 3.4, 3.6, 3.7,

3.9, 3.10, 3.12 and 3.13 of chapter 3 that splitting between the two components

of the degenerate electronic states are very small.

4.2.1.4 Effect of Σ - Π - ∆ electronic states on 1Σ+
u electronic state:

So far PRT coupling between various electronic states is not considered in various

calculations. On inclusion of this coupling, the separation of the Hamiltonian in

terms of the symmetric and degenerate vibrational modes for the degenerate

electronic states as explored above is not possible. 1Πg,
1Πu and 1Σ+

g electronic

states coupled with 1Σ+
u electronic state due to the availability of πu, πg and σ+

g

vibrational modes, respectively.

The 1∆g and 1∆u electronic states are energetically very close to the 1Σ+
u

state. But 1∆ - 1Σ+
u coupling is not possible due to the lack of δ vibrational

modes in linear carbon chains. The transition to the 1∆ electronic states from

the ground state (of 1Σ+
g symmetry) is optically dark but these states can gain

intensity via Pseudo-Renner-Teller type of coupling with the optically allowed Π

electronic states.
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It is therefore necessary to follow the nuclear dynamics simultaneously on ten

coupled electronic states (1Σ+
u - 1Πg - 1Πu - 1Σ+

g - 1∆g - 1∆u coupled calculation)

including all relevant vibrational degrees of freedom. Computationally, it becomes

difficult to simulate the nuclear dynamics quantum mechanically by the matrix

diagonalization approach employed above. We therefore resort to the MCTDH

algorithm [22–25], and propagate WPs on ten coupled electronic states including

all vibrational degrees of freedom. Even with MCTDH, simulations with 40 of

C15 or 46 of C17 or 52 of C19 or 58 of C21 vibrational modes is not possible.

By looking at the coupling strength of the vibrational modes of C2n+1, where

n=7-10 in Tables 3.4 and 3.5; 3.6 and 3.7; 3.8 and 3.9; and 3.10 and 3.11 of

chapter 3,respectively, it is clear that, not all the vibrational modes are important

in the nuclear dynamics simulations. We selected eighteen vibrational modes

(including x and y components of the degenerate vibrational modes) on the basis

of the coupling strength. The eighteen vibrational degrees of freedom are grouped

into four particles. The combination scheme of the vibrational modes of C2n+1,

where n=7-10 is given in Table 4.2 along with the sizes of the primitive and SPF

bases. The parameters of C15, C17, C19 and C21 are documented in Table 4.2, are

optimally chosen to ensure the numerical convergence of the vibronic bands shown

in Fig. 4.1(b), 4.2(b), 4.3(b), 4.4(b). The WP in each calculation is propagated

for 400 fs. Fig. 4.15 displays the present theoretical diabatic electronic population

diagram of C2n+1 where n=7-10 in the energy range ∼3-6 eV.

The theoretical results of Fig. 4.15 are obtained by including the coupling

among the states. Ten WP propagations in the coupled 1Πg - 1Πu - 1Σ+
u - 1Σ+

g -

1∆g - 1∆u electronic manifold are carried out by initially preparing the WP sep-

arately on each of the component state of this manifold. Here, WP propagation

of 1Σ+
u electronic state of C2n+1, where n=7-10 is presented. For C15, C17 and
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C21 the resulting time autocorrelation function is damped with an exponential

function e
−t
τ with τ=66 fs (which corresponds to a 10 meV FWHM Lorentzian

function) before Fourier transformation to generate the spectral envelopes, while

for C19 damping factor is 132 fs (which corresponds to a 5 meV FWHM Lorentzian

function).

It is seen from the Figs. 4.1 (b), 4.2 (b), 4.3 (b) and 4.4 (b) that Σ - Π - ∆

coupling does not significantly perturb the spectrum of 1Σ+
u electronic state but

it has a very strong effect on the diabatic state population calculations which

reduces the lifetime of 1Σ+
u electronic state drastically, particularly in case of C15

and C17 (see. Fig. 4.15).

4.2.2 Internal conversion dynamics

As stated in the introduction, the lifetime of the 1Σ+
u excited electronic state of

C2n+1, where n=7-10 is calculated. To be a good carrier for DIBs, the nonra-

diative decay of the diabatic population of 1Σ+
u electronic state is expected be

around 70-200 fs [12]. Here in this section, we present the time-dependence of

the diabatic electronic populations in the coupled manifold 1Σ+
u - 1Πg - 1Πu - 1Σ+

g

- 1∆g - 1∆u electronic states. It would have been more realistic to calculate the

adiabatic electronic populations. Such calculations could not be done because of

huge computational overheads.

The diabatic electronic populations are calculated for an initial transition to

each of the above electronic states separately. The results are shown in Figs.

4.15, 4.16, 4.17, 4.18 and 4.19. Interesting observations of C15, C17, C19 and C21

on the dynamical mechanism can be obtained from these population curves in
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conjunction with the coupling parameters given in Table 3.4 and 3.5; 3.6 and 3.7;

3.8 and 3.9; and 3.10 and 3.11 respectively and the stationary points on the PESs

detailed in Section 3.4.1 and Table 3.12.

For C15 carbon chain the population dynamics of the WP initially prepared

on the 1Σ+
u is shown in panel a of Fig. 4.15. In this case the electronic diabatic

population of 1Σ+
u state flows to the 1Πg and 1Πu electronic states only. The

depletion of the 1Σ+
u electronic state population relates to a decay rate of ∼ 76

fs. It is already stated that while the PRT coupling between 1Πg and 1Σ+
u states

is strong, the PRT coupling between 1Πu and 1Σ+
u electronic states is weak. The

minimum of 1Πg-
1Σ+

u and 1Πu-
1Σ+

u intersections is ∼ 0.04 eV above the minimum

of 1Σ+
u electronic state. Hence the population of the 1Σ+

u state is expected to

transfer to 1Πg state. The 1Πg state is in-turn strongly coupled to the 1Πu state

via σ+
u modes. A population transfer to 1Πu state from 1Σ+

u state can also be

seen from the figure 4.15.

For C17 carbon chain the population dynamics of the WP initially prepared

on the 1Σ+
u is shown in panel b of Fig. 4.15. In this case the electronic diabatic

population of 1Σ+
u state also flows to the 1Πu and 1Πg electronic states. The decay

rate of the 1Σ+
u electronic state is estimated to be ∼ 64 fs. A similar mechanism

as stated for C15 operates in this case. The minimum of 1Πg-
1Σ+

u and 1Πu-
1Σ+

u

intersections is ∼ 0.02 eV above the minimum of 1Σ+
u electronic state in this case.

For the C19 carbon chain the population dynamics of the WP initially prepared

on the 1Σ+
u state is shown in panel c of Fig. 4.15. In this case the electronic

population transfer to the 1Πg and 1Πu electronic states is much less. The decay

rate of the 1Σ+
u electronic state is estimated to be ∼ 189 fs.

For the C21 carbon chain the population dynamics of the WP initially prepared
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on the 1Σ+
u is shown in panel d of Fig. 4.15. Analogous to C19, in this case also

rate of population transfer to the 1Πu and 1Πg electronic states is much slower.

The decay rate of the 1Σ+
u electronic state is estimated to be ∼ 337 fs.

From Fig. 4.16, 4.17, 4.18 and 4.19 it is seen that degenerate electronic state

Πg/u and ∆g/u exchange its population with the degenerate Πu/g, ∆g/u and 1Σ+
u

electronic state. So, it can be said that PRT effect dominates over RT effect in

all four clusters.
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Table 4.1: The number of HO basis functions along with the totally symmetric vi-
brational modes and the dimension of the secular matrix used in the calculation of the
uncoupled stick vibronic spectra shown in various figures noted below.

Vibrational modes No. of HO basis Dimension of Figure(s)
secular matrix

C15
1Σ+

u ν1, ν2,ν3,ν4,ν5,ν6,ν7 4,6,4,4,4,4,10 61440 4.1(a)
1Πg ν1, ν2,ν3,ν4,ν5,ν6,ν7 7,16,10,8,6,5,4 1075200 4.11(a)
1Πu ν1, ν2,ν3,ν4,ν5,ν6,ν7 7,16,10,8,6,5,4 1075200 4.11(d)
1∆g ν1, ν2,ν3,ν4,ν5,ν6,ν7 6,9,6,6,6,7,15 1224720 4.9(a)
1∆u ν1, ν2,ν3,ν4,ν5,ν6,ν7 6,9,6,6,6,7,15 1224720 4.9(b)
1Σ+

g ν1, ν2,ν3,ν4,ν5,ν6,ν7 4,4,6,4,4,7,10 107520 4.9(c)

C17
1Σ+

u ν1, ν2,ν3,ν4,ν5,ν6,ν8 4,6,4,4,4,4,14 86016 4.2(a)
1Πu ν1, ν2,ν3,ν4,ν5,ν6,ν8 8,10,14,8,4,4,4 573440 4.12(a)
1Πg ν1, ν2,ν3,ν4,ν5,ν6,ν8 8,10,14,8,4,4,4 573440 4.12(d)
1∆u ν1, ν2,ν3,ν4,ν5,ν6,ν8 7,9,8,6,6,7,9,12 13716864 4.9(d)
1∆u ν1, ν2,ν3,ν4,ν5,ν6,ν8 7,9,8,6,6,7,9,12 13716864 4.9(e)
1Σ+

g ν1, ν2,ν3,ν4,ν5,ν6,ν8 4,4,4,4,4,4,10 40960 4.9(f)

C19
1Σ+

u ν1, ν2,ν3,ν4,ν5,ν6,ν9 4,4,6,4,4,4,14 86016 4.3(a)
1∆u ν1, ν3, ν7, ν8,ν9 6,10,6,8,14 40320 4.10(a)
1∆g ν1, ν3, ν7, ν8,ν9 6,10,6,8,14 40320 4.10(b)
1Πg ν1, ν2,ν3,ν4,ν5,ν6,ν9 8,6,14,10,7,5,4 940800 4.13(a)
1Πu ν1, ν2,ν3,ν4,ν5,ν6,ν9 8,6,14,10,7,5,4 940800 4.13(d)
1Σ+

g ν1, ν2,ν3,ν4,ν5,ν6,ν9 4,4,4,4,4,4,14 229376 4.10(c)

C21
1Σ+

u ν1, ν2,ν3,ν4,ν5,ν6,ν7,ν10 4,4,6,4,4,4,4,14 344064 4.4(a)
1∆u ν1, ν2,ν3,ν4,ν5,ν6,ν7,ν10 8,6,8,8,6,6,6,12 7962624 4.10(d)
1∆g ν1, ν2,ν3,ν4,ν5,ν6,ν7,ν10 8,6,8,8,6,6,6,12 7962624 4.10(e)
1Σ+

g ν1, ν2,ν3,ν4,ν5,ν6,ν7,ν10 4,4,4,4,4,4,4,14 229376 4.10(f)
1Πu ν1, ν2,ν3,ν4,ν5,ν6,ν7,ν10 8,8,6,14,10,6,5,4 6451200 4.14(a)
1Πg ν1, ν2,ν3,ν4,ν5,ν6,ν7,ν10 8,8,6,14,10,6,5,4 6451200 4.14(d)
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Table 4.2: Normal mode combination, sizes of the primitive and the single particle
bases used in the WP propagation within the MCTDH framework on the ten coupled
electronic manifold using the complete vibronic Hamiltonian of Eq. (3.5). First column
denotes the vibrational DOF which are combined to particles. Second column gives the
number of primitive basis functions for each DOF. Third column gives the number
of SPFs for the electronic state in the 1Σ+

u - 1Πg - 1Πu - 1Σ+
g - 1∆g - 1∆u coupled

calculations.

Normal modes Primitive Basis SPF Basis Figures

ν2,ν7,ν23x,ν23y (10,12,10,10) [9,9,9,9,9,9,9,9,9,9] 4.1 (b)
ν3,ν11,ν17x,ν17y (9,9,9,9) [8,8,8,8,8,8,8,8,8,8]

ν1,ν4,ν8,ν9,ν22x,ν22y (8,8,8,8,8,8) [7,7,7,7,7,7,7,7,7,7]
ν5,ν12,ν16x,ν16y (6,7,7,7) [6,6,6,6,6,6,6,6,6,6]

ν3,ν8,ν31x,ν31y (10,12,11,11) [12,12,12,12,12,12,12,12,12,12] 4.2 (b)
ν2,ν10,ν23x,ν23y (9,9,10,10) [10,10,10,10,10,10,10,10,10,10]
ν1,ν4,ν9,ν30x,ν30y (8,8,8,9,9) [9,9,9,9,9,9,9,9,9,9]
ν5,ν11,ν13,ν22x,ν22y (6,6,7,8,8) [8,8,8,8,8,8,8,8,8,8]

ν3,ν9,ν35x,ν35y (12,12,10,10) [9,9,9,9,9,9,9,9,9,9] 4.3 (b)
ν16,ν26x,ν26y (9,9,9) [8,8,8,8,8,8,8,8,8,8]

ν1,ν4,ν11,ν12,ν34x,ν34y (9,9,8,6,8,8) [7,7,7,7,7,7,7,7,7,7]
ν2,ν5,ν17,ν25x,ν25y (7,7,5,7,7) [6,6,6,6,6,6,6,6,6,6]

ν4,ν10,ν39x,ν39y (10,10,10,10) [9,9,9,9,9,9,9,9,9,9] 4.4 (b)
ν13,ν16,ν29x,ν29y (8,8,9,9) [8,8,8,8,8,8,8,8,8,8]

ν1,ν2,ν5,ν12,ν38x,ν38y (9,9,9,7,8,8) [7,7,7,7,7,7,7,7,7,7]
ν6,ν14,ν28x,ν28y (7,6,7,7) [6,6,6,6,6,6,6,6,6,6]
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Figure 4.1: The stick vibronic spectrum and the convoluted envelope of the 1Σ+
u

electronic state of C15 calculated with the σ+
g vibrational modes plotted in panel a.

The absorption bands of the 1Σ+
u electronic state of C15 obtained from the coupled

state dynamics study (see text for details). The intensity in arbitrary units is plotted
as a function of wavelength in panel b. The experimental spectrum reproduced from
Ref. [28] and shown in panel b.
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Figure 4.2: The stick vibronic spectrum and the convoluted envelope of the 1Σ+
u

electronic state of C17 calculated with the σ+
g vibrational modes plotted in panel a.

The absorption bands of the 1Σ+
u electronic state of C17 obtained from the coupled

state dynamics study (see text for details). The intensity in arbitrary units is plotted
as a function of wavelength in panel b. The experimental spectrum reproduced from
Ref. [28] and shown in panel c.
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Figure 4.3: The stick vibronic spectrum and the convoluted envelope of the 1Σ+
u

electronic state of C19 calculated with the σ+
g vibrational modes plotted in panel a.

The absorption bands of the 1Σ+
u electronic state of C19 obtained from the coupled

state dynamics study (see text for details). The intensity in arbitrary units is plotted
as a function of wavelength in panel b. The experimental spectrum reproduced from
Ref. [28] and shown in panel c.
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Figure 4.4: The stick vibronic spectrum and the convoluted envelope of the 1Σ+
u

electronic state of C21 calculated with the σ+
g vibrational modes plotted in panel a.

The absorption bands of the 1Σ+
u electronic state of C21 obtained from the coupled

state dynamics study (see text for details). The intensity in arbitrary units is plotted
as a function of wavelength in panel c. The experimental spectrum reproduced from
Ref. [28] and shown in panel c.
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Figure 4.5: Reduced density plots of the vibronic wavefunctions of the fundamental of
ν2 and ν7 (panels a-b, respectively) and first and second of ν2 (panels c-d, respectively)
excited in the 1Σ+

u state spectrum of C15. The wavefunction in panels e represents the
combination peak of ν2 + ν7.
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Figure 4.6: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν2 and ν8 (panels a-b, respectively) and first, second and third overtone of ν8 (panels
c-e, respectively) excited in the 1Σ+

u state spectrum of C17.
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Figure 4.7: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν3 and ν9, (panels a-b, respectively) and first, second and third overtone of ν9 (panels
c-e, respectively) excited in the 1Σ+

u state spectrum of C19. The wavefunction in panels
f represents the combination peak of ν3 + ν9.
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Figure 4.8: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν4 and ν10 (panels a-b, respectively) and first, second and third overtone of ν10

(panels c-e, respectively) excited in the 1Σ+
u state spectrum of C21. The wavefunction

in panel f represents the combination peak of ν4 + ν10, respectively.
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Figure 4.9: The stick vibronic spectrum and the convoluted envelope of the 1∆g,
1∆u and 1Σ+

g , electronic state of C15 (panel a-c, respectively) and 1∆u, 1∆g and 1Σ+
g ,

electronic state of C17 (panel d-f, respectively) calculated with the σ+
g vibrational modes

are plotted.
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Figure 4.10: The stick vibronic spectrum and the convoluted envelope of the 1∆u,
1∆g and 1Σ+

g , electronic state of C19 (panel a-c, respectively) and 1∆u, 1∆g and 1Σ+
g ,

electronic state of C21 (panel d-f, respectively) calculated with the σ+
g vibrational modes

are plotted.
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Figure 4.11: Vibrational energy level spectrum of the uncoupled Πg and Πu electronic
states of C15 computed with (a) totally symmetric vibrational modes (σ+

g ) and (b)
degenerate vibrational modes (πg and πu). The convoluted spectra of symmetric and
degenerate vibrational modes are shown in panel c.
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Figure 4.12: Vibrational energy level spectrum of the uncoupled Πg and Πu electronic
states of C17 computed with (a) totally symmetric vibrational modes (σ+

g ) and (b)
degenerate vibrational modes (πg and πu). The convoluted spectra of symmetric and
degenerate vibrational modes are shown in panel c.
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Figure 4.13: Vibrational energy level spectrum of the uncoupled Πg and Πu electronic
states of C19 computed with (a) totally symmetric vibrational modes (σ+

g ) and (b)
degenerate vibrational modes (πg and πu). The convoluted spectra of symmetric and
degenerate vibrational modes are shown in panel c.
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Figure 4.14: Vibrational energy level spectrum of the uncoupled Πg and Πu electronic
states of C21 computed with (a) totally symmetric vibrational modes (σ+

g ) and (b)
degenerate vibrational modes (πg and πu). The convoluted spectra of symmetric and
degenerate vibrational modes are shown in panel c.
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Figure 4.15: The time-dependence of diabatic electronic populations in the 1Πg,
1Πu,

1Σ+
u , 1Σ+

g , 1∆g and 1∆u, coupled states nuclear dynamics of C2n+1 (n=7-10). The
results obtained by initially locating the WP on the 1Σ+

u electronic states of C15, C17,

C19 and C21 carbon chains are shown in panels a, b, c and d , respectively.
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Figure 4.16: The time-dependence of diabatic electronic populations in the 1Σ+
u -

1Πg - 1Πu - 1Σ+
g - 1∆g - 1∆u coupled states nuclear dynamics of C2n+1 (n=7-10).

The results obtained by initially locating the WP on the 1Πgx, 1Πux, 1∆gx and 1∆ux

electronic states of C15 are shown in panels a, b, c and d, respectively.
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Figure 4.17: The time-dependence of diabatic electronic populations in the 1Σ+
u -

1Πg - 1Πu - 1Σ+
g - 1∆g - 1∆u coupled states nuclear dynamics of C2n+1 (n=7-10).

The results obtained by initially locating the WP on the 1Πgx, 1Πux, 1∆gx and 1∆ux

electronic states of C17 are shown in panels a, b, c and d, respectively.
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Figure 4.18: The time-dependence of diabatic electronic populations in the 1Σ+
u -

1Πg - 1Πu - 1Σ+
g - 1∆g - 1∆u coupled states nuclear dynamics of C2n+1 (n=7-10).

The results obtained by initially locating the WP on the 1Πgx, 1Πux, 1∆gx and 1∆ux

electronic states of C19 are shown in panels a, b, c and d, respectively.
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Figure 4.19: The time-dependence of diabatic electronic populations in the 1Σ+
u -

1Πg - 1Πu - 1Σ+
g - 1∆g - 1∆u coupled states nuclear dynamics of C2n+1 (n=7-10).

The results obtained by initially locating the WP on the 1Πgx, 1Πux, 1∆gx and 1∆ux

electronic states of C21 are shown in panels a, b, c and d, respectively.

4.3 Summary

A detailed theoretical account of the multimode RT and PRT interactions in

excited electronic states of linear C2n+1, (n=7-10) cluster is presented in this

chapter. The primary goal of this study is to estimate the lifetime of a strongly

absorbing optically bright 1Σ+
u state of these clusters towards an assessment of

their potentiality as carrier of DIBs. The vibronic Hamiltonian is constructed in

a diabatic electronic basis, including the RT coupling within the degenerate 1Πg,

1Πu,
1∆g and 1∆u electronic states and the PRT couplings of these RT split states

with the nondegenerate 1Σ+
u and 1Σ+

g electronic states (and among themselves)
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of C2n+1, where n=7-10. The coupling parameters of the vibronic Hamiltonian

are determined by calculating the adiabatic PESs of the 1Πg,
1Πu,

1∆g,
1∆u,

1Σ+
u

and 1Σ+
g electronic states along each of the 40 of C15, 46 of C17, 52 of C19 and

58 of C21 vibrational modes. First principles nuclear dynamics calculations are

carried out both via time-independent and time-dependent quantum mechanical

methods to simulate the nonadiabatic nuclear motion on the coupled manifold

of these electronic states. The theoretical results are found to be in good accord

with the available experimental results. The final theoretical calculations using

the full Hamiltonian of Eq. 3.5 can only be carried out by propagating WPs

employing the MCTDH algorithm . A careful examination of various theoretical

results enabled us to arrive at the following conclusions. The RT effect in the 1Πg

and 1Πu electronic states of C2n+1, where n=7-10 is very weak. The PRT coupling

between the 1Πg and 1Πu dominates the RT coupling. Due to the clustering of

the four excited states within ∼ 1.0 eV, the nonradiative processes are found to

be dominanting in predicting the vibronic structure and the transfer of diabatic

electronic population among these states. The initial decay of the diabatic pop-

ulation of 1Σ+
u is estimated to be ∼76 fs for C15, ∼64 fs for C17, ∼189 fs for C19

and ∼337 fs for C21 which lie in the much anticipated range of ∼70-200 fs [11,12]

for the potential carrier of DIBs.



References

[1] Conical Intersections: Electronic Structure, Dynamics and Spectroscopy,

edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific,
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Chapter 5

Vibronic coupling in the X̃2Πg -

Ã2Πu band system of diacetylene

radical cation

In this chapter vibronic interactions in the two energetically lowest degenerate

electronic states (X̃2Πg - Ã2Πu) of diacetylene radical cation (C4H· +
2 ) are theo-

retically examined. The spectroscopy of these two electronic states of C4H· +
2 has

been a subject of considerable interest and measured in laboratory by various

groups. Inspired by numerous experimental data, we attempt here a detailed in-

vestigation of vibronic interactions within and between the degenerate electronic

states and their impact on the vibronic structure of each state. A vibronic cou-

pling model is constructed in a diabatic electronic basis and with the aid of ab

initio quantum chemistry calculations. The vibronic structures of the electronic

states are calculated by time-independent and time-dependent quantum mechan-

ical methods. The progression of vibrational modes in the vibronic band is iden-

tified, assigned and discussed in relation to the literature data. The nonradiative

155



5.1. Introduction 156

internal conversion dynamics is also examined and discussed.

5.1 Introduction

The Ã2Πu - X̃2Πg band system of diacetylene radical cation (C4H· +
2 ) is a subject

of intense research since 1950. The common visible bands of organic vapors ob-

served by Schüler and Reinebeck [1] and labelled as “T“ spectrum was assigned

to this band system by Callomon [2]. Since then several high resolution experi-

ments carried out attempting to confirm the presence of C4H· +
2 in the interstellar

medium as a carrier of 506.9 nm diffuse interstellar band (DIB). Recent gas phase

experimental studies of both Motylewski et al. [3] and Krelowski et al. [4] appar-

ently confirmed the 506.9 nm DIB is due to Ã2Πu ← X̃2Πg transition in C4H· +
2 .

However, the most recent gas phase absorption measurements of Maier et al. [5]

disagree with this assignment both in terms of absorption wavelength and the

band shape and association of 506.9 nm DIB with C4H· +
2 was proposed to be

unlikely. Apart from these, C4H· +
2 also proposed to play crucial role in the forma-

tion of larger polycyclic aromatic hydrocarbons in the interstellar medium [6–8]

and have relevance in plasma chemistry.

The structure and spectroscopy of C4H· +
2 was studied by several research

groups over the past decades [9–11]. Photoelectron spectrum of C4H2 was mea-

sured by Baker et al. [12]. Theoretical and experimental ionization energies have

been reported and their possible implication in the redox chemistry of planetary

atmosphere was discussed [13]. Very recent study of Gronowski et al. [14] reveals

that the linear isomer of diacetylene is the most stable structure [14]. In addition

to matrix isolation Spectroscopy studies [15–20], gas phase laboratory [3,19] and

stellar spectroscopy studies [4, 5] were also carried out on C4H· +
2 . The vibronic



5.1. Introduction 157

progressions in the X̃ and Ã bands have been reported. In the X̃ band excita-

tion of fundamental of C ≡ C symmetric stretch (ν2) and first overtone of C –

H asymmetric stretch (ν4) vibrational modes with energy separation of ∼ 2121

and ∼ 5405 cm−1, respectively, was reported by Baker et al. [12]. In the Ã band,

progression of the fundamental of central C – C stretch (ν3) vibrational mode at

∼ 887 cm−1 was reported by the same authors. Callomon et al. reported excita-

tion of four vibrational modes and their combinations in the Ã band [2]. Peak

spacings of ∼ 861, ∼ 971, ∼ 2177 and ∼ 3137 cm−1 were assigned to ν3, 2ν7, ν2

and ν1 vibrational modes, respectively. Bondybey et al. [18] reported ∼ 3143, ∼

2177 and ∼ 865 cm−1 progressions in the X̃ band and assigned them to the fun-

damental of ν1, ν2 and ν3 vibrations, respectively. In addition, the progression of

∼ 973 cm−1 was assigned to the overtone of ν7 vibration [18]. The corresponding

progressions in the Ã band were reported at ∼ 2821, ∼ 2002, ∼ 807 and ∼ 864

cm−1, respectively, in that order by these authors. The excitation of degenerate

vibrational modes in the Ã2Πu - X̃2Πg band system was also reported by various

other groups [3, 19,21,22].

The linear C4H· +
2 radical cation belongs to the D∞h symmetry point group at its

equilibrium configuration. This linear system is prone to the bending instability

and the degeneracy of the Π electronic states would split upon distortion along

the bending vibrational modes and would exhibit Renner-Teller (RT) activity.

Apart from a few computational studies on the electronic structure of the X̃2Πg

and Ã2Πu states of C4H· +
2 , a rigorous dynamics study including RT coupling and

coupling between the Π states to elucidate the detailed vibronic structures has

not been carried out so far. The present effort is aimed towards this endeavor. In

order to accomplish the proposed goal, the potential energy surfaces of the cou-

pled X̃2Πg and Ã2Πu electronic states are constructed with the aid of vibronic
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coupling theory and ab initio quantum chemistry calculations. Employing these

potential energy surfaces nuclear dynamics calculations are carried out by time-

independent and time-dependent quantum mechanical methods. Theoretically

calculated vibronic band structures of the X̃2Πg and Ã2Πu states are compared

with the experiment. The progression in the vibronic bands are assigned and

compared with the literature data. The effect of RT and X̃-Ã coupling on the

vibronic dynamics is examined and discussed.

5.2 The Vibronic Hamiltonian

In this section we construct a Hamiltonian describing vibronic interactions in

the Πg and Πu electronic states of C4H· +
2 . The Hamiltonian is constructed in

terms of the dimensionless normal displacement coordinates of the vibrational

modes of the electronic ground state of neutral C4H2 [23, 24]. Standard vibronic

coupling theory in a diabatic electronic representation and elementary symmetry

rules are utilized for the purpose. The C4H2 molecule possesses D∞h point group

symmetry at the equilibrium minimum of its electronic ground state. Its 13

vibrational modes transform according to,

Γvib = 3σ+
g ⊕ 2σ+

u ⊕ 2πg ⊕ 2πu, (5.1)

irreducible representations (IREPs) of D∞h symmetry point group. The activity

of vibrational modes in the electronic states j and k is governed by the symmetry

rule, Γj ⊗ Γk ⊃ Γvib. The symmetrized direct product of Πg and Πu states in the

D∞h point group reads

Πg ⊗ Πg = δg + σ+
g = Πu ⊗ Πu
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The totally symmetric σ+
g vibrational modes can not split the degeneracy of either

Πg or Πu electronic states. These modes are condon active within these electronic

states. The δg vibrational modes can split the orbital degeneracy of the Π state

in first order. Because of lack of vibrational modes of δg symmetry in a linear

molecule, the first order coupling between the components of doubly degenerate

Π state vanishes. However, (πg)
2 = (πu)

2 ⊃ δg, and therefore, the πg or πu modes

can couple them in second-order. This gives rise to RT coupling and a splitting of

the Π degeneracy. The components of the split Πg or Πu states can also undergo

coupling according to

Πg ⊗ Πu = δu + σ+
u + σ−u .

Considering the symmetry rules given above the following vibronic Hamiltonian

is derived,

H = (TN + V0)14 +


WX̃x WX̃x−X̃y WX̃x−Ãx 0

WX̃y 0 WX̃y−Ãy

WÃx WÃx−Ãy

h.c WÃy

 . (5.2)

In the above, H0 = TN + V0, represents the Hamiltonian (assumed to be har-

monic) of the reference electronic ground (S0) state of C4H2 with

TN = −1

2

∑
i ∈ σ+

g , σ
+
u

ωi
∂2

∂Q2
i

− 1

2

∑
i ∈ πg , πu

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (5.3)
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and

V0 =
1

2

∑
i ∈ σ+

g , σ
+
u

ωiQ
2
i +

1

2

∑
i ∈ πg , πu

ωi
(
Q2
ix +Q2

iy

)
. (5.4)

The quantity 14 is a 4×4 diagonal unit matrix. The matrix Hamiltonian (with
elements W ) in Eq. 5.2 represents the diabatic energies of the given electronic
states of the radical cation (diagonal elements) and their coupling energies (off-
diagonal elements). The elements of this matrix are expanded in a standard
Taylor series around the reference equilibrium geometry at, Q = 0, in the follow-
ing way [23]

Wjx/jy = E
j
0 +

∑
i ∈ σ+

g

κ
j
iQi +

∑
i ∈ σ+

g , σ
+
u

γ
j
iQ

2
i +

∑
i ∈ πg, πu

[γ
j
i (Q

2
ix +Q

2
iy)] +

∑
i ∈ πg, πu

[ξ
j
i (Q

2
ix +Q

2
iy)

2
] ±

∑
i ∈ πg, πu

η
j
i (Q

2
ix −Q

2
iy)±

∑
i ∈ πg, πu

δ
j
i (Q

4
ix −Q

4
iy); j ∈ X̃, Ã (5.5)

Wjx−jy =
∑

i ∈ πg , πu

2ηji (QixQiy) + 2δji (Q
3
ixQiy −QixQ

3
iy) ; j ∈ X̃, Ã (5.6)

Wjx−kx/jy−ky =
∑
i ∈ σ+

u

λj−ki Qi ; j ∈ X̃ and k ∈ Ã (5.7)

In the above equations the quantity E0
j represents the vertical ionization energy

(VIE) of the jth electronic state. The two components of the degenerate states

and modes are labeled with x/y throughout this study. The quantities κji , η
j
i

and δji represent linear intrastate, quadratic and quartic RT coupling parameters

for the symmetric (σ+
g ) and degenerate (πg, πu) vibrational modes, respectively,

for the jth electronic state. The first-order coupling parameter of the ith vibra-

tional mode between the electronic states j and k is given by λj−ki (this is like

pseudo-Jahn-Teller coupling of Jahn-Teller split component electronic states) and
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γji and ξji are the second-order and fourth-order intrastate coupling parameters

respectively, of the ith vibrational mode for the jth electronic state. The sum-

mations run over the normal modes of vibration of symmetry specified in the

index. The + and - sign applicable to the x and y components of the degener-

ate state, respectively. We note that the relative sign of various elements of the

diabatic electronic Hamiltonian matrix is determined by checking its invariance

with respect to various symmetry operations, correlating to the D6h symmetry

point group and following similar works on benzene and cyclopropane radical

cations [25–27].

5.2.1 Electronic structure calculations

The molecular geometry of C4H2 in the electronic ground state is optimized within

the second-order Møller-Plesset perturbation (MP2) level of theory employing

Dunning’s augmented polarized valence triple-zeta basis set (aug-cc-pVTZ) [28]

using Gaussian 03 suite of programs [29]. The equilibrium geometry converged

to D∞h symmetry point group. The equilibrium geometry parameters are given

in Table 5.1. Harmonic vibrational frequency (ωi) and mass-weighted normal

displacement coordinate of vibrational modes are calculated at the optimized

molecular geometry. The normal coordinates are multiplied by
√
ωi (in atomic

units) to transform them to their dimensionless form (Qi) [24]. In this defini-

tion equilibrium geometry of C4H2 occurs at Q=0. The calculated harmonic

frequency of 13 vibrational modes (including degeneracy), their symmetry and

description along with the available literature data are given in Table 5.1. The

vertical ionization energies (VIEs) of C4H2 along each relevant vibrational mode

for various nuclear geometries, Qi = ± 0.10 and ± 0.25 to ± 4.0 with a spacing

of 0.25, are computed with the equation-of-motion coupled-cluster singles and
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doubles (EOM-CCSD) method using aug-cc-pVTZ basis set. The EOM-CCSD

calculations are performed using CFOUR suite of programs [30]. The calculated

ab initio energies are fitted to the adiabatic counterpart of the diabatic electronic

Hamiltonian of Eq. 1 by a least squares procedure to estimate the parameters of

the Hamiltonian defined in Sec. 5.2. The coupling parameters (defined above)

and VIEs estimated from the present electronic structure data are presented in

Tables 5.2 and 5.3, respectively.
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Table 5.1: Symmetry and harmonic frequency (in cm−1) of vibrational modes of
the ground electronic state of C4H2. The experimental results represent fundamental
frequencies.

Symm. Mode MP2/aug-cc-pVTZ CCSD(T)/cc-pVQZ [39] Ref. [40]† Expt. [41] Description

σ+
g ν1 3475 3457 3489 3332 C-H symmetric stretch

ν2 2185 2235 2222 2189 C≡C symmetric stretch
ν3 897 892 885 872 C-C symmetric stretch

σ+
u ν4 3475 3458 3490 3333 C-H asymmetric stretch

ν5 2001 2057 2050 2019 C≡C asymmetric stretch

πg ν6 608 632 638 626 C-H bend
ν7 448 481 490 483 C-C bend

πu ν8 619 634 641 628 C-H bend
ν9 219 220 223 220 C-C bend

Table 5.2: Linear (κi and λX−Ai ), quadratic (γi and ηi) and quartic (ξi and δi) coupling

constants of the Hamiltonian [cf., Eqs.(2-7)]for the X̃2Πg and Ã2Πu electronic states
of C4H· +

2 . Dimensionless excitation strengths are given in the square brackets. All
quantities are given in the eV unit.

Symmetry Mode Freq κi or ηi (δi) γi (ξi) κi or ηi (δi) γi (ξi) λX−Ai

X̃2Πg Ã2Πu

σ+
g ν1 0.4309 -0.0136 [0.0005] 0.0011 -0.0203 [0.0011] 0.0007 -

ν2 0.2710 -0.2393 [0.3899] 0.0052 -0.0646 [0.0284] 0.0049 -
ν3 0.1112 0.0396 [0.0634] -0.0015 -0.1373 [0.7623] 0.0045 -

σ+
u ν4 0.4309 - 0.0006 - 0.0010 0.0234 [0.0014]

ν5 0.2481 - -0.0041 - 0.0176 0.1737 [0.2451]
πg ν6 0.0754 -0.0045 (0.0001) -0.0009 (0.0000) 0.0027 (0.0000) -0.0036 (0.0000) -

ν7 0.0556 -0.0044 (0.0000) 0.0026 (0.0000) -0.0025 (0.0000) -0.0129 (0.0000) -
πu ν8 0.0768 -0.0079 (0.0001) 0.0025 (0.0001) 0.0037 (0.0000) -0.0037 (0.0000) -

ν9 0.0271 -0.0004 (0.0000) -0.0210 (0.0001) -0.0005 (0.0000) -0.0189 (0.0000) -

Table 5.3: Vertical ionization energies (in eV) of the X̃ and Ã states of C4H· +
2 .

States
EOM-CCSD(aug-cc-pVTZ) Ref. [12] Ref. [13]

X̃2Πg 10.33 10.17 10.03

Ã2Πu 12.94 12.62 -
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5.3 Nuclear dynamics

The vibronic spectrum of the X̃ and Ã electronic states of C4H· +
2 is examined in

this study. The spectral intensity as a function of final state energy is calculated

using Fermi’s golden rule,

I(E) =
∑
v

∣∣∣〈Ψα
v |T̂ |Ψi

0〉
∣∣∣2 δ(E − Eα

v + Ei
0). (5.8)

Here, |Ψi
0〉 represents the wavefunction of the initial vibronic ground state of

C4H2 (with energy Ei
0), and |Ψα

v 〉 is the wavefunction of the final (α) vibronic

state with energy Eα
v . The quantity T̂ defines the transition dipole operator.

The vibronic ground (reference) state is expressed as

|Ψi
0〉 = |Φ0

0〉|0〉 (5.9)

where |Φ0
0〉 and |0〉 represent the electronic and vibrational components of the

initial wavefunction, respectively. Within the harmonic approximation the vibra-

tional component (|0〉) is taken as the direct product of the harmonic oscillator

functions along the vibrational modes.

In the time-independent framework, I(E) is calculated by a matrix diago-

nalization method. The Hamiltonian matrix, represented in a direct product

basis of diabatic electronic state and one-dimensional harmonic oscillator eigen-

functions of the reference Hamiltonian (TN + V0), is diagonalized by using the

Lanczos algorithm [31, 32]. The exact location of the vibronic energy levels and

their relative intensities are the eigenvalues and the squared first components of

the Lanczos eigenvectors, respectively [23, 33, 34]. The spectral envelope can be

obtained within the time-dependent framework by Fourier transform of the time
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autocorrelation function of a wave packet (WP) evolving on the final electronic

state as

P (E) ≈ 2Re

∫ ∞
0

eiEt/~〈Ψα(0)|τ † e−iHt/~ τ |Ψα(0)〉dt, (5.10)

≈ 2Re

∫ ∞
0

eiEt/~ Cα(t) dt. (5.11)

Here, Cα(t) = 〈Ψα(t = 0)|Ψα(t)〉 represents the time autocorrelation function of

the WP initially prepared on the αth electronic state of C4H· +
2 . The initial WP

at t = 0, i.e., |Ψi
0 >, is vertically promoted to the final state α, |Ψα

0 >, and its

time-evolution is described by, Ψα(t) = e−iHt/~Ψα(0). The quantity τ represents

the transition dipole matrix: τ † = (τX , τA), where τα = 〈Φα|T̂ |Φ0〉. Within

the generalized Condon approximation in a diabatic electronic basis, the matrix

elements of T̂ are set to be independent of the nuclear coordinates and are treated

as constant [34]. Finally, the composite spectrum is calculated by combining the

partial spectra obtained by propagating WP on each of the electronic states.

The WP propagation calculations are carried out within the framework of multi-

configuration time-dependent Hartree (MCTDH) method [35–37]. The multiset

formalism of this method allows to combine several vibrational degrees of freedom

(DOF) into a ”particle” (p). With such a combination the MCTDH wavefunction

can be expressed as

Ψ(q1, ..., qp, t) =

n1∑
j1=1

...

np∑
jp=1

Aj1,...,jp(t)

p∏
k=1

ϕ
(k)
jk

(qk, t). (5.12)

Here, qk = (Qi, Qj, ..) is the set of DOF combined together in a single particle
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and Aj1,...,jp denote the MCTDH expansion coefficients. The time-dependent ba-

sis functions, ϕ
(k)
jk , are the single-particle functions (SPFs) and nk is the number

of SPFs used to describe the motion of the kth DOF. The MCTDH equations

of motion are solved by representing SPFs in a primitive time-independent ba-

sis. A harmonic oscillator discrete variable representation (DVR) is used for the

primitive basis. All time-dependent WP calculations are carried out using the

Heidelberg MCTDH suite of program modules [35–37].

5.4 Results and discussion

5.4.1 Adiabatic potential energy surface : RT and X̃ - Ã

conical intersections

In this section we examine the topography of the adiabatic PESs of the degen-

erate ground and first excited doublet electronic states of C4H· +
2 obtained by

diagonalizing the diabatic electronic Hamiltonian (Eq.2). According to the sym-

metry selection rules given in Sec.5.2, the totally symmetric vibrational modes

ν1-ν3 of C4H2 cannot split the degeneracy of the X̃2Πg and Ã2Πu electronic states.

One dimensional view graphs of the multidimensional PESs of C4H· +
2 along a

given totally symmetric (σ+
g ) vibrational mode, keeping others at their equilib-

rium values are shown in Fig. 5.1. The RT effect splits the degeneracy of X̃ and

Ã electronic states when the molecule is distorted along πg (ν6-ν7) and πu (ν8-

ν9) vibrational modes. The potential energy curves along the x component of

πg and πu modes and are plotted in Figs. 5.2(a-b) and Figs. 5.2(c-d), respec-

tively. In these plots the adiabatic electronic energies calculated ab initio and

those obtained from the present vibronic model are shown by points and solid
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lines, respectively. It can be seen from Figs. 5.1 and 5.2 that the computed ab

initio energies compare very well to those obtained from the vibronic coupling

model. It can be seen from Fig. 5.2 that the RT splitting of electronic degener-

acy is small and the quartic RT coupling terms of the Hamiltonian are very small

(Table. 5.2), it makes some minor contribution in the energies in Fig. 5.2(d).

The relevant stationary points of the PESs viz., the energetic minimum (V
(c)
min)

of the seam of X̃-Ã conical interactions and the energetic minimum (Vmin) of the

electronic states are calculated. The energetic minimum of X̃ and Ã states occurs

at ∼ 10.23 and ∼ 12.85 eV, respectively, and the X̃-Ã seam minimum occurs at

a very high energy. Therefore the coupling of the X̃ and Ã states is expected to

have negligible role in the nuclear dynamics.
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and points, respectively.



5.4. Results and discussion 169

13

14

13

14

-4 -2 0 2 4

10

11

-4 -2 0 2 4

10

11

13

14

12.8

12.9

-4 -2 0 2 4

10

11

12

-4 -2 0 2 4

10.2

10.3

~~ ~~

~~ ~~~~

~~

~~

~~

Q Q

V
 (

e
V

)

(a) (b)

(d)

(c)

v
6

v
7

v
8

v
9

~608 cm
-1

~448 cm
-1

~619 cm
-1

~219 cm
-1

X

A
~

~ ~

~
A

X

X

X

A

A

~

~

~

~

Figure 5.2: Same as in Fig. 5.1, along degenerate πg (ν6-ν7) and πu (ν8-ν9) vibrational
modes.

5.4.2 Vibronic band structure of the X̃ and Ã states of

C4H
· +
2

5.4.2.1 Uncoupled state spectrum and Renner-Teller effect

In order to demonstrate the effect of nonadiabatic coupling (both RT and X̃-Ã) on

the vibronic structure of the photoionization bands of C4H2, we first examine the

vibrational energy level structure of the uncoupled X̃, and Ã states of C4H· +
2 .

The coupling between the states is included subsequently and the final results

are compared with the experiment and discussed. The uncoupled state spectra
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Table 5.4: Number of Harmonic oscillator (HO) basis functions for vibrational modes,
the dimension of the secular matrix and the number of Lanczos iterations used to
calculate the converged theoretical stick spectra of X̃ and Ã states of C4H· +

2 shown in
various figures.

Vibrational modes( HO basis functions) Dimension of the matrix Lanczos iterations Figure(s)

ν1, ν2, ν3 (4,8,10) 320 10000 panel a of 5.3
ν6x, ν6y, ν7x, ν7y, ν8x, ν8y, ν9x, ν9y (4,4,6,6,6,6,4,4) 331776 10000 panel b of 5.3

ν1, ν2, ν3, ν6x, ν6y,ν7x, ν7y, ν8x, ν8y, ν9x, ν9y 9437184 10000 panel c of 5.3
(3,6,8,4,4,4,4,4,4,4,4)

shown in Fig. 5.3 are calculated by the time-independent matrix diagonalization

approach as discussed in Sec. 5.3. The vibrational basis used in each calculation

is given in Table 5.4. The theoretical stick line spectrum of each electronic state

(shown in panel a of Fig. 5.3) is calculated with the vibronic Hamiltonian of Eq.

1 and including all three totally symmetric vibrational modes ν1-ν3. A Lorentzian

line shape function of 20 meV full width at the half maximum (FWHM) is used

to convolute the stick line spectrum in each case and to generate the respective

spectral envelope. In a situation without X̃-Ã coupling and in absence of any

intermode coupling terms, the Hamiltonian for the degenerate X̃2Πg and Ã2Πu

states are separable in terms of the σ+
g , πg and πu modes. Therefore, the partial

spectra calculated with the totally symmetric and degenerate vibrational modes

separately, can be convoluted to get the composite vibronic structure of the elec-

tronic states. The spectrum of the X̃ and Ã states obtained by including the

σ+
g (ν1-ν3) modes only is shown in Fig. 5.3(a). In the X̃ state, excitation of ν1,

ν2 and ν3 modes is weak, strong and moderate, respectively. The fundamentals

of ν1, ν2, and ν3 vibrations are ∼ 3484, ∼ 2227 and ∼ 885 cm−1 spaced, respec-

tively, from the origin peak of the X̃ band. The X̃2Πg state of C4H· +
2 originates

from ionization of an electron from an antibonding (along ν2) molecular orbital

of C4H2. The vibrational frequency of ν2 therefore increases in the X̃ state of
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C4H· +
2 as compared to the same in the ground state of C4H2. Since the coupling

strength of the ν2 mode is particularly strong [Table. 5.2], this mode forms an

extended progression in the X̃ state spectrum, the same trend can be observed

for the ν3 mode in the Ã state. Peak spacing of ∼ 3481, ∼ 2225 and ∼ 932 cm−1

due to the fundamental of ν1, ν2 and ν3 vibrational modes, respectively, is found

in the Ã state spectrum. In this state the coupling strength [cf., Table. 5.2] of ν1,

ν2 and ν3 vibrational modes is weak, moderate and strong, respectively, in that

order.

The partial spectra calculated with the degenerate RT modes (πg and πu) are

shown in panel b of Fig. 5.3. The composite spectrum obtained by convoluting

the symmetric and degenerate mode spectra of X̃ and Ã states presented in panel

a and panel b of Fig. 5.3 is shown in panel c of this figure. The spectra presented

in panel b of Fig. 5.3 reflects a weak contribution of RT coupling in the vibronic

structure of X̃ and Ã states. As a result, the overall spectral envelop (panel c of

Fig. 5.3) appears to be very similar and close to that shown in panel a of Fig. 5.3.

The weak RT coupling within each of these states however, has some effects on

the spectral broadening and possibly excitation of additional vibrational modes

as the line structure within each spectral peak in panel c suggests. To this end

some of the spectral progressions reported in experiments are compared with

our theoretical findings. Excitation of the ν2 vibrational mode in the X̃ band is

reported by Baker et al. [12]. From Table 5.2 it can be seen that this mode has

the strongest excitation strength compared to all other symmetric modes in the

X̃ state. Our theoretical analysis reveals that the fundamental of ν2 appears at

∼ 2227 cm−1 as compared to its value ∼ 2121 cm−1 reported in the experiment

of Baker et al. [12]. Bondybey et al. also identified the fundamental of ν1,

ν2, ν3 modes and the overtone of ν7 vibrational mode at ∼ 3143, ∼ 2177, ∼
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865 and ∼ 973 cm−1, respectively. These results are in good accord with the

progressions found in the present study at ∼ 3484, ∼ 2227, ∼ 885 and ∼ 842

cm−1, respectively, in that order. In order to confirm the assignments, vibronic

wavefunctions are calculated by the block-improved-relaxation method using the

MCTDH program modules [44, 61, 62]. The wavefunctions corresponding to ∼

3484, ∼ 2227, ∼ 885 and ∼ 842, ∼ 1295, ∼ 1442 and ∼ 3112 cm−1 lines are

plotted in a given coordinate space and presented in Fig. 5.4(a-g), respectively.

It can be seen from these plots that the panels a, b and c reveal one mode along

ν1, ν2 and ν3 respectively and confirms the fundamentals along these modes. The

plot in panel d, e and f confirms the two quantum excitation along ν7, ν6 and

ν8, respectively. The wavefunctions of panel g, on the otherhand, reveals one

quantum excitation each along ν2 and ν3 and hence represents a combination

peak.

In the Ã state major progressions are formed by ν1, ν2, ν3 and the overtone of ν7,

ν6 and ν8 vibrational modes. Many groups identified progressions in the Ã state

and assigned to the corresponding vibrational modes. A comparative account of

all these results along with the present findings is given in Table 5.5.
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Figure 5.4: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν1, ν2 and ν3 (panel a, b and c, respectively) and first overtone of ν7, ν6 and ν8 (panel
d, e and f, respectively) excited in the X̃ state spectrum of C4H· +

2 . The wavefunction
in panel g represent the combination peak ν2 + ν3.
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5.4.2.2 X̃ - Ã Coupled state spectrum and time-dependent dynamics

The symmetry rule (stated in Sec.5.2) allows the coupling of X̃ and Ã states in

first-order through the vibrational modes of σ+
u symmetry. It can be seen from

Table. 5.2 that the vibrational modes ν4 and ν5 have nonzero first order coupling.

It is mentioned in sec. 5.4.1 that energetic minimum of the seam of conical in-

teractions of X̃ and Ã states occurs at much higher energy and X̃-Ã coupling is,

therefore, not expected to affect the nuclear dynamics on these states. In order

to confirm, we carried out X̃-Ã coupled states nuclear dynamics calculations. In

the coupled states situation the separability of the Hamiltonian (as discussed in

the previous section) in terms of symmetric and degenerate vibrational modes is

no longer valid. We, therefore, carried out full dimensional calculations with two

degenerate coupled electronic states including all thirteen vibrational degrees of

freedom. The dynamics calculations are carried out by propagating WPs employ-

ing the MCTDH program modules. [60] Four different calculations are carried out

by initially preparing the WP on each components of the Π states separately. The

vibrational basis functions used in the calculations are given in Table 5.6. The

WP is propagated for 200 fs in the coupled manifold of electronic states and the

time autocorrelation function, diabatic and adiabatic electronic populations are

recorded during the propagation. The time autocorrelation functions obtained

from four different calculations are combined, damped with an exponential func-

tion, e(−t/τr) (with τr = 66 fs) and Fourier transformed to generate the spectral

envelopes of the electronic states. The numerical details of converged MCTDH

calculations are given in Table 5.4.

The resulting theoretical spectral envelopes are shown in panel a of Fig. 5.5

along with the experimental results of Ref. [16] in panel b. It can be seen that

the theoretical results compare very well with the experiment. When compared
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with the theoretical results presented in Fig. 5.3(c), it can be seen that the X̃-

Ã intersection has negligible effects on the vibronic band structure of both the

states. On the other hand, the RT effect is weak but it causes spectral broadening

by increasing the vibronic line density as can be seen from Fig. 5.3(c). The origin

line of the Ã2Πu band occurs close to the reported DIB at 506.9 nm. From the

results presented in Fig. 5.5, the position of the origin line of the Ã state relative

to the origin line of the X̃ state is estimated at 471 nm. A more meaningful

comparison requires a study of the absorption spectrum of C4H· +
2 .

The time-dependence of electronic population in the X̃-Ã coupled states dy-

namics is shown in Fig. 5.6. The diabatic (panel a) and adiabatic (panel b)

electron populations are shown in this figure for an initial excitation of the WP

to one component of the diabatic Ã state. While the diabatic population of the

initially prepared state starts from 1.0, its adiabatic counterpart has a population

of ∼0.5 at t = 0. It can be seen from both the panels of Fig.5.6 that the WP

does not move to the X̃ state during the entire course of the dynamics. The RT

coupling drives the WP motion back and forth between the RT split component

states only. The population dynamics retains all the features noted above when

the WP initially prepared on one component of the X̃ state. In this case the WP

does not move to the Ã state. It therefore emerges that the X̃ - Ã coupling has

insignificant role on the dynamics of both the states. The RT coupling is weak,

however, has noticeable effect on the vibronic dynamics of both X̃ and Ã state

of diacetylene radical cation.
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Table 5.5: A comparative account on the vibrational progressions in the Ã2Πu elec-
tronic state of diacetylene radical cation. The numbers represent the frequency of the
vibrational mode in cm−1.

Mode Present results Ref. [2] Ref. [21] Ref [19] Ref. [18]

ν1 3481 3137 3158 - 2821
ν2 2225 2177 2096 1961 2002
ν3 932 861 987 806 807
2ν6 1154 - - - -
2ν7 757 971 - 862 861
2ν8 1172 - - - -

Table 5.6: Normal mode combinations, sizes of the primitive and the single particle
basis used in the wave packet propagation within the MCTDH framework in the four
coupled (X̃−Ã) electronic manifold using the complete vibronic Hamiltonian of Eq.(2 to
7). First column denotes the vibrational degrees of freedom (DOF) which are combined
to particles. Second column gives the number of primitive basis functions for each DOF.
Third column gives the number of single particle functions (SPFs) for each electronic
state.

Normal modes Primitive Basis SPF Basis
ν1, ν4, ν6y, ν8x, ν9y (4,4,6,6) [12,12,8,12]
ν2, ν5, ν7x, ν8y (8,8,6,6) [12,10,8,10]
ν3, ν6x, ν7y, ν9x (10,6,6,6) [8,12,10,10]
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Figure 5.5: Vibronic band structure of the X̃-Ã coupled electronic states of C4H· +
2 .

Relative intensity (in arbitrary units) is plotted as a function of the energy of the
vibronic states of C4H· +

2 . The present theoretical results are shown in panel a and the
experimental results of Ref. [12] are reproduced in panel b.
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5.5 Summary

The X̃2Πg and Ã2Πu band system of diacetylene radical cation is theoretically

investigated with the aid of ab initio quantum chemistry calculations, vibronic

coupling theory and time-independent and time-dependent quantum dynamics

methods. Both the RT coupling within the X̃ and Ã states and also the cou-

pling between them are considered and the impact of these couplings on the

vibronic dynamics of each electronic state is carefully examined. The vibronic

band structure of both the X̃ and Ã states are calculated and compared with

the available experimental results. The progression of vibrational modes in each

electronic states is identified and discussed in relation to the literature results.It

is established that the RT coupling within each X̃ and Ã state is weak. However,

this coupling triggers the excitation of degenerate vibrational modes within each

electronic states. The pseudo-Jahn-Teller type of X̃ - Ã coupling through the

vibrational modes of σ+
u symmetry has, in particular, no effect on the dynamics.
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Chapter 6

Photophysics of phenol and

pentafluorophenol

Multimode vibronic coupling of the energetically low-lying electronic states of phe-

nol and pentafluorophenol is investigated in this chapter. First principles nuclear

dynamics calculations are carried out to elucidate the optical absorption spectrum

of both the molecules. This is motivated by the recent experimental measurements

[Karmakar et. al, J. Chem. Phys. 142, 184303 (2015)] on these systems. Di-

abatic vibronic coupling models are developed with the aid of adiabatic electronic

energies calculated ab initio by the equation of motion coupled cluster quantum

chemistry method. Nuclear dynamics study on the constructed electronic states is

carried out both by the time-independent and time-dependent quantum mechan-

ical methods. It is found that the nature of low-energy πσ∗ transition changes,

and in pentafluorophenol the energy of the first two 1πσ∗ states is lowered by

about half an eV (vertically, relative to those in phenol) and they become ener-

getically close to the optically bright first excited 1ππ∗ (S1) state. This results

into strong vibronic coupling and multiple multi-state conical intersections among

187
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the ππ∗ and πσ∗ electronic states of pentafluorophenol. The impact of associated

nonadiabatic effects on the vibronic structure and dynamics of the 1ππ∗ state is

examined at length. The structured vibronic band of phenol becomes structureless

in pentafluorophenol. The theoretical results are found to be in good accord with

the experimental finding both at high and low energy resolution.

6.1 Introduction

Vibronic coupling (VC) is an ubiquitous mechanism that plays crucial role in

the dynamics of electronically excited polyatomic molecules [1, 2]. The mixing

of nuclear and electronic degrees of freedom causes a breakdown of the Born-

Oppenheimer approximation [3]. As a result the nuclei moves concurrently on

multiple electronic states and generally lead to conical intersections (CIs) among

them [1,2,4–8]. Such intersections drive the nuclear motion on an ultrafast time

scale and give rise to nonradiative decay of electronic states and complex molec-

ular electronic spectrum. In recent years the πσ∗ photophysics/chemistry of flu-

orinated aromatic organic hydrocarbons and heterocyclic compounds received

much attention in the literature from both theoretical and experimental view

points [9–18].

For aromatic chromophores, important excited states are mainly of optically

bright ππ∗ type. Existence of low-lying πσ∗ and nπ∗ type of excited states in

addition, bring about new features in the spectroscopy and dynamics and has

attracted significant attention in the recent past [19–29]. From a number of stud-

ies it emerged that aromatic molecules can have different kind of low-lying πσ∗

states if the hydrogen atoms linked to the carbon atoms of the aromatic ring are
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replaced by the fluorine atoms. Such fluorine atom substitutions in the aromatic

ring lead to a stabilization of the σ type of orbitals and it is referred to as “perflu-

oro effect” in the literature [18]. Furthermore, owing to an energy lowering it is

possible for the optically dark πσ∗ state to gain intensity through vibronic mixing

with an optically bright ππ∗ state. This happens to be the case in the present

study, wherein we find strong vibronic coupling with an optically bright state

enables one to probe the optically dark states in the experimental recording [30].

It was observed that the structured absorption spectrum of benzene becomes

structureless with increasing fluorine substitution [16–18]. In the recent past

this subject is extensively studied by developing sophisticated theoretical mod-

els [1, 11–13]. It emerged from these studies that πσ∗ [C-F (σ∗)] state comes

down in energy and mixes with first excited ππ∗ state and the extent of mixing

increases with increasing number of substituted F atom. Such theoretical models

could account for the lack of vibronic structure of the absorption bands, large

Stoke’s shift of fluorescence spectra, low quantum yield of fluorescence and also

short lifetimes of excited electronic states [18,29,31–33].

Phenol is the chromophoric unit of several biomolecules, amino acids like ty-

rosine and nucleic acid bases. Photophysical measurements on phenol have been

carried out by several groups in the gas phase as well as in different medium [34–

38]. Fast internal conversion of UV excited phenol to the electronic ground state

has been connected to the photostability of our ecosystem [22, 23, 28, 35, 39–42].

The investigations were mostly focused on the relaxation dynamics and the photo-

acid character of phenol upon the UV excitation to the low-lying electronic

states [22, 39, 43]. The interaction between the low-lying optically bright 1ππ∗
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and nearby dark 1πσ∗ (which is dissociative along the O-H stretching coordinate)

electronic states, was the subject of major interest [21,43–49]. Such πσ∗ states are

found to play key role in the relaxation dynamics and also in other photophysical

properties (as discussed below in the text). The ionic dissociation of phenolic

O-H in aqueous solution upon UV absorption has been reported to enhance by

four orders of magnitude in pentafluorophenol (PFP) [50].

Recently, Chakraborty and coworkers reported that discrete vibronic structure

of phenol completely washes out in the optical absorption spectrum of PFP [30]

which indicated the possibility of existence of close lying interacting electronic

states in the vicinity of lowest bright 1ππ∗ excited electronic state. These au-

thors also carried out calculation of vertical excitation energies (VEEs) by time-

dependent density functional theory (TDDFT)/6-311++G** method using the

CAM-B3LYP functional [30] and reported four low-lying electronic excited states

of PFP viz., πσ∗ (S1), ππ∗ (S2), πσ∗ (S3) and πσ∗(S4) in the increasing order of

energy. The recorded optical absorption spectra by these authors revealed three

major discrete peaks at ∼ 275 nm, ∼ 268 nm and ∼ 262 nm for phenol and

four hump like structures at ∼ 260 nm, ∼ 242 nm, ∼ 232 nm and ∼ 223 nm for

PFP [30]. The loss of vibronic structure was attributed to the existence of en-

ergetically close lying πσ∗ states in the vicinity of UV absorbing optically bright

ππ∗ state in PFP. Furthermore, while the resolved absorption band of phenol was

assigned to the vibronic structure of S1 (1ππ∗) state only, the maxima observed

in the structureless absorption band of PFP were reported to originate from two

energetically close lying optically dark 1πσ∗ states in addition to the bright 1ππ∗

state. It therefore appears that optically dark states could be probed in the ex-

periment for PFP, whereas, they could not be in case of phenol.
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The interpretation of aforesaid results remain qualitative only in absence of

a rigorous theoretical scrutiny which considers the coupling of electronic states

within the framework of vibronic coupling theory [1]. Furthermore, the TDDFT

vertical excitation energy has been found to provide an incorrect energetic or-

dering of states in related compounds [30] and therefore it calls for a careful

theoretical examination in order to arrive at a justifiable interpretation of exper-

imental results.

The mentioned facts motivated us to undertake the following detail study of

electronic structure and nuclear dynamics to elucidate the vibronic structure of

the absorption bands of phenol and PFP. Extensive ab initio quantum chemistry

calculations of electronic energy are carried out and vibronic coupling models of

low-lying excited electronic states are established. The nuclear dynamics study

on the coupled electronic states is carried out by quantum mechanical methods

to calculate the absorption spectra and to study the time-dependent dynamics

of excited electronic states. Finally, the theoretical results are assigned and com-

pared with the available literature results [30].

We mention that the 1ππ∗ state of phenol is bound in nature and the 1πσ∗

(arising from an excitation to a 3s type of Rydberg orbital of antibonding σ∗

character with respect to phenolic O-H bond) is of repulsive type [22]. The latter

crosses both the excited 1ππ∗ state and S0 ground state. A viewgraph presented

in Fig. 2 of Ref [22] is worth referring at this point. It can be seen that the

1ππ∗-1πσ∗ intersection occurs quite near to the FC region whereas, the crossing

with the S0 state occurs at much larger displacement along the O-H stretch
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coordinate. It can also be seen that the 1πσ∗ state is quasibound in nature at the

FC zone and its crossing with the 1ππ∗ state occurs about an eV above the 1ππ∗

minimum. It is emphasized at this point that, we are concerned with the nuclear

dynamics in the vicinity of the FC region wherein the states are bound (1ππ∗)

and quasibound (1πσ∗) in nature and therefore the present method (discussed

below) can be expected to provide an interpretation and understanding of the

experimental results recorded recently [30].

6.2 Theory and Methodology

6.2.1 Electronic Structure Calculations

Equilibrium geometry of the electronic ground state, S0 (reference state in the

present study) of both phenol and PFP is optimized at the second-order Møller-

Plesset perturbation (MP2) level of theory employing the aug-cc-pVDZ basis set

of dunning [51]. The calculations are carried out using G09 suite of programs [52].

For both phenol and PFP the optimized reference equilibrium geometry of the

S0 state converged to the Cs symmetry point group. Harmonic frequency (ωi) of

vibrational modes of both the molecules is calculated by diagonalizing the kine-

matic (G) and ab initio force constant (F) matrix of the reference equilibrium

structure [53]. These vibrational frequencies of phenol and PFP are listed in Ta-

bles 6.1 and 6.2, respectively. It can be seen from the latter that substitution of

F atom decreases the frequency of vibrational modes in PFP and the harmonic

frequency of the vibrational modes obtained in the present study are in good

accord with the theoretical and experimental (fundamental) data available in the

literature [30]. The mass-weighted normal coordinate of the vibrational modes is

obtained from the eigenvectors of the GF- matrix. These coordinates are con-
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verted into their dimensionless form (Qi) by multiplying with
√
ωi (in a.u) [53].

The vibrational modes of phenol and PFP decompose into 23 totally symmet-

ric and 10 nontotally symmetric modes in the Cs symmetry point group. They

belong to the a′ and a′′ irreducible representations of the Cs symmetry point

group, respectively. Adiabatic energies of the low-lying singlet electronic states

of phenol and PFP are calculated along the dimensionless normal coordinates of

the 33 vibrational degrees of freedom. The vertical excitation energies (VEEs)

of these electronic states are calculated for a range of nuclear configuration using

the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) method

implemented in MOLPRO suite of programs [54]. The energetic ordering of the

low-lying electronic states of phenol and PFP obtained at the respective reference

equilibrium configuration of the electronic ground state is schematically shown

in Fig. 6.1. It can be seen from this figure that the first two 1πσ∗ states of

PFP come down in energy as compared to those in phenol. The nature of the

energetically low-lying σ∗ orbitals changes upon fluorination. In phenol they are

O-H σ∗ whereas, in PFP they are predominantly C-F σ∗. Electronic effect due

to F atom stabilizes the latter orbitals.

While the energetic ordering of the first two excited states of phenol is unam-

biguous, some ambiguity exists in the literature for the same in case of PFP [30].

In order to further confirm the energetic ordering of PFP given in Fig. 6.1, VEEs

are calculated at the reference geometry by changing both the basis set and

method. With a aug-cc-pVTZ basis and EOM-CCSD method the same energetic

ordering is obtained. Multireference configuration interaction (MRCI) combined

with CAS(10,11) and CAS(10,12) SCF methods also yield the same energetic
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ordering. However, the energetic ordering of the lowest 1ππ∗ and 1πσ∗ states is

reversed in the TDDFT calculation [30] and also in a MRCI calculation with a

lower active space exercised here. The VEE and oscillator strength of first three

excited electronic states of phenol and pentafluorophenol are given in Table 6.3.

It can be seen from the table that the results from different calculation are in

good accord with each other.

A few remarks are in order at this point. The first two states in PFP are ener-

getically closer compared to those in phenol. The experimental estimate of VEEs

understandably relies on the location of the maximum of the recorded spectral

band. This may be a correct estimate if the concerned state remains unperturbed

by its neighbors. This is not the case in the present situation, in particular with

PFP for which the absorbing state is highly perturbed by its neighbors. The

latter cause a substantial distortion of the spectral profile of PFP. A correlation

of the absorption band maximum with the theoretically calculated VEE in this

case seems not appropriate. It can be seen from Table 6.3 that the VEE of both

the S1 and S2 states of PFP had to be adjusted (number in the parentheses) in

order to correctly reproduce the spacing between the maximum and the structure

of the recorded experimental band [30]. We note that a CASSCF-MRCI method

would have been the best choice for the calculation of electronic energies partic-

ularly in the present situation where the states are energetically close. However,

such calculations are computationally very expensive and are not affordable. We

therefore use the EOM-CCSD method to calculate the electronic energies over a

range of nuclear configurations to establish the theoretical model discussed below.
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Figure 6.1: Energetic ordering of the lowest five electronic states of phenol and PFP
at the reference equilibrium configuration of the electronic ground state.
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Table 6.1: Harmonic frequency of the vibrational modes of phenol. The present
MP2/aug-cc-PVDZ data are compared with the theoretical and experimental results
available in the literature. The experimental data represent fundamental frequency.
The frequency values are given in cm−1 unit.

symmetry mode MP2/aug-cc-PVDZ B3LYP/cc-PVTZ [44] Experiment [69] description
a′ ν1 3806 3690 3656 in plane O-H stretch

ν2 3236 3091 3087 in plane C-H stretch
ν3 3229 3085 3070 in plane C-H stretch
ν4 3216 3071 3063 in plane C-H stretch
ν5 3207 3063 3049 in plane C-H stretch
ν6 3191 3045 3027 in plane C-H stretch
ν7 1646 1595 1610 in plane C-C stretch
ν8 1634 1585 1603 in plane C-C stretch
ν9 1501 1484 1501 in plane C-C stretch

and C-O-H and C-C-H bending
ν10 1482 1457 1472 in plane C-C stretch
ν11 1470 1331 1343 in plane C-C stretch

and C-O-H and C-C-H bending
ν12 1332 1304 1277 in plane C-C-H bend

and C-O-H bend
ν13 1267 1243 1261 in plane C-O stretch

and C-C-H bend
ν14 1194 1155 1176 in plane C-O-H bend
ν15 1176 1154 1168 in plane C-C-H bend
ν16 1161 1139 1150 in plane C-C-H bend
ν17 1083 1060 1070 in plane C-C-H bend
ν18 1035 1012 1025 in plane C-C-H bend
ν19 998 985 999 in plane ring bending
ν20 812 803 823 in plane C-O, C-C stretch

and C-C-C bend
ν21 611 614 619 in plane C-C-C bend
ν22 520 520 526 in plane C-C-C bend
ν23 397 393 403 in plane C-C-O bend

a′′ ν24 926 960 995 out of plane C-C-H bend
ν25 910 940 973 out of plane C-C-H bend
ν26 864 870 881 out of plane C-C-H bend
ν27 817 801 817 out of plane C-C-H bend
ν28 742 744 751 out of plane C-C-H

bend(wagging)
ν29 613 683 686 out of plane bend

(ring twist)
ν30 496 501 503 out of plane bend

(wagging)
ν31 406 410 409 out of plane bend

(ring twist)
ν32 332 344 309 out of plane bend

(C-O-H torsion)
ν33 223 224 244 out of plane bend
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Table 6.2: Same as in Table 6.1 for PFP

symmetry mode MP2/aug-cc-PVDZ B3LYP/6-311++∗∗ [30] Experiment [30] description
a′ ν1 3775 3805 3628 in plane O-H stretch

ν2 1697 in plane C-C, C-F and
C-O stretch

ν3 1687 in plane C-C stretch
and C-O-H bend

ν4 1562 1552 1541 in plane C-C stretch
and C-O-H bend

ν5 1541 1530 1524 in plane C-C, C-F
and C-O stretch

ν6 1509 in plane ring stretch
and C-O-H bend

ν7 1487 1348 1314 in plane C-C stretch
and C-O-H bend

ν8 1286 in plane C-O-H bend
ν9 1276 1256 1226 in plane C-O, C-F stretch

and C-C-C bend and C-O-H bend
ν10 1149 in plane C-F and C-O stretch
ν11 1129 1140 - in plane C-F stretch and

C-C-C bend and C-O-H bend
ν12 1002 1013 1017 in plane C-F and C-O stretch
ν13 969 979 977 in plane C-F stretch and

C-O-H bend
ν14 772 in plane bend (ring rocking)
ν15 591 in plane C-C-C bend
ν16 556 in plane ring stretch
ν17 442 in plane bend
ν18 437 in plane bend
ν19 316 in plane bend (rocking)
ν20 310 in plane C-C-F

and C-C-O bend
ν21 279 in plane bend (Scissoring)
ν22 268 in plane bend (Scissoring)
ν23 264 in plane bend (Scissoring)

a′′ ν24 614 out of plane bend
ν25 597 out of plane bend (ring twist)
ν26 447 out of plane bend (ring twist)
ν27 374 out of plane C-O-H bend
ν28 357 out of plane C-O-H bend
ν29 349 out of plane bend
ν30 208 213 out-of-plane C-C-F

and C-C-O bend (wagging)
ν31 180 185 out-of-plane bend (ring twist)
ν32 138 138 out-of-plane bend
ν33 135 134 out-of-plane bend
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Table 6.3: VEEs (in eV) of energetically low-lying electronic states of phenol and PFP along with the oscillator
strength (f) and type of transition. The adjusted VEEs which are used in the dynamics calculations of PFP are given
in the parentheses.

Phenol
State This work MRCI(8,8) [23] CC2 [48] CASPT2(10,10) [66] CASSCF [22] TDDFT [67] Expt [68] Expt [69] f Transition

(aug-cc-pVDZ) (aug-(o)-avtz) (aug-cc-pVDZ) type
S1 A

′ 4.869 4.82 4.86 4.52 4.85 4.99 4.51 4.51 0.02 ππ∗
S2 A

′′ 5.573 5.70 5.37 5.64 5.44 5.13 5.77 5.12 0.00 πσ∗
S3 A

′′ 6.073 - - 6.13 - 5.57 6.67 6.01 0.00 πσ∗

PFP
State This work TDDFT [30] Expt [30] f Transition

Type
S1 A

′ 5.124{4.97} 4.49 4.77 0.01 ππ∗
S2 A

′′ 5.233{5.49} 4.85 5.34 0.00 πσ∗
S3 A

′′ 5.637 5.76 5.56 0.00 πσ∗
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6.2.2 Vibronic Hamiltonian

A coupled three states Hamiltonian is constructed in this section. In the spirit

of the general approach [1] the Hamiltonian is written in a diabatic electronic

basis and in terms of dimensionless normal displacement coordinate of vibrational

modes introduced above. Since equilibrium geometry of both phenol and PFP

belongs to Cs symmetry point group, the symmetry of the electronic states is

either A′ or A′′. According to symmetry rule the coupling between states of A′

and A′′ symmetry is caused by vibrational modes of a′′ symmetry in first-order.

The vibronic Hamiltonian of the S1, S2 and S3 states of phenol and PFP can be

symbolically written as [1]

H = H013 +W , (6.1a)

In the above equation, H0 = TN + V0, represents the Hamiltonian of the reference

electronic ground (S0) state. Within a harmonic representation

TN = −1

2

∑
i ∈ a′, a′′

ωi
∂2

∂Q2
i

, (6.1b)

and

V0 =
1

2

∑
i ∈ a′, a′′

ωiQ
2
i . (6.1c)
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The quantity 13 is a 3 × 3 diagonal unit matrix. The quantity W represents the

diabatic electronic Hamiltonian and is given by

W =


E1 + U1

∑
i∈a′′

λ1,2
i Qi

∑
i∈a′′

λ1,3
i Qi

E2 + U2 0

h.c E3 + U3

 (6.1d)

In the above matrix the quantity E j represents the VEE of the jth electronic state.

The elements U j are expanded in a Taylor series around the reference equilibrium

configuration at, Q = 0, in the following way

U j =
∑
i ∈ a′

κjiQi +
1

2!

∑
i ∈ a′, a′′

γjiQ
2
i +

1

3!

∑
i ∈ a′,

ζjiQ
3
i +

1

4!

∑
i ∈ a′, a′′

ξjiQ
4
i , (6.1e)

where the linear, quadratic, cubic and quartic intrastate coupling parameters for

the jth electronic state along the ith vibrational mode are given by κji , γ
j
i , ζ

j
i and

ξji , respectively. The first-order interstate coupling parameter of the ith vibra-

tional mode between the electronic states j and k is given by λj,ki . The symmetry

of the vibrational mode i is specified in the summation index. The adiabatic elec-

tronic energies calculated ab initio (cf., Sec. 6.2.1) are fit to the adiabatic form of

the diabatic electronic Hamiltonian of Eq. 6.1d by a least squares procedure to

derive the parameters defined above. The estimated complete set of parameters

for phenol and PFP are given in Tables 6.4, 6.5, 6.6, 6.7 and 6.8. We mention

that we have also estimated bilinear coupling between the symmetric modes and

found that they are ∼10−3 eV or less and therefore are not included in the Hamil-

tonian given above. Owing to a large vibrational degrees of freedom (total 33)

all bilinear couplings appeared to be computationally expensive and could not be

calculated. It can be seen later in the text that the above Hamiltonian with the
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estimated parameter set satisfactorily explains the experimental findings.

A careful inspection of the coupling parameters suggests that all vibrational

modes are not relevant in the nuclear dynamics in the considered electronic states

of phenol and PFP. Therefore, only the relevant modes (marked with * in Table

6.4 and 6.5 ) having significant excitation strength are retained in the nuclear

dynamics study. The vibronic energy levels and nonradiative decay rate of elec-

tronic states are examined below. The spectral intensity is calculated using the

Fermi’s golden rule equation [1]

P (E) =
∑
v

∣∣∣〈Ψf
v |T̂ |Ψi

0〉
∣∣∣2 δ(E − Ef

v + Ei
0), (6.2)

where, |Ψf
v〉 represents the eigenstate of the vibronic Hamiltonian of Eq. 6.1a

with energy Ef
v . The ket |Ψi

0〉 represents the wavefunction of the initial reference

electronic state with energy Ei
0. The quantity T̂ is the transition dipole operator

and E is the energy of the incident photon. The initial state, |Ψi
0〉, is written as

|Ψi
0〉 = |Φ0〉|χ0

0〉, (6.3)

with |Φ〉 and |χ〉 representing the diabatic electronic and vibrational components

of the total wavefunction, respectively. The eigenfunctions of the unperturbed

harmonic Hamiltonian, H0 (cf. Eq. 6.1a), of the initial reference state are taken

as |χ0
0〉.

In the time-dependent method the spectral intensity given above transforms

to Fourier transformation of the autocorrelation function of the WP and is given
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by

P (E) ≈ 2Re

∫ ∞
0

eiEt/~〈0|τ † e−iHt/~ τ |0〉 dt, (6.4)

≈ 2Re
3∑

m=1

|τm|2
∫ ∞

0

eiEt/~ Cm(t) dt. (6.5)

Here, Cm(t) = 〈Ψm(0)|Ψm(t)〉 is the time autocorrelation function of the WP

initially prepared on the mth electronic state. The ket |0〉 represents the vi-

brational and electronic ground state and τ is the transition dipole matrix;

τ † = (τS1 , τS2 , τS3 , ...), with τm = 〈Φm|T̂ |Φ0〉 and Ψm(t) = e−iHt/~τm|0〉. The

final wavefunction may possess components on each of the vibronically coupled

diabatic electronic states (S1, S2 and S3), and understandably, the composite

vibronic spectrum would ideally be a weighted sum of the resulting partial spec-

trum of the component states. In this study the transition dipole matrix elements

are treated as constants in accordance with the generalized Condon approxima-

tion [55]. The vibronic secular matrix becomes block diagonal upon a suitable

ordering of the basic states. When this vibronic symmetry is used, terms like,

|τm|2, contributes in Eq. 5 and the mixed terms like, τmτn
∗

present in Eq. (2)

vanish [1].

In the time-independent method the spectral intensity is calculated by diag-

onalizing the Hamiltonian matrix in a harmonic oscillator basis and using the

Lanczos algorithm [56]. In the time-dependent calculations the WP propaga-

tion is carried out by employing the multi-configuration time-dependent Hartree

(MCTDH) method [57–59] implemented in the Heidelberg suite of programs de-
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veloped by Meyer and coworkers [60]. The latter utilizes a harmonic oscillator

discrete variable representation for the primitive basis. The time-dependent sin-

gle particle functions are represented in this basis to solve the equation of motion.

Furthermore, the vibrational degrees of freedom are combined using its multiset

ansatz to form the single particle and to reduce the dimensionality problem in

multimode multistate dynamics study. The MCTDH basis set details, as used

for quantum dynamical calculations in the present case are given in Tables 6.10

and 6.11. In the latter various mode combination schemes, the time-independent

(primitive) basis as well as time-dependent (single-particle functions-SPF) basis

are given. The number of basis function for a given mode is estimated from its

coupling strength (κ
2orλ2

2ω2 ), and the convergence behavior of the spectral envelope.

We note that, while the WP calculations yield the broadband spectral envelope

and the time development of an electronic state, a precise location of the vi-

bronic eigenvalues are calculated by a time-independent matrix diagonalization

approach. The latter calculations are prohibitively difficult for the present sys-

tems with large number of electronic and vibrational degrees of freedom. The

eigenvectors of the energetically low-lying vibronic levels are also calculated by

a block improved Lanczos method [61, 62] to facilitate the spectral assignments

and comparison with high-resolution experimental data.
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Table 6.4: The linear and quadratic coupling parameters (as defined in Eq. 1e) for
the S1 A

′, S2 A
′′ and S3 A

′′ states of phenol obtained from a fitting of calculated ab
initio electronic energy to the model constructed in Sec. IIB. Dimensionless excitation
strengths are given in the parentheses. All data are given in the eV unit.

Symm Mode Freq κi γi κi γi κi γi
S1 A

′ S2 A
′′ S3 A

′′

a′ ν∗1 0.4719 -0.0161(0.00) 0.0004 -0.2138(0.10) -0.1062 -0.0875(0.02) -0.0008
ν2 0.4013 -0.0324(0.00) 0.0002 -0.0115(0.00) 0.0013 0.0204(0.00) -0.0154
ν3 0.4004 0.0040(0.00) -0.0001 0.0075(0.00) 0.0020 0.0019(0.00) -0.0037
ν4 0.3988 -0.0134(0.00) -0.0007 -0.0085(0.00) 0.0011 -0.0053(0.00) -0.0025
ν5 0.3977 0.0153(0.00) -0.0002 0.0089(0.00) 0.0025 -0.0029(0.00) -0.0012
ν6 0.3957 -0.0112(0.00) -0.00001 -0.0019(0.00) -0.0002 -0.0102(0.00) 0.0027
ν∗7 0.2041 -0.0109(0.00) 0.0059 0.0882(0.09) -0.0217 0.0830(0.08) -0.0357
ν∗8 0.2027 -0.0077(0.00) 0.0069 0.1372(0.23) -0.0193 0.0991(0.12) -0.0433
ν∗9 0.1861 -0.0265(0.01) -0.0024 -0.0714(0.07) -0.0071 -0.0171(0.00) -0.0070
ν10 0.1837 -0.0264(0.01) 0.0922 -0.0250(0.01) 0.0187 -0.0296(0.01) 0.0271
ν11 0.1823 0.0057(0.00) -0.0064 0.0308(0.01) -0.0061 0.0245(0.01) -0.0036
ν12 0.1652 0.0108(0.00) -0.0004 -0.0089(0.00) -0.0030 -0.0177(0.01) -0.0034
ν∗13 0.1571 -0.1016(0.20) -0.0002 -0.1006(0.21) -0.0123 -0.0740(0.11) -0.0128
ν∗14 0.1480 -0.0163(0.01) -0.0031 -0.0648(0.10) -0.0239 -0.0557(0.07) -0.0020
ν∗15 0.1458 0.0070(0.00) 0.0033 -0.0584(0.08) 0.0013 -0.0765(0.14) -0.0071
ν16 0.1440 -0.0011(0.00) 0.0050 0.0183(0.01) 0.0008 0.0127(0.00) -0.0006
ν17 0.1343 0.0142(0.01) -0.0065 0.0022(0.00) -0.0013 0.0035(0.00) -0.0060
ν∗18 0.1284 0.1078(0.35) -0.0018 0.0172(0.01) 0.0020 0.0070(0.00) -0.0002
ν∗19 0.1238 0.1060(0.37) -0.0001 0.0319(0.03) 0.0013 0.0419(0.06) 0.0004
ν∗20 0.1007 0.0825(0.34) -0.0018 -0.0061(0.00) -0.0031 0.0168(0.01) -0.0057
ν21 0.0758 -0.0041(0.00) -0.0211 0.0002(0.00) -0.0102 -0.0076(0.01) -0.0144
ν∗22 0.0645 -0.0306(0.12) -0.0128 -0.0792(0.75) -0.0063 -0.0808(0.78) -0.0078
ν∗23 0.0492 -0.0036(0.00) -0.0026 0.0094(0.02) -0.0017 0.0169(0.06) 0.0008

a′′ ν24 0.1148 -0.0676 0.0085 - 0.0043
ν25 0.1129 -0.0437 0.0011 - -0.0038
ν26 0.1071 -0.0418 0.0166 - 0.0210
ν27 0.1013 -0.0572 -0.0010 - -0.0117
ν28 0.0920 -0.0343 -0.0046 - -0.0259
ν29 0.0760 -0.0465 -0.0096 - -0.0044
ν30 0.0615 -0.0293 -0.0183 - -0.0202
ν∗31 0.0504 -0.0561 -0.0111 - -0.0091
ν32 0.0412 -0.0215 -0.0679 - -0.0318
ν∗33 0.0277 -0.0159 0.0001 - -0.0379
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Table 6.5: Same as in Table 6.4, for the S1 A
′, S2 A

′′ and S3 A
′′ states of PFP. All

data are given in the eV unit.

Symm Mode Freq κi γi κi γi κi γi
S1 A

′ S2 A
′′ S3 A

′′

a′ ν∗1 0.4681 -0.0082(0.00) -0.0003 -0.0768(0.01) -0.0394 -0.0186(0.00) -0.0071
ν∗2 0.2105 -0.0121(0.00) 0.0141 0.1589(0.28) -0.0676 -0.1314(0.19) 0.0352
ν∗3 0.2092 -0.0078(0.00) 0.0115 0.0113(0.00) -0.0903 -0.0110(0.00) 0.0665
ν∗4 0.1937 -0.0134(0.00) -0.0074 -0.0279(0.01) -0.0450 -0.0357(0.02) -0.0472
ν∗5 0.1911 0.0216(0.01) -0.0064 -0.0327(0.01) -0.0465 -0.0216(0.01) -0.0467
ν∗6 0.1871 0.1389(0.28) 0.0218 -0.0183(0.00) -0.0387 -0.0268(0.01) -0.0299
ν∗7 0.1843 0.0633(0.06) 0.1296 0.0037(0.00) 0.0316 -0.0073(0.00) 0.0387
ν∗8 0.1595 -0.0092(0.00) 0.0033 -0.0002(0.00) -0.0184 0.0058(0.00) -0.0097
ν∗9 0.1582 -0.0075(0.00) -0.0005 0.0229(0.01) -0.0282 0.0187(0.01) -0.0309
ν∗10 0.1425 0.0061(0.00) -0.0011 -0.0005(0.00) -0.0247 0.0550(0.07) -0.0196
ν11 0.1399 0.0006(0.00) -0.0013 -0.0069(0.00) -0.0264 -0.0169(0.01) -0.0231
ν∗12 0.1242 -0.0014(0.00) -0.0045 -0.0195(0.01) -0.0151 -0.0030(0.00) -0.0126
ν∗13 0.1201 -0.0018(0.00) -0.0039 0.0048(0.00) -0.0156 0.0078(0.00) -0.0182
ν14 0.0957 0.0008(0.00) -0.0069 0.0027(0.00) -0.0094 -0.0017(0.00) -0.0088
ν∗15 0.0733 -0.0105(0.01) -0.0010 0.0106(0.01) -0.0164 -0.0027(0.00) -0.0183
ν∗16 0.0689 -0.1054(1.17) 0.0015 -0.0237(0.06) -0.0055 -0.0415(0.18) -0.0053
ν∗17 0.0547 0.0212(0.08) -0.0127 0.0745(0.93) -0.0159 -0.0696(0.81) -0.0039
ν∗18 0.0542 -0.0096(0.02) -0.0134 -0.0191(0.06) -0.0287 0.0223(0.08) 0.0078
ν19 0.0392 -0.0007(0.00) -0.0012 -0.0037(0.00) -0.0080 -0.0029(0.00) -0.0065
ν∗20 0.0385 -0.0012(0.00) -0.0006 0.0026(0.00) -0.0046 0.0068(0.02) -0.0066
ν∗21 0.0345 -0.0019(0.00) 0.0004 0.0013(0.00) -0.0003 0.0032(0.00) 0.0006
ν∗22 0.0332 0.0061(0.02) -0.0033 0.0200(0.18) -0.0052 -0.0255(0.29) 0.0005
ν∗23 0.0327 -0.0054(0.01) -0.0029 -0.0206(0.20) -0.0029 0.0226(0.24) 0.0002

a′′ ν∗24 0.0761 -0.1295 -0.0448 0.0531
ν∗25 0.0740 -0.3156 0.2677 -0.0605
ν∗26 0.0554 -0.1065 -0.0170 -0.0222
ν∗27 0.0463 -0.0340 0.0181 0.0106
ν∗28 0.0443 -0.0295 -0.0025 0.0090
ν∗29 0.0433 -0.0642 0.0533 0.0108
ν∗30 0.0258 -0.0146 -0.0047 -0.0079
ν∗31 0.0223 -0.0155 -0.0126 -0.0147
ν∗32 0.0171 -0.0622 0.0309 -0.0055
ν∗33 0.0168 -0.0700 0.0473 -0.0116
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Table 6.6: The 3rd (cubic) and 4th (quartic) order coupling parameters (as defined
in Eq. 1e) for the S1 A

′, S2 A
′′ and S3 A

′′ states of Phenol obtained from a fitting of
calculated ab initio electronic energy to the model constructed in Sec IIB. All data are
given in the eV unit.

Symm Mode Freq ζi ξi ζi ξi ζi ξi
S1 A

′ S2 A
′′ S3 A

′′

a′ ν1 0.4719 -0.0000 0.0000 -0.0246 0.0116 0.0000 0.0000
ν2 0.4013 -0.0000 0.0000 0.0041 -0.0032 0.0036 0.0016
ν3 0.4004 0.0000 0.0000 0.0003 -0.0003 -0.0026 -0.0042
ν4 0.3988 -0.0000 -0.0000 0.0020 -0.0013 0.0028 -0.0026
ν5 0.3977 0.0000 -0.0000 -0.0000 0.0000 -0.0026 -0.0018
ν6 0.3957 -0.0000 -0.0000 0.0107 -0.0067 0.0000 -0.0000
ν7 0.2041 0.0031 -0.0027 -0.0071 0.0004 -0.0113 0.0040
ν8 0.2027 0.0030 -0.0027 -0.0114 -0.0038 -0.0064 0.0093
ν9 0.1861 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
ν10 0.1837 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
ν11 0.1823 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
ν12 0.1652 0.0000 -0.0000 -0.0007 -0.0011 -0.0000 -0.0000
ν13 0.1571 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000
ν14 0.1480 0.0000 -0.0008 -0.0134 -0.0145 -0.0000 -0.0000
ν15 0.1458 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
ν16 0.1440 -0.0000 0.0000 0.0000 0.0000 -0.0002 -0.0030
ν17 0.1343 -0.0000 0.0000 0.0004 -0.0004 0.0000 -0.0000
ν18 0.1284 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000
ν19 0.1238 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000
ν20 0.1007 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000
ν21 0.0758 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
ν22 0.0645 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
ν23 0.0492 -0.0000 0.0000 -0.0006 -0.0010 -0.0000 -0.0000

a′′ ν24 0.1148 0.0096 -0.0013 - -0.0017
ν25 0.1029 0.0000 0.0003 - -0.0000
ν26 0.1071 0.0000 -0.0022 - -0.0951
ν27 0.1013 0.0000 -0.0034 - -0.0089
ν28 0.0920 0.0000 -0.0033 - -0.0044
ν29 0.0760 0.0000 -0.0000 - -0.0185
ν30 0.0615 0.0000 -0.0066 - -0.0104
ν31 0.0504 0.0000 -0.0000 - -0.0016
ν32 0.0412 0.1546 -0.7446 - 0.0312
ν33 0.0277 0.0000 -0.0002 - 0.0072
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Table 6.7: The 3rd (cubic) and 4th (quartic) order coupling parameters (as defined
in Eq. 1e) for the S1 A

′, S2 A
′′ and S3 A

′′ states of PFP obtained from a fitting of
calculated ab initio electronic energy to the model constructed in Sec IIB. All data are
given in the eV unit.

Symm Mode Freq ζi ξ ζi ξ ζi ξ
S1 A

′ S2 A
′′ S3 A

′′

a′ ν1 0.4681 -0.0000 0.0000 -0.0352 -0.0150 -0.0102 -0.0068
ν2 0.2105 0.0022 0.0002 -0.0100 0.0364 0.0227 -0.0211
ν3 0.2092 0.0016 -0.0019 0.0353 0.0033 0.0353 0.0033
ν4 0.1937 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000
ν5 0.1911 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000
ν6 0.1871 0.0000 0.0000 0.0044 0.0019 0.0025 0.0021
ν7 0.1843 0.0016 -0.0128 0.0019 -0.0037 0.0005 -0.0039
ν8 0.1595 0.0013 -0.0004 -0.0100 -0.0119 -0.0036 -0.0032
ν9 0.1582 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν10 0.1425 -0.0002 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν11 0.1399 -0.0001 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν12 0.1242 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν13 0.1201 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν14 0.0957 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν15 0.0733 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν16 0.0689 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν17 0.0547 0.0000 0.0000 -0.0093 -0.0051 0.0097 0.0051
ν18 0.0542 0.0000 0.0000 0.0037 0.0019 -0.0030 -0.0019
ν19 0.0392 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν20 0.0385 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000
ν21 0.0345 0.0000 0.0000 -0.0006 -0.0003 -0.0002 -0.0002
ν22 0.0332 0.0000 0.0000 -0.0007 -0.0000 0.0014 -0.0000
ν23 0.0327 0.0000 0.0000 0.0010 -0.0005 -0.0012 0.0000

a′′ ν24 0.0761 0.0361 0.0002 -0.0366
ν25 0.0740 0.4137 -0.5321 0.0172
ν26 0.0554 0.0175 -0.0032 0.0002
ν27 0.0463 0.0017 -0.0239 -0.0061
ν28 0.0443 -0.0335 -0.0451 -0.0107
ν29 0.0433 0.0087 -0.0092 -0.0019
ν30 0.0258 0.0010 -0.0022 -0.0018
ν31 0.0223 0.0000 -0.0000 -0.0000
ν32 0.0171 0.0228 -0.0615 -0.0035
ν33 0.0168 0.0286 -0.0811 0.0056
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Table 6.8: Interstate coupling parameters (in eV) of the vibronic Hamiltonian of Eq.
6.1d for the S1 A

′, S2 A
′′ and S3 A

′′ electronic states of phenol and PFP estimated from
the ab initio electronic structure results (see text for details). Dimensionless excitation
strengths are given in the parentheses.

Phenol

Symm Mode λ1,2
i λ1,3

i

a′′ ν24 0.1186(0.53) 0.1451(0.79)
ν25 0.0928(0.34) 0.1002(0.39)
ν26 0.1063(0.49) 0.1136(0.56)
ν27 0.1036(0.52) 0.1183(0.68)
ν28 0.0740(0.32) 0.0548(0.17)
ν29 0.0842(0.61) 0.1054(0.96)
ν30 0.0384(0.19) 0.0423(0.23)
ν31 0.0937(1.72) 0.1225(2.95)
ν32 0.0000(0.00) 0.0000(0.00)
ν33 0.0538(1.89) 0.0000(0.00)

PFP

Symm Mode λ1,2
i λ1,3

i

a′′ ν24 0.0516(0.27) 0.1649(2.35)
ν25 0.1903(3.31) 0.2025(3.74)
ν26 0.0595(0.58) 0.1070(1.87)
ν27 0.0381(0.34) 0.0759(1.34)
ν28 0.0292(0.22) 0.0817(1.70)
ν29 0.0731(1.42) 0.1023(2.79)
ν30 0.0161(0.19) 0.0274(0.56)
ν31 0.0088(0.08) -
ν32 0.0562(5.40) 0.0893(13.6)
ν33 0.0656(7.62) 0.0923(15.1)
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6.3 Results and Discussion

6.3.1 Adiabatic Potential Energy Surfaces

In this section we examine the topography of the adiabatic PESs of the excited

singlet electronic states S1 A′, S2 A′′ and S3 A′′ of phenol and PFP. One dimen-

sional cuts of the full-dimensional potential energy hypersurface of phenol are

plotted along the coordinate of totally symmetric (a′) vibrational modes in Figs.

6.2(a-d). There are 23 symmetric vibrational modes in phenol. The potential

energy cuts along all 23 modes are examined. To save space, the potential en-

ergy cuts in Figs. 6.2 are plotted along four symmetric vibrational modes only.

These give a general overview of variation of potential energy along the vibra-

tional modes of phenol. It can be seen from panel a of Fig. 6.2 that S1 and

S2 states cross along ν1. The latter is a O-H stretching mode of high frequency,

∼ 3806 cm−1. Excitation strength of this mode is negligible in all three states

(cf. Table 6.4). The vibrational mode ν8 (C-C stretch, ∼ 1634 cm−1) has larger

excitation strength in S2. It can be seen from panel b of Fig. 6.2 that S1 and S2

states are quasi-degenerate at larger displacement along this mode. The vibra-

tional mode ν13 (C-O stretch, ∼ 1267 cm−1) possesses some excitation strength

in all three states (cf. Table 6.4). From panel c of Fig. 6.2, it can be seen that

the states are fairly well separated along this mode. This is generally true along

all other symmetric vibrational modes of phenol. The vibrational mode ν22 has

much lower frequency ∼ 520 cm−1. The potential energy cuts along this mode

are plotted in panel d. This mode has the largest excitation strength in S2 and

S3 (cf. Table 6.4). As a result the minimum of these states in Fig. 6.2d shifts

considerably away from the reference equilibrium minimum at Q = 0.
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The potential energy cuts of the first three excited electronic states of PFP

are plotted in Figs. 6.3(a-d) along representative ν1, ν6, ν16 and ν18 vibrational

modes, respectively. The ν1 vibrational mode is O-H stretch and has high fre-

quency ∼ 3775 cm−1. It can be seen from panel a that the electronic states of

PFP are energetically much closer compared to those of phenol. The S1 and

S2 states become quasi-degenerate in the vicinity of their equilibrium minimum.

The low-energy crossing of S1 state with S2 and also with S3 can be clearly seen

from the potential cuts of panel b plotted along ∼ 1509 cm−1 vibrational mode

ν6. It can be seen from Table 6.5 that the excitation strength of this mode is

largest in the S1 state. The ∼ 556 cm−1 vibrational mode ν16 also has very large

excitation strength in S1 and except in S2, this mode is also moderately excited

in the remaining states. The potential energy cuts along this mode are shown in

panel c of Fig. 6.3. The crossings of S1 with S2 and S3 states can also be seen

along this mode. The quasi-degeneracy of the S1 and S2 states is found along

many other symmetric modes of PFP. For illustration the potential energy cuts

along ∼ 437 cm−1 vibrational mode ν18 are shown in panel d of Fig. 6.3. Because

of stronger interactions between the states, the cubic and quartic terms of the

Hamiltonian appears to be more relevant in this case as compared to the same in

phenol.

It generally appears from the above discussion that the electronic states in

PFP are much closer in energy as compared to phenol. In addition, they also

exhibit low-energy curve crossings. These crossings develop into conical intersec-

tions in multi-dimensional space. The locus of the degeneracy of states forms a

seam. The energetic minimum on various crossing seams in phenol and PFP is

estimated with a second-order coupling model. The results are given in Table 6.9
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Figure 6.2: Adiabatic potential energies of the S1 A
′, S2 A

′′ and S3 A
′′ electronic

states of phenol along the normal coordinates of the totally symmetric vibrational
modes ν1, ν8, ν13 and ν22 shown in panel a, b, c and d, respectively. The energies
obtained from the present vibronic model and computed ab initio are shown by lines
and points, respectively.

. In this table the diagonal entries represent the estimated equilibrium minimum

of a state and the off-diagonal entries represent the energy minimum on various

intersection seam. It can be seen from the Table that the S1-S2 intersection min-

imum in phenol occurs very close to the S2 minimum but ∼ 0.65 eV above the

S1 minimum. The same intersection minimum is much closer to both S1 and S2

minimum in PFP. In this case S1 minimum occurs only ∼ 0.1 eV below the S1-S2

intersection minimum. Furthermore, while S1-S3 intersection in phenol seems not

very important for the dynamics on the S1 and S2 state, S1-S2 and S1-S3 inter-

sections appear to have some impact on the S1-S2-S3 coupled states dynamics in

PFP.
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Figure 6.3: Adiabatic potential energies of the S1 A
′, S2 A

′′ and S3 A
′′ electronic

states of PFP along the normal coordinates of the totally symmetric vibrational modes
ν1, ν6, ν16 and ν18 shown in panel a, b, c and d, respectively. The energies obtained
from the present vibronic model and computed ab initio are shown by lines and points,
respectively.

Table 6.9: Estimated equilibrium minimum (diagonal entries) and minimum of the
seam of various conical intersections (off-diagonal entries) of the electronic states of
phenol and PFP within a quadratic coupling model. All quantities are given in eV.

Phenol S1 A
′ S2 A

′′ S3 A
′′

S1 A
′ 4.71 5.36 6.68

S2 A
′′ - 5.29 -

S3 A
′′ - - 5.88

PFP S1 A
′ S2 A

′′ S3 A
′′

S1 A
′ 4.98 5.08 5.52

S2 A
′′ - 5.04 -

S3 A
′′ - - 5.48
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6.3.2 Optical Absorption Spectrum and Comparison with

Experiment

Spectroscopic and photophysical studies revealed that the structured absorption

band (S1 ← S0) of phenol becomes broad and structureless in PFP [30]. Owing

to the energetic proximity of electronic states (cf. Table 6.3 ), S1, S2 and S3

bands in PFP are highly overlapping. We repeat that the energetic proximity of

electronic states in PFP arises from the electronic effect due to F atom, which

changes the nature of electronic transition and stabilizes σ∗ orbital of the C-F

bond. The S1-S2 and S1-S3 coupling through the vibrational modes of a′′ sym-

metry in PFP is relatively stronger compared to that in phenol (cf. Table 6.8).

Furthermore it can be seen from Table 6.9 that the equilibrium minimum of the

participating states is closer to the intersection minimum with their neighbors in

PFP. As a result, the S1-S2 and S1-S3 intersection seems are expected to be more

readily accessible to the WP moving on the S1 electronic state of PFP. Therefore,

the nonadiabatic coupling effect on the S1 and S2 band is expected to be much

stronger in PFP.

In the following the nuclear dynamics calculations are carried out with the

coupled states Hamiltonian developed in Sec. 6.2.2 and both by time-independent

and time-dependent quantum mechanical methods. The theoretical results are

finally compared with the available experimental optical absorption spectrum of

both the molecules [30]. In order to understand the vibronic structure of the

coupled states spectrum, we first examine the uncoupled state spectra in detail

and subsequently add the coupling. The optical absorption spectra of uncoupled

electronic states of phenol and PFP are plotted in panel a and b of Fig. 6.4,

respectively. The spectrum of each state is calculated including twelve dominant
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totally symmetric vibrational modes and the matrix diagonalization method using

the Lanczos algorithm [56]. The Harmonic Oscillator basis functions used along

each mode in the calculations are given in Table 6.10. Hamiltonian represented in

the harmonic oscillator basis is diagonalized using 10000 Lanczos iterations. The

theoretical stick spectrum obtained from the diagonalization of the Hamiltonian

matrix is convoluted with a Lorentzian line shape function of 15 meV full width at

the half maximum (FWHM) to generate the spectral envelopes shown in Fig. 6.4.

A close look at the stick spectrum and the corresponding envelope plotted in

Fig. 6.4 reveals that the electronic bands of phenol are relatively well separated

in energy and have extended vibrational progressions compared to those of PFP.

For the latter, the bands overlap owing to an energetic proximity of electronic

states (cf. Fig. 6.4b). It can be seen that in case of phenol the origin line (00
0)

of the S1 state has maximum intensity (cf. Fig. 6.4a) whereas, the intensity

maximum shifts to the second peak (cf. Fig. 6.4b) in case of PFP. This reveals

a geometrical change of PFP in the S1 state as compared to that in the S0 state.

A close analysis of the progression of peaks in the S1, S2 and S3 bands of phenol

(cf., Fig. 6.4a) reveals the following. In the S1 band strong excitation of the

fundamental of ν13, ν18, ν19, ν20 and ν22 is found. The corresponding peaks are

found at ∼ 1266 cm−1, ∼ 1028 cm−1, ∼ 998 cm−1, ∼ 805 cm−1 and ∼ 467 cm−1

from the 00
0 line, respectively. The vibrational modes ν19 and ν20, in particular,

form extended progressions in the spectrum. The first overtone of these modes

is located at ∼ 1996 cm−1 and ∼ 1610 cm−1, respectively. In addition to these,

relatively weak excitation of fundamental of ν7, ν8, ν9, ν14 and ν15 vibrational

modes at ∼ 1669 cm−1, ∼ 1661 cm−1, ∼ 1491 cm−1, ∼ 1182 cm−1 and ∼ 1189

cm−1, respectively, is revealed by the spectral data. The strongly excited vibra-
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tional modes also form numerous combination peaks among themselves and also

with the weakly excited ones, for example, the combination peak, ν19 + ν20, with

fairly large intensity is found at ∼ 1803 cm−1.

In addition to energetic location and excitation strength analyses, the assign-

ment of the peaks is confirmed through a thorough analysis of the nodal pattern

of the eigenvectors of the vibrational levels. These eigenvectors are calculated

by a block improved Lanczos method as implemented in the MCTDH program

module [61, 62]. To illustrate and to save space we present in Fig. 6.5 a few

representative eigenvectors only. In these figures the wavefunction probability

density is plotted in a suitable reduced dimensional space (as shown in the plot)

of normal coordinates. In panel a, b and c the wavefunction of the fundamental

of ν19, ν20 and ν22 is shown, respectively. It can be seen from these plots that the

wavefunction acquire a node along the respective normal coordinate. In panel d,

e and f the first overtone of these modes revealing two nodes along the respective

coordinate is shown. The wavefunction for the combination peaks ν19 + ν20, ν19

+ ν22 and ν20 + ν22 is shown in panels g, h and i, respectively. It can be seen

that the latter wavefunctions show one quantum excitation along both the modes

forming the pair. We note that such a detailed exercise of wavefunction analysis

is carried out for all the assignments discussed later in the text.

Unlike in case of S1 state, the vibrational mode ν22 is strongly excited in the

S2 and S3 states of phenol. The fundamental of this mode is located at ∼ 494

cm−1 and ∼ 488 cm−1, respectively, in the latter states. Several overtone and

combination peaks (with relatively less strongly excited mode) of this mode is

found from the calculated spectral data. For example, the first overtone of ν22 is
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found at ∼ 988 cm−1 and ∼ 976 cm−1, respectively, in the S2 and S3 state. com-

bination peaks of ν22 with relatively less strongly excited modes ν7, ν8, ν9, ν13, ν14

and ν15 are found from the data. The fundamental of the latter modes appears

at ∼ 1581 cm−1, ∼ 1571 cm−1, ∼ 1474 cm−1, ∼ 1217 cm−1, ∼ 1094 cm−1 and ∼

1182 cm−1, respectively, in the S2 state and ∼ 1520 cm−1, ∼ 1465 cm−1, ∼ 1470

cm−1, ∼ 1215 cm−1, ∼ 1118 cm−1 and ∼ 1147 cm−1, respectively, in the S3 state

of phenol. Relatively stronger excitation, numerous overtones and combination

peaks of ν22 in the S2 and S3 state of phenol contribute to their extended broad

structure of the spectral envelope (cf. Fig. 4a) as compared to that of the S1 state.

It can be seen from Table 6.1 and 6.2 that F atom substitution results into a

reduction of frequency of all normal modes in PFP compared to that in phenol.

This leads to excitation of many vibrational modes in the absorption spectrum

of PFP. In the S1 state spectrum (cf. Fig. 6.4b) of PFP the vibrational mode ν16

is very strongly excited. The fundamental and first two overtones of this mode

are found at ∼ 562 cm−1, ∼ 1124 cm−1 and ∼ 1686 cm−1, respectively. The

eigenvector of these energy levels are plotted in reduced dimensions in panel a,

b and c of Fig. 6.6, respectively. In can be seen that in panel a the eigenvector

has one node, whereas, in panel b and c it has two and three nodes, respectively,

along ν16. The next strongly excited mode in the S1 spectrum is ν6. The funda-

mental and first overtone of this mode found at ∼ 1595 cm−1 and ∼ 3189 cm−1,

respectively. Fundamental of moderately excited modes ν5, ν7, ν17, ν18, ν22, ν23

is found at ∼ 1515 cm−1, ∼ 1940 cm−1, ∼ 388 cm−1, ∼ 381 cm−1, ∼ 254 cm−1

and ∼ 251 cm−1, respectively. We note that all the modes discussed above form

several combination peaks in the spectrum. To illustrate, the eigenvectors of the

combination levels ν16 + ν17, ν16 + ν18 and ν17 + ν18 occurring at ∼ 950 cm−1, ∼
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943 cm−1 and ∼ 770 cm−1 are shown in panels d, e and f of Fig. 6.6, respectively.

In contrast to the above, ν17 is the strongly excited mode in both S2 and S3

states of PFP. The fundamental of ν17 is found at ∼ 404 cm−1 and ∼ 484 cm−1,

respectively, in these states. In the latter both ν22 and ν23 vibrational modes

also form extended progressions. The fundamental of these two modes is found

at ∼ 248 cm−1 and ∼ 254 cm−1 in S2 and at ∼ 274 cm−1 and ∼ 268 cm−1 in

S3 state, respectively. Excitation of the ν16 mode is weaker in these states. The

high frequency vibrational mode ν2 also makes an extended progression in the

S2 and S3 states of PFP. Analyses show that the fundamental of this mode ap-

pears at ∼ 1398 cm−1 and ∼ 1940 cm−1 in these states, respectively. Apart from

this fundamentals, numerous overtone and combination peaks are found from the

spectral data which contributes to the huge line density shown under the spectral

envelope of all S1, S2 and S3 states of PFP.

We note that coupled states matrix diagonalization calculations were also at-

tempted. The results could not be converged because of the huge computational

overheads and are not discussed here. The low-lying vibronic energy levels result-

ing from the uncoupled state calculations for phenol and PFP are given in Tables

6.12 and 6.13 respectively. In case of phenol the vibronic energies are compared

with the vacuum ultraviolet experimental data [63]. The assignments given in

the tables are confirmed with a thorough analysis of the vibronic wavefunctions

as discussed above. We assign the energy levels in terms of the irreducible repre-

sentation of vibrational modes of Cs symmetry point group.

The results presented above show that the structured absorption band of the
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S1 state of PFP is quite in disagreement and that of phenol in close agreement

to the experiment. In order to unravel the issue we carried out coupled S1-S2-

S3 states nuclear dynamics study for both phenol and PFP. The coupled states

Hamiltonian developed in Sec. 6.2.2 is employed for the purpose and the cal-

culations are carried out by propagating wave packets employing the MCTDH

suite of program [60]. All vibrational modes marked with asterisk in Table 6.4

and 6.5 are included in the calculations. It is stated in the introduction that the

signature of the optically dark 1πσ∗ states is not found in the experimental spec-

trum of phenol. Whereas in case of PFP they appeared as hump like structures.

Therefore, although optically dark, the strong vibronic mixing with the bright

1ππ∗ state makes the transition sufficiently allowed to be probed in the exper-

iment. Therefore in the theoretical calculations although the initial transition

to the 1πσ∗ states of phenol need not be considered, they become important to

include to derive the observed band structure of PFP. Within the framework of

Condon approximation contribution of three states to the overall band structure

is treated equal and also with the weights extracted from the relative height of

the peaks of the experimental spectrum. In either case the main results remain

the same.

In the following calculations are therefore carried out for an initial excitation

of the wave packet corresponding to the reference ground state (taken as a direct

product of vibrational wave functions) to the S1, S2 and S3 state separately. Af-

ter this initial excitation, the wave packet in each case is propagated for 200 fs

in the coupled manifold of electronic states. This yields autocorrelation function

upto 400 fs [59, 64]. The autocorrelation function from three calculations are

combined in case of PFP, damped with an exponential function (e−t/τ , τ = 44 fs)
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and Fourier transformed to generate the spectral envelope. The numerical details

of the calculations are given in Table 6.11.

The results obtained from the above calculations are plotted in Fig. 6.7 for

phenol and PFP in panel a and c, respectively. The experimental results are re-

produced from Ref. [30] and shown in panel b and d, respectively. It can be seen

that in both cases the experimental results compare well with the theoretically

calculated ones. When compared with the uncoupled state spectrum (cf. Fig.6.4)

it confirms that the electronic nonadiabatic interactions have profound impact on

the overall vibronic structure of the electronic absorption band of PFP. The four

hump like structures appearing at ∼ 223 nm, ∼ 228 nm, ∼ 233 nm and ∼ 260 nm

are in good agreement with their location at ∼ 223 nm, ∼ 232 nm, ∼ 242 nm and

∼ 260 nm observed in the experiment. In contrary, sharp peaks appear in the

absorption band of phenol (cf. Fig. 6.7 (a and b)) revealing weak nonadiabatic

1ππ∗ - 1πσ∗ coupling effects although these states are vertically ∼ 0.7 eV apart.

It can be seen from Table 6.8 that the interstate coupling strengths in phenol are

much weaker as compared to PFP. The peak maxima appearing at ∼ 261 nm, ∼

268 nm and ∼ 275 nm in case of phenol compare well with their location found

in the experimental spectrum at ∼ 262 nm, ∼ 268 nm and ∼ 275 nm, respectively.

To this end we note that the spectra reported above are calculated within

the constant transition dipole approximation. While this approximation could

be well justified in case of phenol in which the states are well separated and are

weakly coupled, it would be worthwhile to ensure the validity of this approxima-

tion in case of PFP. Understandably, the consideration of equal weights or their

determination from the experimental spectrum is qualitative only to arrive at a
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Table 6.10: The number of HO (Harmonic Oscillator) basis functions along with the
vibrational modes and the dimension of the secular matrix used in the calculation of
the uncoupled stick vibronic spectra presented in various figures in the text.

Molecule State Vibrational No. of HO Dimension of Lanczos Figure(s)
modes basis secular matrix iteration

Phenol S1 ν1, ν7,ν8,ν9,ν13,ν14,ν15 3,3,3,4,7,3,3, 61725888 10000 Fig. 4(a)
ν18, ν19,ν20,ν22,ν23 7,8,9,6,3

S2 ν1, ν7,ν8,ν9,ν13,ν14,ν15 5,5,8,4,7,4,4, 38707200 10000 Fig. 4(a)
ν18, ν19,ν20,ν22,ν23 2,3,2,12,3

S3 ν1, ν7,ν8,ν9,ν13,ν14,ν15 3,4,5,2,5,4,6, 9331200 10000 Fig. 4(a)
ν18, ν19,ν20,ν22,ν23 2,3,3,12,3

PFP S1 ν1, ν2,ν5,ν6,ν7,ν8,ν16 3,3,4,9,5,3,12, 55987200 10000 Fig. 4(b)
ν17, ν18,ν21,ν22,ν23 5,4,3,4,4

S2 ν1, ν2,ν5,ν6,ν7,ν8,ν16 3,9,3,3,3,3,4, 61725888 10000 Fig. 4(b)
ν17, ν18,ν21,ν22,ν23 12,4,3,7,7

S3 ν1, ν2,ν5,ν6,ν7,ν8,ν16 3,6,3,3,3,3,6, 58786560 10000 Fig. 4(b)
ν17, ν18,ν21,ν22,ν23 10,4,3,8,7

good representation of the experimental spectrum. A more quantitative study of

this subject is beyond the scope of the present study and is deferred to a future

publication.
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Table 6.11: Normal mode combinations, sizes of the primitive and the single particle
basis used in the WP propagation in the coupled three states dynamics of phenol and
PFP using MCTDH program module

Molecule Normal modes SPF basisa Primitive basisb Figures
Phenol ν22,ν20,ν19,ν18 (8,8,8) [12,11,10,10] Fig. 5(a)

ν13,ν8,ν15,ν31,ν33 (7,7,7) [8,6,5,7,7]
ν7,ν9,ν14,ν23 (5,5,5) [4,4,4,4]

PFP ν16,ν17,ν32,ν33 (9,9,9) [15,15,12,12] Fig. 5(c)
ν2,ν6,ν22,ν23,ν25, ν29 (7,7,7) [10,10,10,9,9,8]

ν7,ν18,ν21,ν24,ν26, ν30,ν31 (5,5,5) [6,7,7,6,7,6,6]
ν1,ν4,ν8,ν5,ν12, ν13,ν27 (4,4,4) [5,5,6,5,5,5,5]
ν3,ν9,ν10,ν15,ν28, ν20 (3,3,3) [4,4,4,4,5,5]

aThe SPF basis is the number of single particle functions used. The WP is

propagated for a total of 200 fs to generate the spectrum, for both Fig. 5(a) and

Fig. 5(c).

bThe primitive basis is the number of Harmonic oscillator DVR functions for

the relevant mode. The primitive basis for each particle is the product of one

dimensional bases; e.g for particle 1 in the set for Fig. 5(a) contains 13200

functions and the full primitive basis (with all twelve modes) consists of a total

of 39739392000 functions for a single electronic state. The dimension of the

Hamiltonian matrix is 119218176000 for three coupled states. The above numbers

for Fig. 5(c) read 32400, 5.59×1024 and 16.8×1024 in that order.
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Table 6.12: Vibrational energy levels of the S1 A
′ (1ππ∗) electronic state of Phenol

along with their assignment.

This work Ref [63] Ref [65]
Energy (eV) Assignment Energy (eV) Assignment Energy (eV) Assignment

4.508 00
0 4.508 00

0 4.507 00
0

- - - - 4.512 40
1 51

0

- - 4.513 ? 4.513 40
1 τOH1

1

- - 4.548 τOH1
1 4.548 τOH1

1

- - - - 4.554 16a2
0

4.556 ν23
1
0 4.455 18b1

0 4.556 18b1
0

4.566 ν22
1
0 4.567 6a1

0 4.567 6a1
0

- - 4.577 6b1
0 - -

4.606 ν23
2
0 4.601 18b2

0 - -
4.608 ν20

1
0 4.605 121

0 - -
4.625 ν22

2
0 4.624 6a2

0 - -
4.632 ν19

1
0 4.626 18a1

0 4.626 18a1
0

4.635 ν18
1
0 4.636 9a1

0 4.629 9a1
0

- - 4.649 6b2
0 - -

- - 4.654 18b3
0 - -

4.655 ν14
1
0 - - - -

4.655 ν15
1
0 - - - -

4.665 ν13
1
0 4.666 7a1

0 - -
4.666 ν22

1
0 ν20

1
0 4.683 6a1

0 122
0 - -

4.690 ν22
1
0 ν19

1
0 - - - -

4.693 ν9
1
0 - - - -

4.693 ν22
1
0 ν18

1
0 - - - -

4.708 ν20
2
0 4.702 122

0 - -
- - 4.713 6b3

0 - -
4.714 ν8

1
0 - - -

4.715 ν7
1
0 - - - -

4.723 ν22
1
0 ν13

1
0 4.721 6a1

0 7a1
0 - -

4.725 ν20
1
0 ν22

2
0 - - - -

4.732 ν20
1
0 ν19

1
0 - - - -

4.735 ν20
1
0 ν18

1
0 - - - -

4.749 ν19
1
0 ν22

2
0 4.741 121

0 6a2
0 - -

4.753 ν18
1
0 ν22

2
0 - - - -

4.756 ν19
2
0 - - - -

4.759 ν19
1
0 ν18

1
0 - - - -

4.763 ν18
2
0 4.763 9a2

0 - -
4.765 ν20

1
0 ν13

1
0 - - - -

4.765 ν22
1
0 ν20

2
0 - - - -

4.782 ν13
1
0 ν22

2
0 4.781 11

0 7a1
0 / 6a2

0 7a1
0 4.781 6a2

0 7a1
0

4.789 ν19
1
0 ν13

1
0 - - - -

4.792 ν18
1
0 ν13

1
0 - - - -

4.793 ν22
1
0 ν20

1
0 ν18

1
0 4.798 123

0 / 6A3
0 122

0 - -
4.817 ν22

1
0 ν19

1
0 ν18

1
0 - - - -

- - 4.818 12
0 122

0 - -
4.822 ν13

2
0 4.822 7a2

0 4.817 7a2
0

4.825 ν22
2
0 ν20

2
0 - - -

- - 4.838 6a3
0 7a1

0 -
4.880 ν22

1
0 ν13

2
0 4.877 6a1

0 7a2
0 -

- - 4.896 124
0 -
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Table 6.13: Vibrational energy levels of the S1 A
′ (1ππ∗), S2 A

′′(1πσ∗) and S3 A
′′

(1πσ∗) electronic states of PFP along with their assignment.

S1 A
′ S2 A

′′ S3 A
′′

Energy (eV) Assignment Energy (eV) Assignment Energy (eV) Assignment
4.769 00

0 5.344 00
0 5.560 00

0

4.799 ν23
1
0 5.375 ν22

1
0 5.593 ν23

1
0

4.800 ν22
1
0 5.376 ν23

1
0 5.594 ν22

1
0

4.816 ν18
1
0 5.386 ν18

1
0 5.618 ν18

1
0

4.817 ν17
1
0 5.394 ν17

1
0 5.620 ν17

1
0

4.838 ν16
1
0 5.405 ν22

2
0 5.625 ν16

1
0

4.869 ν16
1
0 ν23

1
0 5.406 ν22

1
0 ν23

1
0 5.626 ν23

2
0

4.870 ν16
1
0 ν22

1
0 5.407 ν23

2
0 5.627 ν23

1
0 ν22

1
0

4.886 ν16
1
0 ν18

1
0 5.410 ν16

1
0 5.628 ν22

2
0

4.886 ν16
1
0 ν17

1
0 5.417 ν22

1
0 ν18

1
0 5.652 ν18

1
0 ν22

1
0

4.908 ν16
2
0 5.418 ν23

1
0 ν18

1
0 5.653 ν17

1
0 ν23

1
0

4.939 ν16
2
0 ν23

1
0 5.425 ν22

1
0 ν17

1
0 5.654 ν17

1
0 ν22

1
0

4.939 ν16
2
0 ν22

1
0 5.426 ν23

1
0 ν17

1
0 5.659 ν16

1
0 ν23

1
0

4.955 ν16
2
0 ν18

1
0 5.436 ν18

1
0 ν17

1
0 5.660 ν16

1
0 ν22

1
0

4.956 ν16
2
0 ν17

1
0 5.441 ν22

1
0 ν16

1
0 5.678 ν17

1
0 ν18

1
0

4.956 ν5
1
0 5.444 ν17

2
0 5.680 ν17

2
0

4.966 ν6
1
0 5.453 ν18

1
0 ν16

1
0 5.685 ν16

1
0 ν17

1
0

4.978 ν16
3
0 5.461 ν17

1
0 ν16

1
0 5.686 ν23

2
0 ν17

1
0

5.014 ν6
1
0 ν17

1
0 5.474 ν17

2
0 ν22

1
0 5.687 ν23

1
0 ν22

1
0 ν17

1
0

5.025 ν16
3
0 ν18

1
0 5.475 ν17

2
0 ν23

1
0 5.688 ν22

2
0 ν17

1
0

5.026 ν16
3
0 ν17

1
0 5.486 ν17

2
0 ν18

1
0 5.713 ν23

1
0 ν17

2
0

5.026 ν5
1
0 ν16

1
0 5.494 ν17

3
0 5.714 ν22

1
0 ν17

2
0

5.036 ν6
1
0 ν16

1
0 5.510 ν5

1
0 5.719 ν23

1
0 ν17

1
0 ν16

1
0

5.077 ν7
1
0 5.517 ν2

1
0 5.720 ν22

1
0 ν17

1
0 ν16

1
0

5.083 ν6
1
0 ν16

1
0 ν18

1
0 5.540 ν5

1
0 ν22

1
0 5.738 ν18

1
0 ν17

2
0

5.084 ν6
1
0 ν16

1
0 ν17

1
0 5.541 ν5

1
0 ν23

1
0 5.740 ν17

3
0

5.106 ν6
1
0 ν16

2
0 5.542 ν7

1
0 5.746 ν17

2
0 ν16

1
0

5.147 ν7
1
0 ν16

1
0 5.552 ν5

1
0 ν18

1
0 5.800 ν2

1
0

5.154 ν6
1
0 ν16

2
0 ν17

1
0 5.573 ν7

1
0 ν22

1
0 5.833 ν2

1
0 ν23

1
0

5.164 ν6
2
0 5.574 ν7

1
0 ν23

1
0 5.834 ν2

1
0 ν22

1
0

5.175 ν6
1
0 ν16

3
0 5.585 ν7

1
0 ν18

1
0 5.860 ν2

1
0 ν17

1
0

5.223 ν6
1
0 ν16

3
0 ν17

1
0 5.592 ν7

1
0 ν17

1
0 5.867 ν2

1
0 ν16

1
0

5.234 ν6
2
0 ν16

1
0 5.623 ν7

1
0 ν17

1
0 ν22

1
0 5.894 ν2

1
0 ν22

1
0 ν17

1
0

5.303 ν6
2
0 ν16

2
0 5.624 ν7

1
0 ν17

1
0 ν23

1
0 5.920 ν2

1
0 ν17

2
0

5.373 ν6
2
0 ν16

3
0 5.642 ν7

1
0 ν17

2
0 5.927 ν2

1
0 ν17

1
0 ν16

1
0



6.3. Results and Discussion 224

4.5 5 5.5 6 6.5

4.5 5 5.5 6

S
1
A’ ( ππ∗)

S
2
A’’ (πσ∗)

S
3
A’’ (πσ∗)

Energy (eV)

In
te

n
si

ty
 (

ar
b

. 
u

n
it

.)

a)

b)

0
0

0

0
0

0

0
0

0

ν20
0

1

ν22
0

1

ν19
0

1

ν18
0

1

ν13
0

1

ν22
0

1
 ν19

0

1

ν22
0

1
 ν18

0

1

ν19
0

1
 ν18

0

1

ν20
0

1
 ν13

0

1

ν22
0

1

ν22
0

2

ν7
0

1

ν20
0

1
 ν18

0

1

ν20
0

1
 ν19

0

1

ν22
0

1
 ν7

0

1

ν22
0

1

ν22
0

2

ν9
0

1

ν22
0

1
 ν9

0

1

ν18
0

1
 ν13

0

1

ν19
0

1
 ν13

0

1

0
0

0

0
0

0

0
0

0

ν16
0

1

ν16
0

2

ν16
0

3

ν6
0

1 ν6
0

1
 ν16

0

1

ν17
0

1

ν17
0

2

ν17
0

1

ν17
0

2

ν2
0

2 ν2
0

1
 ν17

0

1

ν17
0

3

Figure 6.4: The stick vibronic spectrum and the convoluted envelope of the S1, S2, S3

electronic state of phenol (panel a) and PFP (panel b) calculated with the a′ vibrational
modes (see the text for details). The intensity in arbitrary units is plotted as a function
of the energy of the vibronic levels. The zero of energy corresponds to the equilibrium
minimum energy of the reference electronic ground state.
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Figure 6.5: Probability density plots of the vibronic wavefunctions of the fundamental
(panels a-c, respectively) and first overtone (panels d-f, respectively) of ν19, ν20 and ν22

vibrational modes, respectively, appearing in the S1 (1ππ∗) state spectrum of Phenol.
The wavefunctions in panels g-i represent the combination peak of ν19 + ν20, ν19 + ν22

and ν20 + ν22, respectively.
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Figure 6.5: contd.
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Figure 6.6: Probability density plots of the vibronic wavefunctions of the fundamental
and first two overtones (in panels a, b and c) of the ν16 vibrational mode appearing in
the S1 (1ππ∗) state spectrum of PFP. The wavefunctions in panels d-f represent the
combination peak of ν16 + ν17, ν16 + ν18 and ν17 + ν18, respectively.
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Figure 6.7: Electronic absorption spectrum of phenol and PFP compared with the
latest experimental results of Ref. [30]. The spectral profiles are calculated by the wave
packet propagation method implemented in the MCTDH program module [57–60]. The
intensity in arbitrary units is plotted as a function of the energy of the final vibronic
state (in terms of the wavelength).

6.3.3 Electronic Population

In order to unravel further details on the photophysical behavior of phenol and

PFP we have examined the time-dependence of diabatic electronic populations in

the S1-S2-S3 coupled states dynamics. The results are plotted in Figs. 6.8(a-b).

The results of panel a are obtained for an initial excitation of the wave packet

to the first excited 1ππ∗ state of phenol. The time-dependence of populations of

the three electronic states are shown by different color lines and mentioned in

the legend. It can be seen from panel a that very little population flows to the
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optically dark 1πσ∗ states and the wave packet essentially remains on the opti-

cally bright 1ππ∗ state in this case. Therefore, the latter state is the dominant

emitting state in phenol. This finding convincingly explains the large quantum

yield of fluorescence observed in the experimental recording [30] as the transition

is optically allowed in this case. Furthermore, the equilibrium geometry of the

1ππ∗ state of phenol converges to Cs symmetry point group and essentially re-

mains the same as the ground (S0) state equilibrium geometry in the coordinate

space. This leads to a small Stoke’s shift in the fluorescence emission spectrum

as observed in the experiment [30].

Contrary to the above, the time-dependence of the electronic population in

the S1-S2-S3 coupled state dynamics for an initial excitation to the S1 state of

PFP plotted in panel b shows significant difference. In this case large amount

of population flows to the optically dark 1πσ∗ states. This population flow from

1ππ∗ to the 1πσ∗ states takes place at a relatively short time. Thereafter, the pop-

ulation remains essentially constant in all three states. Because of the energetic

proximity of states (cf. Fig. 6.8) small population flows back and forth among

three states (as indicated by the oscillations in the population curves) during the

entire period of the dynamics. The initial decay of population of the S1 (1ππ∗)

state of PFP relates to a decay rate of ∼ 52 fs. It can be seen from Fig. 6.8b

that at longer times the population of optically bright 1ππ∗ state saturates at

a value of ∼ 0.6. On the other hand the combined population of the optically

dark 1πσ∗ states reaches a value ∼ 0.4. We also carried out five coupled states

calculations in case of PFP by including two more excited states S4 (1ππ∗) and

S5 (1πσ∗). While we did not find any significant impact of these states on the

broad band spectral profile given in Fig. 6.7, they show quite some impact on the
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population dynamics. The latter results are presented in the inset of panel b of

Fig. 6.8. It can be seen from the inset that the S1 (1ππ∗) state decays faster and

about 50% population is transferred to the other states. More population flows

to the optically dark 1πσ∗ state in this situation. Owing to a strong nonadiabatic

coupling and vibronic mixing the latter states become partially optically allowed

and contributes to the fluorescence emission. As a large fraction of the electronic

population moves to the 1πσ∗ state of PFP the intensity of the emission drasti-

cally reduces as compared to that of phenol.

It is worth recalling that strong coupling between states in PFP, causes a

significant distortion of the equilibrium geometry of its first 1ππ∗ state. The

minimum of the latter shifts to a out-of-plane configuration, as confirmed by the

present CASSCF calculations and also discussed in the literature [30]. In order

to illustrate further, the potential energy curves of the lowest 1ππ∗ and 1πσ∗

states are plotted along strong coupling out-of-plane bending modes ν32 and ν33

and are shown in panel a and b of Fig. 9. It can be seen that strong repulsion

between the states breaks the equilibrium symmetry and shifts the minimum of

the states at distorted nuclear configurations. Large Stoke’s shift observed in the

fluorescence emission spectrum in the experiment [30] can be attributed to this

observation. Eventually, emission in this case will be followed by intramolecular

vibrational redistribution. Furthermore, the double well shape of the S1 state

of PFP also implies strong repulsion between the states and strong nonadiabatic

coupling as discussed above. Significant distortion of the equilibrium geometry

and the double well shape of the potential are expected to affect the VEE of the

S1 state for which the experimental absorption maximum may not be a good

estimate as already noted in Table 6.3.
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Figure 6.8: Time-dependence of diabatic electronic populations in the S1-S2-S3 cou-
pled states nuclear dynamics of phenol (panel a) and PFP (panel b). The initial wave
packet is located on the S1 state of both molecules. The population obtained in a five
coupled state calculations in case of PFP is presented as an inset in panel b (see text
for details).
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their fitting are shown by points and lines, respectively.
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6.4 Summarizing Remarks

A detailed theoretical study is carried out to elucidate the role of optically dark

1πσ∗ state on the vibronic structure and dynamics of optically bright 1ππ∗ state

of phenol and PFP. The potential energy surfaces of the lowest three electronic

excited states and their coupling surfaces of each species are calculated by ab

initio EOM-CCSD method. In the spirit of general approach [1] vibronic Hamil-

tonians are constructed in a diabatic electronic basis and in terms of dimensionless

normal coordinates of vibrational modes. The nuclear dynamics calculations are

carried out both by the time-independent matrix diagonalization as well as wave

packet propagation methods.

The results show that the low-lying 1πσ∗ states of PFP have predominant C-F

σ∗ character in contrast to O-H σ∗ character of the 1πσ∗ states of phenol. Sub-

stitution of F atom lowers the energy of C-F σ∗ orbitals and as a result the 1πσ∗

states become energetically very close to the 1ππ∗ state in PFP. Strong vibronic

coupling between 1ππ∗ - 1πσ∗ states in PFP causes a complete loss of structure of

its optical absorption band. The latter, calculated theoretically, is in very good

accord with the recent experimental recording [30]. Furthermore, reduced dimen-

sional results of resolved vibronic line spectrum of the three electronic states of

both the molecules are assigned and the results in case of phenol are compared

with the high-resolution VUV recording available in the literature. It is found

that while about ∼ 10% electron population flows to the 1πσ∗ states in phenol,

about ∼ 50% population flows to the 1πσ∗ states of PFP when the dynamics

is started on the 1ππ∗ state. Therefore while the optically bright 1ππ∗ state is

the major emitting state in phenol, in case of PFP the optically dark 1πσ∗ states

equally compete. This reduces the intensity of the fluorescence emission spectrum



of PFP as compared to that of phenol observed in the experiment. Furthermore,

both 1ππ∗ and 1πσ∗ states of PFP undergoes large geometrical distortion and

the emission takes place from this distorted configurations. Emission would be

followed by intramolecular vibrational redistribution in this case. This causes a

large Stoke’s shift observed in the fluorescence emission spectrum of PFP [30].

The geometrical distortions and strong interactions between the states in PFP

result into highly asymmetric nature of its absorption bands. The theoretically

calculated vertical excitation energies therefore significantly differ from their ex-

perimental estimate based on the absorption band maximum in this case.
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[60] Worth. G. A.; Beck. M. H.; Jäckle. A.; Meyer. H. -D. The mctdh package,

Version 8.4, (2007), University of Heidelberg, Heidelberg, Geramny. See:

http://mctdh.uni-hd.de.
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Chapter 7

Summary and outlook

A detailed description of the photoinduced nonadiabatic quantum dynamics on

the coupled electronic states of polyatomic molecules, clusters and molecular

radical cations is investigated theoretically in this thesis. The investigations are

carried out with the aid of ab initio electronic structure calculations and quan-

tum dynamical simulations of underlying nuclear motion. Clearly, the study

of multimode molecular dynamics on the multistate coupled electronic surfaces

reveals a challenging theoretical and computational problem. Several vibronic

coupling models are developed to solve them. The most important result of VC

is occurrence of conical intersections (CIs) in nonlinear molecules or Glancing

intersections (GIs) in linear molecules of electronic states. Theoretical treatment

of VC in polyatomic molecules becomes tedious. The essential simplifications are

the assumptions of harmonic diabatic potentials and truncation of Taylor series

(around the equilibrium geometry of the neutral molecule and along the dimen-

sionless nuclear coordinates) in low-order. The typical spectroscopic effects of

CIs (or Glancing intersections, GIs) have been identified. Photoabsorption spec-

tra of neutral linear carbon clusters, C2n+1 (n=7-10), phenol and PFP and the

241
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photoelectron spectra diacetylene radical cation are studied.

Structures and dynamics of the ten (including degeneracy) energetically closely

lying electronic states (1Σ+
u , 1∆u,

1∆g,
1Πg,

1Πu and 1Σ+
g ) of neutral bare linear

carbon clusters, C2n+1, (n=7-10) have been investigated to examine the photoab-

sorption spectrum of the corresponding clusters. It is found that all these clusters

have linear chain structure at the equilibrium minimum of their electronic ground

state and an excited state of 1Σ+
u term is strongly absorbing. There are states

of Πg, Πu, ∆g and ∆u symmetry, in the immediate vicinity of the 1Σ+
u state,

which are optically dark but gain intensity through vibronic coupling. Such a

coupling scheme is developed in this chapter with the aid of the calculated ab

initio quantum chemistry results. A detailed theoretical account of the multi-

mode RT and PRT interactions in some selected electronic states of linear C2n+1,

where n=7-10 cluster is presented in this chapter to elucidate the lifetimes of its

excited electronic state of 1Σ+
u term. The vibronic Hamiltonian is constructed in

a diabatic electronic basis, including the RT coupling within the degenerate 1Πg

and 1Πu electronic states and the PRT couplings of these RT split states with

the nondegenerate 1Σ+
u and 1Σ+

g electronic states of C2n+1, where n=7-10. The

RT effect in the 1Πg and 1Πu electronic states of these clusters is found to be

very weak. The PRT coupling between the 1Πg and 1Πu states dominates the

RT coupling. Due to a clustering of the four excited states within ∼ 1.0 eV, the

nonradiative processes are found to be dominanting in predicting the vibronic

structure and the transfer of diabatic electronic population among these states.

The initial decay of the diabatic population of 1Σ+
u state is estimated to be ∼76

fs for C15, ∼64 fs for C17, ∼189 fs for C19 and ∼337 fs for C21 which lie in the

much anticipated range ∼70-200 fs. So, it is found that for linear odd numbered
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carbon chains one particular excited electronic state (1Σ+
u ) has a very high oscil-

lator strength (f) value and their absorption also happens within the 400-800 nm

range and the lifetime of the 1Σ+
u state is in the anticipated range. So these are

likely to be a potential DIBs carrier.

In this thesis only odd numbered long carbon chains are investigated. As a

continuation, one can study the even numbered carbon chains also which pos-

sesses 3Σ−g ground electronic state term symbol. The present study is restricted

to the vibronic coupling of electronic states with same spin multiplicities. It will

be interesting to investigate VC for electronic states of different spin multiplicities

and including the spin-orbit coupling in the VC models developed in this thesis.

A detailed theoretical investigation can be done for linear silicon chains, like car-

bon chains, which are also proposed to be potential DIBs carrier.

Vibronic interactions in the X̃2Πg and Ã2Πu band system of diacetylene radi-

cal cation is theoretically investigated with the aid of ab initio quantum chemistry

calculations, vibronic coupling theory and time-independent and time-dependent

quantum dynamics methods. Both the RT coupling within the X̃ and Ã states

and also the coupling between them are considered and the impact of these cou-

plings on the vibronic dynamics of each electronic state is carefully examined.

It is found that the RT coupling within each X̃ and Ã state is weak. However,

this coupling triggers the excitation of degenerate vibrational modes within each

electronic states. The pseudo-Jahn-Teller type of X̃ - Ã coupling through the

vibrational modes of σ+
u symmetry has, in particular, no effect on the dynamics.

The nonadiabatic coupling among the two electronic states is quenched by the

large energy separation, which leads to a sharp band structure of the two states.
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The X → A transition in C4H+
2 do not occur very close to the DIB position at

506.9 nm. Our results are not in agreement with this.

Polyacetylenes are the building blocks for polycyclic aromatic hydrocarbons

(PAHs). It would be useful to study the bond breaking and bond formation mech-

anism in these PAHs. Besides that, mono- or di- substituted fluoro-, methyl- or

cyanide- derivatives are also proposed to be a DIBs carriers. A full theoretical

calculations is also necessary for this systems.

A detailed theoretical study is carried out to elucidate the role of optically

dark 1πσ∗ state on the vibronic structure and dynamics of optically bright 1ππ∗

state of phenol and PFP. The results show that the low-lying 1πσ∗ states of

PFP have predominant C-F σ∗ character in contrast to the O-H σ∗ character of

phenol. Substitution of F atom lowers the energy of C-F σ∗ orbitals and as a

result the 1πσ∗ states become energetically very close to the 1ππ∗ state in PFP.

Strong vibronic coupling between 1ππ∗ - 1πσ∗ states in PFP causes a complete

loss of structure in its optical absorption band. Furthermore, reduced dimensional

results of resolved vibronic line spectrum of the three electronic states of both

the molecules are assigned and the results in case of phenol are compared with

the high-resolution VUV recording available in the literature. It is found that

while about ∼ 10% electron population flows to the 1πσ∗ states in phenol, about

∼ 50% population flows in PFP when the dynamics is started on the 1ππ∗ state.

Therefore while the optically bright 1ππ∗ state is the major emitting state in

phenol, in case of PFP the optically dark 1πσ∗ states equally compete. This

reduces the intensity of the fluorescence emission spectrum of PFP as compared

to that of phenol observed in the experiment. Furthermore, both 1ππ∗ and 1πσ∗
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states of PFP undergoes large geometrical distortion and the emission takes place

from this distorted configurations. Emission would be followed by intramolecular

vibrational redistribution in this case. This is the reason behind a large Stoke’s

shift observed in the fluorescence emission spectrum of PFP.

This study can be further extended into the heterocyclic aromatic ring systems

like pyridine, pentafluoropyridine etc.
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