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Appendix A

On the (E⊗ e)-Jahn-Teller conical

intersections in the 3p (E ′) and

3d (E′′) Rydberg electronic states

of triatomic hydrogen

A.1 Introduction

We present and discuss the static and dynamic aspects of the Jahn-Teller (JT)

interactions in the 3p (E ′) and 3d (E ′′) Rydberg electronic states of H3 in this

chapter theoretically. The static aspects are discussed based on recent ab initio

quantum chemistry results, and the dynamic aspects are examined in terms of the

vibronic spectra and nonradiative decay behavior of these states. The adiabatic

potential energy surfaces of these degenerate electronic states are derived from

extensive ab initio calculations. The calculated adiabatic potential energy sur-

faces are diabatized following our earlier study [168] on this system in its 2p (E ′)

1



A.1. Introduction 2

ground electronic state. The nuclear dynamics on the resulting conically inter-

secting manifold of electronic states is studied by a time-dependent wave packet

approach. Calculations are performed both for the uncoupled and coupled state

situations in order to understand the importance of nonadiabatic interactions due

to the JT conical intersections in these excited Rydberg electronic states.

The ab initio adiabatic potential energies of the JT split components of the 3p

(E ′) , 3d (E ′′) and several other excited Rydberg electronic states of H3 were cal-

culated over a large number of geometrical arrangements by Jungen and cowork-

ers [169]. The resulting adiabatic PESs are diabatized and the nuclear motion on

the coupled diabatic surfaces is monitored by a time-dependent WP approach.

The vicinity of the D3h equilibrium geometry of Rydberg excited H3 is probed by

the electron collision of H+
3 in molecular beams [93, 94]. Therefore, it is valuable

to understand the topography of the PESs of the 3p (E ′) and 3d (E ′′) electronic

states in the neighborhood of the D3h configuration and the motion of the WP

on them (these two states have major contributions to the Rydberg emission pro-

cess [93, 94]). Like the 2p (E ′) ground electronic manifold, these two degenerate

Rydberg excited states are also prone to the JT instability [6]. Investigations

of the impact of the JT coupling on the spectroscopy and nonradiative decay of

these states are the two main aspects of the present investigation.

The conical intersections of the JT split 3p (E ′) and 3d (E ′′) Rydberg elec-

tronic states are established. Our analysis shows that the JT interactions are

not particularly strong in these electronic states, when compared to that in the

electronic ground state of H3 [95,168,170]. In the following, we consider both the

uncoupled and coupled state situations and examine the vibronic level structure

of these electronic states. The nonradiative decay of these states is examined

by calculating the time-dependent adiabatic and diabatic electronic populations.
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The results show much slower decay rates of these Rydberg states when compared

with the same of the electronic ground state [95, 168].

A.2 Diabatic electronic states and conical inter-

sections

The adiabatic potential energy surfaces used in this paper are a subset of solutions

from a large number of geometrical arrangements where the lowest 15 electronic

states have been documented between the geometry of H+
3 and the dissociation

limit to H + H2 [169]. An orbital basis of 165 contracted Gaussian functions

has been used which can describe Rydberg dissociation to H∗ + H2 as well as

to H + H∗
2. At every grid point a CI (Configuration Interaction) calculation in

the dimension of about 14000 CSF’s (Configuration State Function) has been

performed and calculations for 2366 grid points have been carried out.

The internal coordinates of H3 have been chosen as mass scaled Jacobi coor-

dinates R, r and γ with

R = S · 0.75−1/4 (A.1a)

r = s · 0.751/4. (A.1b)

Here s is the H-H distance in the diatom, S is the distance between the third

H atom and the center of mass of the diatom, and γ is the angle between the

vectors ~r and ~R. For the equilibrium geometry of H+
3 (an equilateral triangle with

interatomic distances of 1.65 a0) we have R = r = 1.536 a0 and γ = 90◦. Our
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grid has been chosen such that one point exactly coincides with this equilibrium

; the step size is 0.2 a0 for R and r in the vicinity of the H+
3 minimum, 0.4 a0 at

longer separations, and 15◦ for γ. In the following these internal coordinates will

also be used for the treatment of the nuclear dynamics.

In contrast to the 2p (E ′) surfaces the potentials of the 3p (E ′) state have

an absolute minimum near the geometry of H+
3 . It is a double surface which in

D3h symmetry penetrates itself. Close to the minimum the surfaces are roughly

parallel to that of the parent ion, but in C2v symmetry (γ = 90◦) the higher

component of the 3p (E ′) surfaces has a saddlepoint near R ∼ 1.0 a0, r ∼ 2.6

a0, about 1.3 eV above the minimum; near R ∼ 0.9 a0, r ∼ 2.9 a0 it intersects

the lower component such that in a linear arrangement (R =0) their sequence is

inverted for r > 3.0 a0.

The surfaces of the 3d (E ′′) state are embedded in a dense sequence of elec-

tronic states, together with 3s (A′
1), 3p (A′′

2), 3d (E ′) and 3d (A′
1). At the

equilibrium these 7 states are compressed into an energy interval of about 0.1

eV, much less than the typical zero point vibrational energies in these potentials

(0.54 eV for H+
3 ). The potential surfaces are qualitatively parallel to that of the

parent ion and the 3d (E ′′) surfaces are not intersected by another potential up

to an energy of about 1 eV above the minimum.

We utilized the above adiabatic potential energy data for the 3p (E ′) and 3d

(E ′′) electronic states and diabatized them using a very simple approach [21–23].

In this approach the leading derivative coupling elements of the adiabatic basis,

i.e., those which diverge at a conical intersection are removed [22]. It is shown

that for a symmetry-enforced (E×e)-JT conical intersection, much simplification

results in the construction of the diabatic electronic states [22]. In this case the

adiabatic-to-diabatic mixing angle is solely determined in a geometrical fashion
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and does not depend at all on the strength of the JT coupling. This is already

been exploited in our earlier works on this system [24,95,168,170] and encouraging

results thereof emerged. If the two adiabatic components of the JT split potential

energy surfaces are designated V− (lower) and V+ (upper) then the diabatization

scheme reads





U11 U12

U21 U22



 = S





V− 0

0 V+



S† (A.2)

=
V− + V+

2
1 +

V+ − V−
2





− cosχ sinχ

sinχ cosχ



 , (A.3)

with

S =





cosφ sinφ

− sin φ cos φ



 . (A.4)

U11 and U22 represent the two diabatic potential energy surfaces and, U12 =

U21, is their coupling surface. The quantity S defines the unitary transformation

matrix from the adiabatic to the diabatic representation; Ψdiab = S Ψadiab; φ is

the adiabatic-to-diabatic mixing angle given by [10]

sin(2φ) =
U12

√

∆2 + U2
12

, (A.5)

cos(2φ) =
∆

√

∆2 + U2
12

, (A.6)

with

∆ =
U22 − U11

2
(A.7)
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When expressed in terms of the adiabatic surfaces V− and V+, the elements of

the electronic Hamiltonian matrix read,

U11 = V − δ cosχ (A.8)

U22 = V + δ sinχ (A.9)

U12 = U21 = δ sinχ (A.10)

where V = (V− + V+)/2 and δ = (V+ − V−)/2 and χ = 2φ.

The quantity χ above is the pseudorotation angle defined to be the polar

angle of the e-type vibration in the two-dimensional vibrational subspace of the

system. It can be seen that the above diabatization scheme requires information

on the adiabatic potential energies V− and V+ of the system only. This is a very

simple scheme, but, has been shown to remove the leading derivative coupling

terms that exhibit singular behavior at the conical intersections [21–23].

The computed adiabatic points on a (R, r, γ) grid by Jungen and coworkers

are used here [169]. The raw adiabatic data are used to calculate the diabatic

potential energies at each point of the grid and the resulting diabatic surfaces

are then numerically interpolated using a three-dimensional spline on a denser

grid. The numerical WP calculations are carried out on the latter consisting of

a uniformly spaced 128 × 128 grid in the (R, r) plane with 0.33a0 ≤ R ≤ 5.13a0

and 1.13a0 ≤ r ≤ 5.13a0 (for the 3p (E ′) electronic manifold) and 0.33a0 ≤ R ≤
3.13 a0, 1.13a0 ≤ r ≤ 2.33a0 (for the 3d (E ′′) electronic manifold). A 63 point

Gauss-Legendre quadrature [152] is used for γ in both cases. Unlike the adiabatic

potential energy functions, the diabatic potential energy functions do not exhibit

a cusp like behavior at the seam of conical intersections [10]. Therefore, it is

much simpler to numerically interpolate the diabatic potential energy functions
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rather than the adiabatic ones.

The two diabatic components of the 3p (E ′) Rydberg electronic manifold of

H3 are shown in Figs. 1(a-b) and indicated by the thin and thick lines. The

contour lines in panel a are plotted in the (R, r) plane for γ = π/2 corresponding

to the C2v arrangements of the three nuclei. The seam of the (E × e)-JT conical

intersections occurring forR = r is shown by the line on the diagram. H3 possesses

an equilateral triangular geometry on this line. The energetic minimum on the

seam is indicated by the cross. This minimum occurs at R = 1.56 a0, r = 1.56 a0

and γ = π/2. This minimum point on the seam is more clearly shown in panel b

and indicated by an arrow. The energy at this minimum of the seam is ∼ 2.43

eV relative to the three-body dissociation (H+H+H) limit [1] .

The above two diabatic potential energy surfaces obtained from the computed

adiabatic potential energy data (panels in the left column) and the corresponding

interpolated ones (panels in the right column) on the denser grid (defined above)

using a three-dimensional spline are shown in the (R, r) plane in Figs. 2(a-c) for

γ= 0◦, 30◦ and 60◦, respectively. The two diabatic electronic states are indicated

by two different line types in the figure.

It can be seen from the figures that the interpolated diabatic surfaces represent

quite well the raw data, and are very smooth. The coupling surfaces of the above

two diabatic surfaces are shown as contour line diagrams in the (R, r) plane

in Figs. 3 (a-c) for γ = 0◦, 30◦ and 60◦, respectively. The raw data and the

corresponding interpolated ones are shown in the left and right column of the

figure, respectively. A smooth behavior of the coupling surfaces is also apparent

from the figure. It is to be noted that the coupling energy is exactly zero for the

C2v arrangements of the nuclei. The magnitude of the coupling potential becomes

1Improved energies will be introduced at the end of section IV B
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Figure A.1: (a) Contours of the potential energies (eV) of the two diabatic
components of the 3p (E ′) Rydberg electronic manifold of H3 plotted in the
(R, r) plane for γ=π/2. The lowest energy contour for both the states occurs
at 2.45 eV and the spacing between the successive lines is 0.3 eV. The energy
is measured relative to the three-body dissociation (H + H + H) limit. The
straight line in the figure indicates the seam of conical intersections (occurring
for R = r between these two component states). The location of the energetic
minimum on this seam is shown by the cross. (b) Potential energy cuts of the
above two diabatic electronic states along R through the minimum of the seam
of conical intersections. The minimum of the seam is indicated by an arrow and
the minimum energy amounts to 2.43 eV.
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Figure A.3:

maximum at γ = 0 or π. Typically for the 3p (E ′) electronic state the maximum

value is ∼ 0.78 eV, occurring for R ∼ 3.43 a0, r ∼ 5.04 a0 and γ ∼ 0 or π.

The two component diabatic potential energy surfaces of the 3d (E ′′) Rydberg

electronic manifold of H3 are plotted in the (R, r) plane for γ = π /2 and are

shown in Fig 4(a). It can be seen that the topography of these two diabatic states

is very similar and they remain energetically very close even for geometries far

away from the D3h configurations. This indicates that the JT interaction in the

3d (E ′′) electronic manifold is weaker than that in the 3p (E ′) electronic manifold.
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The seam of conical intersections in the 3d (E ′′) electronic manifold is indi-

cated by the straight line in Fig. 4(a). The energetic minimum on this seam is

marked by the cross on the diagram. This minimum occurs at R = 1.52 a0, r=

1.52 a0 and γ = π/2. The cuts of the above two diabatic surfaces through this

minimum along R is shown in panel b. The minimum is more clearly shown by

an arrow in the diagram and the energy at this minimum is ∼ 2.87 eV relative

to the H + H + H dissociation limit. The maximum magnitude of the coupling

potential in this case is 0.31 eV. We note that the coupling potential has a maxi-

mum value ∼ 3.25 eV for the 2p (E ′) ground electonic manifold of H3. Therefore,

it appears that the JT effects are much weaker in the Rydberg electronic states

compared to those in the ground electronic manifold.

In order to show the quality of the numerical interpolations, we show in Figs.

5(a-c) the cuts of the component diabatic states of the 3d (E ′′) electronic manifold

in the (R, r) plane and for γ = 0◦, 30◦ and 60◦, respectively. The coupling

potentials of these two states are shown in Figs. 6(a-c) for γ = 0◦, 30◦ and 60◦,

respectively. The diabatic energies and the coupling potentials derived from the

computed ab initio adiabatic potential energies are shown in the left and the

corresponding interpolated surfaces are shown in the right columns of Fig. 5 and

Fig. 6. A smooth behavior of the diabatic surfaces and their coupling surfaces is

also apparent in this case.

A.3 Theoretical framework to treat the nuclear

dynamics

The nuclear dynamics in the degenerate 3p (E ′) and 3d (E ′′) Rydberg electronic

states H3 is expected to be influenced by the low-lying conical intersections in
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these states. For propagation of wave packets in these electronic states, we resort

to the diabatic electronic basis discussed above. In this basis the coupling surfaces

exhibit a smooth behavior rather than a singularity as in the adiabatic electronic

basis [10]. The vibronic Hamiltonian in the diabatic electronic basis can be

written as

H = TN





1 0

0 1



 +





U11 U12

U21 U22



 , (A.11)

where TN represents the nuclear kinetic energy operator, which is diagonal in this

basis. In terms of the mass-scaled body-fixed (BF) Jacobi coordinates R, r and

γ (introduced in Sec. II) and for the total angular momentum J = 0, it is given

by [181]

TN = − ~
2

2µ

[

∂2

∂R2
+

∂2

∂r2

]

− ~
2

2I

1

sin γ

∂

∂γ

(

sin γ
∂

∂γ

)

. (A.12)

The quantity, µ = mH/
√

3, above is the three-body scaled reduced mass and,

I = (µR2r2)/(R2 + r2), is the moment of inertia. The BF z-axis is defined to be

parallel to ~R and the diatom lies in the (x, z) plane.

In the time-dependent picture the golden rule expression for the spectral in-

tensity is given by

P (E) ≈ Re

∫ ∞

0

eiEt/~〈ψ(0)|e−iHt/~|ψ(0)〉dt, (A.13)

where ψ(0) defines the initial wave function of the system. In the present ap-

plication, this function can be assumed to be prepared by the Franck-Condon

transition of a hypothetical initial state to the coupled manifold of final degen-

erate electronic states. This is in the spirit of transition state spectroscopy, but
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utilizing hypothetical initial wave packets as specified below. In this sense Eq.

(14) above represents a pseudospectral intensity. In a vector notation the initial

wave function can be given as

ψ(0) = ψ1(R, r, γ)





1

0



 + ψ2(R, r, γ)





0

1



 , (A.14)

where





1

0



 and





0

1



 indicates the first and the second diabatic electronic state

with energy U11 and U22, respectively. ψ1 and ψ2 are the nuclear wave functions

in the respective diabatic states depending on the set of Jacobi coordinates. In

the present study we have chosen a Gaussian wave packet (GWP) for ψ1 and ψ2,

ψ1,2 = N exp

[

−(R −R0)2

2σ2
R

− (r − r0)2

2σ2
r

]

×
{

exp

[

(γ − γ0)2

2σ2
γ

]

+ exp

[

(γ − π + γ0)2

2σ2
γ

]}

. (A.15)

The quantities R0, r0 and γ0 specify the initial location and σR, σr and σγ refer

to the width parameters of the GWP along the respective coordinates. All the

vibronic energy levels of the system can be obtained with appreciable intensities

by suitably varying the initial location and the width parameters of this GWP.

The initial parameters and the average energies of the GWPs used in the present

calculations are given in Table I (for the 3p (E ′) electronic manifold) and Table

II (for the 3d (E ′′) electronic manifold).

The action of the time evolution operator e−iHt/~ on the initial wave function

in Eq. (14) is evaluated by dividing the time axis into n segments of length

∆t. The exponential operator at each time step ∆t is then approximated by the

split-operator method [137]. For the spatial evolution of the WP we used the
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fast Fourier transform method [144] for the radial kinetic energy operators and a

discrete variable representation [145] for the angular kinetic energy operator. In

each calculation the WP is evolved for a total time of 2.2 ps with a step length

of ∆t = 0.135 fs (3p (E ′) electronic manifold) and 550 fs with a step length of

∆t = 0.135 fs (3d (E ′′) electronic manifold). The fast moving components of

the WP reaching the grid edges are absorbed by activating a sin-type masking

function [149] at Rmask = 4.15 a0, rmask = 4.13 a0 in case of the 3p (E ′) electronic

manifold and at Rmask = 2.72 a0, rmask = 2.23 a0 in case of the 3d (E ′′) electronic

manifold, respectively. The convergence of the calculations is explicitly checked

by varying the numerical grid parameters stated above.

A.4 Results and discussion

The focus of the present work is to investigate the nonadiabatic coupling effects

on the WP dynamics of H3 near the conical intersection of its 3p (E ′) and 3d (E ′′)

Rydberg electronic states. This is motivated by our further plan to examine the

dissociative recombination process of Rydberg excited H3. In the coupled state

calculations the WP is initially prepared on the adiabatic electronic state and

then transformed to the diabatic electronic basis for the propagation and final

analysis. Companion calculations are carried out for the uncoupled adiabatic

electronic states in order to clearly reveal the impact of the (E × e)-JT conical

intersections on the vibronic structure of these degenerate Rydberg electronic

states. Different initial locations of the GWP on the potential energy surface yield

same eigenvalue spectra. However, the intensity of the peaks differs in different

spectra. Therefore, by varying the initial location of the GWP (cf. Tables I &

II) we are able to map out all the low-lying energy levels of the 3p (E ′) and 3d
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(E ′′) electronic states with appreciable intensities. In the following, we show and

discuss the results obtained with only one location of the GWP in each case.

A.4.1 Vibronic levels of the 3p (E ′) Rydberg electronic

manifold

The pseudospectrum of the uncoupled lower (V−) adiabatic sheet of the 3p (E ′)

electronic manifold of H3 obtained with the initial GWP No. 3 (cf. Table I) is

shown in Fig. 7(a).

The peaks in the spectrum correspond to the bound vibrational energy levels

of V−. The energy is measured relative to the three-body dissociation (H + H

+ H) limit of 1.5 Eh. The energy eigenvalues and the assignments of the low-

lying vibrational levels of V− are given in Table III and are discussed below.

The commonality of energy eigenvalues in various spectra obtained with different

initial location of the GWP is explicitly checked. The pseudospectrum of V−

obtained with the GWP No. 3 in the coupled state situation is shown in Fig. 7(b).

The discrete level structure of the uncoupled V− (cf. Fig. 7(a)) becomes somewhat

diffuse in the coupled state situations. The peak origin in the latter spectrum

(cf. Fig. 7(b)) shifts by ∼ 0.04 eV to higher energy which is due to the geometric

phase effects arising from the sign change of the adiabatic electronic wave function

while encircling the conical intersection in a closed loop [168,175]. The minimum

of the seam of conical intersections in the 3p (E ′) electronic manifold occurs at

∼ 2.43 eV. It can be seen that the 0-0 line in both the spectra in Fig. 7 appears

above this energy. The energy eigenvalues of some of the distinct peaks in Fig.

7(b) are also given in Table III. It can be seen that the line density in the coupled

state spectrum increases when compared to the uncoupled one. This increase is

due to the nonadiabatic effects associated with the JT conical intersections in the
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3p (E ′) electronic manifold [10]. The vibrational levels of the uncoupled V− in

Fig. 7(a) are assigned by computing their eigenfunctions, by projecting the time

evolved WP onto the desired eigenstate (n) of energy En,

ψn(E) =

∫ ∞

0

eiEnt/~ψ(t)dt. (A.16)

The vibrational eigenfunctions of the uncoupled V− surface are shown in Figs.

8(a-h). Probability density (|ψn(E)|2) contours of the eigenfunctions are plotted
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in the (R, r) plane (panels in the left column) and (γ, R) plane (panels in the

right column). The probability density is averaged over γ in the former case and

over r in the latter case. The eigenfunctions are assigned in terms of the num-

ber of nodes, nR, nr and nγ along R, r and γ, respectively. According to this

prescription the eigenfunction in Fig. 8(a) would correspond to a (0,0,0) level.

This is the ground vibrational level of the uncoupled V− surface. The eigenfunc-

tion in Fig. 8(b) represents the (0,1,0) level and that in Fig. 8(c) the (0,0,2)

level. The assignments of all the eigenfunctions in Figs. 8(a-h) are given in Table

III. Even quantum excitation along the angle γ is seen in the eigenfunctions. In

our previous work on the 2p (E ′) ground electronic state of H3, we identified

the eigenfunctions in terms of the progression along the breathing and bending

vibrational modes [10]. These actually represent suitable linear combinations of

the motions in Jacobi coordinates. Excitation along the breathing mode corre-

sponds to a nodal progression along the D3h symmetric stretch line (R = r). A

nodal progression orthogonal to this line corresponds to the excitation along the

bending mode. It is difficult to unambiguously assign the eigenfunctions in Fig.

8 according to this prescription due to their complex nodal pattern, however,

the following qualitative estimates can be made. The eigenfunction in Fig. 8(b)

corresponds to one quantum excitation along the degenerate bending vibrational

mode. Therefore, one vibrational quantum of this mode is ∼ 0.38 eV in the lower

adiabatic sheet of the 3p (E ′) electronic manifold. Similarly, the eigenfunction

in Fig. 8(f) has two quanta along this mode in addition to two quanta along

γ. The eigenfunction in Fig. 8(e) corresponds to one quantum excitation along

the breathing and one quantum along the degenerate bending vibrational mode.

Therefore, the vibrational quantum along the breathing vibrational mode is ∼
0.27 eV.
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The pseudospectra of the upper adiabatic sheet, V+, of the 3p (E ′) electronic

manifold in the uncoupled and coupled state situations obtained with the initial

GWP No. 3 (cf. Table I) are shown in Figs. 9(a-b), respectively. The band origin

in the coupled state results shifts by ∼ 0.08 eV to the lower energy. The width

of the peaks in the two spectra essentially remains the same. The line density

in the coupled state spectrum is heigher than the uncoupled one. As mentioned

above the additional peaks originate from the nonadiabatic interactions in the

coupled state situation. The energy eigenvalues of some of the low-lying vibronic

levels of V+ are given in Table III. The eigenfunctions of the vibrational levels of

the uncoupled V+ surface are shown in Figs. 10 (a-g). The probability density

(|ψn(E)|2) averaged over either γ or r are plotted as contour line diagrams in the

(R, r) (panels in the left column) and (γ, r) plane (panels in the right column),

respectively. The eigenfunctions are assigned in terms of (nR, nr, nγ) specifica-

tions (as discussed above) and are included in Table III. In this case also the

eigenfunctions show even quanta excitation along the angle γ. The eigenfunction

in Fig. 10(c) exhibits one quantum excitation along the breathing mode and two

quanta excitation along γ. The eigenfunction in Fig. 10(e) on the other hand

reveals one quantum excitation along the bending mode and two quanta excita-

tion along γ. Therefore, roughly each quantum along this degenerate vibrational

mode amounts to ∼ 0.57 eV.

To this end we devote some space to further discuss the coupled state results

shown in Figs. 7(b) and 9(b). These two spectra are obtained with the same GWP

No. 3 (cf. Table I) evolving on the same final electronic manifold. However, the

differences seen in the two spectra arise due to a difference in the initial location of

the GWP. In the former case it is located on V− and in the latter case it is on V+.

Therefore, the initial location of the WP represents different admixture of the two
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component diabatic electronic states U11 and U22. The energy eigenvalues of the

peak maximum of the coupled state spectra are also given in Table III. It can be

seen that the peaks in both the coupled state spectra appear at the same energy.

However, due to two different locations of the initial WP the intensity of the peaks

differs in two spectra. For example, the line at 2.95 eV gets more intensity and the

line at 2.98 eV appears as a kink in Fig. 7(b), whereas the opposite trend can be

observed in Fig. 9(b). As expected, the 0-0 line lies almost half-way between the

0-0 lines of the two uncoupled state spectra (cf. Table III). It is noteworthy that

the coupled state energy levels do not correspond to the uncoupled ones in the

same line in Table III. The additional peaks in the coupled state spectrum result

from the nonadiabatic interactions between the JT split potential energy surfaces.

The shift in energy of the peaks between the uncoupled and coupled state spectra

is quite small. This reflects that the JT coupling in this Rydberg electronic state

is rather weak compared to the far stronger coupling effects observed in the 2p

(E ′) ground electronic state of H3 [95, 168, 168].

A.4.2 Vibronic levels of the 3d (E ′′) Rydberg electronic

manifold

It can be seen from Figs. 4 and 5 that the two components of the 3d (E ′′)

electronic manifold have almost identical topography. The adiabatic and the

diabatic surfaces nearly coincide in this case. The vibronic structures of both the

adiabatic surfaces are found to be very similar and we show only one of them

below. In Figs. 11(a-b) the vibronic structure of the upper adiabatic (V+) state

of the 3d (E ′′) electronic manifold in the uncoupled (panel a) and coupled (panel

b) state situations is shown. These pseudospectra are calculated using the initial

GWP No. 2 (cf. Table II). A close look at the spectra in panels a and b reveals
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that nonadiabatic interactions cause somewhat broadening of the coupled state

spectrum (panel b) at high energies. Analogous to the 3p (E ′) spectra, in this

case also, the zero point vibrational level appears above the minimum of the

seam of conical intersections at ∼ 2.87 eV. The individual peak positions remain

identical in both cases (cf. Table III), however, additional peaks appear due

to the nonadiabatic interactions in the coupled state situation [10]. The energy

eigenvalues of both the adiabatic sheets of the 3d (E ′′) electronic manifold in the

uncoupled and coupled state situations are given in Table III.
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The eigenfunctions of the low-lying vibrational levels of the uncoupled upper

adiabatic sheet of the 3d (E ′′) electronic manifold are shown Figs. 12(a-g). They

are also assigned in terms of the (nR, nr, nγ) specifications discussed above and the

assignments are given in Table III. The vibrational levels of the uncoupled lower

adiabatic sheet reveal identical nodal progressions and we do not show them here.

The eigenfunction in Fig. 12(b) seems to reveal one quantum excitation along

the degenerate bending vibrational mode. The quantum of this bending vibration

therefore amounts to ∼ 0.43 eV, which can be compared with a value ∼ 0.31 eV

derived from the available experimental results [171–173]. The eigenfunction in

Fig. 12(d) corresponds to one quantum excitation along both the breathing and

bending vibrational modes. From the data given in Table III one can see that one

quantum of the breathing vibrational mode amounts to ∼ 0.35 eV. This can be

compared with a value of ∼ 0.39 eV estimated from the available experimental

data [171–173].

More recent and improved electronic structure calculations [182] indicate a

lowering of the absolute energies of the Rydberg electronic states. At the equi-

librium geometry of H+
3 , the energy of the 3p (E ′) state is found to be ∼ 0.17

eV and that of 3d (E ′′) state found to be ∼ 0.12 eV lower than the results dis-

cussed above. In view of these corrections the energy of the minimum of the

seam of intersections occurs at ∼ 2.26 eV and ∼ 2.76 eV for the 3p (E ′) and 3d

(E ′′) electronic states, respectively. The energies of the first few vibronic levels of

3p (E ′) and the 3d (E ′′) electronic states along with the available experimental

results [171–174] are given in table IV. The theoretical results in the latter are

obtained by incorporating the above energy correction to the energies of table III.

It can be seen that the low-lying vibronic levels of both the electronic states are in

fairly good agreement with the experimental results. A more rigorous comparison
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with the available experimental data [171–174] necessitates the energy levels to

be calculated including the rotation, i.e., for the total angular momentum J 6= 0.

Such calculations are presently being taken up.

A.4.3 Time-dependent wave packet dynamics

We now focus on the internal conversion dynamics of the 3p (E ′) and 3d (E ′′)

Rydberg electronic manifold of H3 driven by the JT conical intersections in the

respective states. The relevant quantity reported here is the time-dependence of

the diabatic and adiabatic electronic populations of these states.

In Fig. 13, we show the time-dependence of the adiabatic and diabatic elec-

tronic populations in the coupled state dynamics of the 3p (E ′) electronic man-

ifold. These populations and all later ones shown below represent the fractional

populations. The initial GWP No. 3 (cf. Table I) is located on the upper adi-

abatic sheet V+. The nuclear dynamics in this sheet is expected to be strongly

affected by the nonadiabatic interactions. This is because the minimum of the
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seam of conical intersections coincides with the energetic minimum of this state.

The adiabatic and diabatic electronic populations in Fig. 13 are indicated by the

solid and dashed lines, respectively. The upper solid curve indicates the popula-

tion of V+ and the lower one that of V−. Since the WP is initially located on V+,

the population of this state is 1.0 at t = 0. The population of this state sharply

decreases to ∼ 0.5 within 3.58 fs and to ∼ 0.3 within ∼ 6.5 fs and then fluctuates

statistically around a value of ∼ 0.3 at longer times. Therefore, within ∼ 3.58 fs

the WP reaches the conical intersection, which is also marked by the growth of

the population of V− (upper solid line) within this period. The latter fluctuates

around a value of ∼ of 0.7 at longer times. This indicates that on the average

only 70 % of the WP reaches the lower adiabatic sheet. The maximum popula-

tion exchange occurs at ∼ 30 fs. Within this time ∼ 80 % of the WP moves to

V−. The initial location of the WP on V+ corresponds to an admixture of both

the component diabatic states. Therefore, one finds a 49 % (51 %) population

on U11 (U22) at t = 0. The lower adiabatic surface exhibits a ”Mexican hat”

type of topography and has a cusp like behavior at the intersection seam. The

resulting anharmonicity of this surface apparently causes most of the damping of

the oscillations in the diabatic population [174] . Similar electronic population

dynamics is observed by preparing the initial GWP on the lower adiabatic sheet

(V−). In this case on the average 30 % of the lower adiabatic population moves

to the upper adiabatic sheet.

In order to better understand the above population dynamics we present snap-

shots of the WP evolving on the coupled 3p (E ′) electronic manifold at different

times in Fig. 14. The probability density of the WP averaged over the angular

coordinate is superimposed on the potential energy contours for γ = π/2 in the

(R, r) plane. The seam of conical intersections between these two electronic states
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is also indicated in the first panel of the left column. It can be seen that the WP

at t = 0 is generated very near to this seam. Because of this a considerable por-

tion (∼ 65 %) of the WP moves to the lower adiabatic state within ∼ 5 fs. (Since

the WP is initially located on V+, the population of this state is 1.0 and that

of V− is 0.0 at t = 0). Within ∼ 5 fs significant portion of the WP approaches

the conical intersections and moves towards the minimum of the lower adiabatic

sheet. The WP on V− then moves towards the intersection seam and a portion

of it moves back to V+, which is marked by a rise in the population of the latter

to ∼ 47 % (cf. Fig. 13) at ∼ 50 fs. The WP moves back and forth between the

two states in time and the population exchange through the intersection seam

continues. At longer times e.g., ∼ 250 fs, ∼ 76 % of the WP moves to V−.

The electronic population dynamics in the coupled 3d (E ′′) electronic manifold

exhibits very similar pattern as that in the 3p (E ′) electronic manifold. In this

case the time-dependence of the populations reveal a more regular pattern. The

time-dependence of the adiabatic and diabatic electronic populations obtained by

locating the initial GWP No. 2 (cf. Table II) on the upper adiabatic sheet (V+)

of the 3d (E ′′) coupled electronic manifold is shown in Fig. 15.

As before the solid and dashed lines represent the adiabatic and the diabatic

electronic populations, respectively. The time-dependence of the adiabatic elec-

tronic population exhibit a very regular pattern and the recurrences therein are

on the average ∼ 9 fs spaced in time. In this case on the average ∼ 50 % of the

WP moves to the lower adiabatic sheet. The initial location of the WP in this

case corresponds to 50 % (50 %) admixture of the two diabatic electronic states.

Unlike in the 3p (E ′) electronic manifold (cf. Fig. 13) the diabatic electronic

populations in this case reveal a very simple pattern. The oscillations seen in

the adiabatic electronic populations are heavily suppressed in the corresponding
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diabatic ones.

The WP motion in the above coupled 3d (E ′′) electronic manifold is shown in

Fig. 16, at various times indicated in the diagram. The probability density of the

two component adiabatic wave packets averaged over γ is plotted in the (R, r)

plane and superimposed on the potential energy contours for γ = π/2. The seam

of conical intersections is indicated by the solid line in the first panel in the left

column. It can be seen that the WP is prepared close to this seam in this case

also. Therefore, the WP is immediately perturbed by the strong nonadiabatic

coupling and as a result ∼ 59 % of the WP moves to V− at a very short time

of ∼ 5 fs. Both the WP components move to the minimum of the respective

surfaces and develop structures. The WPs move back and forth between the two

states, which gives rise to quasiperiodic recurrences in the adiabatic electronic

populations (cf. Fig. 15). On an average ∼ 50 % of the WP reaches the lower

adiabatic state during the course of the entire dynamics.
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A.5 Summary and outlook

We have presented a detailed investigation of the topography, spectroscopy and

the time-dependent dynamics of the two important degenerate 3p (E ′) and 3d

(E ′′) Rydberg electronic manifolds of H3. The static aspects of these electronic

states are discussed based on the ab initio adiabatic potential energy data. The

adiabatic surfaces are diabatized and the JT conical intersections are established.

The spectroscopy and the time-dependent dynamics are examined by propagating

the WPs on the coupled manifolds of these electronic states.

Our findings reveal that the nonadiabatic coupling effects in these Rydberg

electronic manifold of H3 are much milder than those found in case of its 2p (E ′)

ground electronic manifold. Comparing the two Rydberg electronic states, the

nonadiabatic effects are slightly stronger in case of the 3p (E ′) electronic manifold.

It has been explained above [Eq. (11)] that the strength of the coupling potential

within each electronic manifold is proportional to the splitting of the adiabatic

surfaces δ and a geometrical factor. In the case of a Rydberg series this splitting is

proportional to n−3
eff , where neff is the effective principal quantum number. With

neff [2p (E ′)] = 1.512 and neff [3p (E ′)] = 2.593 [180], the coupling strength is

expected to be about 5 times weaker for 3p (E ′), assuming a constant JT splitting

if expressed by effective quantum numbers. This however is only approximately

true and the real ratio of the coupling strength is ∼ 1/8. A similar explanation

can be given for even weaker coupling strength for 3d (E ′′) electronic manifold.

The vibronic energy levels in both uncoupled and coupled state situations

have been presented here and individual eigenstates of the uncoupled adiabatic

electronic states were assigned. The results compare well with the available exper-

imental data (cf. Table IV). The present work is motivated by recent experimental

interest on the dissociative recombination process of H3. Apparently the mecha-
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nism involved is much more complex and can not be satisfactorily explained by

the currently available electronic structure data. An investigation of this com-

plex mechanism and the analysis of the vibronic levels of the 3p (E ′) and 3d (E ′′)

Rydberg electronic manifolds of H3 including rotations are the two main tasks in

the future and are presently in progress.

Finally we note that, a referee raised the question whether this result would

contradict the important role of the JT coupling in the dissociative recombination

process claimed by Greene and coworkers [51]. These authors presented a model

based on multichannel quantum defect theory which treats the capture of an

electron into a whole Rydberg series, distinguishing direct (2p (E ′)) and indirect

(higher Rydberg states) processes. The present study does not deal with the

process of electron capture, but the predicted probability of population for the

upper and lower sheet of 3p (E ′) (30 % : 70 %) may be relevant, under suitable

circumstances, to the branching ratio of the H + H2 and H + H + H channels.
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Table A.1: Parameters for different choices of the initial Gaussian wave packet
used for simulating nuclear dynamics in the 3p (E ′) Rydberg electronic manifold
of H3.

GWP R0 r0 γ0 σR σr σγ 〈E〉
(a0) (a0) (rad) (a0) (a0) (rad) (eV)

1 1.5823 1.5903 1.5708 0.25 0.20 0.15 3.0895
2 1.7882 1.7899 1.5708 0.25 0.20 0.15 3.1267
3 1.8912 1.8950 1.5708 0.25 0.20 0.15 3.4231
4 1.9868 2.0105 1.5708 0.25 0.20 0.15 3.6885
5 2.0823 2.0840 1.5708 0.25 0.20 0.15 3.9243
6 2.1779 2.1786 1.5708 0.25 0.20 0.15 4.2052
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Table A.2: Parameters for different choices of the initial Gaussian wave packet
used for simulating nuclear dynamics in the 3d (E ′′) Rydberg electronic manifold
of H3.

GWP R0 r0 γ0 σR σr σγ 〈E〉
(a0) (a0) (rad) (a0) (a0) (rad) (eV)

1 1.6872 1.6876 1.5708 0.20 0.15 0.10 3.6068
2 1.8149 1.8145 1.5708 0.20 0.15 0.10 3.8071
3 1.9092 1.9095 1.5708 0.20 0.15 0.10 4.0789
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Table A.3: Vibronic energy levels of the uncoupled and coupled lower (V−) and upper (V+) adiabatic electronic
states of the 3p (E ′) and 3d (E ′′) Rydberg electronic manifolds of H3. The assignments of the vibrational
levels of the uncoupled states are also given (see text for details). A blank entry in the table implies that the
corresponding quantity can not be given unambiguously.

3p (E′) 3d (E′′)
V− V+ V− V+

Uncoupled Coupled* Uncoupled Coupled* Uncoupled Coupled* Uncoupled Coupled*
Energy Assignment Energy Energy Assignment Energy Energy Assignment Energy

eV (nR, nr , nγ ) eV eV (nR, nr , nγ) eV eV (nR, nr, nγ) eV eV (nR, nr , nγ ) eV

2.91 (0,0,0) 2.95 3.06 (0,0,0) 2.95 3.44 (0,0,0) 3.44 3.44 (0,0,0) 3.44
3.29 (0,1,0) 2.98 3.45 (0,0,2) 2.98 3.87 (0,1,0) 3.74 3.87 (0,1,0) 3.74
3.43 (0,0,2) 3.22 3.69 (1,-,2) 3.22 4.04 (0,0,2) 3.78 4.04 (0,0,2) 3.78
3.48 (1,0,2) 3.29 3.75 (2,0,2) 3.29 4.22 (1,1,0) 3.87 4.22 (1,1,0) 3.87
3.56 (1,1,0) 3.36 3.82 (0,1,2) 3.36 4.35 (1,0,2) 4.03 4.35 (1,0,2) 4.03
3.66 (0,2,2) 3.57 3.98 (0,0,4) 3.57 4.46 (3,0,2) 4.22 4.46 (3,0,2) 4.22
3.79 (1,1,2) 3.64 4.02 (3,0,2) 3.64 4.58 (0,1,2) 4.31 4.58 (0,1,2) 4.31
3.90 (2,2,0) 3.67 - - 3.67 - - 4.33 - - 4.45

- - 3.74 - - 3.74 - - 4.45 - - 4.55
- - 3.80 - - 3.80 - - 4.55 - - 4.59
- - 3.86 - - 3.86 - - 4.59 - - -
- - 3.88 - - 3.88 - - - - - -
- - 3.91 - - 3.91 - - - - - -
- - 3.99 - - 3.99 - - - - - -
- - 4.02 - - 4.02 - - - - - -
- - 4.09 - - 4.09 - - - - - -
- - 4.10 - - 4.10 - - - - - -
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*Coupled surface energy levels do not correspond to the quantum number
assignments and to the uncoupled surface energy levels in the same line.



A.5. Summary and outlook 41

Table A.4: The low-lying vibronic levels of the 3p (E ′) and 3d (E ′′) Rydberg elec-
tronic manifolds of H3 along with the available experimental results [176–179].
The two numbers in the parentheses in the first column indicate the quantum
numbers of the breathing and bending vibrational modes, respectively. The the-
oretical energy values are obtained from the coupled state energies of Table III
with the corrections noted in the text at the end of the section IV B. A blank
entry implies the corresponding value is not available.

Theory Experiment.
Vibronic level (eV) (eV)

3p E′(0,0) 2.79 2.72
3p E′(1,0) 3.06 –
3p E′(0,1) 3.17 3.05
3d E′′(0,0) 3.32 3.26
3d E′′(1,0) 3.67 3.65
3d E′′(0,1) 3.66 3.56
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[10] H. Köppel, W. Domcke and L. S. Cederbaum, Adv. Chem. Phys., 57, 59
(1984).

[11] M. Z. Zgierski and M. Pawlikowski, J. Chem. Phys., 70, 3444 (1979).
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