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electronic states computed with five totally symmetric modes (ν1−ν5) are
shown in panels (c) and (d). The partial spectrum of the Ã 2E electronic
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Chapter 1

Introduction

“Theoretical studies of multi-state and multi-mode dynamics of polyatomic molecules” is

a topic of current interest, covering many essential topics in modern theoretical chem-

istry. It is imperative to provide the reader with an introduction that elucidates exactly

what it is that this thesis will attempt to cover. An excellent place to start is with the

title.

As a chemist (especially as a theoretician), we always think about how molecules behave

when they are exposed to light. That is, all about the dance of atoms and molecules

happening in a tiny fraction of seconds, the movement that we shine light on them. We

use all kinds of mathematics, physics and chemistry tools to understand the molecular

electronic spectroscopy of molecules in detail. When it is exposed to light, a molecule

in a ground equilibrium state goes to a higher energy state called an excited state.

Different types of responses can be relayed by the excited molecule depending on the

topography of excited state potential energy surfaces (PESs). For example, fluorescence

(biomarkers) [1, 2] and radiationless relaxation (DNA photo-stability) [3, 4] to the ground

state. Things can also happen in excited states, such as excited state electron transfer

(DNA photo-repair) [5, 6], excited state energy transfer is used for optoelectronics [7]

and chemistry can also happen in the excited state. That is, photoisomerization of

retinal in rhodopsin protein (visual response) [8, 9] and proton transfer (green fluorescent

protein) [10–12]. In order to study these complicated systems, new method developments

and understanding of dynamics on multiple surfaces are needed. In polyatomics, the

electronic ground state is typically well separated energetically from other (excited)

electronic states. The latter states are very close in energy, and there may be a strong

coupling between them along suitable nuclear degrees of freedom (DOFs). One requires

to establish all required excited states relative to a reference ground electronic state. In

principle, it is not very simple.

1
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A common approach to facilitate the study of molecular dynamics is to use the Born-

Oppenheimer (BO) or adiabatic approximation [13]. Vibronic coupling, i.e., coupling

between electronic and nuclear motion, is ubiquitous in polyatomic molecules. Such

coupling causes a breakdown of the BO approximation [13] and electronic transition

occurs during nuclear motion. A generic feature of vibronic coupling is the occurrence

of conical intersections (CIs) of PESs [14–22], the signature of which is often imprinted

in the molecular electronic spectrum and the absence of radiative emission of excited

molecular states. The standard vibronic coupling theory [14, 23, 24] has successfully

treated molecular processes in the non-BO situation. It relies on the concept of a diabatic

electronic basis, symmetry selection rule, and a Taylor series expansion of the electronic

Hamiltonian [14].

1.1 Current state of research

Electron spectroscopy of benzene (Bz) and benzene radical cation (Bz+) and their fluoro

derivatives have been extensively studied experimentally [25–46] and also, to a large ex-

tent, theoretically [47–58] in the past decades. Fluorination of the benzene ring stabilizes

the states arising out of σ-type orbitals of Bz in its fluoro derivatives. The extent of sta-

bilization increases with increasing fluorination. This is a consequence of the electronic

effect of a fluorine atom and is termed a perfluoro effect [34]. Stabilizing electronic states

in the fluoro Bz and Bz+ causes their energetic re-ordering. As a result, the vibronic

coupling becomes a crucial mechanism and largely governs the mechanistic details of the

spectroscopy and dynamics of electronically excited states of these molecules.

The optically dark πσ∗ state becomes lower in energy and often mixes with the op-

tically bright ππ∗ state [34, 52–54, 57–60]. It was found that the lowest πσ∗ state is

significantly higher in energy than the lowest ππ∗ state, when the number of fluorine

atom substitutions in the Bz is four or less. These molecules exhibit structured S1←S0

absorption band, large quantum yield and nanosecond fluorescence lifetime. Whereas,

penta- and hexa-fluorinated Bz molecules exhibit structureless S1←S0 absorption band,

low quantum yield and picosecond lifetimes of fluorescence emission [61–64]. Recent

ultra-violet (UV) absorption experiments [59, 60, 65–67] on pentafluorobenzene (PFBz)

and hexafluorobenzene (HFBz) indicate that the lowest ππ∗ and πσ∗ states become en-

ergetically very close with each other which results into a broad and structureless profile

of the first absorption band. The first four excited electronic states of PFBz are reported

to be of ππ∗ (S1), πσ∗ (S2), πσ∗ (S3) and ππ∗ (S4) type [60]. While a transition from

the S0 to the ππ∗state is optically allowed, the same to the πσ∗ state is forbidden. The

signature of the latter can only appear in the spectrum when it interacts vibronically
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with the optically bright ππ∗ state. These ππ∗ and πσ∗ states are also energetically very

close. Therefore, a detailed systematic theoretical investigation of the vibronic cou-

pling between these ππ∗ and πσ∗ states is worthwhile to understand the structureless

absorption bands of PFBz (see Chapter 3).

Moreover, the observation of radiative emission and structureless electronic bands in

fluoro Bz+, in particular, motivated detailed theoretical studies of the structure and

dynamics of their electronic excited states. It was found that less than three-fold fluori-

nation of Bz+ does not give rise to fluorescence emission [43, 44]. Köppel and coworkers

carried out benchmark theoretical studies for the first time on Bz+ and its mono- and di-

fluoro derivatives [47–51]. They devised multi-state and multi-mode vibronic coupling

models through extensive electronic structure calculations and carried out detailed nu-

clear dynamics studies. It turned out from these studies that energetically accessible CIs

among states drives the nonradiative decay of excited states in Bz+, F-Bz+ and F2-Bz+.

Among the three isomers [ortho (o), meta (m) and para (p)] of the latter, the m-isomer

is weakly emissive [51]. It was found that the energetic minimum of its C̃ state occurs

at higher energy as compared to the two other isomers. Therefore, the nonradiative

decay of this state becomes partially feasible. In a later study on 1,3,5-trifluoro Bz+ we

found that its excited electronic state of Ã 2A
′′
2 symmetry is energetically well separated

from the other states. Therefore, the observed radiative emission of this radical cation

is explained to be arising out of this state [55]. The radiative emission and nonradiative

decay were also studied recently both experimentally and theoretically for phenol and

pentafluoro phenol [68, 69]. In this case the coupling between optically bright 1ππ∗ and

optically dark 1πσ∗ states governs the radiative emission. In phenol these states are

energetically apart whereas, in pentafluoro phenol they are energetically close. There-

fore, while radiative emission of the 1ππ∗ state dominates in phenol, it is significantly

quenched in pentafluoro phenol owing to a large nonradiative population transfer to the

optically dark 1πσ∗ state [69]. As part of this thesis, the radiative emission and photo-

electron spectrum of both PFBz and HFBz is studied theoretically by ab initio quantum

dynamical methods (see Chapters 4 and 5).

Allene (H2CCCH2, propadiene), propyne (H3CCCH, methyl acetylene) and cyclopropene

are the three stable isomers of C3H4. The former two isomers are important interme-

diates in combustion and astrochemistry [70–74]. They are members of the cumulene

series with odd number of carbon atoms. The radical cation of these isomers possesses

degenerate electronic states and vibrational modes. Therefore, they provide a unique

platform to investigate multi-mode Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) ef-

fects [75–77] in their ionic states. While the equilibrium configuration of allene belongs

to less common D2d symmetry point group, that of propyne belongs to the more com-

mon C3v symmetry point group. The non-degenerate vibrational modes of b1 and b2
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symmetry are JT active in the degenerate ionic states of allene. On the other hand, the

degenerate vibrational modes of e symmetry causes PJT coupling among the degenerate

and non-degenerate ionic states of allene. Multi-mode JT and PJT interactions in the

ionic states of allene have been extensively studied theoretically [78–85] and also probed

experimentally through photoelectron spectroscopy measurements [86–91]. To the best

of our knowledge, it is the first example treated with a higher-order vibronic coupling

model in the literature [83]. The PJT coupling in its Ã 2E-B̃2B2 electronic manifold

was found to be extremely strong which leads to a broad and diffuse vibronic band

structure at higher energies. As stated above, the JT and PJT effects in the ionic states

of propyne are not rigorously studied in the literature. It would therefore be interesting

to study how these effects in propyne radical cation differ as compared to those in allene

radical cation since they are isomeric in nature and have different JT and PJT coupling

mechanisms (see Chapter 6).

1.2 Our goal and outline of the thesis

The work presented in this thesis explores the vibronic interactions in photo-induced

polyatomic molecular systems: of particular importance are the molecules PFBz, HFBz

and Propyne (their structures are shown in Fig. 1.1) are investigated by employing

the quantum dynamical methods. Among these, HFBz (D6h) and Propyne (C3v) are

highly symmetric molecules. The radical cations of them possess degenerate electronic

states and degenerate vibrational modes. Therefore, they provide a unique platform to

investigate multi-mode JT and PJT effects in their ionic states.

(a) PFBz (b) HFBz (c) Propyne

Figure 1.1: Schematic representation of the equilibrium minimum structure of the
electronic ground state of PFBz (a), HFBz (b) and Propyne (c) molecules discussed in
detail in this thesis.

The theoretical investigation of complex vibronic spectra and ultrafast nonradiative de-

cay dynamics through CIs are carried out with the aid of ab initio electronic structure
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calculations and quantum dynamical simulations of nuclear motion on multi-sheeted cou-

pled electronic states. Vibronic coupling is established to be an important mechanism in

the dynamics of excited electronic states of these molecules. The complex vibronic spec-

tra, dominant vibrational progressions, electronic population transfer process at the CIs,

nonradiative decay rate and the effect of fluorination on the broadening of the spectra

and emission properties are investigated in detail. The theoretical findings are compared

with the available experimental results. The diabatic electronic representation has been

introduced and used to deal with the PESs crossings and to avoid the singular nature

of the nuclear kinetic coupling term of the adiabatic electronic representation. Model

vibronic Hamiltonian is devised in this basis using elementary symmetry selection rules

and the relevant coupling parameters of the Hamiltonian are extracted from ab initio

electronic structure results. The spectroscopic implications of JT and PJT effects and

vibronic interactions are probed through photoelectron/absorption spectroscopic exper-

iments. The vibronic bands are calculated by solving both time-independent and time-

dependent Schrödinger equations using the multi-configuration time-dependent Hartree

(MCTDH) program module.

Chapter 2 gives a systematic essential theoretical background of the present studies.

In particular, an outline of the concept of BO (or adiabatic) approximation and the

necessity of a diabatic electronic basis to investigate the static and dynamic aspects of

multi-mode vibronic coupling effects. In this regard, at first, a simple linear vibronic

coupling (LVC) scheme augmented with diagonal quadratic terms is discussed. The vi-

bronic coupling involving degenerate modes and degenerate electronic states (i.e., the

JT Hamiltonian) is also discussed in this chapter. Technical details of the first princi-

ples of quantum dynamics calculations (i.e., the time-independent and time-dependent

approaches for solving the quantum eigenvalue equation to calculate vibronic spectra)

using the MCTDH program module are also illustrated.

Chapter 3 presents a comprehensive theoretical study of the electronically excited eight

states and the related absorption spectrum of PFBz molecule. Accurate ab initio com-

putations and modern WP propagation techniques are combined to give a detailed pic-

ture of the electronic bands, multi-dimensional PESs and vibrational assignments. The

vibronic coupling in the eight electronic excited states of PFBz is investigated. In par-

ticular, the vibronic coupling between the optically bright ππ∗ state and optically dark

πσ∗ state of PFBz is considered. A model 8×8 diabatic Hamiltonian is constructed

in terms of normal coordinates of vibrational modes using standard vibronic coupling

theory and symmetry selection rule. The Hamiltonian parameters are estimated with

extensive ab initio quantum chemistry calculations. The topography of the first eight

electronic states of PFBz is examined at length, and multiple multi-state CIs are estab-

lished. The nuclear dynamics calculations on the coupled electronic surfaces are carried
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out from the first principles of the WP propagation method. Theoretical results are

found to be in good accord with the available experimental optical absorption spectrum

of PFBz.

Chapter 4 contributes to the studies of fluorinated benzene derivatives, which represent

an important field of organic and theoretical chemistry, providing new insights into the

trends in molecular structure and spectroscopy of benzene related aromatic compounds.

In this work, the first six low-lying electronic states of pentafluorobenzene radical cation

(PFBz+) are treated using a state-of-the-art theoretical approach. The respective PESs

are computed using the equation of motion ionization potential-coupled cluster singles

and doubles (EOMIP-CCSD) and complete active space self-consistent field - multi ref-

erence configuration interaction (CASSCF-MRCI) methods. Their vibronic coupling is

studied using the diabatic model Hamiltonian comprising all six electronic states and

including terms up to fourth-order Taylor expansion of the diagonal potential energy

terms. Finally, the nuclear dynamics are treated using the highly efficient MCTDH

approach. All vibronic interactions of the states belonging to the manifold under con-

sideration have been established and characterized in terms of their CIs and vibronic

coupling constants. The simulated spectrum results are in good agreement with the

available experimental data. The population dynamics have been studied, allowing for

discussion of nonradiative decay channels. Finally, the results were used to analyze the

radiative emission trends in the fluorobenzene radical cations series.

In continuation with Chapter 4, the theoretical photoelectron spectroscopy of hexaflu-

orobenzene (HFBz) and its radiative emission and nonradiative decay dynamics are

explored in detail in Chapter 5. Due to the highly symmetric structure of the HFBz

(D6h) molecule, the radical cation of this molecule possesses degenerate electronic states

and vibrational modes. Therefore, this provided a unique platform to investigate multi-

mode JT and PJT effects in its ionic states. In this work, the first four low-lying X̃ 2E1g,

Ã 2A2u, B̃ 2B2u, and C̃ 2E2g electronic states of HFBz+ are considered and the high-level

ab initio EOMIP-CCSD method is used for this purpose. Among these electronic states,

X̃ 2E1g and C̃ 2E2g states are doubly degenerate, and the X̃ 2E1g state is energetically

well separated from the other excited states. However, the latter states are closer in

energy, and among them, the states forms low energy CIs underlying the JT and PJT

interactions. The E⊗e model Hamiltonian is expanded up to fourth-order to investigate

the static and dynamics JT effects. The Hamiltonian model is constructed in terms of

dimensionless normal displacement coordinates using standard vibronic coupling theory

and symmetry selection rule. Both time-independent and time-dependent quantal meth-

ods carried out the nuclear dynamical calculations. Theoretical results are found to be

in good agreement with the available experimental data. The impact of the fluorination
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effects on the structure and dynamics of excited states is discussed with the parent Bz

radical cation.

The JT and PJT effects in the X̃ 2E, Ã 2E and B̃ 2A1 electronic states of the propyne rad-

ical cation are investigated with the aid of ab initio quantum chemistry calculations and

first-principles quantum dynamics simulations. For the latter, both time-independent

and time-dependent quantum mechanical methods are employed. Standard vibronic

coupling theory is used to construct a symmetry-consistent vibronic Hamiltonian on a

diabatic electronic basis. Taylor series expansion of the elements of the diabatic elec-

tronic Hamiltonian is carried out and the parameters that appear in the expansion are

derived from the ab initio calculated adiabatic electronic energies. It is found that the

JT effect is weak in the X̃ 2E state as compared to that in the Ã 2E state. Because of

the large energy separation, the PJT coupling among the JT-split components of the

X̃ 2E state with the neighboring states is also very weak. However, the PJT coupling

of the B̃ 2A1 state with the JT-split components of the Ã 2E state has some impact

on the dynamics in the coupled Ã 2E-B̃ 2A1 electronic states. The vibronic spectrum

of each of these states is calculated and compared with the experimental results. The

nonradiative internal conversion dynamics of excited cationic states is examined. An

interesting comparison is made with the JT and PJT coupling effects in the nuclear

dynamics of the X̃ 2E-Ã 2E-B̃ 2B2 electronic states of the isomeric Allene radical cation.

These results are discussed in detail in Chapter 6.

Finally, Chapter 7 summarizes the theoretical results presented in this thesis and new

concepts emerged from them in relation to the experimental observations. A brief out-

look on the future challenges is also ennumerated.





Chapter 2

Theoretical methodology

In this chapter, the basic theoretical background of the present work is discussed. The

Born-Oppenheimer (BO) approximation [13], plays a key role in the description of molec-

ular chemistry.

2.1 The BO approximation

The BO approximation is a crucial part of the quantum description molecules [13]. The

basic idea of this approximation is the separation of the electronic and nuclear motions.

Since the mass of an electron is smaller (∼1836 times) compared to that of the nuclei,

the electrons move quickly, the change in the nuclear positions can be considered to be

negligible when calculating the electronic wave functions. Therefore, the BO approxi-

mation allows the calculation of molecular processes in two steps. In the first step, the

electronic problem is solved keeping the nuclei fixed. For each fixed nuclear position, the

electronic energies are calculated by quantum chemical methods, and thus the PESs are

obtained. The nuclear dynamics on one or several predetermined PESs are performed

in the second stage.

The time-independent molecular Schrödinger equation in the whole space of electronic

{q} and nuclear {Q} coordinates can be written as

Ĥ(q,Q)Ψ(q,Q) = EΨ(q,Q), (2.1)

where Ψ(q,Q) is an energy eigenfunction, E is the associated energy eigenvalue, and

Ĥ(q,Q) is the molecular Hamiltonian, which is defined as (at the non-relativistic level

9
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of theory)

Ĥ = −~2

2

∑
α

∇2
α

mα
− ~2

2me

∑
i

∇2
i +
∑
α

∑
β>α

ZαZβe
′2

rαβ
−
∑
α

∑
i

Zαe
′2

riα
+
∑
i

∑
j>i

e
′2

rij
, (2.2)

where α and β refer to nuclei and i and j refer to electrons. The first and second terms

in Eq. 2.2 are the operators for the KE of the nuclei and electrons, respectively. The

third term is the PE of the repulsions between the nuclei, rαβ being the distance between

the nuclei α and β with atomic numbers Zα and Zβ. The fourth term is the PE of the

attractions between the electrons and the nuclei, riα being the distance between electron

i and nucleus α. The last term is the PE of the repulsions between the electrons, rij is

the distance between electrons i and j. In abbreviated form, the above equation can be

represented as

Ĥ ≡ T̂N + T̂e + V̂NN + V̂eN + V̂ee. (2.3)

The molecular wave function Ψi can be expanded using the following ansatz

Ψi(q,Q) =

N∑
i=1

Φi(q,Q)χi(Q). (2.4)

where Φi(q,Q) and χi(Q) are electronic and nuclear wave functions, respectively. For

a complete set of eigenstates (i.e., N → ∞), the ansatz Eq. 2.4 is exact. In most

applications in chemistry, N is restricted to a small number of close-lying electronic

states, and the effect of other electronic states is ignored. While the nuclear wave

functions exclusively depend on the nuclear coordinate Q, the electronic wave functions

depend on both the electronic (q) and the nuclear coordinates. The electron-nuclear

interaction term V̂eN [cf., Eq. 2.3] in the molecular Hamiltonian is the main obstacle

for a full separation of the electronic wave function from the nuclear wave function. In

the BO approximation, the electronic wave function Φi(q,Q) depends parametrically on

the nuclear coordinates and which is denoted as Φi(q;Q). In the BO approximation,

the ab initio electronic structure algorithms solve the fixed nuclei electronic Schrödinger

equation

ĤeΦi(q;Q) = Vi(Q)Φi(q;Q), (2.5)

where the electronic Hamiltonian Ĥe = T̂e + V̂eN + V̂ee. Vi(Q) is the PE obtained by

solving the eigenvalue equation 2.5 for a fixed position of the nuclei. The PES can be ob-

tained by varying the nuclear positions parametrically and solving Eq. (2.5) in each case.
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Using the basis defined in Eq. 2.4 and the solution of the electronic Schrödinger equation

2.5, one can derive the coupled nuclear differential equation [13, 14]

[
T̂NI + V̂j(Q)− E

]
χj(Q) =

∞∑
i=1

Λ̂ijχi(Q). (2.6)

In the above equation, I represent the identity matrix. The quantity, Λ̂ij are the elements

of nonadiabatic coupling operator and are defined as

Λ̂ij = −
∫
drΦ∗i [TN ,Φj ] (2.7)

where [A,B] = AB − BA. Using the general form of nuclear kinetic energy operator

(KEO) as differential operator [92], the nonadiabatic operator (Λ̂ij) decomposes into a

differential operator and a constant number in Q-space [14, 93].

Λ̂ij =

M∑
n=1

F
(n)
ij ∇−Gij , (2.8)

with

F
(n)
ij = 〈Φi|∇|Φj〉;Gij = 〈Φi|∇2|Φj〉 (2.9)

It can be seen from Eq. 2.9 that the electronic states i and j are coupled through the

derivative operators representing the nuclear motion. The elements F
(n)
ij and Gij rep-

resents vector coupling and scalar coupling, respectively. The solution of the nuclear

Schrödinger equation is complicated by this nonadiabatic operator (Λ̂ij), especially for

polyatomic molecules where several nuclear coordinates have to be considered. The

nonadiabatic operators are ignored (Λ̂ij = 0) in the so-called adiabatic approximation.

The adiabatic approximation is based on the assumption that the KEO of the nuclei can

be considered as a small perturbation to the electronic motion. A more useful approxi-

mation, which is known as the Born-Huang approximation [94], is obtained by neglecting

only the off-diagonal terms of nonadiabatic operators Λ̂ij . Using the Hellmann-Feynman

theorem [95–98], the vector coupling term can be written as [14]

F
(n)
ij =

〈Φi(q;Q)|∇nHe(q;Q)|Φj(q;Q)〉
Vi(Q)− Vj(Q)

(2.10)

The adiabatic approximation may fail in many cases, especially when different electronic

states are energetically close together. When two electronic states are exactly degenerate

(i = j at the point of CI), the derivative coupling terms of the electronic wave function

(F
(n)
ij in Eq. 2.9) diverge and the adiabatic approximation fails in the vicinity of CI.

Because of this singularity the electronic states and their energies no longer remain an

analytic function of nuclear coordinates, and states change their electronic character.
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Their energy surfaces exhibit a cusp at the degeneracy [99].

The singularity of the derivative coupling mentioned above makes the adiabatic elec-

tronic basis unsuitable for a numerical solution of the nuclear Schrödinger equation.

In practice, this is circumvented by defining a new electronic basis, called a diabatic

electronic basis, in which the diverging kinetic coupling of the adiabatic electronic ba-

sis is transformed into smooth potential coupling by a suitable unitary transformation

[14, 100–102]. In a diabatic electronic basis, the nuclear Schrödinger equation (Eq. (2.6))

reads [103] [
T̂NI + Ûj(Q)− E

]
χj(Q) =

∞∑
i=1(i 6=j)

Ûij(Q)χi(Q), (2.11)

with

Ûij(Q) = 〈φi(q;Q)|Ĥe(q;Q)|φj(q;Q)〉. (2.12)

The quantity |φi(q;Q)〉 above defines the diabatic electronic wave function. The inte-

gration is carried out over electronic coordinates q. The sole difference between Eqs. 2.6

and 2.11 is the diverging kinetic coupling of Eq. 2.6 is transformed into smooth potential

coupling in Ûij . Since the diverging kinetic coupling can be “ideally” removed (entirely)

on a diabatic basis, both the wave function and energy restore the analytic continuation

as a function of Q in this basis. The diagonal elements, Ûj(Q) of the U matrix, describe

the diabatic electronic states, and the off-diagonal elements, Ûij(Q), define the coupling

among them. As a result of analytic continuation, the states become smooth in the

entire nuclear coordinate space, and the electronic character of the states is preserved

in this representation. The preceding discussion revealed that the adiabatic electronic

representation, although more realistic, cannot be used to study the dynamics. There-

fore, although not unique, a diabatic electronic representation is restored for all practical

purposes, ranging from atom-atom collisions to molecular spectroscopy [14, 101, 104].

Let us consider the following two-states diabatic electronic Hamiltonian

Ĥd
e (Q) =

[
Û11(Q) Û12(Q)

Û21(Q) Û22(Q)

]
, (2.13)

where Û11(Q) and Û22(Q) represent the diabatic PESs, and Û12(Q)=Û21(Q) describe

their coupling surface. All the elements of the above matrix depend on the set of

nuclear coordinates Q. Upon similarity transformation [14, 100–102, 104–107] through

a suitable unitary matrix, S, one obtains the adiabatic electronic Hamiltonian

Ĥad
e (Q) = S†Ĥd

e (Q)S, (2.14)
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the transformation matrix is given by

S =

(
cos θ(Q) sin θ(Q)

− sin θ(Q) cos θ(Q)

)
. (2.15)

The quantity θ(Q) defines the adiabatic-to-diabatic transformation angle and is given

by [14]

θ(Q) =
1

2
tan−1

[
2Û12(Q)

Û22(Q)− Û11(Q)

]
, (2.16)

and Φad = S†Φd, († represents the adjoint). The adiabatic PESs are expressed as:

V1,2(Q) =
1

2

[
(Û11 + Û22)±

√
(Û11 − Û22)2 + (2Û12)2

]
. (2.17)

From this equation, one can see the possibility of their intersection. The separation

between the two potentials (V1 and V2) is given by

∆V = V1 − V2 = ±
√

(Û11 − Û22)2 + (2Û12)2. (2.18)

The two adiabatic curves become degenerate (cross) when the argument of the two terms

under the square root in Eq. 2.18 vanishes independently, and thus

Û11(Q) = Û22(Q) (2.19)

Û12(Q) = 0. (2.20)

Thus, two equations must be satisfied with only one independent parameter, the inter-

nuclear separation, Q. In general, there is no reason why a single unknown should

satisfy any two equations. Hence, in one dimension, the potentials cannot cross. This

is called the “non-crossing rule”. When stated more clearly for diatomics with only one

degree of freedom (DOF), two adiabatic curves belonging to electronic states of the same

symmetry generally do not cross but exhibit avoided crossings [108]. However, in molec-

ular systems with three or more atoms (i.e., polyatomic), on the other hand, there are

enough independent DOFs that can be varied to satisfy Eqs. 2.19 and 2.20. Therefore,

we should expect degeneracies, or surface crossings, to be typical for polyatomic systems

[16].

In two-dimensional space, these generally occur as isolated points where the PESs can

touch. These points are referred to as “conical intersections”(CIs). Equation 2.17 de-

scribes a double cone topography of the two adiabatic PESs (V1 and V2) intersecting at

the vertex [16, 17, 75]. If the number of dimensions (N) is more significant than two,
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the space in which all the intersections that form CIs lie is N -2 dimensional space, with

Eqs. 2.19 and 2.20 act as two constraints.

2.2 The model diabatic Hamiltonian

2.2.1 Vibronic coupling Hamiltonian

We assume that a diabatic basis is already constructed, and it is used in all the theoretical

studies presented in this thesis. On this basis, the nuclear KEO is in the diagonal form,

and the coupling between the electronic states is described by the off-diagonal elements

of the PE operator. Also, the PESs are smooth, crossing curves on a diabatic basis

in contrast to the adiabatic basis in which the PESs are non-crossing and exhibit a

discontinuity (singularity) at the avoided crossing. In order to express the elements

of the model diabatic Hamiltonian, a suitable coordinate system is needed first. An

obvious choice is internal coordinate (bond length and bond angle) system which is best

suited for the description of PESs. However, such a choice is not suitable for large

molecular systems. This choice leads to a highly complex expression of the nuclear KEO

and cannot be evaluated trivially for large systems in a numerical application. The

normal coordinate representation of nuclear vibrations has become the obvious choice to

treat small amplitude nuclear motion. In these coordinates, the nuclear KEO assumes

a simple form. So, the vibronic Hamiltonian of the final states of the excited/ionized

species is constructed in terms the normal dimensionless coordinates of the electronic

ground state of the corresponding (reference) neutral species. From now onwards, the

electronic states and vibrational modes are designated with n, m and i, j, respectively.

The mass-weighted normal coordinates (qi) are obtained by diagonalizing the force field

and are converted into dimensionless form [92] by

Qi = (ωi/~)
1
2 qi, (2.21)

where, ωi is the harmonic frequency of the ith vibrational mode, and throughout the

thesis, we consider ~ = 1. These vibrational frequencies describe the above-mentioned

normal displacement coordinates of the reference (equilibrium) geometry at Q = 0. The

vibronic Hamiltonian describing the photo-induced molecular process can be written as

[14]

Ĥ = H01n + ∆H (2.22)

In the above equation, H0 (=TN +V0) defines the reference electronic ground state zero-

order (or unperturbed) Hamiltonian. In terms of the dimensionless normal displacement
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coordinates of the vibrational modes, the KE and PE operators of the reference Hamil-

tonian H0, within the harmonic approximation are given by

TN = −1

2

∑
i

ωi

[
∂2

∂Q2
i

]
, (2.23)

V0 =
1

2

∑
i

ωiQ
2
i . (2.24)

The quantity 1n in Eq. 2.22 describes a n×n diagonal unit matrix (where n depends on

the total number of electronic states considered in the nuclear dynamics study), and ∆H

is the change in electronic energy upon excitation/ionization from the reference Hamilto-

nian (H0). The elements in this electronic Hamiltonian ∆H describe the diabatic PESs

(Ûnn) and their coupling PESs (Ûnm) with the neighboring electronic states. Mainly,

the Ûnm elements take care of the nonadiabaticity in molecules. All these elements are

expanded in a Taylor series expansion in terms of Qi as

Ûnn = En +
∑
i

κ
(n)
i Qi +

1

2!

∑
i,j

γ
(n)
ij QiQj + · · · (2.25)

Ûnm =
∑
i

λ
(nm)
i Qi + · · ·, (n 6= m) (2.26)

with

κ
(n)
i =

(
∂Ûnn
∂Qi

)∣∣∣∣∣
Q=0

(2.27)

λ
(nm)
i =

(
∂Ûnm
∂Qi

)∣∣∣∣∣
Q=0

(2.28)

γ
(n)
ij =

1

2

[
∂2Ûnn
∂Qi∂Qj

] ∣∣∣∣∣
Q=0

. (2.29)

The En describes the vertical excitation/ionization energies (i.e., the vertical energy dif-

ference between the ground state PES and the corresponding surface of the nth number

of the vibronically interacting electronic manifold at Q=0) of the system. The κ
(n)
i

(represents the forces acting within an electronic state (n) and determines the change in

the structural arrangement of the molecule in this excited state compared to the ground

state potential along the ith vibrational mode) and γ
(n)
ij (is responsible for the change in

the frequency in the excited state as compared to the ground state) are, respectively, the

linear and quadratic (are responsible for the Duschinsky rotation) intra-state coupling

constants for the nth electronic state. The λ
(nm)
i represent the linear inter-state coupling

constant between the nth and mth electronic states. For highly symmetric molecules,

many of the terms appearing in Eqs. 2.25 and 2.26 vanish by symmetry. The symmetry
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selection rule for non-vanishing linear terms fulfill

Γn ⊗ ΓQi ⊗ Γm ⊃ ΓA, (2.30)

where Γn and ΓQi denotes the irreducible representations (IRREPs) of the nth elec-

tronic state and of the ith vibrational mode, respectively. Similarly, the non-vanishing

quadratic terms fulfill

Γn ⊗ ΓQi ⊗ ΓQj ⊗ Γm ⊃ ΓA. (2.31)

Similar expressions hold for higher-order terms.

2.2.2 Vibronic coupling involving degenerate modes and degenerate

states: The Jahn-Teller Hamiltonian

All symmetric non-linear polyatomic molecules with a main rotational axis Cn with

n ≥ 3-fold symmetry (high symmetry), result in multiple degenerate electronic states

and vibrational modes. In the case of linear molecules, the vibronic coupling problem

is known as the RT effect [109]; otherwise, it is known as the JT effect [75, 99]. In the

JT case, the symmetry-induced degeneracy of an electronic state is lifted by distortions

along modes of the appropriate symmetry and thus a CI is formed. A CI is charac-

terized by the breakdown of the adiabatic or BO approximation because the adiabatic

wave functions of the interacting states cease to be continuously differentiable functions

with respect to the nuclear coordinates and the symmetry point constitutes a pole of

the nonadiabatic coupling elements [15]. As we discussed in Sec. 2.1 that, even without

the existence of a CI, the BO approximation may be invalid if two states become suf-

ficiently close in energy and the nonadiabatic coupling elements become large. Besides

the countless cases of generally avoided crossings, the so-called PJT effect is particularly

interesting for analyzing such nonadiabatic interactions. The PJT interaction is char-

acterized by coupling of a JT-split degenerate state with either a non-degenerate or the

components of another JT-split state [14, 76, 77].

The JT theorem says that a configuration of a polyatomic molecule for an electronic

state having orbital degeneracy cannot be stable for all displacements of the nuclei

unless in the original configuration the nuclei all lie on a straight line [75]. The “orbital

degeneracy” refers to E (for doubly) or T (for triply) symmetry electronic states. That

is, Jahn and Teller have shown that a non-totally symmetric vibrational mode can always

lift the orbital degeneracy in the first-order [75, 110]. The symmetries of the JT-active

vibrational modes are determined by the requirement that the IRREP of the vibrational
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mode (Γvib) must be included in the symmetrized direct product of the IRREP (Γel) of

the degenerate electronic manifold

[Γel]
2 ⊃ Γvib. (2.32)

The so-called E⊗e-JT effect is the most well-studied JT problem in the literature

[14, 76, 77, 99, 111, 112]. This JT model demonstrates that the two-fold electronic

degeneracy (E) is lifted in first-order in displacements along the vibrational modes of

e symmetry if the molecule contains at least one three-fold principle axis of rotation.

Trigonal molecules are, therefore, systems of the lowest symmetry that exhibit the JT

effect and have attracted continuous interest. Molecules of C3, C3v, D3, C3h, D3h, D3d,

D6h and Oh, etc., symmetries belong to this class. That is, most of the JT-active modes

are degenerate. The tetragonal point groups (with two- or four-fold principle rotational

axes of symmetry) are, however, exceptions: C4, C4v, C4h, D4, S4, D2d, D4h and D4d.

For them, there are non-degenerate modes that are JT-active, the so-called E⊗b-JT

effect [14, 79, 81, 83, 99, 113]. The latter is due to the symmetry selection rules and

not to the lack of degenerate normal modes. We mention here that the symmetry of the

electronic states and the vibrational modes is denoted by upper and lower case letters,

respectively, throughout this thesis.

Now let us consider a general molecule with a C3 main rotational axis, a doubly degen-

erate E state and a nondegenerate A electronic state. The E⊗e-JT and (E + A)⊗e-
PJT (i.e., an E state can couple a close lying nondegenerate A state through the same

JT-active e vibrational mode) Hamiltonian may conveniently be expressed in the real

representation as [14, 114, 115]

∆H =
2∑

n=0

1

n!

{
V(n)
Ex

0 0

0 V(n)
Ey

0

0 0 V(n)
A



+


W(n)
JT Z(n)

JT 0

Z(n)
JT −W(n)

JT 0

0 0 0

+


0 0 W(n)

PJT

0 0 −Z(n)
PJT

W(n)
PJT −Z(n)

PJT 0


}

=

2∑
n=0

1

n!

{
V

(n)
diag + V

(n)
JT + V

(n)
PJT

}
.

(2.33)

In the above equation, the diagonal matrices V
(n)
diag represent the potentials of the corre-

sponding states in absence of any coupling. The matrices V
(n)
JT are responsible for the

splitting of the degenerate electronic state due to the JT effect whereas V
(n)
PJT are the
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PJT coupling matrices. The degenerate e vibrational mode of the real coordinates are

Qx and Qy. The explicit parametrized expressions for the diagonal V(n) elements and

the coupling elements W(n) and Z(n) are given by

V(0) = a
(0)
1 , (2.34a)

V(1) = 0, (2.34b)

V(2) = a
(2)
1

[
Q2
x +Q2

y

]
, (2.34c)

W(0) = 0, (2.34d)

W(1) = λ
(1)
1 Qx, (2.34e)

W(2) = λ
(2)
1

[
Q2
x −Q2

y

]
, (2.34f)

Z(0) = 0, (2.34g)

Z(1) = λ
(1)
1 Qy, (2.34h)

Z(2) = −2λ
(2)
1 QxQy. (2.34i)

It is worth noting that the elements of the JT and PJT coupling matrices are of identical

form and are only distinguished by different coupling constants λ
(n)
m . In the standard

model of JT theory, the non-vanishing coupling terms are truncated, in most cases,

after linear or quadratic terms [14, 77, 116, 117]. From the dynamical point of view,

the limitation to quadratic terms and using HO basis sets for the nuclear motion has

the advantage that all terms of the Hamiltonian matrix can be evaluated analytically.

However, the disadvantage is that for systems displaying strong anharmonicity, this

method will give poor results for properties determined by more extended regions of

the PESs. The complete derivation of the Jahn-Teller model Hamiltonian, the selection

rules for the higher-order JT- and PJT-coupling terms are given in the Appendix A.

2.3 Nuclear dynamics and simulation of electronic spectra

The vibronic coupling strongly influences the nuclear dynamics of molecular systems.

Some attempts include vibronic effects in a classical treatment of dynamics, such as

the surface hoping approach [118]. However, in this thesis work, we aim for a fully

quantum treatment of nuclear motion. Full quantum dynamics simulations necessitate

the solution of the nuclear Schrödinger equation. This can be conveniently achieved

in both time-independent and time-dependent approaches. A straightforward approach

is to develop the total wave function based on time-independent basis functions with

time-dependent coefficients. This method is, however, only feasible for a small number of

DOFs due to exponential scaling for computational time and memory requirements. One

way to overcome this problem is the MCTDH method introduced by Meyer, Manthe,
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and Cederbaum in 1990 [119]. It represents a powerful tool that is based on a multi-

configurational wave function ansatz to solve the time-dependent Schrödinger equation.

The nuclear dynamics study is carried out from first principles using time-independent

and time-dependent quantum mechanical methods. In the time-independent method,

the vibronic spectrum is calculated by Fermi’s golden rule equation of spectral intensity

[14, 120]

P (E) =
∑
n

|〈Ψf
n|T̂ |Ψi

0〉|
2
δ(E − Efn + Ei0). (2.35)

In the above equation, |Ψi
0〉 and |Ψf

n〉 are the initial and final vibronic states with energy

Ei0 and Efn , respectively. The quantity T̂ is the transition dipole operator. The reference

electronic ground state, |Ψi
0〉, is assumed to be vibronically decoupled from the excited

electronic states and is given by

|Ψi
0〉 = |Φi

0〉|χi0〉, (2.36)

where |Φi
0〉 is the diabatic electronic part and |χi0〉 is the nuclear part of this state.

The nuclear component of the wave function in Eq. (2.36) is given by the product of

eigenfunction of the reference harmonic Hamiltonian H0, as a function of the normal

coordinates of the vibrational modes. The final vibronic state can be expressed as

|Ψf
n〉 =

∑
m

|Φm〉|χmn 〉. (2.37)

In the above equation m and n are electronic and vibrational index, respectively. With

the above definitions the spectral intensity of Eq. (2.35) assumes the form [14]

P (E) =
∑
n,m

|τm〈χmn |χ0〉|2δ(E − Efn + Ei0), (2.38)

where,

τm = 〈Φm|T̂ |Φ0〉, (2.39)

represents the transition dipole matrix elements in the diabatic electronic basis. These

are treated as constants assuming the validity of Condon approximation in this basis

[121].

2.3.1 Time-independent approach

The time-independent Schrödinger equation of the vibronically coupled states is solved

by representing the Hamiltonian [cf., Eq. (2.22)] in the direct product HO basis of the
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reference state. The vibrational wave function, |χmn 〉, on this basis, is given by

|χmn 〉 =
∑

n1,n2,...,nk

amn1,n2...,nk
|n1〉|n2〉...|nk〉. (2.40)

In the above equation, nl is the quantum number associated with the lth vibrational

mode, and k is the total number of such modes. The summation runs over all possible

combinations of quantum numbers and diabatic states. The vibrational basis is suitably

truncated for each vibrational mode depending on its excitation strength,
(
κ2/2ω2

)
and

(
λ2/2ω2

)
for the totally symmetric and non-totally symmetric vibrational modes,

respectively. The Hamiltonian matrix acquires a sparse structure when expressed in a

direct product HO basis. This sparse matrix is tridiagonalized employing the Lanczos

algorithm [122] prior to its diagonalization. The eigenvalues of this matrix yield the

location of the vibronic energy levels, and the intensity is calculated by squaring the

first component of the eigenvector matrix [123].

In order to facilitate comparison with the experiment, the vibronic eigenvalue spectrum

calculated with the prescription demonstrated above is convoluted with a line shape

function to generate the spectral envelope.

PΓ(E) = P (E)⊗LΓ(E) (2.41)

For example, the LΓ(E) can be taken as Lorentzian function with full width at the half

maximum (FWHM) Γ

LΓ(E) =
1

π

Γ/2

E2 + (Γ/2)2
. (2.42)

2.3.2 Time-dependent approach

In a time-dependent picture, the spectral intensity defined in Eq. (2.35) translates to a

Fourier transform of the time autocorrelation function of the WP evolving on the final

electronic state [14, 120]

P (E) ≈ 2Re
N∑
m=1

∫
0

∞
eiEt/~〈χ0|τ †e−iĤt/~τ |χ0〉dt, (2.43)

≈ 2Re
N∑
m=1

∫
0

∞
eiEt/~Cm(t)dt, (2.44)

where, Cm = 〈Ψm(0)|Ψm(t)〉, represents the time autocorrelation function of the WP

initially prepared on the mth electronic state. Finally, the composite spectrum is calcu-

lated by combining the partial spectra obtained by propagating WP on each electronic

state.
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2.4 The Multi-configuration time-dependent Hartree method

Despite the high numerical accuracy and simplicity of the implementation, the straight-

forward numerical solution of the time-dependent Schrödinger equation (TDSE), which

may be called the standard method, suffers from the exponential scaling of the com-

putational effort with the number of electronic and nuclear DOFs. An alternative to

the standard method is the time-dependent Hartree (TDH) method which expresses the

wave function as a Hartree product of time-dependent single-particle-functions (SPFs)

or orbitals and the time-dependent expansion coefficients are determined variationally

by solving the TDSE using the Dirac-Frenkel variational principle [124, 125]

〈δΨ
∣∣∣∣Ĥ − i ∂∂t

∣∣∣∣Ψ〉. (2.45)

As a single reference method, TDH often performs poorly and misses a large part of the

correlation between different DOFs [126]. The MCTDH method has been developed as a

trade-off between the accuracy of the numerically exact method and the efficiency of the

TDH method [119, 127, 128]. The flexibility in the number of DOFs and in choosing the

number of SPFs allows MCTDH to cover a full range of approximations between TDH

(single reference) to numerically exact (analogous to the full CI treatment in electronic

structure theory). Importantly, due to the variational character, small sets of SPFs are

usually sufficient in many cases to yield good results which makes the MCTDH method

appealing, especially when the number of DOFs is large.

The MCTDH wave function allows to combine of several DOFs in its multi-set formu-

lation, and it is defined by the following ansatz [119, 127, 128]

Ψ(Q1, Q2, ..., Qf , t) = Ψ(q1, q2, ..., t) (2.46)

=
∑
m

n
(m)
l∑
jl=1

...

n
(m)
k∑
jp=1

A
(m)
jl,...,jp

(t)

p∏
k=1

φ
(m,k)
jk (qk, t)|m〉, (2.47)

=
∑
m

∑
J

A
(m)
J Φ

(m)
J |m〉. (2.48)

In the above equation, m, f , and p are the indices for the electronic state, number

of vibrational DOFs, and MCTDH particles, respectively. The particles are formed by

combining DOFs. For example, the particles coordinate can be given as, qk=[Q1, Q2, ...].

The A
(m)
jl,...,jp

denotes the MCTDH expansion coefficients and the φ
(m,k)
jk are the nk time-

dependent expansion functions (SPFs) for each DOF k associated with the electronic

state m. The latter is the multidimensional function of the set of particle coordinates.

Since p < f , the computational overhead is drastically reduced for systems with large
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DOFs. The variables for the p sets of SPFs are defined in terms of one- or multi-

dimensional coordinates of a particle. Φ
(m)
J is the f -dimensional Hartree product of

the SPFs represented by the composite index J=(jl, ..., jp). For practical purposes, the

SPFs have to be represented in terms of an underlying time-independent primitive basis

set

φ
(m,k)
jk (qk, t) =

Nk∑
l=1

c
(k)
ljk

(t)χ
(k)
l (qk). (2.49)

The primitive basis functions are often replaced by a discrete variable representation

(DVR) grid. MCTDH is of advantage in comparison to the numerically exact method

only if nk < Nk(k = 1, ..., f). The method uses DVR, the fast Fourier transform algo-

rithm and robust integrators to evaluate the WP on the grid. For more technical details

the readers are referred to the URL https://www.pci.uni-heidelberg.de/cms/mctdh.html.

The limiting factor in quantum dynamical calculations is often the memory consump-

tion, so here we provide a brief overview of the memory requirement for the MCTDH

calculations. In comparison with the Nf numbers required to describe the standard

method, the MCTDH wave functions require

memory ∼ fnN + nf , (2.50)

where, f , n, and N represent the total number of DOFs, SPFs, and total number of

grid points or primitive basis functions, respectively. The first part in the sum (fnN)

accounts for the space needed to store the SPFs, and the second term (nf ), accounts

for the storage of the coefficient vector [129]. The base can be further reduced by

grouping DOFs together in combined modes or logical coordinates [129]. One obtains

a smaller number of effective DOFs, d (i.e., d DOFs are combined). There are hence

p = f/d particles; the grid size increases to Ñ = Nd, and the number of combined SPFs

increases to ñ = dn. The memory requirement changes to

memory ∼ pñÑ = ñp (2.51)

∼ fnNd + ñf/d, (2.52)

which leads to huge saving in memory when the dimensionality of the problem is high

[129, 130]. For the details of this method and algorithm, the readers are referred to the

original research papers [119, 127, 128, 131].

In this thesis, the Heidelberg MCTDH program package [131] will be consistently used

for all the quantum dynamical calculations.

https://www.pci.uni-heidelberg.de/cms/mctdh.html


Chapter 3

Elucidation of vibronic structure

and dynamics of first eight

excited electronic states of

pentafluorobenzene

In this chapter the vibronic coupling in the first eight electronic excited states of pentaflu-

orobenzene (PFBz) is examined. Benzene (Bz), benzene radical cation (Bz+) and their

fluorinated derivatives have received renewed attention in different contexts in the lit-

erature in connection to their novel electronic structure and spectroscopic properties.

Fundamentally, the change of photophysical properties of Bz upon fluorination is an in-

teresting subject and investigated by various researchers [52–54, 59–67, 132–142]. A de-

tailed study of the spectroscopic and dynamical properties of the excited electronic states

of their radical cations have been explored in the recent past [47–51, 55–57, 143, 144]. It

is well established that the stabilization of σ-orbital increases with an increased fluori-

nation of Bz. This phenomenon is termed as perfluoro effect in the literature [34]. As a

result of this, the optically dark πσ∗ state becomes lower in energy and often mixes with

optically bright ππ∗ state [34, 52–54, 59, 60]. It was found that the lowest πσ∗ state

is significantly higher in energy than the lowest ππ∗ state, when the number of fluorine

atom substitution in the Bz is four or less. These molecules exhibit structured S1←S0

absorption band, large quantum yield and nanosecond lifetime of fluorescence. Whereas

penta and hexa fluorinated Bz molecules exhibit structureless S1←S0 absorption band,

low quantum yield and picosecond lifetimes of fluorescence emission [61–64].

Recent ultra-violet (UV) absorption experiments [59, 60, 65–67] on pentafluorobenzene

(PFBz) and hexafluorobenzene (HFBz) indicate that the lowest ππ∗ and πσ∗ states

23
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become energetically very close with each other which results into a broad and struc-

tureless profile of the first absorption band. The first four excited electronic states of

PFBz are reported to be of ππ∗ (S1), πσ∗ (S2), πσ∗ (S3) and ππ∗ (S4) type [60]. While

a transition from the S0 to the ππ∗state is optically allowed, the same to the πσ∗ state

is forbidden. The signature of the latter can only appear in the spectrum when it in-

teracts vibronically with the optically bright ππ∗ state. These ππ∗ and πσ∗ states are

also energetically very close. Therefore, a detailed systematic theoretical investigation

of the vibronic coupling between these ππ∗ and πσ∗ states is worthwhile to understand

the structureless absorption bands of PFBz.

Numerous experimental and theoretical studies have been carried out on the structure

and spectroscopy of PFBz [52, 53, 60–65, 132–142]. We in the recent past developed a

vibronic coupling model and studied its optical absorption spectrum [52, 53]. Recent

femtosecond time-resolved time-of-flight mass spectroscopy measurements and theoreti-

cal vibronic coupling calculations indicated the involvement of a second πσ∗ state in the

detailed vibronic structure of the ππ∗ state [60]. Although we found such a state in our

previous study, it was dropped from the theoretical model owing to its zero oscillator

strength. In the present contribution we develop a complete model by including low-

lying eight excited electronic states and all relevant nuclear degrees of freedom (DOF).

Detailed electronic structure calculations are performed and multiple curve crossings

leading to conical intersections (CIs) are established. This “complete”model is em-

ployed to study nuclear dynamics and the impact of nonadiabatic coupling effects due

to CIs on the vibronic band structures. The present results are compared with our ear-

lier theoretical results of Refs. [52, 53] as well as the available experimental results of

Refs. [60, 63] and discussed.

3.1 Theoretical Framework

3.1.1 Vibronic Hamiltonian

Energetically low-lying eight singlet electronic states of PFBz molecule are considered in

this study. A vibronic Hamiltonian is constructed in a diabatic electronic basis in terms

of dimensionless normal displacement coordinates of vibrational modes of the electronic

ground state of PFBz and symmetry selection rules. Thirty vibrational modes of PFBz

transform according to the following irreducible representations (IRREPs) of the C2v

equilibrium symmetry point group.

Γvib = 11a1 + 6b1 + 10b2 + 3a2. (3.1)
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Employing the elementary symmetry selection rule and standard vibronic coupling the-

ory, the Hamiltonian can be written in a diabatic electronic basis as [14, 21]

H = H018 + ∆H, (3.2)

with

H0 = TN + V0. (3.3)

In the above, H0 is the unperturbed Hamiltonian of the reference electronic ground

state of PFBz, ∆H represents the change in energy upon electronic excitation and 1

represents a (8 × 8) unit matrix. In terms of the dimensionless normal displacement

coordinates of the vibrational modes, the components of the reference Hamiltonian of

Eq. (3.3) within the harmonic approximation are given by

TN = −1

2

∑
i

ωi

(
∂2

∂Q2
i

)
; i ∈ a1, b1, b2, a2 (3.4)

V0 =
1

2

∑
i

ωiQ
2
i ; i ∈ a1, b1, b2, a2. (3.5)

The first eight singlet excited states of PFBz belong to the 1B2(S1), 1A2(S2), 1B1(S3),

1A1(S4), 1A2(S5), 1B1(S6), 1A1(S7) and 1B2(S8) electronic terms of the C2v symmetry

point group. The quantity ∆H in Eq. (3.2) can be symbolically written as

∆H =



H11 H12 H13 H14 H15 H16 0 0

H22 H23 H24 0 H26 H27 0

H33 H34 H35 0 H37 H38

H44 H45 H46 0 H48

H55 H56 H57 H58

H66 H67 H68

h.c. H77 H78

H88


. (3.6)
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The elements of this electronic Hamiltonian matrix are expanded in a Taylor series

around the equilibrium geometry of the reference state (Q=0) as

Hnn = En0 +
∑
i ∈ a1

κni Qi +
1

2!

∑
i,j∈a1,a2,b1,b2

γnijQiQj

+
1

3!

∑
i,j>i ∈ a1

[
ηniiQ

3
i + ηnjjQ

3
j + ηnijQ

2
iQj + η

′n
ijQiQ

2
j

]
+

1

4!

∑
i,j∈a1,a2,b1,b2

ζnijQ
2
iQ

2
j +

1

4!

∑
i,j>i ∈ a1, b1

[
ζ
′n
ij Q

3
iQj + ζ

′′n
ij QiQ

3
j

]
+

∑
i ∈ a1(ν2)

[
1

5!
θiQ

5
i +

1

6!
δiQ

6
i +

1

7!
ρiQ

7
i +

1

8!
ξiQ

8
i

]
(3.7)

and

Hnm =
∑

i ∈ a2, b1, b2

λnmi Qi, (3.8)

where, n and m, are the electronic state indices and i, j represents the vibrational

modes. The vertical excitation energy (VEE) of the nth electronic state is defined as

En0 , where, n ∈ S1 to S8 electronic states, respectively. The quantity κni is linear intra-

state coupling parameter related to the relative shift of the equilibrium minimum (i.e.,

change in the structural arrangement of the molecule) of the excited state with respect

to that of the reference state. The quantity γnij is the diagonal second-order, ηnij and

η
′n
ij are the third-order, ζnij , ζ

′n
ij and ζ

′′n
ij are the fourth-order intra-state bilinear coupling

parameters of the vibrational modes i and j in the nth electronic state. The change in

the curvature (i.e., frequency) of the excited state is described by γ and the higher-order

coupling parameters (η, ζ, θ, δ, ρ and ξ) describe the anharmonicity of the potentials.

The quantity, λnmi is linear inter-state coupling parameter between the states n and

m, coupled through the ith vibrational mode, and this term is approximated within

the linear vibronic coupling approach [14]. All these vibronic coupling parameters are

determined by fitting the electronic energies calculated ab initio to the adiabatic form

of the Hamiltonian of Eqs. (3.7) and (3.8) as discussed below.

The parameters appearing in the Taylor expansion of the elements of the diabatic Hamil-

tonian matrix are derived from a non-linear least squares fitting to the corresponding

adiabatic electronic energies calculated ab initio. The fitting is done by using the Lev-

enberg Marquardt algorithm [145, 146] as implemented in MATLAB [147]. The linear

inter-state coupling parameter (λnmi ) of Eq. (3.8) is evaluated from a separate two-state

model calculations and is given by

λnmi =

√√√√1

8

∂2
(
|Vm − Vn|2

)
∂Q2

i

∣∣∣∣∣
Q0

. (3.9)
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3.1.2 Details of electronic structure calculations

The optimized equilibrium geometry of the electronic ground state of PFBz is calculated

by using the second-order Møller-Plesset perturbation (MP2) theory [148] employing the

augmented correlation-consistent polarized valence double zeta (aug-cc-pVDZ) basis set

of Dunning [149]. GAUSSIAN-09 [150] suite of program is used for this purpose. The

optimized equilibrium structure of the PFBz in the electronic ground state (1A1) belongs

to C2v symmetry point group. The harmonic vibrational frequency of ith vibrational

mode (ωi) of the reference equilibrium structure is calculated by diagonalizing the kine-

matic and ab initio force constant matrix at the same level of theory. The eigenvectors

of the force constant matrix yield the mass-weighted normal coordinates of the vibra-

tional modes. The latter is transformed to the dimensionless form Q by multiplying

with
√
ωi (in a0; ~=1) [92]. The adiabatic electronic energies of these electronic states

are calculated in the range -5.00 to +5.00 with an increment of 0.25, along Qi using the

equation-of-motion coupled cluster singles and doubles (EOM-CCSD) method [151–153]

and aug-cc-pVDZ basis set, with the aid of MOLPRO suite of program [154].

3.2 Results and Discussion

3.2.1 Hamiltonian parameters

The parameters of the vibronic Hamiltonian discussed in Sec. 3.1.1 are extracted from

the calculated adiabatic electronic energies discussed in Sec. 3.1.2. The Harmonic

vibrational frequencies of the electronic ground state of PFBz calculated at the MP2

level of theory using the aug-cc-pVDZ basis set are given in Table 3.1 along with the

literature data [155, 156] for comparison. The molecular orbitals which are involved

to form the low-lying eight excited singlet electronic states of PFBz are schematically

represented in Fig. 3.1. It can be seen from the figure that, they are of ππ∗(S1),

πσ∗(S2), πσ∗(S3), ππ∗(S4), πσ∗(S5), ππ∗(S6), ππ∗(S7) and ππ∗(S8) type (hear after

they will be designated as S1, S2, S3, S4, S5, S6, S7 and S8), respectively. A transition

to the first (S2) and third (S5) πσ∗ states from the S0 state is optically forbidden.

However, these states can be coupled with the optically bright ππ∗ states through non-

totally symmetric vibrational modes and can have their impact in the spectrum through

intensity borrowing mechanism.

The VEEs of the above mentioned electronic states are given in Table 3.2, along with

their oscillator strengths (f) and the available experimental data [138]. The f values

are consistent with the nature of the optical transitions discussed above. In order to
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Table 3.1: Symmetry designation and harmonic frequency (in cm−1) of vibrational
modes of the electronic ground state of PFBz calculated at the MP2 level of theory.

This work Expt. Description of the modes
Sym. Mode aug-cc-pVDZ Ref. [155] Ref. [156]
a1 ν1 3257 3103 3105 C-H stretching in plane

ν2 1682 1648 1648 C-C-C bending
ν3 1533 1516 1514 C-C and C-F stretching
ν4 1422 1413 1410 C-C stretching
ν5 1268 1291 1286 C-C stretching (Kekule)
ν6 1063 1078 1082 C-F stretching
ν7 716 719 718 C-C-C trigonal bending
ν8 574 577 580 ring breathing
ν9 467 474 469 C-C-C in plane bending
ν10 324 327 325 C-F in plane bending
ν11 267 272 272 C-F in plane bending

a2 ν12 632 661 - C-C-C out-of-plane
ν13 384 387 391 C-F out-of-plane bending
ν14 132 142 171 C-F out-of-plane

b1 ν15 841 837 838 C-H out-of-plane bending
ν16 591 715 689 C-H and C-F out of plane trigonal
ν17 543 556 556 C-H and C-C-C out of plane
ν18 317 321 - C-F out-of-plane bending
ν19 204 206 - C-F out-of-plane bending, in phase
ν20 158 158 - C-F out-of-plane bending

b2 ν21 1679 1648 1648 C-C stretching
ν22 1552 1540 1535 C-C stretching
ν23 1478 1269 1268 C-C stretching
ν24 1185 1182 1182 C-H bending, in plane
ν25 1129 1143 1138 C-F stretching, in plane
ν26 947 958 953 C-F stretching and C-H bending, in plane
ν27 684 692 662 C-F in plane bending
ν28 429 433 436 C-C-C in plane bending
ν29 300 303 300 C-F in plane bending
ν30 272 256 - C-F in plane bending

extract the Hamiltonian parameters, the calculated adiabatic ab initio electronic ener-

gies along each vibrational mode are fitted with the analytical adiabatic form of the

diabatic electronic Hamiltonian of Eq. (3.6). The estimated Hamiltonian parameters

of the eight excited electronic states are given in Tables B1-B10 of Appendix B. The

inter-state coupling parameters between the given electronic states and their excitation

strength (λ2/2ω2) are given in the parentheses along the suitable non-totally symmetric

vibrational modes are given in Table B11 of the Appendix B.

Table 3.2: State symmetry and VEEs (in eV) of the first eight excited singlet states
of PFBz calculated at the ground state equilibrium geometry. Oscillator strengths are
given in the parenthesis.

State symmetry EOM-CCSD TD-DFT Theory [52] Theory [60] Expt. [138]

S1 (1B2, ππ
∗) 5.139 (0.0087) 5.178 (0.0125) 5.111 4.85 4.79

S2 (1A2, πσ
∗) 5.936 (0.0000) 5.345 (0.0000) - 5.93 -

S3 (1B1, πσ
∗) 6.235 (0.0011) 5.643 (0.0008) 6.314 6.20 5.85

S4 (1A1, ππ
∗) 6.615 (0.0042) 5.981 (0.0009) 6.597 6.29 6.36

S5 (1A2, πσ
∗) 7.315 (0.0000) 6.756 (0.0000) - - 7.12

S6 (1B1, ππ
∗) 7.396 (0.0173) 6.796 (0.0082) - - 7.12

S7 (1A1, ππ
∗) 7.492 (0.6702) 6.832 (0.5406) 7.475 - -

S8 (1B2, ππ
∗) 7.535 (0.6527) 6.882 (0.5164) 7.509 - -
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.1: Molecular orbitals (MOs) involved in the first eight (S1 to S8) excited
singlet electronic states of PFBz are shown in panels (a)-(h), respectively.

3.2.2 Potential energy surfaces and conical intersections

It is well known that the totally symmetric vibrational modes tune the energy gap

between the electronic states [14]. One-dimensional cuts of the PESs of the first eight

excited singlet electronic states of PFBz along the totally symmetric vibrational modes

(ν2-ν4, ν7-ν9 and ν11) are shown in Fig. 3.2. Solid lines in each panel represent the

PESs obtained from the constructed vibronic coupling model [cf., Sec. 3.1.1] and the

parameters of Tables 3.1, 3.2 and B1-B5 of the Appendix B. The asterisks represent the

electronic energies obtained from the ab initio calculations. It can be seen from Fig. 3.2
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that the calculated energies are well reproduced by the present vibronic coupling model.

Among the eleven totally symmetric vibrational modes, the Condon activity of the ν8 is

highest in the S1, S4, S7 and S8 electronic states, whereas, the Condon activity of the

ν11 and ν9 is highest in the S2, S6 and S3, S5 electronic states, respectively. Based on the

coupling strengths, we have considered seven (ν2-ν4, ν7-ν9 and ν11) totally symmetric

vibrational modes for the nuclear dynamics study.
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Figure 3.2: Adiabatic potential energies of the first eight low-lying excited singlet
electronic states of PFBz along the normal coordinates of the totally symmetric vi-
brational modes ν2, ν3, ν4, ν8, ν9, and ν11 shown in panels (a)-(g), respectively. The
potential energies obtained from the present model and the computed ab initio energies
are shown by solid lines and asterisks, respectively.

The energetic locations of the minimum of these eight electronic states in the sub-

space of totally symmetric vibrational modes are given in the diagonal entries of the

Table 3.3. Several crossings between the PESs which acquire the topography of CIs

in multi-dimensions [cf., Fig. 3.3] can be seen in Fig. 3.2. The estimated energetic

minimum of the CIs among eight excited electronic states are given in Table 3.3 in the

off-diagonal entries. The energetic locations of the minimum of CIs are estimated with
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Figure 3.3: Adiabatic potential energies of the first three low-lying excited singlet
electronic states of PFBz are plotted along the dimensionless normal displacement
coordinates of the ν2 and ν4 totally symmetric vibrational modes.

the quadratic vibronic coupling model employing a constrained minimization procedure

using Lagrangian multipliers as implemented in Mathematica program module [157]. It

can be seen from Fig. 3.2 that the S1 state is energetically well separated from the other

states at the Franck-Condon (FC) region, whereas beyond this region, intersection be-

tween S1 and S2 electronic states along the ν2, ν3 and ν4 vibrational modes are found [cf.,

panels a, b and c of Fig. 3.2]. This indicates that S2 (πσ∗) state may have considerable

impact on the dynamics of S1 state of PFBz. The data given in Table 3.3 reveals that

the S1-S2 intersection minimum occurs at ∼0.88 eV and ∼0.14 eV above the minimum

of the S1 and S2 electronic states, respectively. Hence, an excitation to the S2 state

would readily allow the WP to access the S1-S2 CIs and it may have crucial impact on

the nuclear dynamics in the S1-S2 interacting electronic state of PFBz. The minimum

of S2-S3 CIs occurs at ∼6.10 eV, which is only ∼0.38 eV above the S2 minimum and it

nearly coincides with the S3 minimum. The minimum of S3-S4 CIs occurs at ∼0.45 eV

and ∼0.07 eV above the minimum of the S3 and S4 states, respectively. The S4 and S5

states are quasi-degenerate and their CIs occur at ∼0.22 eV and ∼0.20 eV above their

equilibrium minimum, respectively. The minimum of the S6, S7 and S8 states occurs at

∼7.30 eV, ∼7.37 eV and ∼7.40 eV, respectively. These three electronic states are also

quasi-degenerate and their CIs occur very close to their equilibrium minimum.

At the FC region, the VEE difference between the S1 and S2 is ∼0.80 eV, whereas the

same between S1-S3 and S1-S4 are ∼1.10 eV and ∼1.48 eV, respectively. The energy
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Table 3.3: Energy (in eV) of the equilibrium minimum of the state (diagonal entries)
and the minimum of its intersection seam with its neighbors (off-diagonal entries) of
PFBz calculated within a second-order coupling model.

S1 S2 S3 S4 S5 S6 S7 S8

S1 4.98 5.86 6.41 6.49 6.59 8.97 - -
S2 - 5.72 6.10 6.48 - 8.81 13.60 -
S3 - - 6.09 6.54 6.87 - 12.61 10.36
S4 - - - 6.47 6.69 8.67 - 30.94
S5 - - - - 6.49 7.35 7.38 7.40
S6 - - - - - 7.30 7.37 7.40
S7 - - - - - - 7.37 7.40
S8 - - - - - - - 7.40

difference between S1 and S2 states decreases beyond the FC region. Therefore, it would

be expected that the totally symmetric vibrational modes that modulate the energy gap

between the S1 and S2 states and the electronic nonadiabatic effects mediated through

b1 vibrational modes would be vary due to the tuning activities of the totally symmetric

modes. It is therefore, worthwhile to examine the modulation of electronic nonadiabatic

effects through vibrational modes of b1 symmetry in addition to the tuning activity of

totally symmetric vibrational modes.

The out-of-plane bending vibrational modes of b1 symmetry couples the S1(1B2) and

S2(1A2) states and the topography of these coupling surfaces is shown in Fig. 3.4.

The lower adiabatic potential energy surface exhibits a symmetric double well shape

along the Q20, Q18, Q17 and Q16 normal coordinates with two symmetric minimum at

distorted geometry compared to the reference equilibrium C2v geometry at, Q=0. This

symmetry breaking [14], known as pseudo-Jahn-Teller (PJT) effect [158], occurs due

to strong nonadiabatic coupling (interstate coupling) through b1 symmetry vibrational

modes [cf., Table S11 of the ESI] between the energetically close lying S1 (ππ∗) and

S2 (πσ∗) electronic states. Therefore, it appears that the vibronic coupling through

b1 vibrational modes stabilizes the PFBz molecule in its S1 state at various distorted

out-of-plane geometries. It can be seen from Table 3.2 that the S1 state is vertically

∼0.80 eV below the S2 state whereas, the S3 and S4 states occur more than 1 eV above

it. On the other hand, the S3 and S4 states are vertically close in energy, therefore, it is

also possible that the S3 and S4 states can have some indirect impact on the dynamics

of the S1 state.

To understand the tuning activity of the totally symmetric vibrational modes on the

S1-S2 coupled surfaces, we plotted the potential energies of these two states along the

dimensionless normal coordinate of the strongest coupling mode, Q20, at some fixed

values of the coordinate of totally symmetric modes (Q2, Q3 and Q4) in Fig. 3.5. It
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Figure 3.4: Adiabatic potential energy curves of the first two lowest excited singlet
electronic states (S1 and S2) of PFBz along the normal mode displacement coordinate
of out-of-plane bending (b1) symmetry vibrational modes of b1 symmetry ν20, ν19, ν18,
ν17, ν16, and ν15 shown in panels (a)-(f), respectively. The potential energies obtained
from this model and the computed ab initio energies are shown by solid lines and
asterisks, respectively.

can be seen from panels a, b and c of Fig. 3.2 that the S1-S2 intersection occurs at

∼4.11, ∼ -3.25 and ∼ -3.97 along Q2, Q3 and Q4, respectively, and the potential energy

difference between these states increases beyond the point of intersection [cf., panels a,

b and c of Fig. 3.2]. For example, the potential energy gap between the S1 and S2

states along Q20 and at Q2= -4.109 [cf., panel c1 of Fig. 3.5] is higher than the same

at Q2=0.0 [cf., panel b1 of Fig. 3.5], which is in accordance with the trend observed

in panel b of Fig. 3.2. Finally, at Q2= 4.109, at the intersection point of the S1 and

S2 states along Q2, these states become degenerate [cf., panel a1 of Fig. 3.5]. Similar

observations can be made for simultaneous distortions along (Q3, Q20) and (Q4, Q20)

dimensionless normal coordinates [cf., panels (a2, b2, c2) and (a3, b3, c3) of Fig. 3.5].

Therefore, it is obvious that the topography and the extent of nonadiabaticity of the

S1-S2 coupled PESs are governed by the tuning and coupling vibrational modes of a1
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and b1 symmetry, respectively.
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Figure 3.5: Potential energy profiles along the coordinate Q20 of the vibrational mode
of ν20 of b1 symmetry at different values of the coordinates Q2, Q3 and Q4 of the totally
symmetric vibrational modes ν2, ν3, and ν4 shown in panels (a1)-(c1), (a2)-(c2), and
(a3)-(c3), respectively.

3.2.3 Electronic absorption spectrum

The vibronic band structure of the electronic absorption spectrum of PFBz is calculated

and compared with the experimental gas-phase UV absorption spectrum of Philis et al.

[63] and Hüter et al. [60]. The vibronic Hamiltonian constructed in Sec. 3.1.1, the

parameters of Tables 3.1-3.2 and B1-B11 of Appendix B and both time-independent

and time-depended methods within the MCTDH framework [131] have been utilized for

the purpose. As stated in the introduction, when the number of fluorine substitution

in the Bz is four or less, the lowest πσ∗ state is significantly higher in energy than the

lowest ππ∗ state and they exhibit structured S1←S0 absorption band. In the case of five

and six fluorine atom substitution on the Bz ring, both the lowest πσ∗ and ππ∗ states

become energetically very close with each other and hence, leads to a structureless
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S1←S0 absorption band. As a result, the seam of S1-S2 CI is expected to be more

readily accessible to the nuclear motion on the S1 electronic state. Therefore, one

can expect that there should be a much profound effect of coupling on the spectral

envelope of the first and second absorption bands of PFBz. All these details are already

established in our previous work [52–54]. To further confirm this, we first construct

various reduced dimensional models and examine the vibrational energy levels of each

of these electronic states by excluding the inter-state (λi) coupling with their neighbors.

These results help to understand the role of various vibrational modes and electronic

states in the complex vibronic structures of PFBz. For this, a time-independent matrix

diagonalization method is used to calculate the precise location of the energy levels of the

uncoupled electronic states. The final simulation of nuclear dynamics is carried out by

including all relevant vibronic couplings of the Hamiltonian. The time-dependent WP

propagation method is used to accomplish the latter task. The two methods mentioned

above are implemented in the Heidelberg MCTDH program module [131] and are used

for this purpose.

Precise location of the vibrational energy levels of the uncoupled electronic states is

calculated by the time-independent matrix diagonalization approach using the Lanczos

algorithm [122]. The optical absorption spectrum of the S1 electronic state is shown

in Fig. 3.6. The vibronic spectra shown in panels c and d of this figure are calculated

with uncoupled S1 state and by including its coupling with the S2 electronic state,

respectively. The experimental S1 band reproduced from Philis et al. [63] and Hüter et

al. [60], are shown in panels a and b, respectively. Both uncoupled and coupled S1-S2

electronic states stick spectrum and the convoluted envelopes are, respectively, shown

in panels c and d of Fig. 3.6. The stick spectrum is converged with respect to the size

of the vibrational basis as well as the number of Lanczos iterations. The theoretical

stick spectrum is convoluted with a 20 meV full width at the half maximum (FWHM)

Lorentzian line shape function to generate the spectral envelopes shown in panels c and

d [cf., Fig. 3.6]. The same convolution procedure is used for all the later stick data

presented in this article. Among the eleven totally symmetric vibrational modes, seven

vibrational modes ν2-ν4, ν7-ν9 and ν11 have large excitation strength (κ2/2ω2) in all

the electronic states. Therefore, these seven totally symmetric modes are included in

the present investigations. It can be seen from panel c of Fig. 3.6 that, the diffused

S1←S0 absorption band is not in agreement with the observed experimental results

[cf., panels a and b of Fig. 3.6]. So, to assess the nonadiabatic coupling effects on the

spectral envelope we included the coupling between the S1 and S2 states in the dynamics.

According to the symmetry selection rules, the inter-state coupling (λ) between S1 and

S2 states is caused by the six vibrational modes of b1 symmetry. In coupled S1-S2 states

dynamical treatment, we included total thirteen (i.e., 7a1+6b1) nuclear DOFs. The
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Figure 3.6: Vibronic energy levels of S1 electronic state of PFBz: The experimental
[60, 63] and theoretical (uncoupled and coupled S1-S2 states) results are shown in
panels (a)-(d), respectively. The relative intensity is plotted along the energy of the
final vibronic state.

spectrum obtained by diagonalizing two-state vibronic Hamiltonian show a huge increase

of spectral line density [cf., Fig. 3.6(d)] and its convoluted envelope is in good accord

with the experiment. It is to be noted here that the EOM-CCSD method overestimates

the VEE of the S1 state as compared to the experiment [cf., Table 3.2]. Therefore, the

theoretical spectra of panels c and d of Fig. 3.6 are shifted down (by ∼0.35 eV) along

the abscissa to reproduce the center-of-gravity of the bands at the experimental VEE.

The HO basis functions used along each mode in these calculations are given in Table

B12 of the Appendix B.

The vibronic structure of the uncoupled S1 electronic state [cf., Fig. 3.6(c)] reveals that

all seven totally symmetric vibrational modes (ν2-ν4, ν7-ν9 and ν11) are excited. Peak

spacings of ∼1738 cm−1, ∼1522 cm−1, ∼1422 cm−1, ∼707 cm−1, ∼576 cm−1, ∼407

cm−1 and ∼257 cm−1 due to the progression of ν2, ν3, ν4, ν7, ν8, ν9 and ν11 vibrational
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modes, respectively, are found. Among the seven symmetric vibrational modes, ν4, ν7,

and ν8 form dominant progression in the S1 state. The ν3, ν11 modes are moderately and

ν2, ν9 modes are weakly excited in accord with their excitation strength [cf., Table B1].

The vibronic structure of the S1 electronic state [cf., Fig. 3.6(d)] from the coupled S1-S2

matrix diagonalization calculations show a highly dense spectral line structure. In this

case identification of individual vibrational progression is cumbersome and ambiguous.

However, its convoluted spectrum is in good accord with the broad band experimental

spectrum.

A few observations on the S1 band structure are discussed here. It was stated before that

the S1 state is vertically well separated from the rest of the states. The S1-S2 intersection

minimum occurs ∼0.80 eV above the S1 minimum. Therefore, it is counterintuitive on

energetic ground to observe such a huge line structure of the S1 state. The population

dynamics of the S1 state in the S1-S2 coupled states situation shown in Fig. B1 (panels

b and d) also supports this puzzle.

It can be seen from Table B11 that the coupling of the S1-S2 states along out-of-plane

b1 vibrational modes is fairly strong, particularly along ν17, ν18 and ν20 modes. In order

to assess the effect of b1 vibrational modes on the vibronic structure of the uncoupled S1

state we carried out reduced dimensional calculations by systematically including them

in the S1-S2 coupled states calculations. It can be seen from the results presented in Fig.

B2 that vibronic line density increases to some extent as compared to the uncoupled

spectrum [cf., Fig. 3.6c] when one b1 mode is included at a time. The increase is

somewhat more when two b1 modes are included [cf., Fig. B3]. The surprising results

obtained when all six b1 modes are considered. These results are shown in Fig. B4(a-

d). In panel c of this figure results are shown when only six b1 modes are included in

the dynamics. The huge line density obtained appears to be a collective effect of all

out-of-plane b1 modes. Note that the results of Fig. B4 are obtained by placing the

S1 VEE at its experimental value of ∼4.79 eV. This increases the S1-S2 vertical gap by

∼1.11 eV. However, this increase seems to have only negligible impact on the overall

structure of the S1 band and the corresponding population dynamics, as shown in Fig.

B1. The potentials are neither strongly bound nor unstable along the b1 vibrational

modes. Interestingly, shallow minima appears on the potential energy surface at large

internuclear distances (see the potential curves plotted along ν20 vibrational modes, for

example, in Fig. 3.7). The WP therefore spreads out over large internuclear distances

and causes the observed broadening of the S1 band.

The vibrational energy level spectrum of the uncoupled S3, S4, S6, S7 and S8 electronic

states is shown in panels a-e of Fig. 3.8. As mentioned above, the theoretical calculations

are carried out with seven relevant symmetric vibrational modes. The HO basis functions
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Figure 3.7: Adiabatic potential energy curves of the first two lowest excited singlet
electronic states (mentioned in the panel) of PFBz along ν20 mode.

used along each mode in these calculations are given in Table B12 of the Appendix B.

The energy eigenvalues and their assignments of the above mentioned electronic states

are given in Table B13 of the Appendix B. This system has a broad band at about 5.85

eV (marked as C-band [63]) and it is attributed to a π→σ∗ transition. This vibronic

band results from the πσ∗ character of S2 (optically dark) and S3 electronic states of

PFBz. The vibronic band structure of S3 state reveals the dominant progression of ν9

vibrational mode with peak spacing of ∼408 cm−1.

The second vibronic band solely originates from the S4 electronic state. It reveals

dominant excitation of ν8, ν7 and ν4 vibrational modes. The peaks are ∼568 cm−1,

∼692 cm−1, and ∼1348 cm−1 spaced in energy corresponding to the frequencies of these

vibrational modes, respectively. The third vibrational band results from the S5 (optically

dark), S6, S7, and S8 electronic states of PFBz. It can be seen from panels b-e of Fig.

3.8 that the vibronic band structures of the S6, S7 and S8 states are highly overlapping.

They together form the third vibronic band and at the Franck-Condon geometry, S6

to S8 states are energetically very close to each other. The corresponding vibrational

progressions are given in Table B13.

In addition to the energetic location and excitation strength analysis, the assignment of

the peaks is also confirmed by examining the nodal pattern of the vibrational wave func-

tions. These wave functions are calculated using a block-improved relaxation method

implemented in the MCTDH program module [129, 159, 160]. To save space and for

brevity, we show a few vibrational wave functions of the S1, S3, and S4 electronic states,
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Figure 3.8: Stick spectrum and its convoluted envelope of the uncoupled S3, S4, S6,
S7 and S8 electronic states of PFBz are shown in panels (a)-(e), respectively. The
relative intensity is plotted along the energy (relative to the minimum of the S0 state
of PFBz) of the final vibronic states.

in Figs. B5-B7 of Appendix B. The wave function probability density is plotted in these

figures in a suitable reduced dimensional space of the dimensionless normal displacement

coordinates. As can be seen from the Fig. B5 of the Appendix B that in panels a-c, the

wave function of the fundamental of ν9, ν8 and ν7 are shown, respectively. These wave

functions acquire a node along the coordinate of the respective mode. Panels d-f of Fig.

B5 show the vibrationally excited wave functions with multiple nodes. Along with these

some of the combination peaks are also shown in panels g-l of Fig. B5. Similarly, the

vibrational wave functions of the other states (S3 and S4) are shown in Figs. B6 and

B7 of the Appendix B, respectively.

The vibronic bands of the uncoupled electronic states presented above in Fig. 3.8 are

structured and contain rich information on the excitation of various vibrational modes.

However, they are quite different from the spectral envelopes recorded in the experiment

[60, 63]. The experimental spectral envelopes are broad and structureless. So, a detailed

interpretation of the experimental data requires inclusion of twenty two relevant vibra-

tional modes (7a1+3a2+6b1+6b2) and all relevant vibronic (nonadiabatic) couplings of
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the Hamiltonian in the dynamical calculations. The vibrational modes are chosen ac-

cording to their excitation strength [cf., Tables B1 and B11]. The totally symmetric

ν2-ν4, ν7-ν9 and ν11 and non-totally symmetric ν12-ν14 (a2), ν15-ν20 (b1), ν21-ν23 and

ν28-ν30 (b2) vibrational modes are included in the nuclear dynamics calculations of eight

coupled electronic states. Such a consideration leads to a huge increase of the dimension

of the secular matrix. The matrix diagonalization approach could not be used further

to carry out the nuclear dynamics on the coupled manifold of eight electronic states.

Therefore, we resort to the time-dependent WP propagation calculations with the help

of Heidelberg MCTDH program modules [119, 127, 128, 131].

An initial WP pertinent to the vibronic ground state (S0) of PFBz is vertically promoted

to the excited state and then propagated up to 200 fs in the coupled manifold of S1 to

S8 electronic states. Eight separate calculations are carried out by initially promoting

the WP to each of the eight excited electronic states of PFBz. During the propagation,

the autocorrelation function of the WP is recorded in time. Later, we perform a Fourier

transformation of the time-autocorrelation function to calculate the spectrum. The

numerical details of the mode combination, sizes of the primitive and single-particle

basis functions used in the WP propagations are given in Table B.13 of the Appendix

B.

The composite vibronic band structure is generated by combining the autocorrelation

function obtained from eight calculations with equal weightage, damping with an expo-

nential function, e−
−t
τr (with τr=22 fs) and Fourier transforming to the energy domain.

Due to zero oscillator strength, the transition from the ground 1A1 (S0) to the 1A2

(πσ∗) (S2 and S5) states are forbidden in C2v point group symmetry. The effect of the

S2 and S5 states in the dynamics are included through their coupling with the remaining

states. The calculated vibronic band structures of the coupled S1 to S8 electronic states

of PFBz is plotted in Figs. 3.9 and 3.10 along with the experimental results in panel a

reproduced from Refs. [63] and [60], respectively. In Figs. 3.9 and 3.10 relative intensity

(in arbitrary units) is plotted as a function of the energy of the final vibronic levels. It

can be seen from Figs. 3.9 and 3.10 that the theoretical results of panel b are in good

accord with the old and recent experimental recordings [60, 63].

The structured absorption band of the uncoupled S1 state [cf., panel c of Fig. 3.6]

becomes essentially structureless upon considering its coupling with other states. As

noted above the collective effect of the out-of-plane b1 vibrational modes plays a major

role in this band structure in addition to the coupling of S1 with the remaining states.

Shallow minima on the potential appear at large internuclear displacements along the

b1 vibrational modes [cf., Fig. 3.7]. This causes a spreading of the WP and a huge

broadening of the S1 band. Data given in the Table 3.3 indicates that the S2 (πσ∗) state
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Figure 3.9: The absorption spectra of the coupled S1-S8 electronic states of PFBz.
Experimental spectrum is reproduced from Ref. [63] is shown in panel a and the present
theoretical results shown in panel b.

is energetically close to the S1 (ππ∗) state compared to the other excited electronic states

in the Franck-Condon region. A strong inter-state coupling between the S1 and S2 states

via the vibrational modes of b1 symmetry is found [cf., Table B11). Inclusion of these

inter-state couplings in the S1 state dynamics of PFBz yields an improved broadening

of the first absorption band shown in panel b of Figs. 3.9 and 3.10.

As discussed for the uncoupled state situation above, this system has a additional broad

band at about 5.85 eV (marked as C-band [63]) near the onset of the second band [cf.,

panel b of Figs. 3.9 and 3.10]. This new band is absent in the parent Bz and in the lower

fluoroderivatives [52–54, 63]. The new additional band can certainly be attributed to a

π → σ∗ transition to both S2 and S3 electronic states from the electronic structure data.

According to our theoretical results, this suggestion is in accordance with the prediction

of Philis et al. [63]. Also, there is strong vibronic coupling between S1-S2, S2-S3 and

S3-S4 electronic states via the vibrational modes of b1, b2 and b1 symmetry, respectively.

The minimum of the seam of S1-S2 and S2-S3 CIs is located only 0.14 eV and 0.37 eV

above the S2 equilibrium minimum, respectively. In addition, the minimum of S2-S3

and S3-S4 CIs is located only 0.01 eV and 0.45 eV above the S3 minimum, respectively.
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Figure 3.10: The absorption spectra of the coupled S1-S4 electronic states of PFBz.
Experimental spectrum is reproduced from Ref. [60] is shown in panel a and the present
theoretical results shown in panel b.

All these considerations explain that this additional band originates from both S2 and

S3 electronic states through a π → σ∗ transition. Since a transition to these states

is optically forbidden, they gain small intensity through their coupling with optically

bright ππ∗ states. This gives rise to the small hump in the overall band structure at

∼5.85 eV.

As discussed above, the S4 (ππ∗) electronic state form the second absorption band and it

strongly overlaps with the new additional band (marked as C-band as discussed above)

[cf., panel b of Figs. 3.9 and 3.10]. This is because of strong vibronic coupling between

the S2, S3 and S4 electronic states [cf., Table B11]. Similarly, the third absorption band is

formed by the highly overlapping S5, S6, S7 and S8 electronic states. Among these states

S5 (πσ∗) state is optically dark and other three states are optically bright (ππ∗). All

these states are energetically close to each other at the Franck-Condon geometry and also

their CIs are quasi-degenerate with their equilibrium minimum [cf., Table 3.3]. Finally,

the results from the eight different calculations are combined with equal weightage to

generate the composite theoretical band structure shown in Figs. 3.9 and 3.10 along

with the available experimental results reproduced from Philis et al. [63] and Hüter et
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al. [60]. It can be seen from the figures that the present theoretical results are in very

good accord with the experimental findings [60, 63].

The optically dark S2 and S5 states of 1A2 symmetry were not included in an earlier

theoretical study [52, 53]. Therefore, it appears to be important here to discuss on the

effect of these states on the overall structure of the observed spectrum. In Fig. B8(a and

b) the band structure of individual states is shown with (panel a) and without (panel

b) inclusion of S2 and S5 states. It is clear from the comparison that the C-band gains

intensity from both the S2 and S3 states. The S3 band becomes somewhat broad in

panel a as compared to panel b. The S4 band also becomes broad when 1A2 states are

included. Additionally, the S5 band appears at the same location of the S6 band and

makes significant contribution to the third band of the recorded spectrum. The details

of the population dynamics is examined in the above situations and discussed later in

the text.

3.2.4 Internal conversion dynamics

Time-dependent diabatic electronic populations of coupled S1 to S8 excited electronic

states of PFBz are examined here in order to understand the impact of various nonadi-

abatic coupling effects in this complex situation. The results obtained for transition of

the initial WP to the S1, S2, S3, S4, S5, S6, S7, and S8 electronic states are shown in

panels a-h of Fig. 3.11, respectively. The electronic populations are color-coded (online

version) in the same way in all panels of the respective figures. Following the vertical

transition to the S1 (ππ∗) state, the population of this state decreases in time whereas,

the population of the optically dark S2 (πσ∗) and S5 (πσ∗) electronic states increases

very little as can be seen from Fig. 3.11(a). This is owing to the vibronic coupling

between the S1-S2 and S1-S5 electronic states [cf., Table B11]. In addition, the min-

imum of these CIs occurs at ∼0.88 eV and ∼1.61 eV above the minimum of the S1

state, respectively. It appears that the collective effect of the b1 vibrational modes is

the bottleneck underlying the broadening of the S1←S0 absorption band. The vertical

transition to the S2 (πσ∗) state [cf., Fig. 3.11(b)] on the other hand induces a fast

population transfer to the optically active S1 (ππ∗) state. In ∼16 fs, the population of

the two states becomes equal (∼0.42), and after ∼40 fs, the S2 state population depletes

to ∼0.37, whereas the S1 state population becomes ∼0.47. The remaining population

of ∼0.16 flows to all other electronic states. It appears from the above discussion that

the strong vibronic coupling between the S1-S2 states drives the population dynamics

discussed above. This remark is in accordance with the observation that the energetic

minimum of the S1-S2 CIs is only ∼0.14 eV above the minimum of the S2 state of PFBz.
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A decay rate of ∼27 fs can be estimated from the initial fast decay of the population of

the S2 state.
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Figure 3.11: Time-dependence of diabatic electronic populations for an initial location
of the WP on the S1-S8 electronic states in the full coupled states dynamics are shown
in panels (a)-(h), respectively.

The electronic state population shown in panel c of Fig. 3.11 represents the initial exci-

tation of the WP to the S3 (πσ∗) state. In this case, two decay channels predominantly

open up through S3 (πσ∗)-S2 (πσ∗) and S3 (πσ∗)-S1 (ππ∗) CIs. The S2 and S1 states are

populated predominantly [cf., Fig. 3.11(c)], due to the fact that the energetic minimum

of the S3-S2 and S3-S1 CIs occurs ∼0.01 eV and ∼0.32 eV above the minimum of the

S3 state, respectively. It can be seen that at ∼17 fs, both S3 and S2 electronic states

population become equal (∼0.31). Within ∼22 fs, the S3 state population decays rapidly

and reaches a value of ∼0.28, while the population of the S2 and S1 states approaches

a maximum value of ∼0.31 and ∼0.26, respectively. The remaining population of ∼0.15

flows to all other electronic states, and after ∼50 fs, the populations of all the electronic

states reach a constant value. A nonradiative decay rate of ∼17 fs can be estimated

from the population curve of the S3 state [cf., Fig. 3.11(c)].
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When the WP is initially prepared on the S4 (ππ∗) electronic state, the electron popu-

lation dynamics appears to be more complex, and it is shown in panel d of Fig. 3.11. In

this case, most of the population flows to the S3, S2, and S1 electronic states. At ∼21

fs, both S4 and S3 states population becomes equal (∼0.30), and S2 state population

reaches a maximum value of ∼0.22 at ∼19 fs. After ∼50 fs, the population moves back

and forth between the S4 and S3 electronic states. The population of S1 and S2 states

saturates at a value of ∼0.13 and ∼0.19, respectively. The complex behavior of pop-

ulation dynamics in this case originates from strong nonadiabatic coupling among S1,

S2, S3, and S4 electronic states. In addition, a large population transfer is facilitated

by the energetic proximity of the equilibrium minimum and the minimum of various

intersection seams in the S1-S2-S3-S4 states as given in Table 3.3. The initial fast decay

of S4 (ππ∗) state population relates to a decay rate of ∼20 fs.

Fig. 3.11(e) portrays the population dynamics for an initial excitation of the WP to the

optically dark S5 (πσ∗) state. It can be seen from the figure that the S5 state population

rapidly decreases to a value of ∼0.61, whereas the S6 state population increases to a

maximum value of ∼0.24 within ∼5 fs. The S4 state population increases slowly in a

step-wise manner and reaches a maximum value of ∼0.33 within ∼100 fs. Also, the

population moves back and forth between the S5 and S6 state throughout the entire

duration. This complex behavior of population dynamics arises from strong nonadiabatic

coupling between S4, S5, and S6 electronic states [cf., Table B11] and quasi-degeneracy

of S4 and S5 states [cf., Table 3.3]. A nonradiative decay rate of ∼98 fs can be estimated

from the population curve of the S5 (πσ∗) state of Fig. 3.11(e).

The electronic population dynamics for an initial excitation of the WP to the S6 (ππ∗),

S7 (ππ∗), and S8 (ππ∗) electronic states is shown in panels f-h of Fig. 3.11, respectively.

Upon excitation to the S6 state, the WP accesses S5-S6 CIs and a fast transfer of

population takes place to the optically dark S5 (πσ∗) state. Since the latter state

intersects with S3 and S4 electronic states, further population transfer occurs from

the S5 state to the S3 and S4 electronic states [cf., panel f of Fig. 3.11]. Also, due

to relatively strong nonadiabatic coupling between the S6 and S4 states, the S4 state

population increases more than the S3 state [cf., panel f of Fig. 3.11]. In about 6 fs, the

populations of the S6 and S5 states become equal (∼0.4). At longer times, the S4 state

population increases slowly and reaches a maximum value of ∼0.29. The population of

S5 and S6 states moves back and forth between a value of ∼0.2 to ∼0.3. The populations

of all other states remain steady. A nonradiative decay rate of ∼10 fs can be estimated

from the population curve of the S6 state given in panel f. In the case of S7 and S8

electronic states, the electronic population dynamics becomes more complex than the S6

state [cf., panels f-h of Fig. 3.11]. In these cases, most of the population flows to all the

lower excited electronic states. This is because of strong nonadiabatic coupling among
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them and the seam minima of these states are quasi-degenerate with their equilibrium

minimum [cf., Table 3.3]. The initial sharp decay of the populations in panels g and

h of Fig. 3.11 relates to a nonradiative decay rate of ∼19 fs and ∼31 fs of the S7 and

S8 states, respectively. Overall, it appears that the nonadiabatic coupling effects in the

electronically excited PFBz molecule are strong. This leads to the appearance of much

broader and diffuse electronic absorption bands in PFBz.

To this end we note that the population dynamics of S3 and S6 states is much affected

when the S2 and S5 states of 1A2 symmetry are included in the calculation. For compar-

ison, the population dynamics without S2 and S5 states is shown in Fig. B9 of Appendix

B. A rapid decay of population of S3 and S6 states [cf., Fig. 3.11] contributes much to

the spectral broadening when S2 and S5 states are included in the calculations [cf., Fig.

B8].

3.3 Summary and conclusion

A detailed theoretical account of vibronic coupling among the energetically lowest eight

singlet excited electronic states of PFBz is presented in this chapter. The computed op-

tical absorption spectrum of PFBz is compared with the available experimental results

of Philis et al. [63] and Hüter et al. [60]. Along with this, we examined the role of opti-

cally dark πσ∗ states on the quantum dynamics of optically bright ππ∗ states of PFBz.

The equilibrium geometry of the electronic reference ground (S0) state of the PFBz is

optimized at the MP2/aug-cc-pVDZ level of theory. The adiabatic electronic energies

of the lowest eight excited electronic states are calculated along the dimensionless nor-

mal displacement coordinates using the EOM-CCSD method and aug-cc-pVDZ basis set

with the aid of the MOLPRO suite of programs. A detailed topographical analysis of the

eight adiabatic electronic states is carried out and multiple conical intersections among

them are established. With electronic structure results, a higher-order model vibronic

Hamiltonian of the eight coupled electronic states is developed in a diabatic electronic

representation in terms of the dimensionless normal displacement coordinate of vibra-

tional modes. It is found that the vibronic coupling between optically active (ππ∗) and

optically dark (πσ∗) states is quite strong. The strong vibronic coupling between the

S1 (ππ∗) and S2 (πσ∗) states causes the lowering of symmetry of the lowest excited

adiabatic S1-S2 coupled potential energy surface and leads to a symmetric double-well

type of potential, which stabilizes the molecule along with the out-of-plane modes of b1

symmetry. The minimum of the last four (S5, S6, S7, and S8) excited electronic states

is quasi-degenerate with their intersection minimum.
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The nuclear dynamics calculations are carried out from the first principles. Both time-

independent and time-dependent WP propagation methods are explored. The individual

vibronic energy level structure of the eight lowest excited electronic states is systemati-

cally investigated and assigned. The assignment of the peaks is also confirmed by exam-

ining the nodal pattern of the vibrational wave functions. For a detailed interpretation

of the experimental results, twenty two relevant vibrational modes (7a1+3a2+6b1+6b2),

and all possible nonadiabatic couplings between the eight electronic states of the Hamil-

tonian are considered in the dynamical calculations.

The results show that the first absorption band, S1←S0, is structureless due to collective

effect of the out-of-plane b1 vibrational modes in addition to strong S1-S2 nonadiabatic

coupling. Shallow minima on the potential are found at large internuclear displacements

along the b1 modes. This causes a spreading of the WP and the broadening of the S1

band. A new additional broad band appears at about 5.85 eV (marked as C-band in

the literature [63]) near the onset of the second band [cf., Figs. 3.9 and 3.10]. This is

attributed to the π → σ∗ type transition to both S2 and S3 states. Also, the strong

vibronic coupling between S1-S2, S2-S3, and S3-S4 states contributes to the observed

diffused and broad structure of this additional band in PFBz. In the recent experiment

[60], this additional new band strongly overlaps with the second band [cf., Fig. 3.10].

This new band is absent in the parent Bz and the lower fluoroderivatives. The second

band in figures 3.9 and 3.10 originates from the S4 (ππ∗) electronic state. It strongly

overlaps with the additional C-band. The third absorption band is formed by energet-

ically close-lying S5, S6, S7, and S8 electronic states. Because of energetic proximity,

these bands are strongly overlapping, and occurrence of multiple CIs between these elec-

tronic states contributes significantly to the complex structureless pattern of this band.

The theoretical results are shown to be in good accord with the available experimental

results.





Chapter 4

Vibronic coupling in the first six

electronic states of

Pentafluorobenzene radical

cation: Radiative emission and

nonradiative decay

In this chapter the vibronic coupling in the X̃ 2A2, Ã 2B1, B̃ 2B1, C̃ 2B2, D̃ 2A1,

and Ẽ 2B2 electronic states of Pentafluorobenzene radical cation (PFBz+) is examined.

The photoelectron spectrum of PFBz has been recorded by Bieri et al.[25] using He II

radiation as ionization source. Four distinct bands observed in the ∼9-16 eV energy

range were attributed to result from an ionization from the six valence MOs of neutral

PFBz. Among the four electronic bands of PFBz+, the first, third and fourth band

revealed overlapping vibronic structure and therefore carries the signature of vibronic

coupling in the energetically low-lying electronic states of PFBz+.

Radiative emission and highly overlapping electronic band structure motivated us to

investigate vibronic coupling and nuclear dynamics in the energetically low-lying elec-

tronic states of PFBz+. In the following, vibronic interactions in the energetically lowest

six electronic states of PFBz+ have been investigated. These states result from ioniza-

tion from the occupied valence MOs of PFBz. The MO configuration of the latter is:

(core)(13b2)2(19a1)2(14b2)2(4b1)2(5b1)2(3a2)2. Ionization from the highest occupied MO

and the inner ones gives rise to X̃ 2A2, Ã 2B1, B̃ 2B1, C̃ 2B2, D̃ 2A1 and Ẽ 2B2 elec-

tronic states of PFBz+ in the order of increasing energy. Hereafter, these states will be

identified as X̃, Ã, B̃, C̃, D̃ and Ẽ in the rest of this chapter.

49
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A vibronic coupling model is developed here to investigate the nuclear dynamics in

the mentioned six electronic states. The electronic PESs are calculated ab initio, by

both complete active space self-consistent field (CASSCF) [161, 162]-multi reference

configuration interaction (MRCI) [163, 164] and equation of motion ionization potential

coupled cluster singles and doubles (EOMIP-CCSD) [165, 166] methods. The coupling

strength of all vibrational modes on six electronic states are calculated and the relevant

vibrational modes are included in the study based on the coupling strength. First

principles nuclear dynamics study is carried out by both time-independent and time-

dependent quantum mechanical methods.

The vibronic coupling model developed here with the aid of the standard vibronic cou-

pling theory [14]. The latter relies on the concept of diabatic electronic state, Taylor

expansion of the elements of the diabatic electronic matrix in terms of normal coordi-

nate of vibrational mode and elementary symmetry rules. The dynamics study is car-

ried out by a matrix diagonalization method in the time-independent framework [14].

This enables to determine the precise location of the vibronic energy levels and aids

in their assignments. The time-dependent calculations are carried out by propagating

WPs with the aid of the MCTDH method developed at Heidelberg [119, 127, 128, 131].

This exercise enables us to calculate the broad band electronic spectra and to study the

mechanistic details of radiative and nonradiative decay of excited electronic states. The

results of this study are shown to be in good accord with the available experimental

results.

4.0.1 Quantum chemistry calculations

The optimized equilibrium geometry of the electronic ground state of PFBz molecule is

calculated at the MP2 level employing both aug-cc-pVDZ basis set of Dunning [149] and

def2-TZVPPD [167–169] basis set. Gaussian-09 [150] suite of program is used for the

calculations. The electronic ground term of PFBz is 1A1 and the equilibrium geometry

possesses C2v point group symmetry. This is the reference state in this study and the

vibrational motions in this state are treated as harmonic. The frequency (ωi) of the thirty

vibrational modes at the optimized equilibrium geometry is calculated by diagonalizing

the kinematic (G) and ab initio force constant (F) matrix at the same level of theory.

The mass-weighted normal displacement coordinates are derived from the eigenvectors

of the GF matrix, and are transformed to the dimensionless form (Q) [92] as discussed

in the Sec. 2.2.1.

The optimized equilibrium geometry of PFBz is shown in Fig. 4.1 with atom numbering

and the equilibrium geometry parameters are given in Table 4.1. The harmonic frequency

of the vibrational modes and their symmetry are given in Table 4.2 along with the
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Figure 4.1: Schematic representation of the equilibrium minimum structure of the
electronic ground state of PFBz.

literature data [155, 156] for comparison. It can be seen from Table 4.2 that the present

data compare well with the experimental as well as the theoretical results available in

the literature.

Table 4.1: Optimized equilibrium geometry of the electronic ground state of PFBz.
The bond length (R) and bond angle (∠) are given in of Å and degrees, respectively.

Parameters
aug-cc-
pVDZ

def2-
TZVPPD

R(C1-C2,C1-C6) 1.40 1.38
R(C2-C3,C5-C6) 1.40 1.39
R(C3-C4,C4-C5) 1.40 1.39
R(C1-H7) 1.09 1.08
R(C2-F10,C6-F12) 1.35 1.33
R(C3-F9,C5-F11) 1.35 1.33
R(C4-F8) 1.35 1.33
∠(C1-C2-C3,C1-C6-C5) 121.48 121.28
∠(C2-C3-C4,C4-C5-C6) 119.15 119.20
∠(C3-C4-C5) 120.39 120.37
∠(C2-C1-C6) 118.34 118.68
∠(H7-C1-C2,H7-C1-C6) 120.83 120.66
∠(F10-C2-C1,F12-C6-C1) 119.97 120.11
∠(F10-C2-C3,F12-C6-C5) 118.55 118.61
∠(F9-C3-C2,F11-C5-C6) 120.94 120.94
∠(F9-C3-C4,F11-C5-C4) 119.90 119.86
∠(F8-C4-C3,F8-C4-C5) 119.81 119.81

In order to study the nuclear dynamics, the PESs of the six electronic states of PFBz+

are calculated along the dimensionless normal displacement coordinates of the reference

electronic ground state of PFBz. The adiabatic potential energies are calculated both by

the CASSCF-MRCI and EOMIP-CCSD methods employing the aug-cc-pVDZ basis set.

The CASSCF-MRCI and EOMIP-CCSD calculations are carried out using MOLPRO

[154] and CFOUR [171] suite of programs, respectively. The vertical ionization energies
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Table 4.2: Symmetry designation and harmonic frequency (in cm−1) of vibrational
modes of the electronic ground state of PFBz calculated at the MP2 level of theory.

This work Expt. Description of the modes

Sym. Mode
aug-cc-
pVDZ

def2-
TZVPPD

Ref.
[155]

Ref.
[156]

a1 ν1 3257 3262 3103 3105 C-H stretching in plane
ν2 1682 1683 1648 1648 C-C-C bending
ν3 1533 1552 1516 1514 C-C and C-F stretching
ν4 1422 1444 1413 1410 C-C stretching
ν5 1268 1302 1291 1286 C-C stretching (Kekule)
ν6 1063 1092 1078 1082 C-F stretching
ν7 716 729 719 718 C-C-C trigonal bending
ν8 574 584 577 580 ring breathing
ν9 467 474 474 469 C-C-C in plane bending
ν10 324 329 327 325 C-F in plane bending
ν11 267 269 272 272 C-F in plane bending

a2 ν12 632 671 661 - C-C-C out-of-plane
ν13 384 398 387 391 C-F out-of-plane bending
ν14 132 132 142 171 C-F out-of-plane

b1 ν15 841 840 837 838 C-H out-of-plane bending
ν16 591 636 715 689 C-H and C-F out of plane trigonal
ν17 543 560 556 556 C-H and C-C-C out of plane
ν18 317 323 321 - C-F out-of-plane bending
ν19 204 208 206 - C-F out-of-plane bending, in phase
ν20 158 155 158 - C-F out-of-plane bending

b2 ν21 1679 1685 1648 1648 C-C stretching
ν22 1552 1570 1540 1535 C-C stretching
ν23 1478 1455 1269 1268 C-C stretching
ν24 1185 1207 1182 1182 C-H bending, in plane
ν25 1129 1163 1143 1138 C-F stretching, in plane

ν26 947 969 958 953
C-F stretching and C-H bending, in
plane

ν27 684 694 692 662 C-F in plane bending
ν28 429 436 433 436 C-C-C in plane bending
ν29 300 303 303 300 C-F in plane bending
ν30 272 274 256 - C-F in plane bending

Table 4.3: Vertical ionization energy (in eV) of the energetically lowest six electronic
states of PFBz+ calculated at the equilibrium geometry of the electronic ground state
of PFBz (reference).

State OVGF CASSCF-MRCI EOMIP-CCSD RI-SCS-CC2a Expt.

X̃ 2A2 9.63 10.42 9.91 9.86 9.9b

Ã 2B1 9.94 10.69 10.27 10.49 10.1a/10.06c

B̃ 2B1 12.89 13.54 13.07 12.63 12.7a/12.74d

C̃ 2B2 14.26 15.72 13.98 - 13.9a

D̃ 2A1 14.53 16.08 14.39 - -

Ẽ 2B2 15.20 17.00 14.93 - 14.9a

aRef. [25] bRef. [40] cRef. [60] dRef. [170]

(VIEs) are calculated along the dimensionless normal displacement coordinates of each

vibrational mode. The CASSCF-MRCI calculations are carried out with a (12e,10o)

active space, which includes six valence occupied orbitals and four virtual orbitals with

twelve electrons for PFBz. The electronic states of PFBz+ have open shell configuration

and a (11e,10o) active space is used. We note that many test calculations are carried out

with varying active space and the chosen ones yield the best result with an affordable

computational cost.

The VIEs calculated at the equilibrium geometry of the reference state are given in Table
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4.3 along with the literature data. In addition to the CASSCF-MRCI and EOMIP-CCSD

results, the VIEs calculated by the outer valence Green’s function (OVGF) method are

also given in Table 4.3. It can be seen from Table 4.3 that both the OVGF and EOMIP-

CCSD results are closer to the experimental data as compared to the CASSCF-MRCI

results. The EOMIP-CCSD results appear to be closest to the experimental data. A

close look at the data given in Table 4.3 reveal that the X̃ and Ã states are energetically

close at the vertical configuration. A similar observation can also be made for the B̃-C̃-D̃-

Ẽ electronic states. Therefore, vibronic coupling appears to be an important mechanism

to govern nuclear dynamics in these states.

4.0.2 The vibronic model

In this section a vibronic coupling model of the six energetically lowest electronic states

X̃, Ã, B̃, C̃, D̃ and Ẽ of PFBz+ is developed. As noted in the thoery and methodology

[cf., Sec. 2.2 in Chapter 2], the model is based on the framework of standard vibronic

coupling theory, symmetry selection rules, a diabatic electronic basis and dimensionless

normal displacement coordinates of the vibrational modes [14]. The thirty vibrational

modes of the electronic ground state of PFBz transform to the following IREPs of the

C2v symmetry point group.

Γvib = 11a1 ⊕ 6b1 ⊕ 10b2 ⊕ 3a2. (4.1)

Using symmetry selection rules and standard vibronic coupling theory, the Hamiltonian

can be written in a diabatic electronic basis as [14]

H = H016 + ∆H, (4.2)

with

H0 = −1

2

∑
i∈a1,a2,b1,b2

ωi

(
∂2

∂Q2
i

)
+

1

2

∑
i∈a1,a2,b1,b2

ωiQ
2
i , (4.3)

and

∆H =



WXX WXA WXB WXC WXD WXE

WAA WAB WAC WAD WAE

WBB WBC WBD WBE

WCC WCD WCE

h.c. WDD WDE

WEE


. (4.4)
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In Eq. (4.2), the quantity 1 represents a (6 × 6) unit matrix. The Hamiltonian of the

harmonic reference electronic ground state of PFBz is denoted by H0 and is defined in

Eq. (4.3). The quantity ∆H defines the change in electronic energy upon ionization to

PFBz+.

The elements of the matrix Hamiltonian ∆H are expanded in a Taylor series around the

equilibrium geometry of the reference state at Q=0 as

Wαα = E0
α +

∑
i∈a1

κ
(α)
i Qi +

1

2!

∑
i,j∈a1,a2,b1,b2

γ
(α)
ij QiQj +

1

3!

∑
i∈a1

η
(α)
i Q3

i +
1

4!

∑
i∈a1,a2,b1,b2

ζ
(α)
i Q4

i ,(4.5)

and

Wαα′ =W∗α′α =
∑
i

λαα
′

i Qi. (4.6)

In the above equations, α and α′, are the electronic state indices and i, j are the indices

representing vibrational modes. The VIE of the αth electronic state is denoted by E0
α.

The quantities καi , γαij , η
α
i , and ζαi represent the linear, quadratic, cubic and quartic

coupling parameters, respectively, within the αth electronic state. The quantity, λαα
′

i

denote the linear inter-state coupling parameter between the states α and α′, coupled

through ith vibrational mode. The numerical values of the above parameters are derived

by fitting the adiabatic electronic energies calculated ab initio to the diabatic electronic

Hamiltonian introduced above. The Hamiltonian parameters of all six electronic states

calculated in that way are given in Tables C1-C7 of the Appendix C. We note that while

a second-order Taylor expansion resulted a good fit (along the totally symmetric modes)

of the electronic energies calculated by the EOMIP-CCSD method, the CASSCF-MRCI

energies required a higher order fit. Along with this, we have estimated the diagonal

bilinear coupling parameters along the five (ν2, ν3, ν4, ν9 and ν11) totally symmetric

vibrational modes by a two-dimensional fit (using Levenberg Marquardt algorithm as

implemented in MATLAB [147]). The diagonal bilinear parameters are given in Table

C8 of the Appendix C. We also estimated the third-order coupling parameters along the

coupling modes. The magnitude of these parameters is of the order of 10−3 eV or less.

Therefore, a linear expansion of the coupling elements is retained in Eq. (4.6) and are

tabulated in Tables C9 and C10 of the Appendix C.

4.0.3 Potential energy surfaces and Conical intersections

The topography of the adiabatic potential energy surfaces of the X̃, Ã, B̃, C̃, D̃ and

Ẽ electronic states of PFBz+ is discussed in this section. One dimensional cuts of the

multidimensional potential energy hypersurface of the electronic states are presented.

These are plotted along the normal displacement coordinates of some selected totally
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symmetric vibrational modes (ν2-ν4, ν9 and ν11) in Fig. 4.2. The points in the figure

represent the adiabatic electronic energies calculated by the CASSCF-MRCI (Fig. 4.2a)

and EOMIP-CCSD (Fig. 4.2b) methods. The superimposed solid curves represent

the analytic fit of the corresponding points. The parameters derived from the fits are

reported in Tables C1-C7 of the Appendix C, respectively.
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Figure 4.2: One dimensional cuts of the adiabatic potential energy surface of the X̃,
Ã, B̃, C̃, D̃ and Ẽ electronic states of PFBz+ along the dimensionless normal displace-
ment coordinate of the totally symmetric vibrational modes mentioned in the panel.
The potential energies obtained from the present theoretical model and calculated ab
initio (column (a): CASSCF-MRCI, column (b): EOMIP-CCSD) are shown by the
solid lines and points, respectively.

It can be seen from Fig. 4.2 that the X̃ and Ã states are energetically very close in the

entire range of nuclear coordinates in both sets of data. The crossing of these states

can be clearly seen along ν2 and ν9 vibrational modes. Such curve crossings acquire the

topography of CIs in multi-dimensional space. The location of the B̃ state is energetically

closer to the C̃-D̃-Ẽ electronic states in the EOMIP-CCSD energy data [cf., Table 4.3].

In both (CASSCF-MRCI and EOMIP-CCSD) energy data the entanglement of C̃-D̃-Ẽ

states can be seen [cf., Fig. 4.2]. Multiple crossings of these states lead to multiple

multi-dimensional CIs. The greater anharmonicity of the CASSCF-MRCI energies is

also revealed by the data plotted in Fig. 4.2. Various stationary points viz., the energy

of the minimum of the seam of CIs and the minimum of the states are calculated with
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the EOMIP-CCSD potential energy curves using a minimization algorithm employing

Lagrange multipliers. The numerical tools available in MATHEMATICA [157] are used

for this purpose. The results are tabulated in a matrix array in Table 6.8. In the

latter, the energies in the diagonal represent the minimum of a state and those in the

off-diagonal are the minimum of the intersection seam.

Table 4.4: Energy (in eV) of the equilibrium minimum of the state (diagonal entries)
and the minimum of its intersection seam with its neighbors (off-diagonal entries) of
PFBz+ calculated within a second-order coupling model and the EOMIP-CCSD elec-
tronic energy data.

X̃2A2 Ã2B1 B̃2B1 C̃2B2 D̃2A1 Ẽ2B2

X̃2A2 9.74 10.13 32.90 27.42 - 21.29

Ã2B1 - 10.12 - 26.71 22.60 23.25

B̃2B1 - - 12.97 15.22 15.62 17.00

C̃2B2 - - - 13.89 14.37 -

D̃2A1 - - - - 14.26 14.89

Ẽ2B2 - - - - - 14.84

The following remarks can be readily made by examining the data given in Table 6.8.

The energetic minimum of the B̃ state occurs well above its minimum of intersections

with the other states. The energetically closest one is the B̃-C̃ intersection minimum

occurring ∼2.25 eV above the minimum of the B̃ state. The minimum of the C̃ state

is however closer, ∼1.33 eV lower than the B̃-C̃ intersection minimum. The C̃-D̃-Ẽ

electronic states of PFBz+ are energetically close. The C̃-D̃ intersection minimum is

closer to their respective equilibrium minimum. This is also true for the D̃-Ẽ intersection

minimum. The latter is almost quasi-degenerate with the minimum of the Ẽ state.

It emerges from the above results and also from the potential energy curves of Fig. 4.2

that, X̃-Ã states of PFBz+ form an isolated pair and are energetically well separated

from the rest of their neighbors. The excitation strength of the vibrational modes is also

similar in both these states [cf., Table C1 and C3], except the vibrational mode ν8 has

somewhat larger coupling strength in the Ã state.

The X̃-Ã coupling is fairly strong along the ν28 mode of b2 symmetry and the coupling

is moderate along the vibrational modes ν21 and ν30 of b2 symmetry [cf., Tables C9 and

C10]. Although the C̃-D̃-Ẽ states are energetically close and their respective equilibrium

minimum is closer to various intersection minimum [cf., Table 6.8] the coupling of C̃-D̃

and D̃-Ẽ states is not very strong. As can be seen from Tables C9 and C10 that C̃-D̃

states are moderately coupled through vibrational modes ν22 and ν29 and weakly coupled

through ν26 of b2 symmetry. Likewise, D̃-Ẽ states are moderately coupled through ν21

and ν28 and weakly coupled through ν24, ν27 and ν30 vibrational modes of b2 symmetry.
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The impact of these couplings on the nuclear dynamics is examined below. For nuclear

dynamics formalism readers are referred to Ref. [14].

4.0.4 Results and Discussion

The vibronic band structure of the X̃-Ã-B̃-C̃-D̃-Ẽ coupled electronic manifold of PFBz+

is calculated and compared with the experimental photoionization spectroscopy results

of Ref. [25]. In order to develop a systematic understanding of the details, we in the

following examine the vibronic energy level structure of the uncoupled electronic states

first and include the coupling between states subsequently to reveal its impact on the

energy level structure. A time-independent matrix diagonalization method is used to

calculate the precise location of the energy levels of the uncoupled electronic states and

coupled two electronic states. Because of the dimensionality problem (as mentioned

above) this method could not be used in the complete coupled states situation. The

final spectral envelope for the entire coupled states situation is therefore calculated by

a time-dependent WP propagation method employing the Heidelberg MCTDH [131]

program modules.

4.0.4.1 Vibrational energy level spectrum of the uncoupled X̃, Ã, B̃, C̃, D̃

and Ẽ electronic states of PFBz+

The vibrational energy level spectrum of the uncoupled X̃, Ã, B̃, C̃, D̃ and Ẽ electronic

states of PFBz+ is calculated by a matrix diagonalization approach [14] using the Lanc-

zos algorithm. The theoretical calculations are carried out with ten totally symmetric

vibrational modes (ν2-ν11) and the vibronic Hamiltonian of Sec. 4.0.2 and the parame-

ters of Tables C1, C3, and C5. Both set of parameters derived from the CASSCF-MRCI

and EOMIP-CCSD electronic energies are used for these calculations and the corre-

sponding results are shown in panels a and b of Fig. 4.3, respectively. The HO basis

functions used along each mode in these calculations are given in Table C11 Appendix C.

The Hamiltonian of each state represented in the HO basis is diagonalized using 10,000

Lanczos iterations. The theoretical stick spectrum obtained from the diagonalization of

the Hamiltonian matrix is convoluted with the Lorentzian line shape function of 40 meV

FWHM to generate the spectral envelopes shown in Fig. 4.3.

The excitation of the fundamental of vibrational modes ν8, ν9 and ν11 is found in the X̃

state of PFBz+ calculated with both the CASSCF-MRCI and EOMIP-CCSD Hamilto-

nian parameters. The peaks are ∼578, ∼465, ∼303 cm−1 (CASSCF-MRCI) and ∼577,

∼488, ∼298 cm−1 (EOMIP-CCSD) spaced in energy and correspond to the frequency of

the vibrational modes ν8, ν9 and ν11, respectively. Peak spacings of ∼572, ∼458, ∼285



Chapter 4. PFBz+: Coupled two-states dynamics 58

910111213141516

XA

B
C

D

E

~

~

~

~
~

~

Energy  (eV)

R
el

at
iv

e 
in

te
n
si

ty
 (

ar
b
. 
u
n

it
s)

(a)

(b)
EOMIP-CCSD

CASSCF-MRCI

Figure 4.3: The stick vibrational spectrum and the convoluted envelope of the uncou-
pled X̃, Ã, B̃, C̃, D̃ and Ẽ electronic states of PFBz+, calculated with totally symmetric
vibrational modes using the CASSCF-MRCI (panel a) and EOMIP-CCSD (panel b)
Hamiltonian parameters.

cm−1 (CASSCF-MRCI) and ∼572, ∼460, ∼285 cm−1 (EOMIP-CCSD) corresponding

to the excitation of ν8, ν9 and ν11 vibrational modes, respectively, are found in the Ã

state. The extended progression of all the modes excited in both the X̃ and Ã states is

assigned and given in Tables C12 and C13 Appendix C, respectively.

In addition to the energetic location and excitation strength analysis, the assignment

of the peaks is also confirmed by examining the nodal pattern of the vibrational wave

functions. These wave functions are calculated by a block improved-relaxation method

as implemented in the MCTDH program module [129, 159, 160]. In Figs. C1 - C4 we

present a few vibrational eigenfunctions of the X̃ and Ã states. In these figures, the wave

function probability density is plotted in a suitable reduced dimensional space of normal

coordinates. In panels a-c, the wave function of the fundamental of ν8, ν9 and ν11 are

shown, respectively. It can be seen from these plots that the wave function develops a

node along the respective normal coordinate. The wave function for the overtone peaks

of the excited vibrational modes are shown in panels d-f. Two, three and four quantum

excitations along the first, second and third overtones, respectively, can be seen from

the plots. Some combination peaks are shown in panels g-l of Figs. C1 - C4.
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4.0.4.2 Coupled two-states results

In order to assess the impact of nonadiabatic coupling on the vibronic structure of

an individual state, we performed several coupled two states calculations. The overall

structure of the spectrum of the X̃ state does not change upon inclusion of its coupling

with the other states (i.e., Ã, B̃, C̃ and Ẽ) eventhough the coupling strength is moderate

[cf., Table C10]. This is because except Ã, the other states are energetically (vertically)

well separated from the X̃ state [cf., Table 4.3] and the energetic minimum of the seam

of its intersection with them lies well above its equilibrium minimum [cf., Table 6.8].

The WP initially prepared on the X̃ state does reaches the X̃-Ã crossing seam and some

population flows to the Ã state [cf., panel a of Fig. 4.4]. In this case the energetic

minimum of the intersection seam occurs ∼0.39 eV and ∼0.01 eV above the minimum

of the X̃ and Ã electronic states, respectively [cf., Table 6.8]. As a result, the impact

of the coupling is significant on the Ã state. The vibronic structure of the Ã state

and its electronic population dynamics bears the signature of this coupling effect. The

WP initially prepared on the Ã state accesses the X̃-Ã intersection seam and more

than ∼80% electronic population flows to the X̃ state within ∼22 fs [cf., panel b of

Fig. 4.4]. Such a huge population exchange causes a large increase in the spectral

line density and broadening of the vibronic spectrum of the Ã state. The X̃ and Ã

electronic bands resulting from these coupled X̃-Ã states calculations are shown in panels

a and b of Fig. 4.5, respectively. In addition to this, we examined the X̃-Ã coupled

states results obtained by the matrix diagonalization method. Based on the excitation

strength [cf., Tables C1, C3, C9 and C10] five totally symmetric vibrational modes

(ν2, ν3, ν4, ν9, ν11) and five coupling vibrational modes (ν21, ν24, ν28, ν29, ν30) of b2

symmetry are included in the calculation. The composite vibronic spectra of the X̃-Ã

coupled states of PFBz+ are shown in panels b and c of Fig. 4.6 and compared with

the experimental band plotted in panel a. The results of the panel b and c are obtained

with CASSCF-MRCI and EOMIP-CCSD Hamiltonian parameters, respectively. The

theoretical spectral envelope is obtained by convoluting the vibronic stick lines with a

Lorentzian line shape function of 40 meV FWHM. The theoretical spectrum of of the

X̃ state given in panel b and c is shifted by ∼0.9 eV and ∼0.6 eV, respectively, along

the abscissa to reproduce the experimental [25] adiabatic ionization energy. Because of

reduced dimensional calculations such shifts were necessary to account for the zero-point

energy. We also calculated the adiabatic ionization energy of the X̃ state by the CCSD

method. We obtained a value of ∼9.56 eV as compared to its experimental value of

∼9.64 eV [25]. It can be seen from Fig. 4.6 that the theoretical results are in very good

accord with the experimental band structure of the X̃-Ã coupled states.
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Figure 4.4: Time-dependence of the diabatic electronic populations in the coupled
X̃-Ã, B̃-C̃, C̃-D̃ and D̃-Ẽ states dynamics obtained by locating an initial WP on each
electronic state separately are shown in the panels a-b, c-d, e-f and g-h, respectively.
EOMIP-CCSD Hamiltonian parameters are used for these calculations.

The vibronic energy levels of the X̃-Ã coupled states are assigned by examining the

WP density plots in an analogous way as described in Sec. 5.2.2.1. The most probable

assignments of vibronic energy lines are presented in Tables C14, C15 and the WP

density plots of some of these assignments are shown in Figs. C5-C8 of the Appendix

C. The comparison with the data presented in Tables C12 and C13 reveals a slight

change of the energetic location of the fundamentals of the totally symmetric vibrational

modes. In contrast to the uncoupled state spectrum, the combination peaks of the totally

symmetric vibrational modes are not found in the coupled states spectrum of the X̃ state.

However, they are found in the Ã state both in the uncoupled state and coupled states

situations. In the X̃-Ã coupled states spectrum excitation of the vibrational modes of b2

symmetry is found. These vibrational modes also form combination peaks between them

and also with the totally symmetric modes. Less number of combination peaks are found

with the EOMIP-CCSD parameters as compared to the CASSCF-MRCI parameters.
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Figure 4.5: Composite vibronic band structure of the coupled X̃-Ã, B̃-C̃, C̃-D̃ and D̃-
Ẽ states of PFBz+ are shown in the panels a-b, c-d, e-f and g-h, respectively. The band
structures are calculated using the Hamiltonian parameters derived from the EOMIP-
CCSD energy data.

It can be seen from the results presented above that, the fundamental of the totally sym-

metric ν11 and ν9 vibrational modes appears at ∼300 cm−1 and ∼460 cm−1, respectively

[cf., Tables C14 and C15 of the Appendix C]. The latter is reported at ∼474 cm−1 in the

experiment [60] and is reasonably in good agreement with the present result. Inclusion

of X̃-Ã coupling increases the vibronic line density and causes a broadening of spectral

envelope. Because of large energy separation, the vibronic spectrum of the B̃, C̃, D̃ and

Ẽ states is not affected by their coupling with the X̃ state, as significantly as the Ã state.

The coupling between the Ã and B̃ states is approximated to zero, due to large energy

separation between them. The coupling of B̃ and C̃ states does not have impact on their

respective vibronic structure, as indicated by very little population exchange between

them [cf., panels c and d of Fig. 4.4].

In contrast to the above, the coupling between C̃-D̃ and D̃-Ẽ states have strong impact on

their respective vibronic structure. In case of C̃-D̃ coupled states, the energetic minimum

of the intersection seam occurs ∼0.48 eV and ∼0.11 eV above the estimated equilibrium



Chapter 4. PFBz+: Coupled two-states dynamics 62

Figure 4.6: Stick vibronic spectrum and convoluted envelope of the X̃-Ã coupled elec-
tronic states of PFBz+. Panels b and c are obtained with the Hamiltonian parameters
derived from the CASSCF-MRCI and EOMIP-CCSD, respectively. The experimental
X̃-Ã band is reproduced from Ref. [25] and shown in panel a.

minimum of the C̃ and D̃ states, respectively [cf., Table 6.8]. The coupling between

these states is also fairly strong. As a result large population exchange occurs between

them. In order to illustrate, time-dependence of the diabatic electronic population for

an initial transition to the C̃ and D̃ states in the C̃-D̃ coupled states situation is shown

in panels e and f of Fig. 4.4, respectively. It can be seen from the panel e of Fig. 4.4

that, the population of the C̃ state monotonically decays to ∼0.37 and that of the D̃

state grows to ∼0.67 in about 200 fs. As can be seen from panel f of Fig. 4.4, a large

fraction of population flows to both the electronic states in this case. This is because

the equilibrium minimum of the D̃ state is energetically very close to the minimum of

the C̃-D̃ CIs [cf., Table 6.8]. A sharp decay of population occurs within ∼20 fs followed

by quasi-periodic recurrences at longer times.

In case of coupled D̃-Ẽ states the energetic minimum of the intersection seam occurs

∼0.63 eV and ∼0.05 eV above the estimated equilibrium minimum of D̃ and Ẽ states,

respectively [cf., Table 6.8]. This leads to a very small amount of population transfer

to the Ẽ state when the WP is initially launched on the D̃ state [cf., panel g of Fig.

4.4]. Because of fairly strong coupling between the D̃ and Ẽ states and the fact that the
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minimum of their intersection seam is energetically very close to the minimum of the

Ẽ state [cf., Table 6.8], the coupling has strong impact on the dynamics of the Ẽ state.

The population of the Ẽ state sharply decays to ∼0.47 and that of the D̃ state grows to

∼0.53 within a short time of ∼23 fs [cf., panel h of Fig. 4.4] when the WP is initially

located on the Ẽ state. At longer times Ẽ state population decreases monotonically. The

vibronic band structures resulting from the above coupled-states calculations are shown

in Fig. 4.5.

4.0.4.3 Vibronic spectrum of coupled X̃-Ã-B̃-C̃-D̃-Ẽ electronic states

The vibronic spectrum of the coupled X̃-Ã-B̃-C̃-D̃-Ẽ is calculated and presented in this

section. Because of large vertical energy separation of the B̃ state from all other states,

we have performed nuclear dynamics calculations with two separate group of states

viz., X̃-Ã-B̃ and B̃-C̃-D̃-Ẽ. Both the CASSCF-MRCI and EOMIP-CCSD Hamiltonian

parameters are employed in the calculations. With the CASSCF-MRCI parameters 16

vibrational modes were necessary for both group of states and with the EOMIP-CCSD

parameters 16 and 24 vibrational modes, respectively, were necessary for the two group of

states noted above. Different coupling mechanism revealed by the CASSCF-MRCI and

EOMIP-CCSD parameters is reflected in the electronic population dynamics discussed

below. The different number of vibrational DOFs required for B̃-C̃-D̃-Ẽ coupled states

dynamics is assessed from the interstate coupling parameters obtained from the two sets

of electronic energy data. The coupling between B̃-D̃ states is absent in case of CASSCF-

MRCI [cf., Table C9] data. It can be seen from panel d of Figs. 4.7 and 4.8 that the

electronic population dynamics calculated with two sets of data differs significantly when

the C̃ state is initially populated.

The dynamics calculations are carried out by propagating WPs on the coupled elec-

tronic states using the Heidelberg MCTDH suite of program modules [131]. Six WP

calculations are performed by launching the initial WP on each of the six electronic

states separately. The details of the mode combination and the sizes of the basis sets

are given in Table C16. In each calculation WP is propagated for 200 fs. The time

autocorrelation function is damped with an exponential function of relaxation time 33

fs, and then Fourier transformed to obtain the spectrum. The results from six different

calculations are combined with equal weightage to generate the composite theoretical

band. The results obtained with the CASSCF-MRCI and EOMIP-CCSD Hamiltonian

parameters are shown in Fig. 4.9 along with the experimental results reproduced from

Ref. [25]. It can be seen from the figures [cf., panels (a)-(d) of Fig. 4.9] that the theo-

retical results are in good accord with the experimental band structures. While the first

band originates from highly overlapping X̃ and Ã electronic states, the third and fourth
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Figure 4.7: Time evolution of the diabatic electronic populations obtained in the
coupled X̃ 2A2-Ã 2B1-B̃ 2B1-C̃ 2B2-D̃ 2A1-Ẽ 2B2 states situation (using the parameter
set derived from the CASSCF-MRCI energy data) by locating an initial WP on each

of the X̃ 2A2, Ã 2B1, B̃ 2B1, C̃ 2B2, D̃ 2A1 and Ẽ 2B2 electronic states separately are
shown in the panels a, b, c, d, e and f, respectively.

bands are formed by highly overlapping C̃, D̃ and Ẽ electronic states. To this end, we

note that the vibronic band structures remain unchanged [cf., panel d of Fig. 4.9] upon

inclusion of the bilinear coupling parameters given in Table C8 of the Appendix C.

4.0.4.4 Internal conversion dynamics

The time-dependent populations of the six diabatic electronic states of PFBz+ in the

coupled (i.e., X̃-Ã-B̃ and B̃-C̃-D̃-Ẽ) states situation are recorded and examined in this

section. This is to unravel and understand the impact of various couplings on the dy-

namics of a given state. The results obtained by initially populating the X̃, Ã, B̃, C̃,

D̃ and Ẽ electronic states are shown in panels a-f of Figs. 4.7 and 4.8 calculated with

CASSCF-MRCI and EOMIP-CCSD parameters, respectively. The electronic popula-

tions are color-coded (online version) in the same way in all panels of the respective

figures. The electronic populations for an initial location of the WP on the X̃ state
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Figure 4.8: Same as Table 4.7 and using the parameter set derived from the EOMIP-
CCSD energy data.

shown in panel a of both Fig. 4.7 and Fig. 4.8 reveal a very little amount of population

transfer to the Ã and B̃ states. The minimum of the X̃-Ã CIs located ∼0.39 eV above

the minimum of the X̃ state and therefore the population transfer to the Ã state is not

significant. Because of the large energy separation between the X̃ and B̃ states, the

population transfer to the B̃ state is also negligible. On the other hand, a large amount

of population flows to the X̃ state when the WP initially placed on the Ã state [cf., panel

b of Figs. 4.7 and 4.8]. A decay rate of ∼15 fs can be estimated from the initial fast

decay of the population of the Ã state. The energetic minimum of the X̃-Ã CIs occurs

∼0.01 eV above the minimum of the Ã state and therefore causes such a rapid decay of

the Ã state population.

The population for an initial excitation of the WP to the B̃ state is shown in panel c of

Figs. 4.7 and 4.8. It can be seen that practically no population flows to all other states

when the WP is initially prepared on the B̃ state. This is due to the fact that the B̃

state is vertically well separated from all other states and the CIs of the B̃ state with

all other states are located at high energies and are not accessible to the WP during its

evolution on this state. This results into the observed sharp vibrational level structure
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Figure 4.9: Composite vibronic band structure of the coupled X̃-Ã-B̃-C̃-D̃-Ẽ electronic
states of PFBz+. The band structures calculated using the Hamiltonian parameters
derived from the CASSCF-MRCI and EOMIP-CCSD energy data are, respectively,
shown in panels b, c. The band structures obtained by including the bilinear coupling
parameters of Table C8 are plotted in panel d. The experimental result reproduced
from Ref. [25] is shown in panel a. The intensity in arbitrary units is plotted as a
function of the energy of the cationic vibronic states. The zero of the energy scale
corresponds to the energy of the equilibrium minimum of the electronic ground state
of neutral PFBz.

of the B̃ band [cf., panels a and b of Fig. 4.3]. This implies a long-lived nature of the

B̃ state and gives rise to the observed emission of PFBz+. We will return to this point

again later in the text.

Time-dependence of electronic populations for an initial location of the WP on the C̃

state is shown in panel d of Figs. 4.7 and 4.8. In this case the internal conversion takes
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place to both D̃ and B̃ states via the low-lying C̃-D̃ and B̃-D̃ CIs, respectively. At longer

times the WP from the D̃ state moves to the B̃ state via B̃-D̃ CIs, minimum of which

occurs∼1.36 eV above the minimum of the D̃ state. Although the overall picture remains

similar, the extent of population transfer obtained with the EOMIP-CCSD parameters

is far greater [cf., panel d of Fig. 4.8].

The WP initially prepared on the D̃ state quickly flows to the C̃ state (shown in panel e of

Figs. 4.7 and 4.8) via the energetically low-lying C̃-D̃ CIs. The minimum of the D̃ state

is only ∼0.11 eV below the minimum of C̃-D̃ intersections. The internal conversion to

the B̃ state appears to occur through the C̃ state as these states are strongly coupled via

the ν13 mode of a2 symmetry [cf., Tables C9 and C10 of the Appendix C]. A nonradiative

decay rate of ∼16 fs can be estimated from the population curve of D̃ state given in

panel e of Figs. 4.7 and 4.8.

The electron population dynamics becomes more complex and involved when the WP

is initially prepared on the Ẽ electronic state (shown in panel f of Figs. 4.7 and 4.8). In

this case, most of the population flows to the C̃ and D̃ electronic states. This is because

of strong nonadiabatic coupling among C̃, D̃ and Ẽ electronic states. Also, a large

population transfer is facilitated by the energetic proximity of the equilibrium minimum

and the minimum of various intersection seams in the C̃-D̃-Ẽ states. The initial fast

decay of the population relates to a life-time of ∼64 fs of the Ẽ state.

In summary, the results presented above show that the observed broad band photoioniza-

tion spectrum of PFBz+ is better reproduced with the Hamiltonian parameters extracted

from the EOMIP-CCSD electronic structure data, as compared to the same with the

CASSCF-MRCI data. The overall dynamical mechanism is qualitatively same in both

the cases as discussed in relation to the population dynamics. The superiority of the

EOMIP-CCSD data can not be judged in the present work, it requires more resolved

experimental data to be available in order to make a conclusive remark.

4.0.4.5 Radiative emission

The radiative emission of Bz+ and its fluoro derivatives was studied both experimentally

[25–46] and theoretically [47–51, 55, 143]. A clear radiative emission was observed for

three-fold fluorination or more of Bz+. It was found that Bz+, its monofluoro, difluoro

(abbreviated as MFBz+ and DFBz+, respectively) derivatives are non-emissive, except

the m-DFBz+ (the meta isomer) which emits weakly [39, 51]. Fluorescence emission was

observed for 1,3,5-trifluorobenzene radical cation (TFBz+). In the recent past some of

the experimental observations were explained in several extensive theoretical studies on

the electronically excited fluorobenzene radical cations [47–56, 143]. Vibronic coupling
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among electronic states was established to be the crucial mechanism that governs the

nonradiative decay and radiative emission in fluorinated Bz+.

Fluorination of Bz causes a stabilization of its σ-type of MOs. The stabilization increases

with increasing fluorination and causes an energetic re-ordering of the cationic states.

To understand the energetic ordering of electronic states of the fluorobenzene cations

more clearly, we have calculated the six lowest valence MOs of Bz, monofluorobenzene

(MFBz), difluorobenzene (DFBz) (o,m and p), trifluorobenzene (TFBz), PFBz and

Hexafluorobenzene (HFBz) and plotted their energies in Fig. 4.10. It can be seen from
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Figure 4.10: Energy location of the valence MOs of Bz and its fluroderivatives.

the figure that the HOMO of all molecules is of π type. Fluorination causes a reduction of

symmetry of Bz (D6h) which is restored again in HFBz. Due to this symmetry reduction

the degenerate E1g MO transforms to two non-degenerate MOs in MFBz and DFBz.

Because of high symmetry of 1,3,5-TFBz (D3h) the degeneracy of MOs is restored. The

degeneracy is again split in PFBz (C2v). It can be seen that the σ-type E2g MO of Bz

(HOMO-1) undergoes considerable energy shift upon fluorination, as compared to the

E1g (π) MO. The electronic states of the radical cations originating from ionization of

an electron from the above MOs are portrayed in Fig. 4.11. In this figure the VIEs of

the cationic states are calculated with the EOMIP-CCSD/aug-cc-pVDZ level of theory

and plotted. First of all it can be seen that the cationic states form two groups, X̃-Ã

and B̃-C̃-D̃-Ẽ. These two groups are fairly well separated in energy. The nonradiative

decay is governed by the interactions within and between the two groups. A second

observation that can be clearly made from the plot is that the states arising from the

2E2g (σ) MO of Bz are all shifted to higher energies in the fluorinated Bz+. This is due
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to a stabilization of the corresponding orbitals in the neutral molecules [cf., Fig. 4.10].

A third observation that can be made from Fig. 4.11 that the states arising out of a2u

(π) MO of Bz remain energetically unaffected for all fluorobenzene cations.

In Bz+ the Jahn-Teller split components of the X̃ and B̃ states form low energy CIs

which facilitates nonradiative decay and quenching of fluorescence [143]. The interaction

between the X̃-Ã and B̃-C̃-D̃ group of states gives rise to energetically accessible CIs for

nonradiative decay in MFBz+ and DFBz+. Among the three DFBz+ (o,m and p) the

energetic minimum of the relevant CIs occurs relatively at higher energy in the m-isomer

and gives rise to weak radiative emission of its C̃ state. The degenerate X̃ 2E
′′

and

excited B̃ 2E
′

electronic states of 1,3,5-TFBz+ are energetically well separated and the

intersections of these states with its Ã 2A
′′
2 state occurring in between occurs at higher

energies relative to the minimum of the latter state. As a result, minimal electronic

population flows to the Ã 2A
′′
2 state when the WP initially prepared on any of the

remaining states. Furthermore, the electron population dynamics of this state is not

affected at all by its coupling with the other states. The population of this state remains

at ∼100% for a long time and gives rise to radiative emission in 1,3,5-TFBz+.

An analogous situation (as in case of 1,3,5-TFBz+) can be sketched in case of PFBz+

by examining the results presented in Sec. 4.0.4.4. The data presented in Table 6.8

reveal that the B̃ state of PFBz+ is ∼2.85 eV above the Ã state and ∼1.0 eV below the

C̃ state. The B̃ state is not coupled with the Ã state on energy ground. However, it is

coupled to the C̃ state and the energetic minimum of the B̃-C̃ CIs occur at ∼15.22 eV

which is ∼2.25 eV above the B̃ state minimum. Despite strong B̃-C̃ coupling through

ν13 and ν14 vibrational modes of a2 symmetry [cf., Table C9], the coupling effect on the

population dynamics of the B̃ state is weak because of large energy gap. In fact, the

electron population does not flow to the other states when the WP is initially prepared

on the B̃ state [cf., Figs. 4.7 and 4.8]. The population curve of the B̃ state remains

parallel to the time axis. This indicates a long-lived nature of the B̃ state which gives

rise to radiative emission in PFBz+.

4.0.5 Summary

Vibronic coupling and quantum nuclear dynamics in the energetically lowest six elec-

tronic states of PFBz+ is studied in this chapter. Detailed electronic structure calcula-

tions are carried out by different ab initio quantum chemistry methods. With the aid of

the electronic structure results a model vibronic Hamiltonian is constructed in a diabatic

electronic basis in terms of the dimensionless normal displacement coordinates of the

vibrational modes. The coupling among different electronic states is evaluated by the

standard vibronic coupling theory and elementary symmetry selection rules. The nuclear
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Figure 4.11: VIEs of Bz and its fluoro derivatives.

dynamics calculations are carried out from first principles by both time-independent and

time-dependent methods. For the latter calculations the Heidelberg MCTDH suite of

program modules are utilized. It appears from the electronic structure data and subse-

quent dynamics results that the EOMIP-CCSD method does a superior job in this case.

It is by no means a conclusive remark in the absence of high resolution spectroscopy

data. It is established that the energetically lowest six electronic states separates into

two groups viz., X̃-Ã and B̃-C̃-D̃-Ẽ. The X̃ and Ã states form energetically accessible

CIs. The effect of the latter on the dynamics of the X̃ state is not as much as on the

same on the Ã state. This is because the minimum of the X̃ state is energetically well

separated from the minimum of the X̃-Ã CIs. The minimum of the Ã state on the other

hand is energetically very close to the minimum of the X̃-Ã intersections. Therefore, the

X̃-Ã coupling has a significant effect on the vibronic structure of the Ã state.

It is found that the B̃ state is energetically well separated from the rest of the states.

The coupling of B̃ state with others therefore has no significant effect on the vibronic

structure of the B̃ state. The population of this state remains ∼100% for a long time

when the dynamics started on it. The radiative emission in PFBz+ is therefore originates

from this state. The C̃-D̃-Ẽ electronic states are energetically close and therefore give

rise to highly overlapping vibronic bands. The theoretical results are shown to be in
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good accord with available experimental results.





Chapter 5

The Jahn-Teller and

pseudo-Jahn-Teller effects in

Hexafluorobenzene radical cation:

Radiative emission and

nonradiative decay

In continuation with Chapter 4, the theoretical photoelectron spectroscopy of Hexaflu-

orobenzene (HFBz) and its radiative emission and nonradiative decay dynamics are

examined in this chapter. HFBz is a highly symmetric molecule and its equilibrium

geometry belongs to the D6h symmetry point group. The radical cation HFBz+ of this

molecule possesses degenerate electronic states and vibrational modes. Therefore, this

molecule provides a unique platform to investigate multi-mode Jahn-Teller (JT) and

pseudo-Jahn-Teller (PJT) effects in its ionic states. This study helps us to understand

the complexity involved in the theoretical treatment of large molecular systems.

Many previous investigations have reported the He I [26, 27, 172–178] and He II [25, 27]

photoelectron spectra of HFBz. They have shown that ionization from each outer-

most orbital gives rise to a well-separated band located in the binding energy range

of ∼9.5-15.5 eV. Each of these bands exhibits a vibrational structure. Also, the fluo-

robenzene radical cations have received considerable attention to unravel the effect of

fluorine substitution on the emissive properties of their excited electronic states [39–46].

Laser-induced fluorescence technique was used extensively for this purpose [179, 180].

The perfluoro effect in photoelectron spectroscopy of HFBz was studied by Brundle et

al. [34] and Decleva et al. [181]. The valence shell electronic structure of HFBz has been

73
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studied both experimentally and theoretically by Holland et al. [182]. Despite several

experimental and theoretical studies, a detailed theoretical study of multi-mode JT and

PJT interactions in the electronic states of HFBz+ is missing in the literature. There-

fore, in this chapter we discussed the multi-mode JT and PJT interaction in the first

four energetically low-lying electronic states and the mechanistic details of the radiative

emission of HFBz+ using ab initio quantum dynamical approach in a greater detail.

The valence shell molecular orbital (MO) sequence of HFBz in its electronic ground

state (1A1g) reads (core)(4a1g)
2(4e1u)4(4e2g)

4(1b2u)2(5a1g)
2(4b1u)2(1a1u)2(5e2g)

4(5e1u)4

(1e1g)
4(1e2u)4(1b2g)

2(6e1u)4(1a2g)
2(6e2g)

4(2b2u)2(2a2u)2(2e1g)
4. Ionization from the high-

est occupied MO and the inner ones gives rise to X̃ 2E1g, Ã 2A2u, B̃ 2B2u and C̃ 2E2g

electronic states of HFBz+ in the order of increasing energy.

A vibronic coupling model is developed here to investigate the nuclear dynamics in the

mentioned four (altogether six states when the JT splitting is taken into consideration)

electronic states. The electronic PESs are calculated ab initio by EOMIP-CCSD [165,

166] method. The coupling strength of all vibrational modes on four electronic states

is calculated and the relevant vibrational modes are included in the study based on

the coupling strength. First principles nuclear dynamics study is carried out by time-

independent and time-dependent quantum mechanical methods.

The vibronic coupling model was developed using the standard vibronic coupling theory

[14]. The latter relies on the concept of diabatic electronic state, Taylor expansion

of the elements of the diabatic electronic matrix in terms of the normal coordinate of

vibrational mode and elementary symmetry rules. The dynamics study is carried out

using a time-independent matrix diagonalization method [14]. This enables to determine

the precise location of the vibronic energy levels and aids in their assignments. The

time-dependent calculations are carried out by propagating wave packets (WPs). The

multi-configuration time-dependent Hartree (MCTDH) method developed at Heidelberg

[119, 127, 128, 131] is used for this purpose. This exercise enables us to calculate the

broad band electronic spectra and to study the mechanistic details of radiative and

nonradiative decay of excited electronic states. The results of this study are shown to

be in good accord with the available experimental results.

5.1 Theory and computational details

5.1.1 Electronic structure calculations of the HFBz

The optimized equilibrium geometry of the electronic ground state of the HFBz molecule

is calculated using second-order Møller-Plesset perturbation (MP2) theory employing the
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Figure 5.1: Schematic representation of the equilibrium minimum structure of the
electronic ground state of HFBz.

augmented correlation-consistent polarized valence double zeta (aug-cc-pVDZ) basis set

of Dunning [149]. Gaussian-09 [150] suite of the program is used for the calculations.

The electronic ground term of HFBz is 1A1g and the equilibrium geometry converged

to the D6h point group symmetry. This is the reference state in this study and the

vibrational motions in this state are treated as harmonic. The frequency (ωi) of the thirty

vibrational modes at the optimized equilibrium geometry is calculated by diagonalizing

the kinematic (G) and ab initio force constant (F) matrix at the same level of theory.

The mass-weighted normal displacement co-ordinates are derived from the eigenvectors

of the GF matrix and are transformed to the dimensionless form (Q) by multiplying

with
√
ωi (in a.u. ~=1) [92].

The optimized equilibrium geometry of HFBz is shown in Fig. 5.1 with atom numbering.

The experimental [183] and calculated structural constants are the following.

Experimental : C-C = 1.391 ± 0.007 Å

C-F = 1.327 ± 0.007 Å

Calculated : C-C = 1.4011 Å

C-F = 1.3461 Å

The harmonic frequency of the vibrational modes and their symmetry are given in Table

5.1 along with the literature data [155, 156] for comparison. It can be seen from Table

5.1 that the present data compare well with the experimental as well as the theoretical

results available in the literature.

In order to study the nuclear dynamics, the PESs of the four electronic states of HFBz+
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Table 5.1: Symmetry designation and harmonic frequency of vibrational modes of the
ground state of HFBz MP2/aug-cc-pVDZ level of theory.

Sym. Mode This work Experiment [184] Description of the modes
eV cm−1 cm−1

a1g ν1 0.1874 1512 1493 C-F stretching in-phase
ν2 0.0686 553 556 Ring breathing

a2g ν3 0.0968 781 788 C-F in-plane bending, in-phase
a2u ν4 0.0261 211 210 C-F out-of-plane bending, in-phase
b1u ν5 0.1507 1276 1330 C-F trigonal stretching

ν6 0.0727 586 600 C-C-C trigonal bending
b2g ν7 0.0577 465 719 C-F out-of-plane trigonal

ν8 0.0222 179 205 C-C-C Puckering
b2u ν9 0.1825 1472 1252 C-C stretching (kekule)

ν10 0.0341 275 278 C-F in plane trigonal bending
e1g ν11 0.0448 361 365 C-F out-of-plane bending
e1u ν12 0.1921 1550 1533 C-C stretching

ν13 0.1236 997 1019 C-F stretching
ν14 0.0387 312 313 C-F in-plane bending

e2g ν15 0.2093 1688 1656 C-C stretching
ν16 0.1420 1145 1162 C-F stretching
ν17 0.0541 436 440 C-C-C in-plane bending
ν18 0.0328 264 267 C-F in-plane bending

e2u ν19 0.0757 611 645 C-C-C out-of-plane
ν20 0.0169 136 137 C-F out-of-plane

mentioned in the introduction are calculated along the dimensionless normal displace-

ment coordinates of the reference electronic ground state of HFBz. The adiabatic poten-

tial energies are calculated by the EOMIP-CCSD method employing the aug-cc-pVDZ

basis set. The EOMIP-CCSD calculations are carried out using the CFOUR [171] suite

of programs. The vertical ionization energies (VIEs) are calculated along the dimen-

sionless normal displacement coordinate of each vibrational mode.

The VIEs calculated at the equilibrium geometry of the reference state are given in Table

5.2, along with the literature data [25]. In addition to the EOMIP-CCSD results, the

VIEs calculated by the outer valence Green’s function (OVGF) method are also given

in Table 5.2. It can be seen from Table 5.2 that EOMIP-CCSD results are closer to the

experimental data as compared to the OVGF results. A close look at the data given

in Table 5.2 reveals that the X̃ 2E1g state is energetically well separated from all other

electronic states and the Ã 2A2u, B̃ 2B2u, C̃ 2E2g electronic states are close in energy

at the vertical configuration. Therefore, vibronic coupling appears to be an important

mechanism for governing nuclear dynamics in these states.
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Table 5.2: Vertical ionization energy (in eV) of the energetically lowest five electronic
states of HFBz+ calculated at the equilibrium geometry of the electronic ground state
of HFBz (reference).

State OVGF EOMIP-CCSD Expt. [25]

X̃ 2E1g 9.89 10.24 10.2

Ã 2A2u 12.97 13.18 12.8

B̃ 2B2u 14.35 14.14 14.0

C̃ 2E2g 15.24 15.03 14.8

D̃ 2A2g 16.56 16.25 15.0

5.1.2 Theoretical approach to study the vibronic coupling

A vibronic coupling model of the four energetically lowest electronic states X̃ 2E1g,

Ã 2A2u, B̃ 2B2u, and C̃ 2E2g of HFBz+ is constructed in this section. The model is

based on the framework of standard vibronic coupling theory, symmetry selection rules,

a diabatic electronic basis, and dimensionless normal displacement coordinates of the

vibrational modes [14]. The thirty vibrational modes of the electronic ground state

of HFBz transform to the following irreducible representations (IRREPs) of the D6h

symmetry point group.

Γvib = 2a1g + a2g + a2u + 2b1u + 2b2g + 2b2u + e1g + 3e1u + 4e2g + 2e2u. (5.1)

The symmetry selection rules are governed by the coupling constants within (intra) and

between (inter) electronic states;

(Γj)
2 ⊃ Γi, (5.2a)

Γj ⊗ Γk ⊃ Γi, (5.2b)

respectively [14]. According to Eq. (5.2a), the IRREP Γi of the vibrational mode i

has to be contained in the symmetrized direct product of the electronic IRREP Γj with

itself in order that the intrastate coupling constants. The analogous selection rule, Eq.

(5.2b), applies to the inter-state coupling constant.

For the nondegenerate Ã 2A2u and B̃ 2B2u electronic states of HFBz+ according to

Eq. (5.2a), only the totally symmetric (a1g) vibrations ν1 and ν2 can couple in their

respective order. For the degenerate X̃ 2E1g and C̃ 2E2g electronic states, one has

(E1g)
2 = (E2g)

2 = a1g + e2g. (5.3)

In the above equation, the vibrational modes of a1g symmetry cannot lift the electronic

degeneracy (i.e., they are condon active), and the modes of e2g symmetry can lift the
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electronic degeneracy and are JT active modes. The vibrational modes active in elec-

tronically off-diagonal couplings are identified by applying Eq. (5.2b) for each pair of

the four electronic states of HFBz+ enumerated above. This type of interaction is called

PJT activity or PJT coupling.

E1g ⊗A2u = B2u ⊗ E2g = e1u, (5.4a)

E1g ⊗B2u = A2u ⊗ E2g = e2u. (5.4b)

Using the above mentioned symmetry selection rules and the standard vibronic coupling

theory, the Hamiltonian can be written in a diabatic electronic basis as [14]

H = H016 + ∆H, (5.5)

with

H0 = TN + V0, (5.6)

TN = −1

2

∑
i∈ a1g

ωi
∂2

∂Q2
i

− 1

2

∑
i∈ e1g ,e1u,e2g ,e2u

ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (5.7)

V0 =
1

2

∑
i∈ a1g

ωiQ
2
i +

1

2

∑
i∈ e1g ,e1u,e2g ,e2u

ωi
(
Q2
ix +Q2

iy

)
, (5.8)

and

∆H =



Wx
X̃
Wxy

X̃

∑
i∈e1u

λ
′
iQix

∑
i∈e2u

λ
′
iQix 0 0

Wy

X̃
−
∑
i∈e1u

λ
′
iQiy −

∑
i∈e2u

λ
′
iQiy 0 0

W
Ã

0
∑
i∈e2u

λ
′
iQix −

∑
i∈e2u

λ
′
iQiy

h.c. W
B̃

∑
i∈e1u

λ
′
iQix −

∑
i∈e1u

λ
′
iQiy

Wx
C̃

Wxy

C̃

Wy

C̃


. (5.9)

In Eq. (5.5), the quantity 16 represents a 6×6 unit matrix. The Hamiltonian of the

harmonic reference electronic ground state of HFBz is denoted by H0 and is defined in

Eqs. (5.6-5.8). The quantity ∆H defines the change in electronic energy upon ionization

to HFBz+.
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The elements of the matrix Hamiltonian ∆H are expanded in a Taylor series around the

equilibrium geometry of the reference state at Q=0 as

Wx/y
j =E0

j +
∑
i∈a1g

κ
(1)j
i Qi +

1

2!

∑
i∈a1g

κ
(2)j
i Q2

i

+
∑

i∈e1g ,e1u,e2g ,e2u

[
1

2!
a

(2)j
i

(
Q2
ix +Q2

iy

)
+

1

3!
a

(3)j
i

(
2Q3

ix − 6QixQ
2
iy

)]

+
∑

i∈e1g ,e1u,e2g ,e2u

[
1

4!
a

(4)j
i

(
Q4
ix + 2Q2

ixQ
2
iy +Q4

iy

)]

±
∑

i∈e1g ,e1u,e2g ,e2u

[
λ

(1)j
i Qix +

1

2!
λ

(2)j
i

(
Q2
ix −Q2

iy

)
+

1

3!
λ

(3)j
i

(
Q3
ix +QixQ

2
iy

)]

±
∑

i∈e1g ,e1u,e2g ,e2u

[
1

4!
λ

(4)j
i (Q4

ix − 6Q2
ixQ

2
iy +Q4

iy) +
1

4!
λ

(4′)j
i (Q4

ix −Q4
iy)

]
; j ∈ X̃, C̃

(5.10)

Wxy
j =

∑
i∈e2g

[
λ

(1)j
i Qiy −

1

2!
2λ

(2)j
i QixQiy +

1

3!
λ

(3)j
i

(
Q2
ixQiy +Q3

iy

)]
+

1

4!

∑
i∈e2g

[
λ

(4)j
i

(
4Q3

ixQiy − 4QixQ
3
iy

)
+ λ

(4′)j
i

(
−2Q3

ixQiy − 2QixQ
3
iy

)]
; j ∈ X̃, C̃,

(5.11)

Wj =E0
j +

∑
i∈a1g

κ
(1)j
i Qi +

1

2!

∑
i∈a1g

κ
(2)j
i Q2

i

+
∑

i∈e1g ,e1u,e2g ,e2u

[
1

2!
a

(2)j
i

(
Q2
ix +Q2

iy

)
+

1

4!
a

(4)j
i

(
Q4
ix + 2Q2

ixQ
2
iy +Q4

iy

)]
; j ∈ Ã, B̃

(5.12)

where x and y denotes the two components of the degenerate electronic states and vi-

brational modes. The VIEs of the jth electronic state is denoted by E0
j . The quantities

κ
(n)j
i and a

(n)j
i are the nth order intra-state coupling parameters for the totally sym-

metric and degenerate vibrational modes, respectively, of the jth electronic state. The

quantity λ
(n)j
i denote the nth order inter-state JT coupling parameter of the jth elec-

tronic state and λ′i represent the linear PJT coupling parameter of the ith vibrational

mode between the electronic states. The ± sign in Eq. (5.10) is applicable to the x

(+) and y (-) components of the degenerate electronic state. All the Hamiltonian pa-

rameters are evaluated by non-linear least-squares fitting of the 6×6 diabatic potential

matrix [cf., Eq. (5.9)] to the ab initio energies. The estimated parameters along the

relevant vibrational modes are given in Tables 5.3 to 5.5. Note that the parameters of

odd-order for degenerate vibrational modes do not appear in Eq. (5.12) in accordance

with the symmetry selection rule. As we can see from these coupling parameters, not all

30 DOFs play significant role in the nuclear dynamics on the cationic electronic states

of HFBz considered in this article. Therefore, only the relevant DOFs are retained in

the nuclear dynamics study presented below.
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Table 5.3: Ab initio calculated linear (κ
(1)
i , λ

(1)
i ), quadratic (κ

(2)
i , a

(2)
i , λ

(2)
i ) and

quartic (a
(4)
i ) coupling parameters for the X̃ 2E1g, Ã 2A2u, B̃ 2B2u and C̃ 2E2g electronic

states of HFBz+. All quantities are in eV and the dimensionless Poisson parameters

( κi
2

2ωi2
or λi

2

2ωi2
) are given in the parentheses.

X̃ 2E1g Ã 2A2u

Symm. Mode κ
(1)
i κ

(2)
i κ

(1)
i κ

(2)
i

a1g ν1 -0.2728 (1.059545) -0.0066 -0.2887 (1.186655) -0.0141
ν2 0.0355 (0.133899) -0.0012 -0.0147 (0.022959) -0.0001

λ
(1)
i a

(2)
i λ

(2)
i a

(2)
i a

(4)
i

e1g ν11 -0.00005(0.000001) 0.0130 -0.0198 -0.0102 0.0003

e1u ν12 0.00000(0.00000) -0.0146 0.0081 0.0128 -0.0009
ν13 -0.00001(0.00000) -0.0033 0.0011 -0.0030 0.0000
ν14 0.00007(0.000002) 0.0052 0.0010 0.0041 0.0000

e2g ν15 0.1689 (0.3256) 0.0030 -0.00030 0.0023 -0.00010
ν16 0.0241 (0.0144) -0.0064 0.00011 -0.0058 0.00005
ν17 0.0684 (0.7993) -0.0036 0.00010 -0.0020 0.00100
ν18 0.0327 (0.4969) 0.0055 -0.00020 0.0049 0.00000

e2u ν19 0.00008(0.000001) 0.0015 0.00340 -0.0138 0.0006
ν20 -0.00003(0.000001) 0.0024 0.00032 0.0015 0.0000

B̃ 2B2u C̃ 2E2g

Symm. Mode κ
(1)
i κ

(2)
i κ

(1)
i κ

(2)
i

a1g ν1 -0.2440 (0.8476) -0.0201 -0.1325 (0.2499) -0.0169
ν2 0.0140 (0.0208) -0.0014 0.0166 (0.0293) -0.0019

a
(2)
i a

(4)
i λ

(1)
i a

(2)
i λ

(2)
i

e1g ν11 0.0054 -0.0003 0.0000 (0.0000) 0.0022 0.0063

e1u ν12 -0.0692 0.0063 0.0000 (0.0000) -0.0032 0.0173
ν13 -0.0179 0.0007 0.0063 (0.0013) -0.0035 0.0000
ν14 0.0015 0.0000 0.0000 (0.0000) -0.0022 0.0000

e2g ν15 -0.0221 0.0005 0.1482 (0.2507) -0.0340 0.00030
ν16 -0.0096 0.0000 0.0123 (0.0037) -0.0184 -0.00006
ν17 -0.0092 0.0000 0.0318 (0.1728) -0.0065 0.00005
ν18 0.0085 0.0000 0.0046 (0.0098) 0.0007 0.00002

e2u ν19 -0.0113 0.0000 0.0007 (0.00004) -0.0095 0.01315
ν20 0.0025 0.0000 0.0002 (0.00007) 0.0019 0.00186

Table 5.4: Ab initio calculated higher-order coupling parameters for the X̃ 2E1g and

C̃ 2E2g electronic states of HFBz+. All quantities are in eV.

Symm. Mode a
(3)
i λ

(3)
i a

(4)
i λ

(4)
i λ

(4′)
i

X̃ 2E1g e1g ν11 8.5481×10−10 -0.00061 -0.00090 0.00033 0.00033

e2u ν19 -3.7277×10−10 -0.00009 0.00040 0.00007 0.00007

C̃ 2E2g e1u ν12 -0.3538×10−10 -0.1635×10−08 -0.004368 -0.004911 -0.3991×10−09

ν13 -0.1054×10−08 0.001263 -0.001207 0.4934×10−08 0.2667×10−08

e2g ν16 -0.3806×10−04 0.003438 - - -

ν18 -0.1010×10−04 0.002581 - - -

Table 5.5: PJT coupling (λ
′

i) parameters (in eV) between the electronic states. Cou-
pling strengths are given in the parenthesis.

Sym. Mode λ
′X̃Ã
i λ

′X̃B̃
i λ

′X̃C̃
i λ

′ÃC̃
i λ

′B̃C̃
i

e1g ν11 - - 0.0000 - -

e1u ν12 0.2084(0.5884) - - - 0.1902(0.4901)
ν13 0.0177(0.0102) - - - 0.0641(0.1345)
ν14 0.0000(0.0000) - - - 0.0346(0.3997)

e2u ν19 - 0.0000(0.0000) - 0.0562(0.2756) -
ν20 - 0.0103(0.1857) - 0.0220(0.8473) -
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5.2 Results and Discussion

5.2.1 Topography of the potential energy curves

One dimensional cuts of the adiabatic PESs of the four lowest cationic electronic states

X̃ 2E1g, Ã 2A2u, B̃ 2B2u, and C̃ 2E2g of the HFBz along the dimensionless normal

displacement coordinates of the totally symmetric vibrational modes (a1g; ν1 and ν2)

and the x component of the JT active degenerate vibrational modes (e2g; ν15 − ν18)

keeping others at their equilibrium values at, Q=0, are shown in Figs. 5.2(a-b) and

5.3(a-d), respectively, together with the fitted polynomial functions used in our diabatic

model Hamiltonian [cf., Eq. (5.5)]. It can be seen from these figures that the calculated

ab initio points are well reproduced by the present theoretical model constructed in Sec.

5.1.2. We note that up to a second- and fourth-order Taylor expansion of the electronic

Hamiltonian along the a1g and e2g vibrational modes are adequate to represent the ab

initio points extremely well, respectively. The degeneracy of the X̃ 2E1g and C̃ 2E2g

states remains unperturbed upon distortion along the a1g vibrational modes [cf., Fig.

5.2]. Also, in these figures, the ground electronic state (X̃ 2E1g) of the cationic HFBz

is energetically well separated from the Ã 2A2u, B̃ 2B2u, and C̃ 2E2g electronic states.

The latter states are energetically close in energy at the distorted geometry [cf., panel

(a) of Fig. 5.2]. The displacement of the minimum of all the electronic states (X̃ 2E1g to

C̃ 2E2g) is most significant along the ν1 (C-F stretching in-phase) vibrational mode, and

it is strongly condon active. Along the ν2 vibrational mode the minimum of the electronic

states is not relatively shifted as compared to the ν1 mode. The above distortions are in

accordance with the first-order coupling strength of the given vibrational modes in the

given electronic state [cf., Table 5.3].

Using the fitting parameters [cf., Table 5.3] of the X̃ 2E1g to C̃ 2E2g electronic states along

the a1g vibrational modes, the stationary points of the PESs are examined here. These

stationary points are calculated within a second-order coupling model and a constrained

optimization using a Lagrange multiplier [157], and the results are tabulated in a matrix

array in Table 5.6. The numbers in this table, both diagonal and off-diagonal represent

the equilibrium minimum of a state and energetic minimum of the seam of CIs of the

PESs, respectively. It can be seen from this table that the X̃ 2E1g state minimum

is energetically well separated from all other electronic states, and their intersection

minimum is also very high in energy [cf., Table 5.6]. The energetic minimum of the latter

states are close in energy (∼1 eV) and overall the intersections between the electronic

states are reasonably high in energy.

In contrast to the condon active (a1g) vibrational modes, the degenerate (e2g) vibrational

modes are JT active (in first-order) and lift the electronic degeneracy of the X̃ 2E1g and



Chapter 5. HFBz+: Topography of PESs 82

10

12

14

16

18

20

22

-8 -4 0 4 8
10

12

14

16

Q

P
o
te

n
ti

al
 e

n
er

g
y
 (

eV
)

(a)

(b)

ν
1

ν
2

X
2
E

1g

A
2
A

2u

B
2
B

2u

C
2
E

2g

~

~

~

~

Figure 5.2: Adiabatic potential energy surfaces of the HFBz+ along the totally sym-
metric modes.

Table 5.6: Energy (in eV) of the equilibrium minimum of the state (diagonal entries)
and the minimum of its intersection seam with its neighbors (off-diagonal entries) of
HFBz+ calculated within a second-order coupling model.

X̃ 2E1g Ã 2A2u B̃ 2B2u C̃ 2E2g

X̃ 2E1g 10.02 58.43 59.52 50.80

Ã 2A2u - 12.94 25.62 25.31

B̃ 2B2u - - 13.96 23.51

C̃ 2E2g - - - 14.98

C̃ 2E2g states of the HFBz+ [cf., panels (a-d) of Fig. 5.3]. It can be seen from Fig. 5.3

that the extent of splitting of electronic degeneracy of the X̃ 2E1g state is larger than

the C̃ 2E2g state. The extent of splitting of the degeneracy depends on the JT coupling

strength (λ(1)2
/2ω2) of the degenerate (e2g) vibrational modes [cf., Table 5.3]. It can be

seen from Table 5.3 that among the four e2g vibrational modes, ν17 is strong, ν15 and ν18

are moderate JT coupling strengths in the X̃ 2E1g state. In the C̃ 2E2g electronic state,

the vibrational modes of ν15 and ν17 are strong and moderate JT coupling strengths,

respectively. The splitting of the JT active electronic states leads to a total of six

electronic states (altogether) to be considered to treat the nuclear dynamics in the

coupled X̃ 2E1g-Ã
2A2u-B̃ 2B2u-C̃ 2E2g electronic states of the HFBz+.

It is well known that JT distortion causes symmetry breaking [14, 117]. As a result the
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Figure 5.3: Adiabatic potential energy surfaces of the HFBz+ along the e2g vibrational
modes.

lower adiabatic sheet of the JT split X̃ 2E1g and C̃ 2E2g electronic states develops new

minima at a reduced point group symmetry. So, it is worthwhile to examine the various

stationary points that appear on the JT split electronic surfaces. Using the electronic

structure data and within a second-order vibronic coupling model, we calculated the

energetic minimum of the JT split lower adiabatic sheets and saddle points of both

X̃ 2E1g and C̃ 2E2g electronic states. The following equations can be derived [185, 186]

Vmin− = E0
j −

1

2

∑
i∈a1g

(
κ

(1)
i

)2(
ωi + κ

(2)
i

) − 1

2

∑
i∈e2g

(
λ

(1)
i

)2(
ωi + a

(2)
i − |λ

(2)
i |
) ; j ∈ X̃, C̃ (5.13)

Vsp− = E0
j −

1

2

∑
i∈a1g

(
κ

(1)
i

)2(
ωi + κ

(2)
i

) − 1

2

∑
i∈e2g

(
λ

(1)
i

)2(
ωi + a

(2)
i + |λ(2)

i |
) ; j ∈ X̃, C̃.(5.14)

The minimum of the seam of CIs occurs at an energy

VminCI = E0
j −

1

2

∑
i∈a1g

(
κ

(1)
i

)2(
ωi + κ

(2)
i

) ; j ∈ X̃, C̃. (5.15)
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The JT stabilization energy is given by

EJT =
1

2

∑
i∈e2g

(
λ

(1)
i

)2(
ωi + a

(2)
i − |λ

(2)
i |
) . (5.16)

The derivation of mathematical steps to arrive at the above equations are given in

Appendix D. In case of the X̃ 2E1g state, the energetic minimum and saddle points

appear at ∼9.8908 eV and ∼9.8914 eV, respectively. On the other hand, the C̃ 2E2g

state energetic minimum and saddle points appear at ∼14.9052 eV and ∼14.9055 eV,

respectively. These two states stationary points indicates that the barrier to pseudo

rotation is low. The JT stabilization energies amounts to ∼0.13 eV and ∼0.07 eV for

the X̃ 2E1g and C̃ 2E2g electronic states, respectively.

5.2.2 Vibronic structure in the photoelectron spectrum of HFBz

The vibronic band structure of the photoelectron spectrum of HFBz is calculated and

compared with the available experimental [178] results in this section. The vibronic

model Hamiltonian constructed in Sec. 5.1.2, the parameters of Tables 5.1-5.5, and both

time-independent and time-dependent methods within the MCTDH framework [131]

have been utilized for this purpose. In order to develop a systematic understanding

of the nonadiabatic dynamics, we first construct various reduced dimensional modes

and examine the vibrational energy levels of each of the considered electronic states by

excluding the PJT coupling with their neighboring states. From these results, we can

understand the role of various vibrational modes and electronic states in the overall

vibronic band structures of the HFBz+.

5.2.2.1 Vibrational energy level spectrum of the uncoupled X̃, Ã, B̃ and C̃

electronic states of HFBz+

The vibrational energy level spectrum of the uncoupled X̃ 2E1g, Ã 2A2u, B̃ 2B2u and

C̃ 2E2g electronic states of HFBz+ is calculated by time-independent matrix diagonal-

ization approach using the Lanczos algorithm [122]. An advantage of this approach is

that in addition to the spectral envelope, individual transitions (i.e., vibrational pro-

gressions) can be computed. Nevertheless, because of the dimensionality problem, this

method could not be used in the complete coupled states situation.

The vibronic band structures of the uncoupled (without PJT coupling) Ã 2A2u and

B̃ 2B2u electronic states are shown in Fig. 5.4. The experimental [178] band structures

are shown in Fig. 5.4(a and c). The stick line spectra and the convoluted envelopes are
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Figure 5.4: The Ã 2A2u and B̃ 2B2u photoelectron bands of HFBz: (a) and (c)
experimental spectrum [178], (b) and (d) theoretical band structures in the uncoupled
states situation using the time-independent Lanczos approach.

Table 5.7: Vibrational energy levels (in cm−1) of the X̃ 2E1g, Ã 2A2u, B̃ 2B2u and

C̃ 2E2g electronic states of HFBz+ obtained from the uncoupled state calculations.
The assignment of the levels carried out by examining the nodal pattern of the wave
functions is included in the table.

X̃ 2E1g Ã 2A2u B̃ 2B2u C̃ 2E2g
Energy Assignment Energy Assignment Energy Assignment Energy Assignment

0 000 0 000 0 000 0 000
548 ν2

1
0 553 ν2

1
0 548 ν2

1
0 545 ν2

1
0

1097 ν2
2
0 1106 ν2

2
0 1095 ν2

2
0 1091 ν2

2
0

1485 ν1
1
0 1453 ν1

1
0 1428 ν1

1
0 1442 ν1

1
0

1645 ν2
3
0 1659 ν2

3
0 1643 ν2

3
0 1637 ν2

3
0

2033 ν1
1
0+ν2

1
0 2006 ν1

1
0+ν2

1
0 1976 ν1

1
0+ν2

1
0 1987 ν1

1
0+ν2

1
0

2194 ν2
4
0 2559 ν1

1
0+ν2

2
0 2523 ν1

1
0+ν2

2
0 2533 ν1

1
0+ν2

2
0

2581 ν1
1
0+ν2

2
0 2907 ν1

2
0 2856 ν1

2
0 2883 ν1

2
0

2742 ν2
5
0 3112 ν1

1
0+ν2

3
0 3071 ν1

1
0+ν2

3
0 3078 ν1

1
0+ν2

3
0

2969 ν1
2
0 3460 ν1

2
0+ν2

1
0 3404 ν1

2
0+ν2

1
0 3429 ν1

2
0+ν1

1
0

3130 ν1
1
0+ν2

3
0 4360 ν1

3
0

3518 ν1
2
0+ν2

1
0

shown in Fig. 5.4(b and d). For these the ν1 and ν2 a1g-vibrational modes were taken

into account and the maximum quantum numbers of the respective HO basis functions

were 40 and 28, respectively. The resulting secular matrix is diagonalized using 10000

Lanczos iterations. The spectral envelopes were calculated by convoluting the theoretical

stick lines with the Lorentzians characterized by the full width at the half maximum
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(FWHM) of 0.03 eV. The same convolution procedure is used for all the later stick data

presented in this chapter.

The vibronic structure of the uncoupled Ã 2A2u electronic state [cf., Fig. 5.4(b)] reveals

that both ν1 and ν2 vibrational modes make progressions with peak spacings of ∼1453

and ∼553 cm−1, respectively. Among these two vibrational modes, ν1 (C-F stretching

in-phase) forms the dominant progression in this state and ν2 (ring breathing) mode is

moderately excited in accord with their excitation strength [cf., Table 5.3]. Similarly,

the ν1 (∼1428 cm−1) and ν2 (∼548 cm−1) modes are strongly and moderately excited,

respectively, in the B̃ 2B2u electronic state [cf., Fig. 5.4(d)]. As can be seen from Fig.

5.4 that the Ã 2A2u and B̃ 2B2u bands are in good agreement with the experimental

spectrum [178]. Therefore, it appears that the coupling of Ã 2A2u and B̃ 2B2u states

with all other states does not have any impact on their vibronic structure. We will

return to this point more elaborately in the coupled state dynamics.
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Figure 5.5: The X̃ 2E1g and C̃ 2E2g photoelectron bands of HFBz: (a) and (c)
experimental spectrum [178], (b) and (d) theoretical band structures in the uncoupled
states situation using the time-independent Lanczos approach.

The vibronic band structure of both X̃ 2E1g and C̃ 2E2g electronic states are shown in Fig.

5.5. Apart from the Ã 2A2u and B̃ 2B2u electronic states, the X̃ 2E1g and C̃ 2E2g states

are doubly degenerate. As discussed in the introduction, the electronic degeneracy will

split along the doubly degenerate e2g vibrational modes (i.e., JT active modes). This is
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called (E×e)-JT effect in the literature. The totally symmetric vibrational modes (a1g)

tune the PESs energy and the e2g vibrational modes act as coupling coordinates between

the x and y components of both X̃ 2E1g and C̃ 2E2g electronic states. Therefore, both

a1g and e2g modes are considered to examine the vibronic band structures of the latter

two states. We note that the Hamiltonian of these two degenerate electronic states are

separable in terms of a1g and e2g vibrational modes, when the PJT and bilinear coupling

terms are neglected. Accordingly, the partial spectrum computed with the a1g [cf., Fig.

5.5(c and d)] and e2g [cf., Fig. 5.5(e and f)] vibrational modes separately, and finally

convoluted these two separate sets of data to generate a composite overall vibronic band

structure of the X̃ 2E1g and C̃ 2E2g electronic states [cf., Fig. 5.5(g and h)]. The final

vibronic band structure of the X̃ 2E1g state shown in the panel g of Fig. 5.5 is far

from the experimental [178] band structure [cf., Fig. 5.5(a)]. On the other hand, the

vibronic band structure of the C̃ 2E2g state [cf., Fig. 5.5(h)] is in good agreement with

the experimental spectrum [178] shown in the panel (b) of Fig. 5.5. These are due to

the following reasons: In case of the X̃ 2E1g vibronic band, apart from the JT coupling

within the degenerate electronic state, several other interstate couplings [cf., Table 5.5]

are important and need to be considered to arrive at a satisfactory agreement with

the experimental spectrum [178]. This can be done in the the coupled state dynamical

calculations using the time-dependent WP propagation and it is discussed in more detail

in the next section.

Fig. 5.5 reveals the vibrational progressions of both X̃ 2E1g and C̃ 2E2g electronic

states. The vibronic structures of the X̃ 2E1g and C̃ 2E2g states [cf., Fig. 5.5(c and

d)] reveal that ν1 mode is strongly excited and the ν2 vibrational mode is moderately

excited. Peak spacings of ∼1485 and ∼548 cm−1 (X̃ 2E1g state) and ∼1442 and ∼545

cm−1 (C̃ 2E2g state) correspond to these vibrational modes in that order estimated

from the spectrum. The symmetric vibrational modes excited in the X̃ 2E1g to C̃ 2E2g

electronic states are assigned and given in Table 5.7. The spectrum of the X̃ 2E1g and

C̃ 2E2g states obtained with JT active e2g (degenerate) vibrational modes shown in the

Fig. 5.5(e and f) reveals progressions of ν15, ν16, ν17 and ν18 vibrational modes. Peak

spacings of ∼2033, ∼1152, ∼508, and ∼360 cm−1 (X̃ 2E1g) and ∼2026, ∼1068, ∼458,

and ∼267 cm−1 (C̃ 2E2g), respectively. Based on the JT coupling strength [cf., Table

5.3], among the four degenerate vibrational modes, ν17 and ν18, ν15 modes is strongly

and moderately excited, and ν16 mode is weakly excited in the X̃ 2E1g band [cf., Fig.

5.5(e)]. Due to strong JT coupling in this state, a huge increase in line density occurs

along these vibrational modes. In the case of the C̃ 2E2g vibronic band, ν15 and ν17

vibrational modes are excited strongly and moderately, respectively, and ν16 and ν18

modes are weakly excited.
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5.2.2.2 Vibronic spectrum of coupled X̃-Ã-B̃-C̃ electronic states

In this section, the complete vibronic band structure of the coupled X̃ 2E1g-Ã
2A2u-

B̃ 2B2u-C̃ 2E2g electronic states calculated by including 20 (2a1g+3e1u+4e2g+2e2u) rel-

evant vibrational modes shown in Fig. 5.6. A large increase in DOF leads to a huge

increase of the dimension of the vibronic secular matrix and it is beyond the capability

of the matrix diagonalization method employed for the uncoupled states. Therefore, we

resort to the time-dependent WP propagation calculations with the help of Heidelberg

MCTDH program modules [119, 127, 128, 131]. Six WP calculations are carried out

by launching the initial WP on each of the six (x and y components of the JT spit

X̃ 2E1g and C̃ 2E2g states plus nondegenerate Ã 2A2u and B̃ 2B2u states) electronic

states separately. The details of the mode combination and the sizes of the basis sets

are given in Table 5.8. In each calculation, the WP is propagated for 200 fs. The time

autocorrelation function is damped with an exponential function of relaxation time 30

fs for all electronic states, and then Fourier transformed to generate the spectrum. The

results are combined with equal weightage to obtain the composite theoretical spectrum

shown in Fig. 5.6(b). The available experimental results of Mothch et al. [178] are also

shown in Fig. 5.6(a) for comparison. It can be seen from this figure that the present

theoretical results are in good accord with the experimental spectrum.

Table 5.8: Normal mode combinations, sizes of the primitive and single particle bases
used in the MCTDH calculations. a The primitive basis consists of harmonic oscillator
DVR functions, in the dimensionless normal coordinate required to represent the system
dynamics along the relevant mode. The primitive basis for each particle is the product
of the one-dimensional bases; b The SPF basis is the number of the single particle
functions used.

Electronic state Normal modes Primitive basisa SPF basisb

ν1, ν12x, ν12y , ν15x, ν15y (16,6,6,12,12) [10,10,8,8,10,10]

X̃ 2E1g-Ã
2A2u- ν13x, ν13y , ν16x, ν16y (6,6,6,6) [8,8,6,6,8,8] Fig. 5.6(b)

B̃ 2B2u-C̃
2E2g ν2, ν17x, ν17y , ν19x, ν19y (8,14,14,6,6) [10,10,8,8,10,10]

ν14x,ν14y ,ν18x,ν18y , ν20x, ν20y (6,6,12,12,6,6) [8,8,6,6,8,8]

5.2.3 Population dynamics of coupled X̃-Ã-B̃-C̃ electronic states of HFBz+

The time-dependence of the diabatic electronic population of coupled X̃ 2E1g-Ã
2A2u-

B̃ 2B2u-C̃ 2E2g states of HFBz radical cation shown in Fig. 5.7 and discussed in this

section. Figs. 5.7(a)-5.7(d) show how the population of the X̃ 2E1g, Ã 2A2u, B̃ 2B2u,

and C̃ 2E2g electronic states of HFBz+ changes in time after the vertical ionization of

HFBz to one of these states. In Fig. 5.7(a), the population dynamics shown for an

initial transition of the WP to one of the JT split components of the X̃ 2E1g electronic

state. As expected, the electronic population moves back and forth between its two

components driven solely by the JT CIs and exhibits an exact mirror image behavior,
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Figure 5.6: Vibronic spectrum of the coupled X̃ 2E1g-Ã
2A2u-B̃ 2B2u-C̃ 2E2g electronic

states of HFBz+. Relative intensity is plotted as a function of the energy of the vibronic
states of HFBz+. The experimental spectrum is reproduced from Ref. [178] is shown
in panel (a). The present theoretical vibronic spectrum is shown in panel (b).

whereas the higher-lying population of the three higher-lying states are equal to zero

[cf., Fig. 5.7(a)]. This is because the X̃ 2E1g (ground electronic) state of the HFBz+ is

energetically well separated from the higher-lying states.

In case of the initial transition to the Ã 2A2u state, Fig. 5.7(b) shows that, practically,

there is no population flow to all other states. This is due to the fact that the Ã 2A2u

state is vertically well separated from all other states, and the CIs of the Ã 2A2u state

with all other states are located at very high energies and are not accessible to the WP

during its evolution in this state. This results in the observed sharp vibrational energy

level structure of the Ã 2A2u band [cf., Fig. 5.6]. This implies a long-lived nature of the

Ã 2A2u state and gives rise to the observed emission of the HFBz+. We will come to

this point again later in the text.

The population curve for an initial location of the WP on the B̃ 2B2u state is shown in

Fig. 5.7(c). It can be seen that a minimal amount (∼2%) of the population is transferred
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Figure 5.7: Time-dependence of diabatic electronic populations during the evolution
of the coupled X̃ 2E1g-Ã

2A2u-B̃ 2B2u-C̃ 2E2g electronic states of HFBz+. The pop-

ulation curves for the initial location of the WP on the x-component of the X̃ 2E1g

state is shown in panel (a), Ã 2A2u and B̃ 2B2u states are in panels (b) and (c), the

x-component of the C̃ 2E2g state is shown in panel (d).

to the two components of the C̃ 2E2g state only. This is because of the coupling between

the B̃ 2B2u and C̃ 2E2g states [cf., Table 5.5], and the CIs of the B̃ 2B2u state with all

other states are located at very high energies and are not accessible to the WP during its

evolution on this state. From this, we can say that similar to the Ã 2A2u state, B̃ 2B2u

state also may contribute to the radiative emission of the HFBz+.

Fig. 5.7(d) portrays electronic population dynamics when the WP is initially prepared

on the x component of the C̃ 2E2g state. In contrast to the JT effect, the decay and

growth of the population of the x and y components degenerate C̃ 2E2g electronic state

can be seen, and the population transfer to the counter (y) component is minor in the

JT case. This is due to the weak JT coupling found in the C̃ 2E2g state as compared

to the X̃ 2E1g state [cf., Table 5.5]. The PJT coupling between the B̃ 2B2u and C̃ 2E2g

states is strong along the vibrational modes of e1u symmetry (especially ν12 and ν14

vibrational modes) [cf., Table 5.5]. Hence, the population transfer to B̃ 2B2u state is

expected in this case [cf., Fig. 5.7(d)].
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5.2.4 Radiative emission

As discussed in Sec. 4.0.4.5 of Chapter 4, the fluorescence emission was observed for

at least three-fold fluorination of Bz+ [43, 44]. The exception is m-DFBz+ which emits

weakly [39]. Köppel and coworkers examined the details theoretically and connected the

experimental findings with the details of vibronic coupling mechanism of the underlying

PESs [47–51, 143]. It was found that in Bz+, the JT split components of the X̃ and B̃

states form CIs at low energies, promoting the nonradiative decay [47, 143]. In MFBz+

and DFBz+, the interaction between the X̃-Ã and B̃-C̃-D̃ group of electronic states

gives rise to low energy CIs (except in the m-DFBz+) and facilities the nonradiative

internal conversion [49–51]. In DFBz+, the two groups of states are connected through

Ã-C̃ coupling in the orth- and meta-isomers and Ã-B̃ coupling in the para-isomer. The

minimum energy of the corresponding crossing seams occurs at ∼0.54 and ∼0.57 eV in

the ortho- and para-isomers, respectively. The minimum energy crossing seam of the

meta-isomer is higher in energy than the former isomers and gives rise to weak radiative

emission [39].

In case of 1,3,5 TFBz+, the degenerate ground X̃ 2E
′′

and excited B̃ 2E
′

electronic states

are energetically well separated, and the intersections of these states with Ã 2A
′′

state

occurring in between of X̃ and B̃ states [55]. These intersection minimums are higher in

energies relative to the minimum of Ã 2A
′′

state, and the PJT coupling between these

states is also weak. Therefore, hardly any WP population relaxes nonradiative to the X̃

and Ã states when the WP is initially prepared on the higher excited states. Also, the

Ã states electronic population dynamics are not affected by its coupling with the other

states. So, when the WP is initially prepared on the Ã state, the population remains at

∼100% for a long time and gives rise to radiative emission in 1,3,5 TFBz+.

In the case of PFBz+, the B̃ state is ∼2.25 eV above the Ã state and ∼1.0 eV below

the C̃ state [57]. That is, B̃ state is well separated from all other states. Because of

the large energy separation, the coupling effect of B̃ state with all other states does not

(or weak) impact the population dynamics of the B̃ state. The electronic population

does not flow to other states when the WP is initially prepared on the B̃ state. This

indicates a long-lived nature of the B̃ state, which gives rise to the radiative emission in

the PFBz+.

In continuation with 1,3,5 TFBz+ and PFBz+, in the case HFBz+ is sketched here by

examining the results presented in Sec. 5.2.3. The data presented in Sec. 5.2.3 and

Tables 5.2-5.6 revels that all the electronic states (X̃ 2E1g to C̃ 2E2g) are well separated

at the Franck-Condon geometry. Their intersection minimums are higher in energy as

compared to the respective states minimum [cf., Table 5.6]. However, the inter-state
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couplings between them influence the X̃ 2E1g and C̃ 2E2g electronic states dynamics

only. On the other hand, in the case of Ã 2A2u and B̃ 2B2u states, these couplings do

not influence when the initial WP is prepared on these states [cf., Fig. 5.7(b and c)].

That is, the electronic population of the Ã 2A2u and B̃ 2B2u states remains at ∼100%

and ∼90% when the initial WP is prepared on these states, respectively. This indicates

a long-lived nature of the Ã 2A2u and B̃ 2B2u states, which gives rise to the fluorescence

emission in the HFBz+.

5.3 Summary and conclusions

A detailed theoretical account of multi-mode JT and PJT interactions in the ground

and the three lowest excited states of HFBz+, X̃ 2E1g, Ã 2A2u, B̃ 2B2u and C̃ 2E2g

were examined in this chapter. The four-state vibronic problem was treated within the

framework of the model Hamiltonian in the diabatic electronic basis, and the coupling

constants were derived from the ab initio quantum chemistry electronic structure calcu-

lations. The PESs (or ionization energies) and all the Hamiltonian coupling parameters

were obtained using the EOMIP-CCSD method with aug-cc-pVDZ basis set at vari-

ous nuclear configurations in terms of dimensionless normal displacement coordinates.

These all are obtained from the ground-state electronic structure calculations for neutral

HFBz using the MP2/aug-cc-pVDZ level of theory. It is found that all the electronic

states are energetically well separated from each other at the Franck-Condon geometry.

However, the couplings between them are well enough, and the curve crossing between

the B̃ 2B2u and C̃ 2E2g states along the ν15 vibrational mode of the HFBz+ is found.

In order to better understand the JT and PJT couplings, two sets of dynamical calcu-

lations were performed. In the first case, the individual vibronic band structures are

analyzed using the time-independent matrix diagonalization method. It is observed that

the JT effect due to e2g vibrational modes in the X̃ 2E1g state is more substantial as

compared to the C̃ 2E2g electronic state. In the four vibrational band structures, both

a1g and e2g vibrational modes are excited according to their excitation strength. In

the second case, the full four-state vibronic problem was treated with a time-dependent

WP propagation method accounting for 20 (2a1g+3e1u+4e2g+2e2u) relevant vibrational

DOF of HFBz. For these two sets of dynamical calculations, the MCTDH program

module is used. The final theoretical results so obtained are in good accord with the

available experimental results.

It is found that both Ã 2A2u and B̃ 2B2u electronic states are well separated from the

rest of the states. Therefore, the PJT coupling of these two states with others have no

effect on the vibronic structures of Ã 2A2u and B̃ 2B2u states. The time-dependence
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of the diabatic electronic population reveals that the population of the Ã 2A2u state

remains ∼100% for a long time when the dynamics started on it. Similarly, when the

WP is located on the B̃ 2B2u state a minimal amount (∼2%) of population is transferred

to the two components of the C̃ 2E2g state only. This leads to the long-lived nature of

the Ã 2A2u and B̃ 2B2u electronic states, and these two states contribute to the observed

fluorescence emission in HFBz+.





Chapter 6

Impact of Jahn-Teller and pseudo

Jahn-Teller effect in Propyne

radical cation

A detailed theoretical account on multi-mode Jahn-Teller (JT) and pseudo-Jahn-Teller

(PJT) interactions in the first three low-lying doublet electronic states of Propyne radical

cation is presented in this chapter. Allene (H2CCCH2, propadiene), propyne (H3CCCH,

methyl acetylene) and cyclopropene are the three stable isomers of C3H4. The former two

isomers are important intermediates in combustion and astrochemistry [70–74]. They are

members of the cumulene series with odd number of carbon atoms. The radical cation of

these isomers possesses degenerate electronic states and vibrational modes. Therefore,

they provide a unique platform to investigate multi-mode JT and PJT effects in their

ionic states. While the equilibrium configuration of allene belongs to less common D2d

symmetry point group, that of propyne belongs to the more common C3v symmetry point

group. The non-degenerate vibrational modes of b1 and b2 symmetry are JT active in the

degenerate ionic states of allene. On the other hand, the degenerate vibrational modes

of e symmetry causes PJT coupling among the degenerate and non-degenerate ionic

states of allene. Multi-mode JT and PJT interactions in the ionic states of allene have

been extensively studied theoretically [78–85] and also probed experimentally through

photoelectron spectroscopy measurements [86–91]. To the best of our knowledge, it is

the first example treated with a higher-order vibronic coupling model in the literature

[83]. The PJT coupling in its Ã 2E-B̃2B2 electronic manifold was found to be extremely

strong which leads to a broad and diffuse vibronic band structure at higher energies.

As stated above, the JT and PJT effects in the ionic states of propyne are not rigorously

studied in the literature. It would therefore be interesting to study how these effects in

95
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(a) HOMO (b) HOMO-1 (c) HOMO-2

Figure 6.1: The schematic diagram of the valence canonical molecular orbitals of the
H3CCCH molecule.

propyne radical cation differ as compared to those in allene radical cation since they are

isomeric in nature and have different JT and PJT coupling mechanisms. The first two

valence molecular orbitals (MO) of propyne belong to e symmetry and posses π character

[cf., Fig. 6.1(a and b)]. The third valence MO is of σ type and is of a1 symmetry [cf.,

Fig. 6.1(c)]. Ionization of an electron from these orbitals creates propyne radical cation

(H3CCCH·+) in its electronic ground (X̃ 2E) and first two excited (Ã 2E and B̃ 2A1)

electronic states, respectively.

The vibronic structure of the electronic states of H3CCCH·+ was probed in photoelectron

spectroscopy experiments [187–196]. The He I and threshold photoelectron spectra

[187–189] revealed that the vibrational structure of the X̃ 2E state consists of a strong

origin band and weak progressions of C≡C and C-C stretching modes. This observation

indicates that the equilibrium structure of the cationic ground state is similar to that of

the neutral ground state and the JT effect is weak in the X̃ 2E state. The photoelectron

spectrum of H3CCCH has been recorded by Baker and Turner [187] using Helium 584 Å

line. Among the first two bands in the ∼10-17 eV energy range, the second one revealed

highly overlapping vibronic structure. The first photoelectron band has a simple vibronic

structure and appears at ∼10.3 eV. The maxima of the second band appears at ∼14.6

and ∼15.3 eV. This band is of particular interest as it apparently bears the signature of

strong JT and PJT interactions in the excited electronic manifold of H3CCCH·+. Matsui

et al. [193] recorded the photoelectron spectrum of H3CCCH at higher energy resolution

in a non-resonant two-photon pulsed-field ionization (PFI) Zero-Kinetic-Energy (ZEKE)

measurement. They resolved spin-orbit (SO) structure in the rotational profile of the

origin band of the X̃ 2E state.

Shieh et al. [191] recorded the spectrum of propyne using 2+1 resonance enhanced

multi-photon ionization technique and obtained information on several Rydberg series

of propyne. By extrapolating these series, they concluded that the SO splitting of the

ground vibronic state of H3CCCH·+ is less compared to that of acetylene cation (∼30.91

cm−1 [197]). Xing et al. [192] also recorded rotationally resolved spectra for H3CCCH·+

(X̃ 2E3/2,1/2, ν+
1 =1) and estimated SO coupling ∼ -13.0±0.2 cm−1, similar in magnitude
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to the value determined by Shieh et al. [191]. This is ∼60% smaller than that of

acetylene cation implying a quenching of SO coupling by strong JT effect in the X̃ 2E

state of H3CCCH·+ and contradicts the observation made by Matsui et al. [193].

In order to resolve the ambiguity of the results of Refs. [191–193], Marquez et al. [194]

performed high level ab initio quantum chemistry calculations including the vibronic

and SO couplings. They found that the pure electronic SO coupling of the X̃ 2E state

of H3CCCH·+ is ∼-28 cm−1, without including the JT interaction. This coupling is

∼18 cm−1 when the JT interaction was included. If the sign is ignored, this result is in

qualitative agreement with the results of Shieh et al. [191] and Xing et al. [192]. More

recently, Jacovella et al. [196] recorded the single photon PFI-ZEKE photoelectron spec-

trum of H3CCCH at a resolution of ∼0.8 cm−1 and reported partially resolved rotational

structure of the origin band of the X̃ 2E state of H3CCCH·+. Despite several experimen-

tal studies, a detailed theoretical study of multi-mode JT and PJT interactions in the

electronic states of H3CCCH·+ is missing in the literature. Theoretical calculations on

the electronic structure and vertical ionization energies (VIEs) of H3CCCH are reported

[194, 198].

In this chapter we therefore set out to carry out a detailed investigation of multi-mode

JT and PJT effects in the first three electronic states of H3CCCH·+. Among the three

low-lying electronic states, the first two electronic states are doubly degenerate, which

are prone to the JT distortion [75]. The next higher electronic state is nondegenerate.

The fifteen normal vibrational modes of propyne belong to the following irreducible

representations of the C3v symmetry point group

Γvib = 5a1 + 5e. (6.1)

The direct product of E electronic representation and the direct product of E with A1

electronic representation in the C3v point group yields

E ⊗ E = a1 + a2 + e. (6.2)

E ⊗A1 = e. (6.3)

We mention here that the symmetry of the electronic states and the vibrational modes

are denoted by the upper and lower case letters, respectively, throughout this chapter. In

case of E×e-Jahn-Teller problem the equivalency of the matrix elements in the detailed

selection rule reduces Eq. 6.2 to, (E)2= a1 +e, the so-called symmetrized direct product

[199]. The elementary symmetry selection rules [cf., Eqs. 6.2 and 6.3] suggest that the
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degenerate X̃ 2E and Ã 2E electronic states of H3CCCH·+ would undergo JT splitting

in first-order when distorted along the degenerate vibrational modes of e symmetry

[(E ⊗ e)-JT effect]. The JT split components of the two E states may also undergo

PJT coupling through the vibrational modes of e symmetry. However, the X̃ 2E and

Ã 2E states of H3CCCH·+ are energetically well separated and PJT coupling between

them is not significant. The non-degenerate B̃ 2A1 state undergoes PJT coupling with

the components of Ã 2E state through vibrational modes of e symmetry [(E + A) ⊗ e-
PJT effect] and these states are energetically close. The PJT coupling of these states

is expected to yield multiple conical intersections and consequently the nuclear motion

may become predominantly nonadiabatic. The totally symmetric a1 vibrational modes

are Condon active in all three electronic states.

In the following a model Hamiltonian is constructed in a diabatic electronic basis and

using the standard vibronic coupling theory [14]. The elements of the electronic Hamil-

tonian are expanded in a Taylor series and the parameters are derived from the adi-

abatic electronic energies calculated ab initio, by both CASSCF-MRCI [161–164] and

EOMIP-CCSD [165, 166] methods. The quantum dynamical observables are calculated

by solving the time-independent as well as time-dependent Schrödinger equations. In

the time-independent case, Lanczos algorithm [122] is used to diagonalize the Hamilto-

nian matrix expressed in the basis of harmonic oscillator (HO) functions. This enables

to determine the precise location of the vibronic energy levels and aids in their assign-

ments. This method is computationally not affordable for systems with large number

of electronic and vibrational degrees of freedom (DOF). To calculate the broad band

spectra, the time-dependent calculations are carried out by propagating wave pack-

ets (WPs) with the aid of the multi-configuration time-dependent Hartree (MCTDH)

method developed at Heidelberg [119, 127, 128, 131]. The results are compared with the

experimental findings and discussed.

6.1 Theoretical framework

6.1.1 The Vibronic Hamiltonian

The photoionization to the first three low-lying X̃ 2E, Ã 2E and B̃ 2A1 electronic states

(here after will be designated as X̃, Ã and B̃) of H3CCCH·+ is examined theoretically.

As stated in the introduction, each of the two degenerate electronic states undergo

JT splitting when H3CCCH·+ is distorted along the degenerate vibrational modes of

e symmetry. The symmetry selection rule [cf., Eqs. 6.2 and 6.3] allows the JT split

component states to undergo PJT coupling among themselves or with the nondegenerate

electronic state. The PJT coupling of the X̃ state with the Ã and B̃ states is excluded on
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the energetic ground (we discussed more about this point in Sec. 6.2.2). There are five

totally symmetric a1 vibrational modes that are Condon active in all three electronic

states. In the following, we first resort to a diabatic electronic basis [100, 101, 200]

to treat this vibronic coupling problem. This is to avoid the numerical difficulties [14]

that arise due to the singular nature of the nonadiabatic coupling terms in an adiabatic

electronic basis [13, 14]. The diabatic vibronic Hamiltonian is constructed in terms of

the dimensionless normal coordinates of the vibrational modes of the electronic ground

state of the neutral H3CCCH. To a good approximation the vibrational motion in the

latter state is treated as harmonic. In the following, we refer to Qi as the dimensionless

normal coordinate of the vibrational mode νi with a harmonic vibrational frequency ωi.

Actually, each Qi represents the normal displacement coordinate from the equilibrium

configuration of the electronic ground state of H3CCCH occurring at Q = 0. In the rest

of the chapter the totally symmetric (a1) vibrational modes are designated as ν1, ν2, ν3,

ν4 and ν5 and the degenerate (e) vibrational modes as ν6, ν7, ν8, ν9 and ν10 in the order

of decreasing frequency. With this description the diabatic vibronic Hamiltonian [14] of

the X̃-Ã-B̃ coupled electronic states of H3CCCH·+ can be written as

H = H015 + ∆H. (6.4)

In the above equation, H0 (= TN + V0) is the unperturbed Hamiltonian of the reference

ground electronic state of H3CCCH. Within the harmonic approximation its elements

are given by

TN = −1

2

∑
i∈a1

ωi
∂2

∂Q2
i

− 1

2

∑
i∈e
ωi

(
∂2

∂Q2
ix

+
∂2

∂Q2
iy

)
, (6.5)

V0 =
1

2

∑
i∈a1

ωiQ
2
i +

1

2

∑
i∈e
ωi
(
Q2
ix +Q2

iy

)
, (6.6)

and

∆H =


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. (6.7)

The quantity 15 in Eq. 6.4 is a 5 × 5 diagonal unit matrix. The nuclear kinetic and

potential energy operators of the reference state are denoted by TN and V0, respectively.

The change of electronic energy upon ionization from this reference state is described by

the electronic Hamiltonian matrix ∆H in Eq. 6.7. The diagonal elements of this matrix

represent the diabatic potential energies of the electronic states and the off-diagonal
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elements represent the coupling between them. The elements of ∆H are expanded

in a standard Taylor series around the reference equilibrium geometry at Q=0 in the

following way [114, 115, 201].
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(6.8)

uj =E0
j +

∑
i∈a1

κjiQi +
1

2!

∑
i∈a1

γjiQ
2
i +

1

3!

∑
i∈a1

σjiQ
3
i

+
1

2!

∑
i∈e

γji
(
Q2
ix +Q2

iy

)
+

1

4!

∑
i∈e

δji
(
Q4
ix + 2Q2

ixQ
2
iy +Q4

iy

)
; j ∈ B̃

(6.9)

uxyj =
∑
i∈e

λjiQiy −
1

2!

∑
i∈e

2ηi
jQixQiy +

1

3!

∑
i∈e

σ′ji
(
Q2
ixQiy +Q3

iy

)
+

1

4!

∑
i∈e

δ′ji
(
4Q3

ixQiy − 4QixQ
3
iy

)
+

1

4!

∑
i∈e

δ′′ji
(
−2Q3

ixQiy − 2QixQ
3
iy

)
+

1

5!

∑
i∈e

ρ′ji
(
−5Q4

ixQiy + 10Q2
ixQ

3
iy −Q5

iy

)
+

1

5!

∑
i∈e

ρ′′ji
(
Q4
ixQiy + 2Q2

ixQ
3
iy +Q5

iy

)
; j ∈ X̃, Ã
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ÃB̃

=
∑
i∈e

λ
′(1)
i Qix +

1

2!

∑
i∈e

λ
′(2)
i

(
Q2
ix −Q2

iy

)
+

1

3!

∑
i∈e

λ
′(3)
i

(
Q3
ix +QixQ

2
iy

)
+

1

4!

∑
i∈e

λ
′(4)
i (Q4

ix − 6Q2
ixQ

2
iy +Q4

iy) +
1

4!

∑
i∈e

λ
′(4′)
i (Q4

ix −Q4
iy)

+
1

5!

∑
i∈e

λ
′(5)
i

(
Q5
ix − 10Q3

ixQ
2
iy + 5QixQ

4
iy

)
+

1

5!

∑
i∈e

λ
′(5′)
i

(
Q5
ix + 2Q3

ixQ
2
iy +QixQ

4
iy

)
,

(6.11)



Chapter 6. Electronic structure 101

uy
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(6.12)

In the above equations, two components of the degenerate electronic states and vibra-

tional modes are identified with the labels x and y. The quantity E0
j denotes the vertical

ionization energy of the jth electronic state. The diagonal intra-state coupling param-

eters of the ith vibrational mode in the jth electronic state are given by κji (linear),

γji (second-order), σji (third-order), δji (fourth-order), and ρji (fifth-order). The linear,

second, third, fourth and fifth-order JT coupling parameters along the degenerate vi-

brational modes within the jth electronic state are given by λji , η
j
i , σ

′j
i , δ′ji and δ′′ji , ρ′ji

and ρ′′ji , respectively. The PJT coupling parameters between the Ã 2E and B̃ 2A1 elec-

tronic states along the degenerate vibrational modes are given by λ
′(n)
i (i.e., nth order

inter-state coupling constant). It is worth noting that the elements of the JT and PJT

coupling matrices are of identical form and are only distinguished by different coupling

constants. These parameters are derived by fitting the calculated adiabatic electronic

energies to the adiabatic form of ∆H. The summations in Eqs. 6.8-6.12 are carried out

over the normal coordinate of all symmetry allowed vibrational modes. The plus and mi-

nus sign in Eq. 6.8 is applicable to the x and y components of the degenerate electronic

state, respectively. Note that the parameters of odd-order for the vibrational modes of

e symmetry do not appear in Eq. 6.9 in accordance with the symmetry selection rule.

6.2 Results and discussion

6.2.1 Electronic structure calculations

The equilibrium geometry of H3CCCH molecule belongs to C3v symmetry point group

in its electronic ground state. This geometry is optimized with the aid of second order

Møller-Plesset perturbation (MP2) method [148] employing the augmented correlation-

consistent polarized valence double zeta (aug-cc-pVDZ) basis set of Dunning [149].

Gaussian-09 [150] suite of program is used for this purpose. The optimized equilibrium

geometry is shown in Fig. 6.2 with atom numbering and the corresponding geometry

parameters are given in Table 6.1. The harmonic vibrational frequency (ωi), of the vi-

brational mode i at the reference equilibrium structure is calculated at the same level
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Figure 6.2: Optimized equilibrium geometry of the electronic ground state of
H3CCCH.

of theory. The mass-weighted normal displacement coordinate of vibrational modes is

calculated and transformed to the dimensionless form Qi by multiplying with
√
ωi (in

a.u., }=1). The harmonic frequencies of the vibrational modes and their symmetry are

given in Table 6.2 along with the available literature data [202, 203]. It can be seen

from Tables 6.1 and 6.2 that the theoretical results are in good accord with the available

literature data.

Table 6.1: Geometry parameters (distances in Å, angles in degrees) of the equilib-
rium structure of the electronic ground state of H3CCCH compared with the available
experimental results.

parameters This work Experiment [204]

R(C1-C2), 1.45 1.46
R(C1-C6) 1.20 1.20

R(C2-H3, C2-H4, C2-H5) 1.09 1.09
R(C6-H7) 1.06 1.06

∠(C1-C2-H3, C1-C2-H4, C1-C2-H5) 110 110
∠(H3-C2-H4, H3-C2-H5, H4-C2-H5) 107 108

Table 6.2: Symmetry, designation and harmonic frequency (in cm−1) of vibrational
modes of the ground electronic state of the H3CCCH.

Symmetry modes This work Theory [202] Experiment [202] Experiment [203] Assignment

ν1 3471 3502/3618 3335 acetylene C-H str.
ν2 3028 2941/3180 2941 symm. methyl C-H str.

A1 ν3 2225 2138/2386 2138 1940 C≡C str.
ν4 1416 1385/1534 1385 1290 methyl deformation.
ν5 941 930/972 930 940 C-C str.

ν6 3084 2981/3246 2981 antisymm. methyl C-H str.
ν7 1479 1450/1600 1450 methyl skeletal deformation.

E ν8 1058 1036/1152 1036 methyl skeletal rock
ν9 672 628/792 628 C≡C-H bend
ν10 347 327/386 327 CC≡C bend

In order to study the nuclear dynamics, the PESs of the X̃, Ã and B̃ electronic states

of H3CCCH·+ are calculated along the dimensionless normal displacement coordinates

of the reference ground state. The adiabatic potential energies of these electronic states
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are calculated by both EOMIP-CCSD and CASSCF-MRCI methods using the aug-cc-

pVDZ basis set. The EOMIP-CCSD and CASSCF-MRCI calculations are performed

using CFOUR [171] and MOLPRO [154] suite of programs, respectively. MOLPRO

has no implementation of ionization problem. So, we used the CASSCF-MRCI method

for ionization potential calculations. The adiabatic energies of the electronic states are

calculated along the dimensionless normal displacement coordinate of each vibrational

mode. The CASSCF-MRCI calculations are carried out with a (16,8) active space,

which includes 8 valence occupied orbitals with sixteen electrons for the reference elec-

tronic ground state of H3CCCH. The electronic states of H3CCCH·+ have open shell

configuration and a (15,8) active space is used. Test calculations are carried out with

varying active space and the mentioned ones are found to yield the best results with an

affordable computational cost. For all these calculations it took almost three months of

CPU time on a “Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz model with 28 cores,

56 processors” HPC cluster. The energy difference of the cationic states with the ref-

erence neutral ground state at the equilibrium configuration (at Q=0) representing the

VIEs are given in Table 6.3 along with the available literature data for comparison. In

addition to the EOMIP-CCSD and CASSCF-MRCI results, the VIEs are calculated by

Outer Valence Green’s function (OVGF) method [205] (using Gaussian-09 program) are

also given in Table 6.3. It can be seen from Table 6.3 that our theoretical results are

in good accord with the available experimental data. It can also be seen that at the

vertical configuration X̃ state is energetically well separated from the Ã and B̃ electronic

states whereas, Ã and B̃ states are energetically close. Therefore, PJT coupling of the X̃

state with Ã and B̃ states is expected to be insignificant. On the other hand, interplay

of JT and PJT coupling is expected to be strong in the Ã-B̃ electronic states.

Table 6.3: VIE (in eV) of the energetically lowest three electronic states of H3CCCH·+

calculated at the reference equilibrium geometry of H3CCCH and compared with the
available experimental data.

states X̃ 2E Ã 2E B̃ 2A1 C̃ 2A1

10.23 15.03 15.30 17.78 OVGF
10.40 15.09 15.31 17.68 EOMIP-CCSD
10.28 15.40 15.75 18.29 CASSCF-MRCI

VIE 10.37 14.4 15.13 17.2 Expt.[187]
10.37 14.6 15.3/15.5 17.4 Expt.[198]
10.54 14.60 15.4 17.4 Expt.[190]
10.36 13.69/14.70/15.30 15.8 17.49 Expt.[189]
10.37 13.69 15.2 17.2 Expt.[203]
10.37 14.70 15.50/15.80 17.49 Expt.[202]
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The adiabatic form of the 5×5 diabatic electronic Hamiltonian matrix [cf., Sec. 6.1.1] is

fit to the ab initio adiabatic electronic energies by a nonlinear least-squares procedure to

estimate the various coupling parameters of Eqs. (6.8-6.12). The Levenberg-Marquardt

algorithm [145, 146] is used for the purpose. These coupling parameters are given in

Tables 6.4 - 6.7.

Table 6.4: Ab initio calculated linear and quadratic coupling parameters for the
X̃ 2E, Ã 2E and B̃ 2A1 electronic states of H3CCCH·+ derived from the EOMIP-
CCSD electronic energy data. All quantities are in eV and the dimensionless Poisson

parameters
(
κi

2

2ωi2
or λi

2

2ωi2

)
are given in the parentheses.

X̃ 2E Ã 2E

Mode κi or λi γi ηi κi or λi γi ηi

a1
ν1 0.0003 (0.0000) 0.0020 - 0.0318 (0.0027) 0.0019 -
ν2 -0.0320 (0.0035) -0.0012 - -0.3779 (0.4921) 0.0268 -
ν3 0.2184 (0.3442) 0.0141 - -0.0644 (0.0299) 0.0056 -
ν4 0.0452 (0.0342) -0.0179 - -0.2606 (1.1359) -0.0803 -
ν5 -0.0194 (0.0136) -0.0165 - 0.1027 (0.3835) 0.0219 -

e
ν6 0.0266 (0.0023) 0.0027 0.00011 0.2634 (0.2254 ) -0.0249 -0.0004
ν7 0.0439 (0.0289) -0.0273 0.00004 0.4424 (2.9446 ) -0.0856 0.0002
ν8 0.0462 (0.0638) -0.0259 0.00020 0.2163 (1.3949 ) -0.0553 0.0003
ν9 0.0101 (0.0108) -0.0104 -0.000003 -0.0001 (0.00000) -0.0479 -0.0010
ν10 0.0119 (0.0656) -0.0165 -0.00020 0.0010 (0.00005) -0.0609 -0.0004

B̃ 2A1 Ã 2E×B̃ 2A1

Mode κi γi σi δi λ
′(1)
i λ

′(2)
i

a1
ν1 0.1292 (0.0446) -0.0351 0.0093 0.0028 - -
ν2 -0.0757 (0.0198) -0.0129 -0.0024 - - -
ν3 -0.1311 (0.1240) -0.0269 0.0030 - - -
ν4 0.4642 (3.6038) -0.0262 -0.0199 - - -
ν5 0.1729 (1.0866) -0.0106 -0.0023 - - -

e
ν6 - 0.05852 - -0.0206 -0.0617 (0.0124) 0.0478
ν7 - 0.02827 - -0.0241 -0.0953 (0.1366) 0.0756
ν8 - -0.0459 - -0.0015 -0.0201 (0.0120) 0.0210
ν9 - -0.0058 - 0.0036 -0.0015 (0.0002) 0.0038
ν10 - -0.0578 - 0.0049 0.0017 (0.0013) -0.0019

6.2.2 Potential energy surfaces: The JT and PJT conical intersections

The adiabatic potential energy curves of the X̃, Ã and B̃ electronic states of H3CCCH·+

are shown and discussed in this section. The adiabatic potential energies of these states

are plotted along the dimensionless normal displacement coordinates of the totally sym-

metric a1 vibrational modes (ν1-ν5) and the JT active e vibrational modes (ν6-ν8) in

Figs. 6.3 and 6.4, respectively. The solid curves in these figures represent the potential

energies obtained from the constructed theoretical model in Sec. 6.1.1 and the points

superimposed on them are the computed ab initio adiabatic potential energies calculated

by the EOMIP-CCSD (Figs. 6.3a and 6.4a) and CASSCF-MRCI (Figs. 6.3b and 6.4b)

methods, discussed in Sec. 6.2.1. It can be seen that the calculated ab initio points

are well reproduced by the present theoretical model. We note that up to a fourth-

and fifth-order Taylor expansion of the electronic Hamiltonian along both a1 and JT

active e vibrational modes are found to be necessary to represent the ab initio points
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Table 6.5: Same as in Table 6.4 and the parameters are derived from the CASSCF-
MRCI electronic energy data.

X̃ 2E Ã 2E

Mode κi or λi γi ηi κi or λi γi ηi

a1
ν1 -0.0224 (0.0013) 0.0037 - 0.0318 (0.0027) 0.0028 -
ν2 -0.0259 (0.0023) -0.0011 - -0.4011 (0.5545) 0.0280 -
ν3 0.2670 (0.5147) 0.0142 - -0.0799 (0.0460) 0.0084 -
ν4 0.0476 (0.0379) -0.0148 - -0.2721 (1.2385) -0.0853 -
ν5 -0.0037 (0.0005) -0.0165 - 0.1056 (0.4050) 0.0245 -

e
ν6 0.0284 (0.0026) 0.0027 0.000127 0.2562 (0.2254 ) -0.1080 0.0042
ν7 0.0412 (0.0255) -0.0248 0.000045 0.4199 (2.9446 ) -0.1078 0.0001
ν8 0.0434 (0.0563) -0.0244 0.000205 0.1966 (1.3949 ) -0.0624 0.0003
ν9 0.0086 (0.0078) -0.0063 -0.000002 -0.0023 (0.00000) -0.0233 -0.0016
ν10 0.0094 (0.0408) -0.0263 -0.000123 0.0002 (0.00005) -0.0601 -0.0004

B̃ 2A1 Ã 2E×B̃ 2A1

Mode κi γi σi δi λ
′(1)
i λ

′(2)
i

a1
ν1 0.1475 (0.0582) -0.0467 0.0120 0.0033 - -
ν2 -0.0677 (0.0158) -0.0132 -0.0028 - - -
ν3 -0.1415 (0.1445) -0.0329 0.0038 - - -
ν4 0.4812 (3.8724) -0.0272 -0.0193 - - -
ν5 0.1901 (1.3136) -0.0119 -0.0023 - - -

e
ν6 - 0.2277 - -0.0588 -0.0024 (0.00001) 0.0515
ν7 - 0.0650 - -0.0389 -0.1145 (0.19724) 0.0895
ν8 - -0.0420 - -0.0039 -0.0275 (0.02255) 0.0274
ν9 - -0.0054 - 0.0004 -0.0030 (0.00095) 0.0115
ν10 - -0.0631 - -0.0021 0.0010 (0.00046) 0.0020

Table 6.6: Higher order coupling parameters of X̃ 2E, Ã 2E states and PJT cou-
pling between Ã 2E-B̃ 2A1 electronic states are derived from EOMIP-CCSD electronic
structure data.

X̃ 2E

Mode σi σ′i δi δ′i (δ′′i ) ρi ρ′i (ρ′′i )

a1
ν1 0.000898 0.001036
ν2 -0.000691 -
ν3 0.002899 -
ν4 -0.008080 -0.000832
ν5 -0.001012 -

e
ν6 -0.0000007 0.0004 - - - -
ν7 -0.000013 0.0060 - - - -
ν8 -0.000011 0.0057 - - - -
ν9 0.00000009 0.0014 -0.00053 0.0000004 (0.0000006) -0.00000003 -0.000953 (-0.001846)
ν10 -0.000008 0.0078 0.00348 0.0000219 (0.0000286) - -

Ã 2E

Mode σi σ′i δi δ′i (δ′′i ) ρi ρ′i (ρ′′i )

a1
ν1 0.000670 0.000104
ν2 - -
ν3 - -
ν4 0.018160 0.008480
ν5 0.002170 -

e
ν6 -0.00220 0.02060 0.00890 0.00011 ( 0.00011) 0.00150 -0.00360 (-0.00360)
ν7 0.00008 0.00942 0.01822 -0.00001 (-0.00001) -0.00005 -0.00397 (-0.00397)
ν8 -0.00024 0.01210 0.00848 -0.00002 (-0.00002) 0.00019 -0.00335 (-0.00335)
ν9 -0.00057 0.05901 -0.01472 0.00022 ( 0.00022) 0.00065 -0.00244 (-0.00244)
ν10 -0.00001 0.00564 0.00129 0.00004 ( 0.00004) - -

Ã 2E×B̃ 2A1(PJT parameters)

Mode λ
′(3)
i λ

′(4)
i λ

′(4′)
i λ

′(5)
i λ

′(5′)
i

e
ν6 0.0528 -0.0070 -0.0070 -0.0067 -0.0067
ν7 0.0767 -0.0108 -0.0108 -0.0094 -0.0094
ν8 0.0161 -0.0031 -0.0031 -0.0019 -0.0019
ν9 -0.0017 -0.0007 -0.0007 0.0007 0.0007
ν10 0.0003 0.0001 0.0001 - -
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Table 6.7: Same as in Table 6.6 and the parameters are derived from CASSCF-MRCI
electronic structure data.

X̃ 2E

Mode σi σ′i δi δ′i (δ′′i ) ρi ρ′i (ρ′′i )

a1
ν1 0.000842 0.000785
ν2 -0.000850 -
ν3 0.002782 -
ν4 -0.008205 -0.001367
ν5 -0.001129 -

e
ν6 - - - - - -
ν7 -0.000013 0.0060 - - - -
ν8 -0.000010 0.0059 - - - -
ν9 0.00000014 0.0025 0.000894 -0.000213 ( 0.000214) -0.0000001 -0.000553 (-0.001538)
ν10 -0.0000087 0.0071 0.000498 0.000010 (-0.000006) - -

Ã 2E

Mode σi σ′i δi δ′i (δ′′i ) ρi ρ′i (ρ′′i )

a1
ν1 0.0005796 -
ν2 - -
ν3 - -
ν4 0.0188956 0.0090729
ν5 0.0024462 -

e
ν6 0.00073 -0.02796 0.02753 -0.000267 (-0.000267) -0.00042 0.00310 ( 0.00310)
ν7 -0.00002 0.02677 0.02656 0.000001 ( 0.000001) 0.00001 -0.00601 (-0.00601)
ν8 -0.00030 0.02306 0.01037 -0.000020 (-0.000020) 0.00023 -0.00464 (-0.00464)
ν9 -0.00048 0.04481 -0.03453 0.000263 ( 0.000263) 0.00051 0.00126 ( 0.00126)
ν10 0.00039 0.00018 0.00406 0.000019 ( 0.000019) - -

Ã 2E×B̃ 2A1(PJT parameters)

Mode λ
′(3)
i λ

′(4)
i λ

′(4′)
i λ

′(5)
i λ

′(5′)
i

e
ν6 -0.0256 -0.0075 -0.0075 0.0080 0.0080
ν7 0.0866 -0.0134 -0.0134 -0.0099 -0.0099
ν8 0.0232 -0.0041 -0.0041 -0.0029 -0.0029
ν9 -0.0094 -0.0010 -0.0010 0.0018 0.0018
ν10 -0.0020 -0.0000 -0.0000 - -

extremely well. Also, these higher-order coupling parameters provide an accurate the-

oretical description of the JT split potentials and the associated vibronic spectrum. A

second-order vibronic model is found to give rise an inaccurate theoretical description.

The totally symmetric vibrational modes do not lift the electronic degeneracy of the X̃

and Ã states. They tune the electronic energy minimum of the cationic states relative

to the equilibrium minimum of the electronic ground state of H3CCCH (Q=0) and

therefore modify the vertical energy gap between the electronic states. It can be seen

from Fig. 6.3 that the X̃ state of H3CCCH·+ is energetically well separated from the

remaining two states. The latter states (Ã and B̃) are vertically very close in energy

[cf., Table 6.3] and undergo curve crossings in the near vicinity of reference equilibrium

geometry at Q=0 [cf., Fig. 6.3].
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Figure 6.3: One dimensional viewgraph of the multi-dimensional potential energy
surfaces of X̃ 2E, Ã 2E and B̃ 2A1 electronic states of H3CCCH·+ plotted along the
dimensionless normal displacement coordinate (Qi) of the totally symmetric vibrational
modes, ν1-ν5. The potential energies obtained from the theoretical model and calculated
ab initio (column (a): EOMIP-CCSD, column (b): CASSCF-MRCI) are shown by the
solid lines and points, respectively.
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Figure 6.4: Adiabatic potential energy curves of the X̃, Ã and B̃ electronic states of
H3CCCH·+ along one component of the dimensionless normal coordinate of degenerate
vibrational modes ν6 to ν8. The potential energies obtained from the present theoretical
model and calculated ab initio (column (a): EOMIP-CCSD, column (b): CASSCF-
MRCI) are shown by the solid lines and points, respectively.

Within a second-order coupling model and utilizing the parameters of Tables 6.2-6.5

the energetic minimum of the seam of CIs is calculated using a minimization algorithm

employing Lagrange multipliers. The numerical tools available in MATHEMATICA

[157] are used for this purpose. The results are tabulated in a matrix array in Table 6.8.

In the latter, the numbers in the diagonal represent the minimum of a state and those

in the off-diagonal are the minimum of the intersection seam. It can be seen from Table

6.8 that the minimum of the X̃ state is energetically well separated from the Ã and B̃

states. The intersection of the X̃ state with latter states occurs at very high energies

and is not relevant for the present study. Using the EOMIP-CCSD (CASSCF-MRCI)

electronic structure data the Ã-B̃ intersection minimum is found at ∼14.80 eV (15.61

eV) and the minimum of the Ã state appears at ∼14.50 eV (14.87 eV). The energetic

minimum of the B̃ state appears at ∼14.37 eV (14.71 eV). Vibronic coupling between

the Ã and B̃ electronic states shifts the minimum of the B̃ state at a distorted geometry.

Among the five a1 vibrational modes, ν2, ν3, ν4 and ν5 shift the minimum of the X̃, Ã

and B̃ electronic states considerably away from the minimum of the neutral reference

state occurring at Q=0 [cf., Fig. 6.3].
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Table 6.8: Estimated Vmin (diagonal entries) and Vcmin (off-diagonal entries) of
the electronic states of H3CCCH·+ within a second-order coupling model, using the
EOMIP-CCSD (CASSCF-MRCI) electronic energy data. All quantities are given in
eV.

X̃ 2E Ã 2E B̃ 2A1

X̃ 2E 10.30 (10.14) - -

Ã 2E - 14.50 (14.87) 14.80 (15.53)

B̃ 2A1 - - 14.37 (14.71)

In contrast to the vibrational modes of a1 symmetry, the degenerate vibrational modes

are JT active and lift the electronic degeneracy of X̃ and Ã electronic states of H3CCCH·+.

The potential energy cuts along one component (say x) of a few JT active degenerate

vibrational modes are shown in Fig. 6.4. It can be seen from Fig. 6.4 that the extent of

splitting of electronic degeneracy of the X̃ state is small as compared to the Ã electronic

state. The extent of splitting of the degeneracy depends on the JT coupling strength

(λ2/2ω2) of the degenerate vibrational modes. It can be seen from Tables 6.4 and 6.5

that the vibrational modes ν7, ν8 and ν10 have moderate JT coupling strength [cf., Ta-

ble 6.4 and 6.5] than the other modes in the X̃ state. In the case of Ã electronic state,

among the five degenerate vibrational modes, ν6, ν7 and ν8 have relatively large coupling

strength [cf., Table 6.4 and 6.5]. So, the extent of splitting of electronic degeneracy of

the Ã state is more as compared to that of the X̃ state.

Using EOMIP-CCSD electronic structure data, we calculated the energetic minimum of

the JT split lower adiabatic sheets and saddle points of both X̃ 2E and Ã 2E electronic

states using the following equations [185, 206]

Vmin− = E0
j −

1

2

∑
i∈a1

κi
2

(ωi + γi)
− 1

2

∑
i∈e

λi
2

(ωi + γi − |ηi|)
; j ∈ X̃, Ã (6.13)

Vsp− = E0
j −

1

2

∑
i∈a1

κi
2

(ωi + γi)
− 1

2

∑
i∈e

λi
2

(ωi + γi + |ηi|)
; j ∈ X̃, Ã. (6.14)

The minimum of the seam of CIs occurs at an energy

VminCI = E0
j −

1

2

∑
i∈a1

κi
2

(ωi + γi)
; j ∈ X̃, Ã. (6.15)

The JT stabilization energy is given by

EJT =
1

2

∑
i∈e

λi
2

(ωi + γi − |ηi|)
. (6.16)
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The mathematical steps to arrive at the above equations are discussed in the Appendix

D. In the case of the X̃ 2E electronic state, both energetic minimum and saddle points

are found at ∼10.28 eV. This shows that the barrier to pseudo rotation is low. The

energetic minimum and saddle points of Ã 2E state appear at ∼13.08 eV and ∼13.09

eV, respectively. The JT stabilization energies amount to ∼0.02 eV (∼160 cm−1) and

∼1.42 eV (∼11,453 cm−1) for the X̃ and Ã electronic states, respectively. It is worthwhile

to mention that the JT stabilization energy estimated above for the X̃ state is in good

agreement with the available theoretical data [194], ∼117 cm−1.

Along with this, we have also calculated the SO coupling constant of the X̃ 2E electronic

state. We obtained a value of ∼ -28.60 cm−1 and ∼ -28.83 cm−1, using EOMIP-CCSD

and CASSCF-MRCI methods, respectively. This is in very good agreement with the

value reported by Shieh et al. [191], Xing et al. [192], Marquez et al. [194] and Jacovella

et al. [196].

6.2.3 Dynamical observables: Vibronic spectra and time-dependent

dynamics

The vibronic band structures of the X̃, Ã and B̃ electronic states of H3CCCH·+ are

calculated with the aid of the theoretical formalism discussed in Sec. 2.3 of Chapter

2. Precise location of the vibrational energy levels of the uncoupled electronic states is

calculated by the time-independent matrix diagonalization approach using the Lanczos

algorithm [122]. The HO basis functions used along each vibrational mode in these

calculations are given in Table 6.9. The first vibronic band due to the degenerate X̃

electronic state of H3CCCH·+ is shown in Fig. 6.5. The vibronic spectra shown in panels

b and c of this figure are obtained with the Hamiltonian parameters derived from the

EOMIP-CCSD and CASSCF-MRCI electronic energies, respectively. The experimental

X̃ band is reproduced from Ref. [187] and shown in panel a. Both the stick line spectra

and the convoluted envelopes are shown in Fig. 6.5(b and c). The convergence of the

stick spectrum is checked with respect to the size of the vibrational basis as well as

number of Lanczos iterations. The stick spectrum is convoluted with 30 meV full width

at the half maximum (FWHM) Lorentzian line shape function to generate the spectral

envelopes shown in panels b and c. Five totally symmetric a1 (ν1-ν5) and five degenerate

JT active e (ν6-ν10) vibrational modes are included in the calculation of the spectrum

in Fig. 6.5(b and c).

All five symmetric vibrational modes are excited in the spectrum of the X̃ state. Peak

spacings of ∼3497 cm−1, ∼3067 cm−1, ∼2170 cm−1, ∼1328 cm−1 and ∼876 cm−1

(EOMIP-CCSD) and ∼3504 cm−1, ∼3067 cm−1, ∼2169 cm−1, ∼1341 cm−1 and ∼878
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Table 6.9: The number of HO basis functions along the totally symmetric and degen-
erate vibrational modes and the dimension of the secular matrix used in the calculation
of the stick vibrational spectra of the X̃ 2E, Ã 2E and B̃ 2A1 electronic states of
H3CCCH·+ shown in various figures.

Electronic Vibrational No. of HO basis Dimension Figure(s)
states modes of secular matrix

X̃ 2E ν1, ν2, ν3 (10,12,20) 691200 Figs. 6.5(b) and (c)
ν4, ν5, (18,16)

ν6x, ν6y, ν7x, ν7x (4,4,6,6) 37748736 Fig. 6.5(b) and (c)
ν8x, ν8y, ν9x, ν9y (8,8,4,4)

ν10x, ν10y (8,8)

Ã 2E ν1, ν2, ν3 (12,18,14) 967680 Figs. 6.6(c) and (d)
ν4, ν5, (20,16)

ν6x, ν6y, ν7x, ν7x (6,6,8,8) 2359296 Fig. 6.6(e) and (f)
ν8x, ν8y, ν9x, ν9y (8,8,4,4)

B̃ 2A1 ν1, ν2, ν3 (14,12,16) 967680 Figs. 6.5(c) and (d)
ν4, ν5, (20,18)

cm−1 (CASSCF-MRCI) due to the progression of ν1, ν2, ν3, ν4 and ν5 vibrational modes,

respectively, are found. Among the five symmetric vibrational modes, ν3 (C≡C stretch-

ing mode) is strongly excited in the X̃ state. The excitation of ν4, ν5 modes is weak and

that of ν1, ν2 modes is very weak in accordance with their very low coupling strength

[cf., Tables 6.4 and 6.5]. Among the JT active e vibrational modes, ν8 and ν10 are very

weakly excited and the appearance of a relatively small number of lines in the spec-

trum is indicative of very weak JT coupling effects due to all five degenerate modes, as

indicated by their coupling strength [cf., Tables 6.4 and 6.5].

The overlapping second photoelectron band of H3CCCH in the∼14-17 eV energy range is

due to a transition to the Ã 2E and B̃ 2A1 electronic states of H3CCCH·+ [187]. In order

to systematically examine the vibronic structure of this band, we first focus on the results

obtained for the JT active Ã 2E electronic state. The calculations are carried out with

both EOMIP-CCSD and CASSCF-MRCI Hamiltonian parameters and the resulting

stick line spectra and convoluted envelopes are shown in panels (i) and (ii) of Fig. 6.6,

respectively. In Fig. 6.6(a and b), the experimental Ã 2E-B̃ 2A1 band is reproduced

from Ref. [187]. Panels (c) and (d) show the partial spectra of the Ã and B̃ electronic

states obtained with five symmetric vibrational modes, and panels (e) and (f) show the

partial spectra of the Ã state obtained with four JT active degenerate vibrational modes.

The symmetric mode spectrum of the Ã state in Fig. 6.6(c and d) reveals progressions

of all five symmetric vibrational modes. Peak spacings of ∼3496 cm−1, ∼3178 cm−1,

∼2145 cm−1, ∼1304 cm−1 and ∼1024 cm−1 (EOMIP-CCSD) and ∼3499 cm−1, ∼3183

cm−1, ∼2156 cm−1, ∼1315 cm−1 and ∼1033 cm−1 (CASSCF-MRCI) due to ν1, ν2, ν3,
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Figure 6.5: The vibronic energy level spectrum of the X̃ electronic state of H3CCCH·+

obtained with the Hamiltonian parameters derived from the EOMIP-CCSD and
CASSCF-MRCI electronic energies shown in panels (b) and (c), respectively. The ex-

perimental X̃ 2E band is reproduced from Ref. [187] and shown in panel (a). Relative
intensity (in arbitrary units) is plotted as a function of the energy (in eV).

ν4 and ν5, respectively, are estimated from the spectrum. Among the five symmetric

vibrational modes, ν4 (methyl deformation) is strongly excited. The excitation of ν2 and

ν5 vibrational modes is moderate and that of ν1 and ν3 modes is weak. In panels (c)

and (d) of Fig. 6.6 the stick line spectrum and the convoluted envelope of the uncoupled

B̃ electronic state is also shown. All five symmetric vibrational modes ν1-ν5 are found

to contribute to the spectral progressions of the B̃ state. Line spacings of ∼3332 cm−1,

∼3017 cm−1, ∼2018 cm−1, ∼1497 cm−1 and ∼917 cm−1 (EOMIP-CCSD) and ∼3279

cm−1, ∼3016 cm−1, ∼1996 cm−1, ∼1495 cm−1 and ∼914 cm−1 (CASSCF-MRCI), are

obtained in this state. Dominant excitation of both ν4 and ν5 vibrational modes is found

in this case. The symmetric vibrational modes excited in the X̃, Ã and B̃ electronic states

are assigned and given in Tables 6.10 and 6.11. In the latter, the results of the present

findings are compared to those available in the literature. It can be seen from Tables

6.10 and 6.11 that the present results compare well with various experimental findings

in the literature [187, 195].
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Figure 6.6: Vibronic energy level spectra of the Ã 2E and B̃ 2A1 electronic states of
H3CCCH·+ obtained with the Hamiltonian parameters derived from the EOMIP-CCSD
and CASSCF-MRCI electronic energies shown in column (i) and (ii), respectively. The

photoelectron bands of both Ã 2E and B̃ 2A1 electronic states computed with five totally
symmetric modes (ν1 − ν5) are shown in panels (c) and (d). The partial spectrum of

the Ã 2E electronic state computed with four degenerate (ν6− ν9) vibrational modes is

shown in panels (e) and (f). The composite Ã 2E-B̃ 2A1 band obtained by convoluting
the above two partial spectra (i.e., symmetric + degenerate) are shown in panels (g)

and (h). The experimental Ã 2E-B̃ 2A1 band is reproduced from Ref. [187] and shown
in panels (a) and (b).

The spectrum of the Ã state obtained with the JT active degenerate vibrational modes

shown in Fig. 6.6 reveals progression of ν6, ν7 and ν8 vibrational modes. Peak spac-

ings of ∼2110 cm−1, ∼711 cm−1 and ∼705 cm−1 (EOMIP-CCSD) and ∼2173 cm−1,

∼1442 cm−1 and ∼1428 cm−1 (CASSCF-MRCI), respectively, corresponding to these

vibrational modes (in that order) are estimated from the spectrum. It can be seen from

Tables 6.4 and 6.5 that the JT coupling due to ν7 and ν8 vibrational modes is relatively

strong in the Ã 2E electronic state. Because of the strong JT coupling, a bimodal struc-

ture is obtained for the spectrum of the JT modes in this case [cf., Fig. 6.6(e and f)].

This is in good agreement with the nature of the experimental band structure. The

non-degenerate B̃ state is vertically located ∼0.13 and ∼0.17 eV above the Ã state in

the EOMIP-CCSD and CASSCF-MRCI electronic structure data [cf., Table 6.8], respec-

tively. As a result of this energetic proximity the spectrum of the B̃ state was found

to be highly overlapping with the Ã band in the experiment. The spectrum of panels
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Table 6.10: Vibrational energy levels (in cm−1) of the X̃ 2E, Ã 2E and B̃ 2A1 electronic
states of H3CCCH·+ obtained from the uncoupled state calculations using the EOMIP-
CCSD energy data. The assignment of the levels carried out by examining the nodal
pattern of the wave functions is included in the table.

X̃ 2E Ã 2E B̃ 2A1
Energy Ref. [187] Ref. [196] Assignment Energy Ref. [187] Assignment Energy Assignment

0 000 0 000 0 000
876 940 930±50 ν5

1
0 1024 ν5

1
0 917 ν5

1
0

1328 ν4
1
0 1304 1290 ν4

1
0 1497 ν4

1
0

1752 ν5
2
0 2048 ν5

2
0 1835 ν5

2
0

2169 1940 2000±50 ν3
1
0 2145 ν3

1
0 2018 ν3

1
0

2204 ν4
1
0+ν5

1
0 2328 ν4

1
0+ν5

1
0 2414 ν4

1
0+ν5

1
0

2628 ν5
3
0 2602 ν4

2
0 2752 ν5

3
0

2655 ν4
2
0 3073 ν5

3
0 2936 ν3

1
0+ν5

1
0

3046 ν3
1
0+ν5

1
0 3169 ν3

1
0+ν5

1
0 2991 ν4

2
0

3067 ν2
1
0 3178 ν2

1
0 3017 ν2

1
0

3080 ν4
1
0+ ν5

2
0 3353 ν4

1
0+ν5

2
0 3332 ν4

1
0+ν5

2
0

3497 ν1
1
0 3449 ν3

1
0+ν4

1
0 3334 ν1

1
0

3498 ν3
1
0+ν4

1
0 3495 ν1

1
0 3515 ν3

1
0+ν4

1
0

3504 ν4
5
0 3626 ν4

2
0+ν5

1
0 3670 ν5

4
0

3531 ν4
2
0+ν5

1
0 3895 ν4

3
0 3853 ν3

1
0+ν5

2
0

3922 ν3
1
0+ν5

2
0 4097 ν5

4
0 3909 ν4

2
0+ν5

1
0

3943 ν2
1
0+ν5

1
0 4194 ν3

1
0+ν5

2
0 3935 ν2

1
0+ν5

1
0

3956 ν4
1
0+ν5

3
0 4202 ν2

1
0+ν5

1
0 4036 ν3

2
0

3980 ν4
3
0 4377 ν4

1
0+ν5

3
0 4252 ν1

1
0+ν5

1
0

4339 ν3
2
0 4482 ν2

1
0+ν4

1
0 5036 ν2

1
0+ν3

1
0

4373 ν1
1
0+ν5

1
0 4520 ν1

1
0+ν5

1
0 5352 ν1

1
0+ν3

1
0

4380 ν5
5
0 4651 ν4

2
0+ν5

2
0 6035 ν2

2
0

4395 ν2
1
0+ν4

1
0 4747 ν3

1
0+ν4

2
0

4407 ν4
2
0+ ν5

2
0 5218 ν3

1
0+ν5

3
0

5227 ν2
1
0+ν5

2
0

5323 ν2
1
0+ν3

1
0

5544 ν1
1
0+ν5

2
0

Table 6.11: Same as in Table 6.10 obtained with the set of parameters derived from
the CASSCF-MRCI energy data.

X̃ 2E Ã 2E B̃ 2A1
Energy Ref. [187] Ref. [196] Assignment Energy Ref. [187] Assignment Energy Assignment

0 000 0 000 0 000
876 940 930±50 ν5

1
0 1033 ν5

1
0 914 ν5

1
0

1341 ν4
1
0 1315 1290 ν4

1
0 1495 ν4

1
0

1753 ν5
2
0 2067 ν5

2
0 1828 ν5

2
0

2168 1940 2000±50 ν3
1
0 2156 ν3

1
0 1995 ν3

1
0

2218 ν4
1
0+ν5

1
0 2348 ν4

1
0+ν5

1
0 2409 ν4

1
0+ν5

1
0

2630 ν5
3
0 2622 ν4

2
0 2742 ν5

3
0

2680 ν4
2
0 3100 ν5

3
0 2909 ν3

1
0+ν5

1
0

3045 ν3
1
0+ν5

1
0 3183 ν2

1
0 2988 ν4

2
0

3067 ν2
1
0 3189 ν3

1
0+ν5

1
0 3016 ν2

1
0

3095 ν4
1
0+ ν5

2
0 3382 ν4

1
0+ν5

2
0 3279 ν1

1
0

3504 ν1
1
0 3471 ν3

1
0+ν4

1
0 3323 ν4

1
0+ν5

2
0

3509 ν3
1
0+ν4

1
0 3499 ν1

1
0 3491 ν3

1
0+ν4

1
0

3557 ν4
2
0+ν5

1
0 3656 ν4

2
0+ν5

1
0 3656 ν5

4
0

3922 ν3
1
0+ν5

2
0 3922 ν4

3
0 3823 ν3

1
0+ν5

2
0

3944 ν2
1
0+ν5

1
0 4133 ν5

4
0 3902 ν4

2
0+ν5

1
0

3972 ν4
1
0+ν5

3
0 4216 ν2

1
0+ν5

1
0 3930 ν2

1
0+ν5

1
0

4017 ν4
3
0 4223 ν3

1
0+ν5

2
0 3991 ν3

2
0

4337 ν3
2
0 4312 ν3

2
0 4193 ν1

1
0+ν5

1
0

4381 ν1
2
0+ν5

1
0 4415 ν4

1
0+ν5

3
0

4386 ν5
5
0 4498 ν2

1
0+ν4

1
0

4408 ν2
1
0+ν4

1
0 4532 ν1

1
0+ν5

1
0

4689 ν4
2
0+ν5

2
0

4779 ν3
1
0+ν4

2
0

5256 ν3
1
0+ν5

3
0

5339 ν2
1
0+ν3

1
0

5346 ν3
2
0+ν5

1
0

(g) and (h) of Fig. 6.6 is obtained by convoluting the partial stick spectra of uncou-

pled Ã-B̃ states along symmetric (panels (c) and (d)) and degenerate vibrational modes

(panels (e) and (f)). The energetic proximity of the Ã and B̃ electronic states leads to

the observed complex, diffuse and overlapping Ã-B̃ vibronic band. The minimum of the

seam of the Ã-B̃ CIs is located ∼0.30 (EOMIP-CCSD) and ∼0.66 eV (CASSCF-MRCI)
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Table 6.12: Normal mode combinations, sizes of the primitive and single particle
bases used in the MCTDH calculations. a The primitive basis consists of harmonic
oscillator DVR functions, in the dimensionless normal coordinate required to represent
the system dynamics along the relevant mode. The primitive basis for each particle is
the product of the one-dimensional bases; b The SPF basis is the number of the single
particle functions used.

Electronic state Normal modes Primitive basisa SPF basisb

X̃ 2E ν1, ν6x, ν6y, ν2 (6,10,10,8) [8,8]
ν4, ν7x, ν7y, ν3 (16,14,14,14) [8,8] Fig. 6.10(b) and (c)
ν8x, ν8y, ν5 (16,16,10) [8,8]

ν9x,ν9y,ν10x,ν10y (12,12,16,16) [10,10]

Ã 2E &B̃ 2A1 ν1, ν6x, ν6y, ν2 (10,12,12,14) [22,22,12]
ν4, ν7x, ν7y, ν3 (12,18,18,18) [24,24,12] Fig. 6.10(b) and (c)
ν8x, ν8y, ν5 (16,16,14) [22,22,12]
ν9x, ν9y, (12,12) [20,20,10]

above the minimum of the Ã state [cf., Table 6.8]. Also, the energetic minimum of the

B̃ state is quasi-degenerate to that of the Ã state. This leads to a strong mixing of the

vibronic levels of the B̃ state with those of the Ã state. It can be seen from the bottom

panels of this figure [cf., panels (g) and (h) of Fig. 6.6] that the convoluted spectrum is

in good accord with the experimental spectrum.

In addition to the energetic location and excitation strength analysis, the assignment

of the peaks is also confirmed by examining the nodal pattern of the vibrational wave

functions. These wave functions are calculated by a block-improved relaxation method

as implemented in the MCTDH program module [129, 159, 160]. In Figs. 6.7-6.9 we

present a few vibrational wave functions of the X̃ 2E, Ã 2E and B̃ 2A1 states. In these

figures, the wave function probability density is plotted in a suitable reduced dimensional

space of normal coordinates.

Finally, the complete vibronic band structure of the X̃-Ã-B̃ electronic states is calculated

by including the relevant coupling among them. Understandably, this exercise is beyond

the capability of the matrix diagonalization method employed for the uncoupled states.

This task is therefore accomplished by the time-dependent WP propagation method em-

ploying the MCTDH suite of programs [131]. Because of large vertical energy separation

of the X̃ 2E state from the Ã 2E and B̃ 2A1 states, we have performed nuclear dynamical

calculations for the X̃ 2E and Ã 2E-B̃ 2A1 electronic states separately. Both EOMIP-

CCSD and CASSCF-MRCI Hamiltonian parameters are employed in the calculations.

All 15 vibrational modes are included for the X̃ 2E state and 13 relevant vibrational

modes are included for the Ã 2E-B̃ 2A1 states. Five WP calculations are carried out by

launching the initial WP on each of the five (two components of the JT split X̃ and Ã
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Figure 6.7: Probability density of vibronic wave functions of the X̃ 2E electronic state
of H3CCCH·+ as a function of nuclear coordinate. The EOMIP-CCSD Hamiltonian
parameters are used in the calculations. Panels a-c and d-f represent the fundamentals
and first overtone of ν5, ν4 and ν3 vibrational modes, respectively. Panels g and h
represent the second overtone of ν5 and ν4 modes. The wave functions in panels i-l
represent the combination peaks of ν5, ν4 andν3 modes.

state plus the B̃ state) electronic states separately. The details of the mode combina-

tion and the sizes of the basis sets are given in Table 6.12. In each calculation WP is

propagated for 200 fs. The time autocorrelation function is damped with an exponential

function of relaxation time 33 fs for all electronic states, and then Fourier transformed

to generate the spectrum. The results from five different calculations are combined with

equal weightage to generate the composite theoretical band shown in Fig. 6.10, along

with the available experimental results reproduced from Ref. [187]. It can be seen from
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Figure 6.8: Probability density of vibronic wave functions of the Ã 2E electronic state
of H3CCCH·+ as a function of nuclear coordinate. The EOMIP-CCSD Hamiltonian
parameters are used in the calculations. Panels a-c and d-e represent the fundamentals
and first overtone of ν5, ν4 and ν2 vibrational modes, respectively. Panels f and g
represent the second overtone of ν5 and ν4 modes. The wave functions in panels h-l
represent the combination peaks of ν5, ν4 andν2 modes.

the figure that the present theoretical results are in very good agreement with the ex-

perimental results [187]. While the first band is formed by the X̃ 2E state the second

band is formed by highly overlapping Ã 2E and B̃ 2A1 electronic states.
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Figure 6.9: Probability density of vibronic wave functions of the B̃ 2A1 electronic state
of H3CCCH·+ as a function of nuclear coordinate. The EOMIP-CCSD Hamiltonian
parameters are used in the calculations. Panels a-c and d-f represent the fundamentals
and first overtone of ν5, ν4 and ν3 vibrational modes, respectively. The wave functions
in panels g-i represent the combination peaks of ν5, ν4 andν3 modes.

6.2.4 Diabatic electronic population

In order to understand the impact of complex nonadiabatic coupling on the dynamics

of the X̃ 2E, Ã 2E and B̃ 2A1 electronic states, the time-dependence of the diabatic elec-

tronic populations in the coupled (i.e., X̃ 2E-Ã 2E-B̃ 2A1) electronic states of H3CCCH·+

is recorded and discussed in this section. The electronic populations obtained by initially

locating the WP on two components of the JT split X̃ 2E, Ã 2E and the B̃ 2A1 states

are shown in columns (i) and (ii) of Fig. 6.11 calculated with the EOMIP-CCSD and

CASSCF-MRCI parameters, respectively. It can be seen from panels (a) and (b) that

when the WP is initially excited to the X̃ 2E state the electronic population moves back

and forth between its two components driven solely by the JT CIs and exhibits an exact

mirror image behavior.

The population curve for an initial location of the WP on the Ã 2E state shown in panels

(c) and (d) of Fig. 6.11. It can be seen that, a very little amount (∼1%) of population
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Figure 6.10: Vibronic band structure of the coupled X̃ 2E-Ã 2E-B̃ 2A1 electronic
states of H3CCCH·+. Relative intensity (in arbitrary units) is plotted as a function of
the energy of the vibronic states of H3CCCH·+. Experimental spectrum reproduced
from Ref. [187] is shown in panel (a). The present theoretical results obtained with the
EOMIP-CCSD and CASSCF-MRCI Hamiltonian parameters are shown in panels (b)
and (c), respectively.

is transferred to the B̃ 2A1 state in this situation. This is due to the fact that the CI of

the Ã 2E state with the B̃ 2A1 state is located at ∼0.3 eV above the minimum of the

Ã 2E state and it is not accessible to the WP during its evolution on this state. Most

of the population moves back and forth between the x and y component of the Ã 2E

state. Initially, the population decreases sharply within a short time of about ∼3 fs and

then increases slightly. Again it decreases to ∼0.3 within a short time of about ∼40

fs and then increases slightly up to ∼60 fs. Then after remains constant between ∼0.4

and ∼0.6 at longer times. The population profiles provided in the panels (c) and (d)

of Fig. 6.11 are qualitatively same, but quantitatively very different. This is because

of quantitatively different coupling parameters that result from the EOMIP-CCSD and

CASSCF-MRCI methods. The time-dependence of electronic populations for an initial

location of the WP on the B̃ 2A1 state is shown in panels (e) and (f) of Fig. 6.11. In

this case ∼40% of the population is transferred to both x and y components of the Ã 2E
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Figure 6.11: Time-dependence of diabatic electron populations during the evolution
of the WP in the coupled X̃ 2E-Ã 2E-B̃ 2A1 electronic states. Population curves of these
states are obtained with the Hamiltonian parameters derived from both EOMIP-CCSD
(column (i)) and CASSCF-MRCI (column (ii)) electronic energies. The population

curve for the initial location of the WP on the x component of X̃ and Ã states and on
the B̃ states are shown in panels (a-b), (c-d) and (e-f), respectively.

state (i.e., internal conversion) via the PJT coupling and CI between Ã 2E and B̃ 2A1

states. It can be seen that the PJT coupling effect between the Ã and B̃ states is not

particularly strong. The complex band structure of the Ã and B̃ states arises solely from

their energetic proximity.

The behavior mentioned above is to be contrasted with the findings on the JT and PJT

coupling effects in isomeric allene radical cation [83]. In the latter the PJT coupling

between the Ã 2E and B̃2B2 states is very strong. Due to this, ∼50% of the B̃2B2 state

population decays within ∼5 fs when the WP is initially located on the B̃2B2 state,

and within ∼20 fs almost ∼90% of the population decays from this state [see Fig. 5 of

Ref. [83]] Therefore, while the strong PJT coupling between the Ã 2E and B̃2B2 states

of the allene radical cation gives rise to broad and diffuse vibronic bands, the energetic

proximity of the electronic states leads to the same kind of broad and diffuse vibronic

bands in the isomeric propyne radical cation.
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6.3 Summary

Impact of JT and PJT interactions on the photo-ionization spectroscopy of H3CCCH is

examined in this chapter. The theoretical results are compared with the experimental

recording by Baker et al. [187]. The equilibrium geometry of the reference electronic

ground state of the H3CCCH is optimized at the MP2 level of theory. The potential

energy surfaces of the X̃ 2E, Ã 2E and B̃ 2A1 electronic states of propyne radical cation

are calculated along the dimensionless normal displacement coordinates of the electronic

ground state of H3CCCH (reference geometry) using both EOMIP-CCSD and CASSCF-

MRCI ab initio quantum chemistry methods. With the aid of the electronic structure

results, a higher-order model vibronic Hamiltonian is constructed in a diabatic electronic

basis in terms of dimensionless normal displacement coordinate of vibrational modes.

It is found that the X̃ 2E electronic state is energetically well separated from the Ã 2E

and B̃ 2A1 states at the Franck-Condon geometry. Similar results were obtained for the

allene radical cation [80–83]. The curve crossings between the Ã 2E and B̃ 2A1 electronic

states along the ν1-ν5 vibrational modes of the propyne radical cation are found.

Nuclear dynamics calculations are carried out from first principles by time-independent

and time-dependent methods. The individual vibronic bands are systematically ana-

lyzed. It is observed that the JT effect due to the e vibrational modes in the Ã 2E

electronic manifold of H3CCCH·+ is stronger compared to the X̃ 2E state. The PJT

coupling of e vibrational modes between the Ã 2E-B̃ 2A1 electronic states is weak. How-

ever, because of the energetic proximity the band structure of the Ã 2E-B̃ 2A1 electronic

states is highly overlapping and diffuse. In the first vibrational band due to the X̃ 2E

state, C≡C stretching vibrational mode ν3 is strongly excited and excitation of ν4 and

ν5 vibrational modes is weak. Also, among the JT active e vibrational modes, ν8 and

ν10 are weakly excited in this band and the JT coupling effect is weak in this band.

The second photo-ionization band is due to strongly overlapping Ã 2E and B̃ 2A1 elec-

tronic states of H3CCCH·+. In case of the JT active Ã 2E electronic state, ν4, ν7 and

ν8 vibrational modes are strongly excited and the excitation of ν2, ν5 and ν6 modes is

moderate. Because of the fairly strong JT coupling strength of the degenerate ν7 and

ν8 vibrational modes, a bimodal structure of Ã 2E vibronic band is observed. This is in

good agreement with the experimental band structure. Dominant excitation of both ν4

and ν5 vibrational modes is found in B̃ 2A1 electronic state. The final theoretical results

so obtained are in good agreement with the available experimental results. The close

proximity of the minimum energies of both Ã 2E and B̃ 2A1 states leads to broad, diffuse

and overlapping vibronic band for the Ã 2E and B̃ 2A1 electronic states of H3CCCH·+.

The time-dependence of the diabatic electronic population for an initial location of the

WP on the B̃ 2A1 state reveals that ∼40% of population is transferred to the Ã 2E state
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via the PJT coupling and CI between Ã 2E and B̃ 2A1 states. It is found that the PJT

coupling between these states is not so strong. The complex band structure of the Ã 2E

and B̃ 2A1 states arises solely from their energetic proximity. This is in contrast to the

effects in the vibronic band structure of the Ã 2E-B̃2B2 electronic states of the isomeric

allene radical cation. In the latter, the PJT coupling among the Ã 2E-B̃2B2 states is

particularly strong leading to a very fast decay of the population of the B̃2B2 state and

diffuse vibronic bands.



Chapter 7

Summary and outlook

In this thesis, a detailed theoretical description of vibronic interactions in the photo-

induced polyatomic molecular systems is presented: More specifically, the excited state

dynamics of PFBz, HFBz and Propyne molecules is investigated by employing the state-

art-of-the ab initio quantum chemistry calculations and the quantum dynamical meth-

ods. Vibronic coupling is established to be an important mechanism governing the

dynamics in their excited electronic states. The complex vibronic spectra, dominant

vibrational progressions, electronic population transfer process at the CIs, nonradiative

decay rate and the effect of fluorination on the broadening of the spectra and emission

properties are investigated in detail. The theoretical findings are compared with the

available experimental results. The theoretical results are generally found to be in good

accord with the experimental data. The diabatic electronic representation has been

introduced and used to deal with the PESs crossings and to avoid the singular nature

of the nuclear kinetic coupling term of the adiabatic electronic representation. Model

vibronic Hamiltonian is devised in this basis using elementary symmetry selection rules

and the relevant coupling parameters of the Hamiltonian are extracted from ab initio

electronic structure results. The spectroscopic implications of the JT and PJT effects

and vibronic interactions are probed through photoelectron/absorption spectroscopic

experiments. The vibronic bands are calculated by solving the both time-independent

and time-dependent Schrödinger equation using the MCTDH program module. The

major findings of the present thesis are given below.

Chapter 3:

A detailed theoretical account of vibronic coupling among the energetically lowest eight

singlet excited electronic states of PFBz is presented in this chapter. The computed

optical absorption spectrum of PFBz is compared with the available experimental results

of Philis et al. [63] and Hüter et al. [60]. Along with this, we examined the role of

123
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optically dark πσ∗ states on the quantum dynamics of optically bright ππ∗ states of

PFBz. The adiabatic electronic energies of the lowest eight excited electronic states

are calculated along the dimensionless normal displacement coordinates using EOM-

CCSD/aug-cc-pCDZ level of theory with the aid of the MOLPRO suite of programs. A

detailed topographical analysis of the eight adiabatic electronic states is carried out and

multiple conical intersections among them are established. With electronic structure

results, a higher-order model vibronic Hamiltonian of the eight coupled electronic states

is developed in a diabatic electronic basis. It is found that the vibronic coupling between

optically active (ππ∗) and optically dark (πσ∗) states is quite strong. The strong vibronic

coupling between the S1 (ππ∗) and S2 (πσ∗) states causes the lowering of symmetry

of the lowest excited adiabatic S1-S2 coupled potential energy surface and leads to a

symmetric double-well type of potential, which stabilizes the molecule along with the

out-of-plane modes of b1 symmetry. The minimum of the last four (S5, S6, S7, and

S8) excited electronic states is quasi-degenerate with their intersection minimum. For a

detailed interpretation of the experimental results, 22 relevant vibrational modes and all

possible nonadiabatic couplings between the eight electronic states of the Hamiltonian

are considered in the dynamical calculations.

The results show that the first absorption band, S1←S0, is structureless due to collective

effect of the out-of-plane b1 vibrational modes in addition to strong S1-S2 nonadiabatic

coupling. Shallow minima on the potential are found at large internuclear displacements

along the b1 modes. This causes a spreading of the WP and the broadening of the S1

band. A new additional broad band appears at about 5.85 eV (marked as C-band in

the literature [63]) near the onset of the second band. This is attributed to the π → σ∗

type transition to both S2 and S3 states. This new band is absent in the parent Bz and

the lower fluroderivatives.

Chapter 4:

The vibronic coupling and quantum nuclear dynamics in the coupled six electronic states

of PFBz+ is studied using a state-of-the-art theoretical approach. The respective PESs

are computed using the EOMIP-CCSD and CASSCF-MRCI methods. It appears from

the electronic structure data and subsequent dynamical results that the EOMIP-CCSD

method does a superior job in this case. It is by no means a conclusive remark in

the absence of high resolution spectroscopy data. It is established that the energetically

lowest six electronic states separates into two groups viz., X̃ 2A2-Ã 2B1 and B̃ 2B1-C̃ 2B2-

D̃ 2A1-Ẽ 2B2. The X̃ 2A2 and Ã 2B1 states form energetically accessible CIs. The effect

of the latter on the dynamics of X̃ 2A2 state is not as much as on the same on the Ã 2B1

state. This is because the minimum of the X̃ 2A2 state is energetically well separated

from the minimum of the X̃ 2A2-Ã 2B1 CIs. The minimum of the Ã 2B1 state on the

other hand is energetically very close to the minimum of the X̃ 2A2-Ã 2B1 intersections.
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Therefore, the X̃ 2A2-Ã 2B1 coupling has a significant effect on the vibronic structure

of the Ã 2B1 state.

It is found that the B̃ 2B1 state is energetically well separated from the rest of the states.

The coupling of B̃ 2B1 state with others therefore has no significant effect on the vibronic

structure of the B̃ 2B1 state. The population of this state remains ∼100% for a long

time when the dynamics started on it. The radiative emission in PFBz+ is therefore

originates from this state. The C̃ 2B2-D̃ 2A1-Ẽ 2B2 electronic states are energetically

close and therefore give rise to highly overlapping vibronic bands. The theoretical results

are shown to be in good accord with available experimental results.

Chapter 5:

In continuation with Chapter 4, the theoretical photoelectron spectroscopy of HFBz and

its radiative emission and nonradiative decay dynamics are studied. That is, a detailed

theoretical account of multi-mode JT and PJT interactions in the ground (X̃ 2E1g) and

three lowest excited states (Ã 2A2u, B̃ 2B2u and C̃ 2E2g) of HFBz+ were examined in

this chapter. It is found that all the electronic states are energetically well separated

from each other at the Franck-Condon geometry. However, the couplings between them

are strong enough, and the curve crossing between the B̃ 2B2u and C̃ 2E2g states along

the ν15 vibrational mode of the HFBz+ is found.

It is observed that the JT effect due to e2g vibrational modes in the X̃ 2E1g state is

more substantial as compared to the C̃ 2E2g electronic state. In the four vibrational

band structures, both a1g and e[2g] vibrational modes are excited according to their

excitation strength. Investigation of structure and dynamics of the X̃ 2E1g-Ã
2A2u-

B̃ 2B2u-C̃ 2E2g electronic states of the HFBz+ reveals that 20 (out of 45) vibrational

modes are relevant for the dynamical calculations. It is found that both Ã 2A2u and

B̃ 2B2u electronic states are well separated from the rest of the states. Therefore, the

PJT coupling of these states with other states have no effect on the vibronic structure

of Ã 2A2u and B̃ 2B2u states. The time-dependence of the diabatic electronic population

reveals that the population of the Ã 2A2u state remains ∼100% for a long time when the

dynamics started on it. Similarly, when the WP is located on the B̃ 2B2u state a minimal

amount (∼2%) of population is transferred to the two components of the C̃ 2E2g state

only. This leads to the long-lived nature of the Ã 2A2u and B̃ 2B2u electronic states,

and these states contribute to the observed fluorescence emission in HFBz+.

Chapter 6:

The JT and PJT effects in the X̃ 2E, Ã 2E and B̃ 2A1 electronic states of propyne

radical cation (H3CCCH·+) are investigated with the aid of ab initio quantum chemistry

calculations and first-principles of quantum dynamics simulations. The PESs of these

states are calculated long the dimensionless normal displacement coordinates of the
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electronic ground state of H3CCCH (reference geometry) using both EOMIP-CCSD

and CASSCF-MRCI ab initio quantum chemistry methods. With the aid of electronic

structure results, a higher-order model vibronic Hamiltonian is constructed in a diabatic

electronic basis. It is found that the X̃ 2E state is energetically well separated from the

other excited states at the Franck-Condon geometry. Similar results were obtained for

the allene radical cation [80–83]. The curve crossings between the Ã 2E and B̃ 2A1

electronic states along the ν1-ν5 vibrational modes of the H3CCCH·+ are found.

It is observed that the JT effect is weak in the X̃ 2E state as compared to that in the

Ã 2E state. Because of the large energy separation, the PJT coupling among the JT-split

components of the X̃ 2E state with the neighboring states is also weak. However, the

PJT coupling of the B̃ 2A1 state with the JT-split components of the Ã 2E state has

some impact of each of these states is calculated and compared with the experimental

results.

The time-dependence of the diabatic electronic population for an initial location of the

WP on the B̃ 2A1 state reveals that ∼40% of population is transferred to the Ã 2E state

via the PJT coupling and CIs between the Ã 2E and B̃ 2A1 state. It is found that the

PJT coupling between these states is not so strong. The complex band structure of the

Ã 2E and B̃ 2A1 states arises solely from their energetic proximity. This is in contrast

to the effects in the vibronic band structure of the Ã 2E-B̃ 2B2 electronic states of the

isomeric Allene radical cation. In the latter, the PJT coupling among the Ã 2E-B̃ 2B2

states is particularly strong leading to a very fast decay of the population of the B̃ 2B2

state and diffuse vibronic bands.

Future directions:

(1). The possible extension of this work necessarily requires the inclusion of rotational

degree of freedom in the present vibronic coupling model Hamiltonian to obtain infor-

mation on rovibronic levels of isolated molecules.

(2). The present work is restricted to vibronic coupling of electronic states with same

spin multiplicities (e.g., singlet-singlet). This study can be further extended to the

systematic investigation of vibronic coupling for electronic states of different spin mul-

tiplicities (e.g., singlet-triplet).

(3). It is another challenge for future research to extend the theory and ab initio com-

putations to heavy-metal (especially, tetra- and octa-hedral) complexes. For these com-

plexes higher-order vibronic coupling models are required to satisfactorily describe high-

resolution measurements.

(4). With the expertise gained from the work of this thesis, study of the laser control

of polyatomic molecular systems using optimal control theory (OCT) which is imple-

mented in the MCTDH program module. In this regard a problem that we have in mind
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in near future is the control of quantum yield of fluorescence from S2 state of HFBz

in the presence of CIs with S1 along the totally symmetric vibrational modes using

OCT-MCTDH.





Appendix A

Symmetry considerations for JT

and PJT coupling terms

In the following, the diabatic potential matrix for the E⊗e-JT and (E + A)⊗e-PJT

system up to sixth-order is derived for a general molecule with a Ĉ3 main rotational

axis.

A.0.1 Derivation of E⊗e JT Hamiltonian

As minimum symmetry element to have the degenerate electronic state is the presence

of a three fold rotational axis we can start from this point to construct the Hamiltonian.

The molecule here under the study is propyne and that also falls under the same cate-

gory. The components of coordinate (x,y) will be denoted as (Qx, Qy).

In this situation it is convenient to use polar coordinates (ρ, θ) in the x-y plane.

Qx = ρcosθ; Qy = ρsinθ (A.1)

Now we define the complex coordinates, Q+ and Q− as

Q+ = Qx + iQy = ρ(cosθ + isinθ) = ρeiθ (A.2)

Q− = Qx + iQy = ρ(cosθ − isinθ) = ρe−iθ (A.3)
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Now introducing the effect of Ĉ3 operation on the coordinates i.e., a 2π/3 rotation we get

Ĉ3Qx = Ĉ3ρcosθ = ρcos

(
2π

3
+ θ

)
= cos(2π/3).ρcosθ − sin(2π/3).ρsinθ

= cos(2π/3)Qx − sin(2π/3)Qy (A.4)

Ĉ3Qy = Ĉ3ρsinθ = ρsin

(
2π

3
+ θ

)
= cos(2π/3).ρsinθ + sin(2π/3).ρcosθ

= sin(2π/3)Qx + cos(2π/3)Qy (A.5)

Ĉ3Q+ ⇒ Ĉ3(Qx + iQy)

⇒ Ĉ3Qx + iĈ3Qy

⇒ cos(2π/3)Qx − sin(2π/3)Qy + i [sin(2π/3)Qx + cos(2π/3)Qy]

⇒ [cos(2π/3) + isin(2π/3)]Qx + i [cos(2π/3) + isin(2π/3)]Qy

⇒ e2πi/3Qx + ie2πi/3Qy

⇒ e2πi/3[Qx + iQy]. (A.6)

So, Ĉ3Q+ = e+2πi/3Q+ and similarly Ĉ3Q− = e−2πi/3Q−

Hence, a (2π/3) rotation yields the multiplication of the complex coordinate with a

complex factor e±2πi/3. We express the transformation in a matrix form as,

Ĉ3

(
Q+

Q−

)
=

(
e2πi/3 0

0 e−2πi/3

)(
Q+

Q−

)
(A.7)

The components of the degenerate electronic state are also transformed (x,y) to (Φx,

Φy). As done for the nuclear coordinates we define also a set of complex functions,

|Φ+〉 =
1√
2

(Φx + iΦy), |Φ−〉 =
1√
2

(Φx + iΦy) (A.8)

The electronic wave functions are transformed accordingly by the rotation as

Ĉ3〈Φ+| = e+2πi/3〈Φ+| and Ĉ3〈Φ−| = e−2πi/3〈Φ−| (A.9)

Ĉ3|Φ+〉 = e−2πi/3|Φ+〉 and Ĉ3|Φ−〉 = e+2πi/3|Φ−〉. (A.10)

Therefore, in the complex representation the coordinates Q+ and Q− and the state func-

tions 〈Φ+| and 〈Φ−| are eigenfunctions of the symmetry operator Ĉ3 (rotation by 2π/3)

with eigenvalues e±2πi/3. Q± and Φ± are the most suitable coordinates and functions
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to use, since they are adapted to the symmetry of the problem.

Let us now consider the matrix elements of the electronic Hamiltonian in the Φ± basis

set up to second order in the coordinates Q±

|Φ+〉Ĥel〈Φ+| = D(0)+D(1)
+ Q++D(1)

− Q−+
1

2!
D(2)

++Q+Q++
1

2!
D(2)
−−Q−Q−+

1

2!
D(2)

+−Q+Q−+· · ·
(A.11)

If Ĉ3 is applied on this equation, then the left side is multiplied by 1 (as e−2πi/3.e+2πi/3 =

1). Since Ĥel is invariant, thus the left hand side is also invariant. On the right hand

side all the Ds for which the combination of the Qs are variant has to vanish, i.e.,

D(1)
+ = D(1)

− = D(2)
++ = D(1)

+ = D(2)
−− = 0 (A.12)

For D(1)
+ Q+ term it can be shown that

Ĉ3(D(1)
+ Q+) = D(1)

+ Ĉ3Q+ = D+e
(2πi/3)Q+ (A.13)

So, it is not invariant with respect to the left hand side. Therefore, D(1)
+ = 0 and

similarly other relations in Eq. (A.12) are true. So the terms that are not changing

upon application of three fold rotations will survive in the integral. That is,

|Φ+〉Ĥel〈Φ+| = D(0) +
1

2
D(2)

+−Q+Q−, (A.14)

and also

|Φ−〉Ĥel〈Φ−| = D(0) +
1

2
D(2)

+−Q+Q−. (A.15)

The off-diagonal matrix elements are,

|Φ+〉Ĥel〈Φ−| = O(0) +O(1)
+ Q+ +O(1)

− Q−+
1

2!
O(2)

++Q+Q+ +
1

2!
O(2)
−−Q−Q−+

1

2!
O(2)

+−Q+Q−

(A.16)

If Ĉ3 is applied on this equation, then the left side is multiplied by e2πi/3 (i.e., e−2πi/3.e−2πi/3 =

e−4πi/3 = e2πi/3). So that we finally get,

O(0) = O(1)
+ = O(2)

−− = O(2)
(+−) = 0 (A.17)

Therefore, the Eq. (A.16) gives rise to

|Φ+〉Ĥel〈Φ−| = O
(1)
− Q− +

1

2!
O(2)

++Q+Q+ (A.18)
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The total electronic Hamiltonian can be written as

Ĥel =

(
D0 + 1

2!D
2
+−Q+Q− O(1)

− Q− + 1
2!O

(2)
++Q+Q+

O(1)
+ Q+ + 1

2!O
(2)
−−Q−Q− D0 + 1

2!D
(2)
+−Q+Q−

)
(A.19)

Now,

Q+Q− = (Qx + iQy)(Qx − iQy) = Q2
x +Q2

y, (A.20)

Q+Q+ = Q2
x −Q2

y + 2iQxQy, (A.21)

Q−Q− = Q2
x −Q2

y − 2iQxQy. (A.22)

So in complex representation the Hamiltonian is,

Ĥel =

(
D0 + 1

2!D
(2)
+−(Q2

x +Q2
y) O(1)

+ (Qx − iQy) + 1
2!O

(2)
++(Q2

x +Q2
y + 2iQx)

O(1)
+ (Qx + iQy) + 1

2!O
(2)
−−(Q2

x −Q2
y − 2iQxQy) D(0) + 1

2!D
(2)
+−(Q2

x +Q2
y)

)
(A.23)

To make it real we transform it by transformation matrix as,

Hreal = U†ĤelU (A.24)

where,

U = 1√
2

(
1 −i
1 i

)
; U† = (U∗)T = 1√

2

(
1 1

i −i

)
By doing this transformation we get the final Hamiltonian in real space as,

Hreal =

(
D0 + 1

2!
D(2)(Q2

x +Q2
y) +O(1)Qx + 1

2!
O(2)(Q2

x −Q
2
y) O(1)Qy −O(2)QxQy

O(1)Qy −O(2)QxQy D(0) + 1
2!
D(2)(Q2

x +Q2
y)−O

(1)Qx − 1
2!
O(2)(Q2

x −Q
2
y)

)
(A.25)

The coefficients appearing in the above matrix have the following definition as appeared

in the Chapter 2 [cf., Sec. 2.2.2]

D(0) = a
(0)
1 , (A.26)

D(2) = a
(2)
1 , (A.27)

O(1) = λ
(1)
1 , (A.28)

O(2) = λ
(2)
1 (A.29)

This is a standard JT model Hamiltonian. When the potential energy surfaces are more

anharmonic in nature, then one needs to go beyond the standard JT model. So, in the

following the matrix elements are expanded in Taylor series up to sixth order in Q+ and
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Q−. The general representation of the electronic Hamiltonian in the {|Φ+〉, |Φ−〉} basis

is given by

Ĥel = Φ†±H±Φ± =
∑
i,j

|Φi〉Hij〈Φj | (i, j = +,−) (A.30)

and the matrix elements Hij = 〈Φi|Ĥel|Φj〉 are expanded. For example, H++ is expanded

as (this is, a short notation of Eq. (A.11))

H++ =
6∑

p+q=0

c
(++)
p,q

(p+ q)!
Qp+Q

q
−. (A.31)

Each term in the expansion of Eq. (A.31) has to fulfill the invariance condition under

the symmetry operations and therefore most of the expansion coefficients are zero. For

example,

Ĉ3|Φ+〉Qp+Q
q
−〈Φ−| = e−2πi/3e(+p)2πi/3e(−q)2πi/3e2πi/3 × |Φ+〉Qp+Q

q
−〈Φ−| (A.32)

= e(p−q)2πi/3 × |Φ+〉Qp+Q
q
−〈Φ−|. (A.33)

In the above equation, |(p− q)|= 0,3,6..., fulfill the invariance condition, because only in

these cases the phase factor of Eq. (A.33) is unity. The same procedure is repeated for

the remaining elements of the Hamiltonian [cf., Eq. (A.31)], resulting in ten nonvanishing

diagonal and nine nonvanishing off-diagonal terms. These terms are summarized in Table

A.1 The obtained Hamiltonian matrix will be transformed back to the real representation

Table A.1: Nonvanishing terms of the Hamiltonian matrix in complex representation.

Order Diagonal H++ = H−− Off-diagonal H+− = (H−+)∗

0 Q0
+Q

0
− -

1 - Q0
+Q

1
−

2 Q1
+Q

1
− Q2

+Q
0
−

3 Q3
+Q

0
− and Q0

+Q
3
− Q1

+Q
2
−

4 Q2
+Q

2
− Q0

+Q
4
− and Q3

+Q
1
−

5 Q4
+Q

1
− and Q1

+Q
4
− Q2

+Q
3
− and Q5

+Q
0
−

6 Q6
+Q

0
− and Q3

+Q
3
− and Q0

+Q
6
− Q1

+Q
5
− and Q4

+Q
2
−

using the above Eq. (A.24). In continuation of E⊗e higher-order JT couplings, one can

also derive higher-order (E + A)⊗e-PJT coupling terms. For more details readers are

referred to the Refs. [114, 115].
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Table B1: The linear intrastate (κ) and second-order (γ) coupling parameters of PFBz
derived from the EOM-CCSD electronic structure data. Excitation strengths (κ2i /2ω

2
i )

are given in the parentheses.

S1 S2 S3
κ γ κ γ κ γ

ν1 -0.0232 (0.0016) -0.0003 0.0161 (0.0008) -0.0194 0.0214 (0.0014) -0.0202
ν2 -0.0019 (0.0000) 0.0141 -0.1527 (0.2679) -0.0069 0.1416 (0.2305) -0.0198
ν3 -0.0830 (0.0952) -0.0031 0.0778 (0.0837) -0.0547 0.0622 (0.0534) -0.0636
ν4 -0.1270 (0.2596) 0.0000 0.0077 (0.0009) -0.0324 -0.0077 (0.0009) -0.0239
ν5 0.0340 (0.0234) -0.0017 -0.0070 (0.0010) -0.0286 0.0277 (0.0155) -0.0317
ν6 -0.0216 (0.0134) -0.0032 -0.0355 (0.0362) -0.0175 0.0258 (0.0191) -0.0268
ν7 0.0809 (0.4145) -0.0023 0.0636 (0.2565) -0.0139 0.0008 (0.0000) -0.0130
ν8 -0.0854 (0.7208) 0.0007 -0.0413 (0.1684) -0.0122 -0.0279 (0.0769) -0.0139
ν9 0.0047 (0.0032) -0.0139 0.0652 (0.6341) -0.0111 -0.0671 (0.6717) -0.0123
ν10 -0.0090 (0.0225) -0.0002 -0.0247 (0.1696) -0.0053 -0.0250 (0.1729) -0.0072
ν11 0.0125 (0.0715) -0.0024 0.0428 (0.8365) -0.0014 -0.0132 (0.0796) -0.0040

S4 S5 S6
κ γ κ γ κ γ

ν1 -0.0168 (0.0009) 0.0008 0.0665 (0.0135) -0.0374 0.0771 (0.0182) -0.0531
ν2 0.0279 (0.0090) -0.1948 -0.2220 (0.5663) -0.0172 -0.0760 (0.0663) -0.0871
ν3 -0.0823 (0.0937) -0.0100 -0.0872 (0.1051) -0.0087 -0.0676 (0.0632) -0.0240
ν4 -0.1196 (0.2300) -0.0088 -0.1094 (0.1927) -0.0128 -0.0799 (0.1026) -0.0361
ν5 0.0291 (0.0171) -0.0077 -0.0086 (0.0015) -0.0155 -0.0056 (0.0006) -0.0114
ν6 -0.0144 (0.0060) -0.0108 0.0070 (0.0014) -0.0079 -0.0195 (0.0110) -0.0107
ν7 0.0559 (0.1983) -0.0060 0.0521 (0.1722) -0.0063 0.0345 (0.0756) -0.0130
ν8 -0.0546 (0.2953) -0.0012 0.0005 (0.0000) -0.0022 -0.0185 (0.0339) -0.0083
ν9 -0.0227 (0.0766) -0.0096 0.0790 (0.9307) -0.0023 0.0230 (0.0791) -0.0122
ν10 -0.0021 (0.0013) -0.0011 0.0027 (0.0002) 0.0044 0.0005 (0.0001) -0.0014
ν11 -0.0029 (0.0038) -0.0027 0.0366 (0.6111) 0.0071 -0.0173 (0.1367) -0.0020

S7 S8
κ γ κ γ

ν1 -0.0024 (0.0000) 0.0014 -0.0130 (0.0005) 0.0006
ν2 -0.0855 (0.0839) 0.2155 -0.0003 (0.0000) -0.0012
ν3 -0.0833 (0.0960) -0.0131 -0.0934 (0.1207) -0.0140
ν4 -0.1174 (0.2218) -0.0002 -0.1107 (0.1973) -0.0054
ν5 0.0162 (0.0053) 0.0017 0.0197 (0.0079) -0.0039
ν6 -0.0240 (0.0165) -0.0000 -0.0411 (0.0485) -0.0070
ν7 0.0593 (0.2228) -0.0050 0.0753 (0.3592) -0.0034
ν8 -0.0608 (0.3657) -0.0034 -0.0643 (0.4092) -0.0017
ν9 -0.0251 (0.0943) -0.0015 -0.0284 (0.1207) 0.0006
ν10 -0.0024 (0.0002) -0.0010 -0.0039 (0.0042) -0.0016
ν11 -0.0006 (0.0001) -0.0004 -0.0025 (0.0030) -0.0012
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Table B2: Second-order (γ) coupling parameter (in eV) of PFBz neutral molecule
derived from EOM-CCSD electronic structure data.

Symmetry Mode γS1 γS2 γS3 γS4 γS5 γS6 γS7 γS8

a2 ν12 -0.0888 -0.0792 -0.0082 0.0072 -0.0260 -0.0360 -0.0024 -0.0264
ν13 -0.0446 0.0454 0.0050 -0.0678 -0.0354 -0.0812 -0.1092 0.0216
ν14 -0.0157 -0.0282 -0.0070 0.0004 -0.0238 -0.0082 0.0214 -0.0610

b1 ν15 -0.0822 0.0290 -0.0552 0.0078 -0.0408 -0.0032 -0.0430 -0.0550
ν16 -0.0922 -0.0008 -0.0588 -0.0200 -0.0154 -0.0984 0.0192 -0.0930
ν17 -0.0814 0.0237 -0.0424 -0.0266 -0.0426 -0.0718 -0.0084 -0.0430
ν18 -0.0496 -0.0046 -0.0162 -0.0338 -0.0296 -0.1062 0.0730 -0.0634
ν19 -0.0128 -0.0077 -0.0136 -0.0094 0.0090 -0.0030 -0.0084 -0.0204
ν20 -0.0285 -0.0006 -0.0458 0.0118 -0.0144 -0.0158 -0.0112 -0.0014

b2 ν21 0.0102 -0.1154 0.0796 -0.1542 -0.1188 -0.0812 -0.0218 0.1706
ν22 -0.0086 -0.0530 -0.0480 -0.0096 -0.1032 0.0772 -0.0176 -0.0154
ν23 0.1522 0.0404 0.0544 0.0678 0.0516 0.0418 0.0586 0.0672
ν24 0.0016 -0.0154 0.0066 -0.0170 -0.0092 -0.0248 -0.0034 0.0154
ν25 -0.0014 -0.0298 -0.0160 -0.0118 -0.0172 -0.0278 -0.0070 0.0108
ν26 -0.0050 -0.0166 -0.0136 -0.0054 -0.0322 0.0278 -0.0070 -0.0064
ν27 -0.0052 -0.0088 -0.0092 -0.0050 -0.0054 -0.0068 -0.0076 -0.0062
ν28 -0.0118 -0.0368 0.0186 -0.0112 -0.0340 -0.0234 -0.0216 0.0146
ν29 -0.0004 -0.0072 -0.0054 -0.0014 -0.0044 0.0050 -0.0026 0.0008
ν30 -0.0010 -0.0052 -0.0010 -0.0008 -0.0014 -0.0036 -0.0036 0.0036

Table B3: Third-order coupling parameter (η) (in eV) of the Hamiltonian [Eq. 3.7]
of symmetrical modes of PFBz.

Symmetry Mode ηS1 ηS2 ηS3 ηS4 ηS5 ηS6 ηS7 ηS8

ν1 -0.00003 0.01340 0.01726 0.00044 0.00444 0.02134 0.00029 0.00048
ν2 -0.00184 0.00103 0.00051 -0.02651 0.14556 0.06407 0.04221 -0.01435
ν3 0.00084 0.00349 0.00034 0.00028 -0.00297 0.00436 -0.00026 0.00060
ν4 0.00000 0.00154 -0.00064 -0.00048 0.00054 0.00339 0.00054 0.00000
ν5 -0.00009 -0.00038 -0.00034 0.00010 0.00089 0.00049 -0.00048 -0.00032

a1 ν6 0.00002 0.00103 0.00174 0.00063 -0.00043 0.00323 -0.00088 -0.00004
ν7 -0.00004 0.00123 0.00127 -0.00022 -0.00074 0.00179 -0.00038 -0.00015
ν8 -0.00006 -0.00133 -0.00126 -0.00001 -0.00008 -0.00062 0.00047 0.00022
ν9 0.00092 -0.00068 -0.00074 -0.00151 -0.00664 -0.00484 0.00132 0.00166
ν10 0.00008 0.00045 0.00052 0.00006 0.00004 -0.00019 -0.00004 0.00000
ν11 -0.00026 0.00005 0.00022 -0.00013 -0.00210 -0.00067 -0.00011 0.00013

Table B4: Fourth-order coupling parameter (ζ) (in eV) of the Hamiltonian [Eq. 3.7]
of both symmetric and unsymmetrical modes of PFBz.

Mode ζS1 ζS2 ζS3 ζS4 ζS5 ζS6 ζS7 ζS8

a1
ν2 0.00007 -0.00160 -0.00075 0.12777 -0.13970 0.03813 -0.19144 -0.01624
ν3 0.00003 0.00355 0.00373 -0.00007 0.00015 -0.00177 0.00068 0.00017
ν4 0.00000 0.00098 0.00045 -0.00006 0.00004 0.00142 -0.00024 -0.00004
ν7 -0.00003 -0.00008 -0.00016 -0.00004 0.00016 -0.00041 -0.00001 -0.00011
ν8 -0.00000 0.00003 0.00008 -0.00005 0.00002 -0.00046 -0.00015 -0.00020
ν9 0.00012 -0.00015 -0.00015 -0.00008 -0.00579 -0.00130 0.00007 -0.00217
ν11 0.00001 -0.00024 -0.00019 0.00009 -0.00231 -0.00018 -0.00011 0.00004
a2
ν12 0.00739 0.00875 -0.00268 -0.00797 0.00419 0.00423 0.01115 0.00304
ν13 0.00000 -0.02360 -0.00486 0.02233 -0.00699 0.01147 0.24613 -0.00188
ν14 -0.00019 0.00062 0.00030 -0.00026 0.00529 -0.00032 -0.01088 0.05182
b1
ν15 0.01122 -0.00849 -0.00697 -0.00328 -0.01126 0.01426 0.00748 -0.00191
ν16 0.00943 -0.00650 0.00345 -0.00561 -0.03829 0.04598 -0.01872 0.07242
ν17 0.00904 -0.00647 -0.00061 0.00402 -0.00252 0.00824 0.00132 0.00954
ν18 0.00342 -0.00243 -0.00346 0.00098 -0.00069 0.06840 -0.06235 0.03665
ν19 0.00014 -0.00187 -0.00174 0.00014 -0.00049 -0.00722 0.00687 -0.00061
ν20 0.00069 -0.00071 0.00349 -0.00318 0.00091 0.00048 0.00352 0.00006
b2
ν21 -0.00008 0.04708 -0.03609 0.06390 0.04911 0.01656 -0.00220 -0.14277
ν22 0.00012 0.00051 0.00066 -0.00039 0.04729 -0.14858 0.00093 0.00046
ν24 -0.00006 -0.00078 -0.00295 0.00116 -0.00882 0.00012 0.00002 -0.00204
ν28 0.00007 0.00415 -0.00432 -0.00057 0.00433 0.00042 0.00542 -0.00497
ν29 -0.00006 -0.00011 -0.00024 0.00006 0.00058 -0.00069 0.00020 -0.02656
ν30 -0.00003 -0.00027 -0.00069 0.00004 0.00013 -0.00011 0.00050 -0.00058

Table B5: Higher-order coupling parameters θ, δ, ρ and ξ (in eV) of the Hamiltonian
[Eq. 3.7] of ν2 vibrational mode of PFBz.

S1 S2 S3 S4 S5 S6 S7 S8

θ2 -0.00002 0.00143 -0.00048 0.02939 -0.13323 -0.07395 0.02147 0.00015
δ2 - - - -0.14866 0.26099 -0.02868 0.19964 0.02057
ρ2 - - - -0.02276 0.09385 0.06006 -0.04071 0.00411
ξ2 - - - 0.12776 -0.27149 0.01615 -0.15208 -0.01528
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Table B6: Diagonal bilinear γnij parameters (in eV) along the totally symmetric
vibrational modes ν2, ν4, ν7, ν8, ν9, ν11 of the lowest eight electronic states of PFBz.

S1 S2 S3 S4 S5 S6 S7 S8

γ22 0.0141 -0.0069 -0.0198 -0.1948 -0.0171 -0.0871 0.2155 -0.0012
γ24 -0.0027 -0.0220 -0.0186 0.0533 -0.0040 0.0163 -0.0582 -0.0033
γ27 -0.0044 -0.0179 -0.0067 0.0328 0.0154 0.0089 -0.0256 -0.0023
γ28 0.0034 0.0103 -0.0014 -0.0172 0.0056 -0.0154 0.0052 0.0111
γ29 -0.0126 -0.0117 -0.0179 0.0406 0.0516 0.0540 -0.0462 0.0158
γ211 -0.0059 0.0069 0.0065 0.0259 0.0380 0.0113 -0.0276 0.0035
γ44 0.0001 -0.0324 -0.0239 -0.0088 -0.0128 -0.0361 -0.0002 -0.0054
γ47 -0.0065 -0.0179 -0.0121 -0.0096 -0.0004 -0.0083 0.0011 -0.0067
γ48 0.0026 0.0172 0.0187 0.0103 0.0016 0.0294 0.0034 0.0034
γ49 0.0034 0.0042 0.0055 -0.0086 0.0007 0.0061 0.0099 -0.0018
γ411 -0.0009 0.0021 0.0009 -0.0072 0.0010 0.0085 0.0051 -0.0026
γ77 -0.0023 -0.0139 -0.0130 -0.0060 -0.0063 -0.0130 -0.0050 -0.0034
γ78 -0.0023 -0.0123 -0.0066 -0.0017 -0.0110 -0.0081 -0.0034 -0.0043
γ79 -0.0094 0.0089 0.0028 -0.0110 0.0001 -0.0002 0.0007 0.0008
γ711 -0.0046 0.0054 0.0024 -0.0063 0.0028 0.0053 0.0011 -0.0009
γ88 0.0007 -0.0122 -0.0139 -0.0012 -0.0022 -0.0083 -0.0034 -0.0017
γ89 0.0014 0.0050 0.0133 0.0059 0.0019 0.0049 0.0002 -0.0022
γ811 0.0007 -0.0009 0.0028 0.0026 -0.0011 -0.0042 -0.0011 -0.00002
γ99 -0.0139 -0.0111 -0.0123 -0.0096 -0.0023 -0.0122 -0.0015 0.0006
γ911 -0.0117 0.0043 0.0030 -0.0091 -0.0083 -0.0027 -0.0007 0.0001
γ1111 -0.0024 -0.0014 -0.0040 -0.0028 0.0072 -0.0020 -0.0004 -0.0012

Table B7: Same as B6 along the b1 symmetry vibrational modes ν15, ν16, ν16, ν17,
ν18, ν19 and ν20 of the lowest four electronic states of PFBz.

S1 S2 S3 S4
γ1515 -0.0822 0.0290 -0.0552 0.0078
γ1516 0.0222 -0.0155 0.0447 -0.0135
γ1517 0.0029 -0.0382 -0.0396 -0.0202
γ1518 -0.0069 -0.0083 -0.0410 -0.0074
γ1519 -0.0053 0.0072 -0.0212 -0.0012
γ1520 -0.0173 0.0214 -0.0307 0.0213
γ1616 -0.0922 -0.0008 -0.0588 -0.0200
γ1617 -0.0235 0.0127 -0.0360 0.0323
γ1618 0.0164 -0.0254 0.0065 -0.0272
γ1619 0.0053 -0.0136 0.0054 -0.0065
γ1620 0.0096 -0.0008 0.0374 -0.0118
γ1717 -0.0814 0.0237 -0.0424 -0.0266
γ1718 0.0207 -0.0235 0.0015 -0.0101
γ1719 -0.0103 -0.0080 -0.0045 -0.0039
γ1720 0.0013 -0.0121 0.0208 -0.0284
γ1818 -0.0496 -0.0046 -0.0162 -0.0338
γ1819 -0.0136 0.0076 -0.0099 -0.0037
γ1820 -0.0249 0.0292 -0.0182 0.0134
γ1919 -0.0128 -0.0077 -0.0136 -0.0094
γ1920 -0.0094 0.0167 -0.0037 0.0158

Table B8: Third-order diagonal bilinear η and η′ (in eV) parameters along the a1
symmetry vibrational modes of PFBz.

S4 S5 S6 S7 S8
η24 0.01304 0.01941 -0.03088 -0.02974 -
η′24 -0.00018 0.00925 0.00648 0.00119 -
η27 -0.00291 -0.02810 -0.02096 -0.02374 -0.01160
η′27 0.00118 0.00730 -0.00037 0.00919 -0.00443
η28 0.00602 0.00161 0.02420 0.02326 0.01590
η′28 0.00113 0.00318 0.00120 0.01025 -0.00629
η29 0.00454 -0.06925 -0.01201 -0.01747 0.01776
η′29 0.00640 0.01468 0.00219 -0.00537 -0.01118
η211 0.00292 -0.05814 0.00526 -0.01345 0.00190
η′211 0.00065 0.01501 -0.00026 -0.00130 0.00136

Table B9: Fourth-order diagonal bilinear ζ, ζ ′ and ζ ′′ (in eV) parameters along the
a1 symmetry vibrational modes of PFBz.

S4 S5 S6 S7 S8
ζ24 0.00741 -0.01412 0.01929 -0.01156 -
ζ′24 -0.03821 -0.02335 0.00012 0.05688 -
ζ′′24 -0.00026 -0.00037 -0.02162 0.00127 -
ζ27 0.00030 -0.00688 0.01041 -0.01669 -0.00675
ζ′27 -0.02470 0.00232 -0.00353 0.05246 -0.01398
ζ′′27 0.00068 -0.00061 -0.00080 -0.00208 -0.00019
ζ28 -0.00094 -0.00498 0.01024 -0.01925 -0.00891
ζ′28 0.01034 0.00291 0.00787 -0.03197 0.01294
ζ′′28 -0.00020 0.00025 0.00189 0.00309 0.00202
ζ29 0.00606 0.00716 0.01356 -0.00991 -0.01174
ζ′29 -0.02841 0.01501 -0.03882 0.04337 0.01161
ζ′′29 -0.00019 -0.00563 -0.00100 0.00052 0.00378
ζ211 0.00192 -0.00578 0.00615 -0.00124 0.00211
ζ′211 -0.01764 0.01397 -0.00955 0.03012 0.00316
ζ′′211 -0.00061 0.00056 -0.00019 -0.00002 -0.00065
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Table B10: Same as B9 along the b1 symmetry vibrational modes of PFBz.

S1 S2 S3 S4
ζ1516 0.00417 -0.00105 0.00570 -0.00051
ζ′1516 -0.00052 0.00223 -0.00185 0.00072
ζ′′1516 -0.00130 0.00130 -0.00257 0.00197
ζ1517 0.00280 -0.00203 0.00526 0.00062
ζ′1517 -0.00127 0.00524 -0.00013 0.00511
ζ′′1517 0.00085 0.00004 0.00310 -0.00015
ζ1518 0.00249 -0.00094 0.00497 0.00077
ζ′1518 -0.00110 0.00061 0.00113 0.00208
ζ′′1518 0.00169 -0.00061 0.00354 -0.00051
ζ1519 0.00171 0.00026 0.00290 -0.00065
ζ′1519 0.00113 -0.00021 0.00196 0.00121
ζ′′1519 -0.00033 -0.00011 0.00003 0.00019
ζ1520 0.00277 -0.00146 0.00451 -0.00256
ζ′1520 0.00116 -0.00210 0.00261 -0.00238
ζ′′1520 0.00046 -0.00040 0.00094 -0.00080
ζ1617 0.00319 -0.00331 0.00133 -0.00030
ζ′1617 0.00036 -0.00382 0.00097 -0.00286
ζ′′1617 0.00173 -0.00023 0.00345 -0.00159
ζ1618 0.00348 0.00141 0.00067 0.00250
ζ′1618 -0.00180 0.00260 0.00080 -0.00036
ζ′′1618 0.00071 0.00079 -0.00277 0.00472
ζ1619 0.00197 0.00184 0.00243 0.00060
ζ′1619 -0.00054 0.00208 0.00030 0.00155
ζ′′1619 0.00017 -0.00042 -0.00061 -0.00014
ζ1620 0.00253 -0.00043 0.00302 -0.00056
ζ′1620 -0.00140 -0.00101 -0.00382 0.00108
ζ′′1620 -0.00022 0.00044 -0.00072 0.00091
ζ1718 0.00181 -0.00189 0.00100 -0.00127
ζ′1718 -0.00133 0.00063 -0.00153 0.00019
ζ′′1718 -0.00026 0.00128 0.00078 0.00176
ζ1719 0.00110 -0.00080 0.00265 -0.00176
ζ′1719 -0.00009 0.00119 -0.00090 0.00119
ζ′′1719 0.00019 0.00013 0.00051 -0.00070
ζ1720 0.00197 -0.00147 0.00213 -0.00134
ζ′1720 -0.00112 0.00180 -0.00259 0.00385
ζ′′1720 0.00004 0.00035 -0.00040 0.00074
ζ1819 -0.00074 -0.00026 0.00000 -0.00120
ζ′1819 0.00082 0.00008 0.00095 0.00081
ζ′′1819 -0.00047 -0.00026 0.00057 -0.00100
ζ1820 0.00087 -0.00174 0.00120 -0.00205
ζ′1820 0.00087 -0.00051 0.00223 -0.00278
ζ′′1820 0.00177 -0.00180 0.00008 0.00184
ζ1920 -0.00022 0.00009 0.00004 -0.00137
ζ′1920 0.00016 0.00018 0.00071 -0.00070
ζ′′1920 0.00103 -0.00136 0.00049 -0.00131
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Table B11: Linear inter-state coupling parameter between the n and m states (λnm)

(in eV) and the corresponding excitation strength 1
2

(
λnm

ωi

)2
(given in the parentheses)

of PFBz molecule.

Symmetry Mode λnm λnm λnm

S1-S3 S1-S6 S2-S4
a2 ν12 0.1434 (1.6770) 0.1612 (2.1192) 0.1299 ( 1.3762)

ν13 0.1091 (2.6267) - -
ν14 0.0436 (3.5774) 0.0533 (5.3463) 0.0789 (11.7152)

S1-S2 S1-S5 S3-S4
b1 ν15 0.1511 (1.0494) 0.1552 (1.1070) 0.0859 (0.3391)

ν16 0.1306 (1.5873) 0.1801 (3.0185) 0.0573 (0.3055)
ν17 0.1450 (2.4882) 0.1507 (2.6876) 0.0330 (0.1289)
ν18 0.0880 (2.5069) 0.1005 (3.2697) -
ν19 0.0205 (0.3283) 0.0891 (6.2013) 0.0211 (0.3477)
ν20 0.0705 (6.5355) 0.0792 (8.2480) 0.0760 (7.5950)

S2-S3 S2-S6 S3-S5
b2 ν21 0.1494 (0.2575) 0.1216 (0.1706) -

ν22 0.0292 (0.0114) 0.2033 (0.5542) -
ν23 0.0317 (0.0149) 0.0276 (0.0114) -
ν24 0.0401 (0.0373) 0.0317 (0.0233) -
ν25 0.0403 (0.0415) 0.0550 (0.0773) -
ν26 0.0165 (0.0099) 0.1046 (0.3969) -
ν27 0.0147 (0.0150) 0.0377 (0.0988) 0.0242 (0.0407)
ν28 0.0762 (1.0258) 0.0867 (1.3279) -
ν29 0.0130 (0.0614) 0.0665 (1.6064) -
ν30 0.0190 (0.1588) 0.0310 (0.4231) -

S2-S7 S3-S8 S4-S5
a2 ν12 0.1879 (2.8792 ) - -

ν13 - 0.0559 (0.6881) 0.1026 (2.3230)
ν14 0.1464 (40.3345) - -

S3-S7 S4-S6 S5-S8
b1 ν15 0.0817 (0.3068 ) - -

ν16 0.1575 (2.3085 ) - -
ν17 - - -
ν18 0.1847 (11.3690) - -
ν19 0.0470 (1.7255 ) 0.0315 (0.7751) -
ν20 0.0945 (11.7426) - 0.0330 (1.4319)

S4-S8 S5-S6 S7-S8
b2 ν21 0.2711 (0.8477) 0.0390 (0.0175) 0.0725 (0.0606)

ν22 - 0.0869 (0.1012) 0.0039 (0.0002)
ν23 - - 0.0089 (0.0012)
ν24 0.0810 (0.1520) 0.1610 (0.6006) 0.0157 (0.0057)
ν25 0.0708 (0.1281) - 0.0154 (0.0061)
ν26 - 0.0427 (0.0661) 0.0017 (0.0001)
ν27 - - 0.0029 (0.0006)
ν28 0.0823 (1.1966) 0.0200 (0.0707) 0.0286 (0.1445)
ν29 0.0169 (0.1037) 0.0151 (0.0828) 0.0047 (0.0080)
ν30 0.0262 (0.3022) 0.0262 (0.3022) 0.0084 (0.0311)

S5-S7 S6-S8
a2 ν12 0.0387 (0.1221) -

ν13 - 0.0722 (1.1480)
ν14 0.0527 (5.2266) -

S6-S7
b1 ν15 -

ν16 0.0725 (0.4891)
ν17 0.0394 (0.1837)
ν18 0.0990 (3.1728)
ν19 -
ν20 -

Table B12: The number of harmonic oscillator (HO) basis functions along the totally
symmetric vibrational modes and the dimension of the secular matrix used in the cal-
culation of the stick vibrational spectra of the uncoupled S1 to S8 and coupled S1-S2

electronic states of PFBz shown in various figures.

Electronic Vibrational No. of HO basis Dimension Figure(s)
states modes of secular matrix

S1 ν2, ν3, ν4 (6,8,10) 3870720 Figs. 3.6(c)
ν7, ν8, ν9, ν11 (12,14,6,8)

S3 ν2, ν3, ν4 (12,10,8) 8064000 Fig. 3.8(a)
ν7, ν8, ν9, ν11 (6,10,14,10)

S4 ν2, ν3, ν4 (6,10,12) 7257600 Fig. 3.8(b)
ν7, ν8, ν9, ν11 (12,14,10,6)

S6 ν2, ν3, ν4 (10,10,14) 28224000 Fig. 3.8(c)
ν7, ν8, ν9, ν11 (12,10,12,14)

S7 ν2, ν3, ν4 (10,10,12) 12902400 Fig. 3.8(d)
ν7, ν8, ν9, ν11 (12,14,8,8)

S8 ν2, ν3, ν4 (8,10,12) 15052800 Fig. 3.8(e)
ν7, ν8, ν9, ν11 (14,14,10,8)

coupled ν2, ν3, ν4 (6,2,2)
S1-S2 ν7, ν8, ν9, ν11 (6,2,6,6) 95551488 Fig. 3.6(d)

ν15, ν16, ν17 (4,4,6)
ν18, ν19, ν20 (6,2,6)
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Table B13: Vibrational energy levels (in cm−1) of the S1, S3, S4, S6, S7 and S8

electronic states of PFBz obtained from the uncoupled state calculations using the
EOM-CCSD energy data. The assignment of the levels carried out by examining the
nodal pattern of the wave functions is included in the table.

S1 S3 S4
Energy Assignment Energy Assignment Energy Assignment

0 000 0 000 0 000
257 ν11

1
0 250 ν11

1
0 255 ν11

1
0

407 ν9
1
0 408 ν9

1
0 423 ν9

1
0

514 ν11
2
0 501 ν11

2
0 511 ν11

2
0

576 ν8
1
0 512 ν8

1
0 568 ν8

1
0

664 ν9
1
0+ν11

1
0 659 ν9

1
0+ν11

1
0 678 ν9

1
0+ν11

1
0

707 ν7
1
0 661 ν7

1
0 692 ν7

1
0

771 ν11
3
0 751 ν11

3
0 767 ν11

3
0

814 ν9
2
0 762 ν8

1
0+ν11

1
0 824 ν8

1
0+ν11

1
0

833 ν8
1
0+ν11

1
0 816 ν9

2
0 846 ν9

2
0

921 ν9
1
0+ν11

2
0 909 ν9

1
0+ν11

2
0 934 ν9

1
0+ν11

2
0

964 ν7
1
0+ν11

1
0 920 ν8

1
0+ν9

1
0 948 ν7

1
0+ν11

1
0

983 ν8
1
0+ν9

1
0 1000 ν11

4
0 991 ν8

1
0+ν9

1
0

1029 ν11
4
0 1012 ν8

1
0+ν11

2
0 1022 ν11

4
0

1071 ν9
2
0+ν11

1
0 1023 ν8

2
0 1079 ν8

1
0+ν11

2
0

1090 ν8
1
0+ν11

2
0 1067 ν9

2
0+ν11

1
0 1101 ν9

2
0+ν11

1
0

1114 ν7
1
0+ν9

1
0 1159 ν9

1
0+ν11

3
0 1115 ν7

1
0+ν9

1
0

1152 ν8
2
0 1224 ν9

3
0 1137 ν8

2
0

1178 ν9
1
0+ν11

3
0 1258 ν3

1
0 1190 ν9

1
0+ν11

3
0

1221 ν7
1
0+ν11

2
0 1262 ν8

1
0+ν11

3
0 1203 ν7

1
0+ν11

2
0

1283 ν7
1
0+ν8

1
0 1274 ν8

2
0+ν11

1
0 1260 ν7

1
0+ν8

1
0

1328 ν9
2
0+ν11

2
0 1317 ν9

2
0+ν11

2
0 1269 ν9

3
0

1347 ν8
1
0+ν11

3
0 1322 ν4

1
0 1278 ν11

5
0

1390 ν8
1
0+ν9

2
0 1328 ν8

1
0+ν9

2
0 1335 ν8

1
0+ν11

3
0

1409 ν8
2
0+ν11

1
0 1432 ν8

2
0+ν9

1
0 1357 ν9

2
0+ν11

2
0

1414 ν7
2
0 1475 ν9

3
0+ν11

1
0 1384 ν7

2
0

1422 ν4
1
0 1524 ν8

2
0+ν11

2
0 1384 ν4

1
0

1521 ν7
1
0+ν9

2
0 1524 ν8

2
0+ν11

2
0 1392 ν8

2
0+ν11

1
0

1522 ν3
1
0 1535 ν8

3
0 1414 ν8

1
0+ν9

2
0

1559 ν8
2
0+ν9

1
0 1598 ν2

1
0 1459 ν7

1
0+ν11

3
0

1585 ν9
2
0+ν11

3
0 1632 ν9

4
0 1493 ν3

1
0

1666 ν8
2
0+ν11

2
0 1725 ν9

3
0+ν11

2
0 1524 ν9

3
0+ν11

1
0

1671 ν7
2
0+ν11

1
0

1679 ν4
1
0+ν11

1
0

1738 ν2
1
0

1779 ν3
1
0+ν11

1
0

1829 ν4
1
0+ν9

1
0

1928 ν7
2
0+ν11

2
0
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Table B.13: contd.

S6 S7 S8
Energy Assignment Energy Assignment Energy Assignment

0 000 0 000 0 000
256 ν11

1
0 265 ν11

1
0 262 ν11

1
0

422 ν9
1
0 463 ν9

1
0 469 ν9

1
0

513 ν11
2
0 530 ν11

2
0 523 ν11

2
0

537 ν8
1
0 561 ν8

1
0 566 ν8

1
0

657 ν7
1
0 697 ν7

1
0 703 ν7

1
0

679 ν9
1
0+ν11

1
0 728 ν9

1
0+ν11

1
0 785 ν11

3
0

768 ν11
3
0 826 ν8

1
0+ν11

1
0 936 ν9

2
0

794 ν8
1
0+ν11

1
0 927 ν9

2
0 993 ν9

1
0+ν11

2
0

842 ν9
2
0 962 ν7

1
0+ν11

1
0 1036 ν8

1
0+ν9

1
0

914 ν7
1
0+ν11

1
0 994 ν9

1
0+ν11

2
0 1090 ν8

1
0+ν11

2
0

935 ν9
1
0+ν11

2
0 1024 ν8

1
0+ν9

1
0 1133 ν8

2
0

960 ν8
1
0+ν9

1
0 1091 ν8

1
0+ν11

2
0 1172 ν7

1
0+ν9

1
0

1024 ν11
4
0 1122 ν8

2
0 1198 ν9

2
0+ν11

1
0

1050 ν8
1
0+ν11

2
0 1160 ν7

1
0+ν9

1
0 1226 ν7

1
0+ν11

2
0

1074 ν8
2
0 1192 ν9

2
0+ν11

1
0 1255 ν9

1
0+ν11

3
0

1080 ν7
1
0+ν9

1
0 1227 ν7

1
0+ν11

2
0 1269 ν7

1
0+ν8

1
0

1099 ν9
2
0+ν11

1
0 1258 ν7

1
0+ν8

1
0 1352 ν8

1
0+ν11

3
0

1170 ν7
1
0+ν11

2
0 1387 ν8

2
0+ν11

1
0 1394 ν8

2
0+ν11

1
0

1191 ν9
1
0+ν11

3
0 1390 ν9

3
0 1400 ν4

1
0

1260 ν9
3
0 1394 ν7

2
0 1401 ν9

3
0

1279 ν4
1
0 1422 ν4

1
0 1405 ν7

2
0

1306 ν8
1
0+ν11

3
0 1457 ν9

2
0+ν11

2
0 1460 ν9

2
0+ν11

2
0

1314 ν7
2
0 1480 ν3

1
0 1478 ν3

1
0

1331 ν8
2
0+ν11

1
0 1488 ν8

1
0+ν9

2
0 1488 ν7

1
0+ν11

3
0

1355 ν9
2
0+ν11

2
0 1585 ν8

2
0+ν9

1
0 1503 ν8

1
0+ν9

2
0

1380 ν8
1
0+ν9

2
0 1623 ν7

1
0+ν9

2
0 1602 ν8

2
0+ν9

1
0

1426 ν7
1
0+ν11

3
0 1652 ν8

2
0+ν11

2
0 1639 ν7

1
0+ν9

2
0

1438 ν3
1
0 1659 ν9

3
0+ν11

1
0 1656 ν8

2
0+ν11

2
0

1447 ν9
1
0+ν11

4
0 1687 ν4

1
0+ν11

1
0 1663 ν9

3
0+ν11

1
0

1497 ν8
2
0+ν9

1
0 1721 ν9

2
0+ν11

3
0 1667 ν7

2
0+ν11

1
0

1500 ν7
1
0+ν9

2
0 1745 ν3

1
0+ν11

1
0 1699 ν8

3
0

1516 ν9
3
0+ν11

1
0 1818 ν8

2
0+ν7

1
0 1835 ν7

1
0+ν8

2
0

1535 ν4
1
0+ν7

1
0 1863 ν9

4
0

1570 ν7
2
0+ν11

1
0 1869 ν4

1
0+ν9

1
0

1587 ν8
2
0+ν11

2
0 1874 ν7

2
0+ν9

1
0

1611 ν8
3
0 1923 ν4

1
0+ν11

2
0

1675 ν9
4
0 1947 ν3

1
0+ν9

1
0

1681 ν7
1
0+ν11

4
0 1966 ν4

1
0+ν8

1
0

Table B.13: Normal mode combination, sizes of the primitive and single particle func-
tions (SPFs) used in the coupled states dynamics calculations of PFBz using MCTDH
suite of programs. a The primitive basis is the number of Harmonic oscillator DVR
functions for the relevant mode. The primitive basis for each particle is the product of
the one-dimensional bases. b The SPF basis is the number of single-particle functions
used.

Electronic state Normal modes Primitive basisa SPF basisb Figure

ν2, ν3, ν4, ν21, ν22, ν24 (10,6,8,6,6,6) [6,8,8,8,6,8,8,8]
coupled ν7, ν8, ν12, ν15, ν16, ν17 (10,12,8,6,6,8) [6,6,8,6,8,6,8,8] panel b of
S1 to S8 ν9, ν13, ν18, ν28, ν29 (12,8,8,8,8) [8,6,6,8,8,6,6,8] Figs. 3.9 and 3.10

ν11, ν14, ν19, ν20, ν30 (10,10,10,10,6) [8,8,6,8,8,8,6,6]
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Figure B1: Absorption spectrum and time-dependence of corresponding diabatic elec-
tronic populations in the coupled S1-S2 states dynamics obtained with (panels a and b,
respectively) and without (panels c and d, respectively) adjusted VEE of the S1 state.
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Figure B2: Stick spectrum and its convoluted envelope of the S1 state when one b1
mode is included at a time with seven totally symmetric modes.
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Figure B3: Stick spectrum and its convoluted envelope of the S1 state when two b1
modes are included at a time with seven totally symmetric modes.
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Figure B4: Vibronic energy level spectra of the S1 electronic state of PFBz. The S1

band structure computed with seven totally symmetric modes (ν2-ν4, ν7-ν9 and ν11)
only is shown in panel b and with all six b1 modes (ν15-ν20) only is shown in panel
c. The coupled S1-S2 states spectrum with 7a1+6b1 modes is shown in panel d. The
experimental S1 band reproduced from Ref. [22] is shown in panel a.
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Figure B5: Reduced density plots of the vibronic wave functions of the fundamental
of ν9, ν8 and ν7 (panels a, b and c, respectively) and first overtone of ν9, ν8, and
ν7 (panels d-f, respectively) excited in the S1 (ππ∗) state (uncoupled) of PFBz. The
wave functions in panels g-l represent the combination peaks ν8 + ν9, ν7 + ν9, ν7 + ν8,
ν8 + ν9

2
0, ν7 + ν9

2
0 and ν8

2
0 + ν9. The Qi in the abscissa represents the dimensionless

normal displacement coordinate of the ith vibrational mode.
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Figure B6: Reduced density plots of the vibronic wave functions of the fundamental
of ν11, ν9 and ν8 (panels a, b and c, respectively) and first and second overtone of ν11,
ν9, and ν8 (panels d-i, respectively) excited in the S3 (πσ∗) state (uncoupled) of PFBz.
The wave functions in panels j-l represent the combination peaks ν9+ν11, ν9

2
0+ν11, and

ν9
3
0 + ν11

2
0. The Qi in the abscissa represents the dimensionless normal displacement

coordinate of the ith vibrational mode.
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Figure B7: Reduced density plots of the vibronic wave functions of the fundamental
of ν9, ν8, ν7, and ν4 (panels a, b, c, and d, respectively) and first overtone of ν9, ν8,
and ν7 (panels e-g, respectively), and second overtone of ν9 (panel h) excited in the
S4 (ππ∗) state (uncoupled) of PFBz. The wave functions in panels i and j represent
the combination peaks ν8 + ν9, and ν7 + ν8. The Qi in the abscissa represents the
dimensionless normal displacement coordinate of the ith vibrational mode.
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Figure B8: The absorption band structure of the individual states in the coupled
states dynamics of PFBz obtained with (panel a) and without (panel b) the 1A2 states
(S2 and S5).
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Figure B9: Time-dependence of diabatic electronic populations during the evolution
of the WP in the coupled electronic states of PFBz without inclusion of 1A2 symmetry
(S2 and S5) states.



Appendix C

Supplementary material for

Chapter 4

Table C1: The coupling parameters κ and γ (in eV) of the Hamiltonian [Eq. (4.5)]
of totally symmetric vibrational modes of PFBz derived from the CASSCF-MRCI elec-

tronic energy data. Excitation strength, 1
2

(
κi
ωi

)2
is given in the parentheses.

X̃ 2A2 Ã 2B1 B̃ 2B1

κ γ κ γ κ γ

ν1 0.0095 (0.0003) -0.0019 -0.0021 (0.0000) -0.0003 -0.0195 (0.0012) 0.0005

ν2 -0.2436 (0.6819) 0.0155 0.1464 (0.2465) -0.0013 -0.0096 (0.0011) -0.0055

ν3 -0.1889 (0.4936) -0.0048 -0.1970 (0.5371) -0.0201 -0.2270 (0.7130) 0.0269

ν4 -0.2076 (0.6933) -0.0055 -0.2361 (0.8968) -0.0040 -0.2997 (1.4457) 0.0129

ν5 0.0130 (0.0034) -0.0058 0.0333 (0.0225) -0.0069 0.0528 (0.0564) -0.0009

ν6 -0.0206 (0.0121) -0.0020 0.0133 (0.0051) -0.0070 -0.0073 (0.0015) -0.0038

ν7 0.0210 (0.0280) -0.0045 -0.0325 (0.0668) -0.0016 0.0349 (0.0770) -0.0052

ν8 0.0137 (0.0185) -0.0014 0.0368 (0.1335) -0.0029 -0.0230 (0.0525) -0.0017

ν9 0.0833 (1.0360) -0.0023 -0.0542 (0.4391) -0.0039 -0.0022 (0.0007) -0.0040

ν10 -0.0005 (0.0001) 0.0079 0.0089 (0.0219) 0.0042 0.0000 (0.0000) 0.0086

ν11 0.0320 (0.4682) 0.0088 -0.0271 (0.3343) 0.0039 0.0041 (0.0076) 0.0028

C̃ 2B2 D̃ 2A1 Ẽ 2B2

κ γ κ γ κ γ

ν1 -0.0630 (0.0122) 0.0106 0.2943 (0.2656) -0.1388 -0.0333 (0.0034) 0.0026

ν2 -0.0320 (0.0117) -0.0313 -0.2712 (0.8452) -0.0364 0.2571 (0.7597) -0.0303

ν3 -0.2528 (0.8838) -0.0803 -0.1087 (0.1633) -0.0151 -0.0840 (0.0977) 0.0227

ν4 -0.2068 (0.6884) -0.0422 -0.2297 (0.8488) -0.0309 -0.1387 (0.3097) -0.0228

ν5 0.0555 (0.0623) -0.0220 -0.0990 (0.1982) -0.0331 0.0504 (0.0514) -0.0391

ν6 0.0020 (0.0001) -0.0192 0.0711 (0.1453) -0.0064 -0.0789 (0.1792) -0.0006

ν7 0.0365 (0.0843) -0.0085 -0.1352 (1.1581) -0.0282 0.0394 (0.0986) -0.0060

ν8 0.0298 (0.0879) -0.0076 -0.0171 (0.0290) -0.0032 0.0235 (0.0545) -0.0057

ν9 0.0248 (0.0917) -0.0116 -0.0685 (0.6997) 0.0010 0.0703 (0.7382) -0.0151

ν10 0.0009 (0.0002) 0.0012 0.0193 (0.1037) 0.0043 -0.0313 (0.2709) 0.0016

ν11 -0.0036 (0.0058) 0.0102 0.0164 (0.1220) 0.0079 -0.0133 (0.0801) -0.0042
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Figure C1: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν8, ν9 and ν11 (panels a, b and c, respectively) and first overtone of ν9 and ν11 and

second overtone of ν9 (panels d-f, respectively) excited in the X̃ 2A2 state (uncoupled)
of PFBz+ calculated with the CASSCF-MRCI data. The wavefunctions in panels g-l
represent the combination peaks ν9 +ν11, ν9 +ν11

2
0, ν9

2
0 +ν11, ν9

2
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2
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2
0 +ν11

2
0 and

ν8
2
0 + ν9

2
0. The Qi in the abscissa represents the dimensionaless normal displacement

coordinate of the ith vibrational mode.
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Table C2: The coupling parameter γ (in eV) of the Hamiltonian [Eq. (4.5)] of
non-totally symmetric vibrational modes of PFBz derived from the CASSCF-MRCI
electronic energy data.

Sym. Mode γ(X̃) γ(Ã) γ(B̃) γ(C̃) γ(D̃) γ(Ẽ)

a2 ν12 0.0082 -0.0026 -0.0199 -0.0204 -0.0799 -0.0945

ν13 0.0286 -0.0057 -0.0105 -0.0009 0.0151 -0.0398

ν14 0.0026 0.0037 0.0014 0.0047 0.0024 -0.0146

b1 ν15 0.0002 0.0108 -0.0303 0.0439 -0.0642 -0.1449

ν16 0.0062 0.0033 -0.0185 -0.0449 -0.0772 -0.0769

ν17 -0.0010 -0.0074 -0.0225 -0.0176 -0.0670 -0.0075

ν18 -0.0058 0.0127 -0.0095 0.0021 -0.0439 0.0033

ν19 0.0187 0.0174 0.0170 0.0228 0.0063 0.0133

ν20 0.0025 0.0010 -0.00005 0.0033 -0.0140 0.0046

b2 ν21 -0.1597 0.1989 -0.0556 -0.0483 -0.1744 0.0846

ν22 -0.0213 -0.0068 0.0459 -0.3362 0.2588 -0.0499

ν23 0.0922 0.0594 0.1126 0.0223 -0.0423 -0.0701

ν24 -0.0112 0.0095 0.0014 -0.0578 -0.0787 -0.0182

ν25 -0.0021 -0.0006 0.0088 -0.0078 -0.0214 -0.0183

ν26 -0.0020 -0.0021 0.0018 -0.0263 0.0051 -0.0170

ν27 0.0004 0.0002 -0.0017 -0.0108 -0.0146 -0.0087

ν28 -0.0479 0.0368 -0.0024 -0.0115 -0.0153 0.0017

ν29 0.0050 0.0076 0.0059 0.0012 0.0095 -0.0021

ν30 0.0062 0.0072 0.0037 0.0135 0.0021 -0.0034

Table C3: Same as in Table C1, derived from the EOMIP-CCSD electronic energy
data.

X̃ 2A2 Ã 2B1 B̃ 2B1

κ γ κ γ κ γ

ν1 0.0042 (0.00005) 0.0016 0.0093 (0.0003) 0.0028 -0.0034 (0.00003) 0.0019

ν2 -0.2050 (0.4835) 0.0106 0.1261 (0.1828) -0.0027 -0.0197 (0.0045) 0.0023

ν3 -0.1628 (0.3666) -0.0062 -0.1809 (0.4529) -0.0189 -0.1503 (0.3126) 0.0057

ν4 -0.1736 (0.4852) -0.0069 -0.1964 (0.6209) -0.0058 -0.2238 (0.8069) -0.0039

ν5 0.0098 (0.0019) -0.0057 0.0311 (0.0196) -0.0065 0.0389 (0.0307) -0.0039

ν6 -0.0203 (0.0118) -0.0021 0.0129 (0.0048) -0.0064 -0.0201 (0.0116) -0.0028

ν7 0.0190 (0.0230) -0.0026 -0.0346 (0.0760) 0.0029 0.0282 (0.0504) -0.0013

ν8 0.0193 (0.0367) -0.0016 0.0393 (0.1524) -0.0028 -0.0063 (0.0039) -0.0017

ν9 0.0815 (0.9936) -0.0031 -0.0486 (0.3529) -0.0038 0.0034 (0.0017) -0.0017

ν10 0.0006 (0.0001) 0.0066 0.0063 (0.0112) 0.0041 -0.0001 (0.0000) 0.0040

ν11 0.0332 (0.5045) 0.0076 -0.0275 (0.3447) 0.0041 0.0013 (0.0008) 0.0050

C̃ 2B2 D̃ 2A1 Ẽ 2B2

κ γ κ γ κ γ

ν1 0.0047 (0.00006) 0.0020 0.1139 (0.0398) -0.0365 -0.0098 (0.0003) 0.0018

ν2 -0.0237 (0.0066) -0.0226 -0.2136 (0.5247) -0.0278 0.1574 (0.2848) -0.0244

ν3 -0.1804 (0.4504) -0.0505 -0.0848 (0.0994) -0.0177 -0.0500 (0.0346) 0.0030

ν4 -0.1351 (0.2941) -0.0304 -0.1338 (0.2883) -0.0262 -0.0498 (0.0399) -0.0254

ν5 0.0256 (0.0132) -0.0275 -0.0456 (0.0421) -0.0324 0.0493 (0.0492) -0.0309

ν6 0.0000 (0.0000) -0.0193 0.0353 (0.0359) -0.0074 -0.0795 (0.1821) -0.0071

ν7 0.0186 (0.0220) -0.0070 -0.0696 (0.3069) -0.0191 0.0264 (0.0442) -0.0045

ν8 0.0266 (0.0504) -0.0065 0.0009 (0.0001) -0.0038 0.0149 (0.0218) -0.0043

ν9 0.0166 (0.0410) -0.0038 -0.0395 (0.2333) 0.0010 0.0601 (0.5397) -0.0107

ν10 -0.0033 (0.0029) -0.0015 0.0196 (0.1069) 0.0018 -0.0291 (0.2361) -0.0001

ν11 -0.0103 (0.0484) 0.0082 0.0197 (0.1767) 0.0081 0.0073 (0.0242) -0.0096
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Table C4: Same as in Table C2, derived from the EOMIP-CCSD electronic energy
data.

Sym. Mode γ(X̃) γ(Ã) γ(B̃) γ(C̃) γ(D̃) γ(Ẽ)

a2 ν12 0.0053 -0.0037 -0.0154 -0.0111 -0.0238 0.0016

ν13 0.0271 -0.0067 -0.0101 0.0052 0.0129 -0.0026

ν14 0.0023 0.0031 0.0019 0.0029 0.0016 0.0040

b1 ν15 0.0043 0.0066 -0.0335 0.0009 -0.0415 -0.0048

ν16 0.0032 0.0009 -0.0090 -0.0307 -0.0121 -0.0182

ν17 -0.0016 -0.0094 -0.0151 -0.0108 0.0047 -0.0196

ν18 -0.0066 0.0119 -0.0064 0.0025 0.0018 0.0027

ν19 0.0171 0.0156 0.0139 0.0157 0.0109 0.0056

ν20 0.0021 0.0009 0.0010 0.0021 0.0042 0.0010

b2 ν21 -0.1146 0.1197 0.0019 -0.0307 -0.1192 0.0408

ν22 -0.0208 -0.0021 0.0084 -0.1295 0.0621 -0.0477

ν23 0.0558 0.0505 0.0237 0.0022 -0.0309 -0.0328

ν24 -0.0076 0.0076 0.0000 -0.0144 -0.0347 -0.0118

ν25 -0.0095 -0.0035 -0.0060 -0.0112 -0.0218 -0.0200

ν26 -0.0027 -0.0017 -0.0021 -0.0197 0.0041 -0.0162

ν27 0.0005 -0.0003 -0.0028 -0.0105 -0.0118 -0.0092

ν28 -0.0307 0.0236 -0.0020 -0.0092 -0.0119 0.0010

ν29 0.0048 0.0063 0.0044 0.0019 0.0050 -0.0053

ν30 0.0027 0.0098 -0.0001 0.0112 -0.0001 0.0002

Table C5: Third-order coupling parameter (η) (in eV) of the Hamiltonian [Eqs. (4.5)]
of symmetrical modes of PFBz derived from CASSCF-MRCI electronic structure data.

Sym. Mode η(X̃) η(Ã) η(B̃) η(C̃) η(D̃) η(Ẽ)

ν1 -0.000030 0.000060 0.000092 0.000319 0.000162 0.000042

ν2 0.000000 0.000000 0.000201 -0.000205 0.000115 -0.000507

ν3 0.000004 -0.000014 0.000132 0.000285 -0.000000 0.000372

ν4 0.000000 0.000000 0.000000 -0.000088 0.000145 0.000362

ν5 0.000010 0.000002 0.000025 -0.000129 0.000172 -0.000080

a1 ν6 -0.000002 -0.000009 0.000020 -0.000083 -0.000032 -0.000027

ν7 0.000049 -0.000032 0.000091 -0.000019 0.000028 -0.000007

ν8 -0.000008 -0.000005 -0.000013 0.000000 0.000008 0.000009

ν9 -0.000003 -0.000016 -0.000003 0.000033 -0.000007 0.000032

ν10 -0.000001 -0.000017 -0.000038 -0.000052 0.000003 -0.000004

ν11 0.000013 0.000004 0.000122 0.000000 -0.000022 0.000049

Table C6: Fourth-order coupling parameter (ζ) (in eV) of the Hamiltonian [Eqs.
(4.5)] of unsymmetrical modes of PFBz derived from CASSCF-MRCI electronic struc-
ture data.

Sym. Mode ζ(X̃) ζ(Ã) ζ(B̃) ζ(C̃) ζ(D̃) ζ(Ẽ)

a2 ν12 0.000001 0.000002 0.000000 0.000073 -0.000012 -0.000048

ν13 -0.000002 0.000000 0.000000 0.000057 0.000007 -0.000056

ν14 -0.000000 0.000000 0.000000 0.000000 -0.000003 0.000000

b1 ν15 -0.000008 -0.000023 -0.000007 -0.000096 0.000022 -0.000066

ν16 0.000001 0.000002 0.000002 0.000043 -0.000025 0.000711

ν17 0.000001 0.000002 0.000002 0.000054 -0.000045 0.000105

ν18 - 0.000000 0.000000 -0.000013 0.000016 0.000018

ν19 - 0.000000 0.000000 -0.000001 0.000000 -0.000001

ν20 - 0.000000 0.000000 0.000003 -0.000005 0.000000

b2 ν21 0.000234 -0.000402 0.000164 -0.000065 0.000131 -0.000123

ν22 0.000000 0.000006 -0.000073 0.000783 -0.000800 -0.000032

ν23 -0.000147 0.000025 -0.000253 -0.000082 -0.000088 0.000031

ν24 -0.000002 0.000000 -0.000019 -0.000090 0.000221 0.000018

ν25 -0.000028 -0.000026 -0.000089 -0.000002 -0.000011 -0.000001

ν26 -0.000009 0.000012 -0.000065 0.000010 -0.000033 0.000004

ν27 -0.000003 0.000000 -0.000003 0.000001 0.000001 0.000000

ν28 0.000086 -0.000056 0.000000 0.000000 0.000002 -0.000007

ν29 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ν30 -0.000011 0.000028 0.000005 0.000000 0.000010 0.000042
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Table C7: Same as in Table C6, derived from the EOMIP-CCSD electronic structure
data.

Sym. Mode ζ(X̃) ζ(Ã) ζ(B̃) ζ(C̃) ζ(D̃) ζ(Ẽ)

a2 ν12 0.00071 0.00069 0.00111 0.00094 0.00109 0.00062

ν13 -0.00153 0.00009 0.00026 -0.00029 -0.00073 -0.00007

ν14 - - - - - -

b1 ν15 0.00013 -0.00197 -0.00209 -0.00041 -0.01120 0.00125

ν16 0.00108 0.00148 0.00057 0.00003 0.00112 0.00241

ν17 0.00022 0.00135 0.00095 0.00044 -0.00058 0.00079

ν18 0.00022 -0.00022 0.00010 -0.00016 -0.00023 -0.00021

ν19 -0.00039 -0.00034 -0.00042 -0.00063 -0.00052 -0.00071

ν20 -0.00004 0.00000 0.00000 -0.00002 -0.00012 -0.00002

b2 ν21 0.05305 -0.05288 -0.00023 -0.00614 0.04064 -0.03059

ν22 0.00076 -0.00035 -0.00089 0.04191 -0.04247 0.00908

ν23 -0.00684 -0.00679 -0.00468 -0.00388 0.00378 0.00185

ν24 0.00015 -0.00085 -0.00018 -0.00745 0.00181 -0.00095

ν25 0.00012 -0.00003 0.00000 -0.00006 0.00024 -0.00094

ν26 0.00000 0.00000 0.00000 0.00166 -0.00175 0.00026

ν27 -0.00006 -0.00007 -0.00004 -0.00008 0.00012 -0.00027

ν28 0.00659 -0.00651 0.00005 0.00009 0.00017 -0.00010

ν29 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

ν30 0.00012 -0.00037 -0.00007 -0.00018 -0.00092 -0.00036

Table C8: Diagonal bilinear γαij (in eV) parameters (in eV) along the totally sym-
metric vibrational modes ν2, ν3, ν4, ν9, ν11 of the lowest six electronic states of PFBz+

and these are derived from the EOMIP-CCSD electronic structure data.

Mode X̃2A2 Ã2B1 B̃2B1 C̃2B2 D̃2A1 Ẽ2B2

γ22 0.0106 -0.0027 0.0023 -0.0226 -0.0278 -0.0244

γ23 0.0033 -0.0062 0.0054 0.0043 -0.0152 0.0342

γ24 -0.0012 -0.0059 -0.0095 -0.0085 -0.0099 -0.0137

γ29 -0.0001 -0.0064 -0.0048 -0.0230 -0.0114 -0.0229

γ211 -0.0066 -0.0059 -0.0064 -0.0024 0.0012 -0.0084

γ33 -0.0062 -0.0189 0.0057 -0.0505 -0.0177 0.0030

γ34 -0.0007 0.0130 -0.0272 0.0290 0.0103 -0.0130

γ39 -0.0016 0.0045 0.0010 0.0021 -0.0013 0.0082

γ311 0.0011 0.0005 0.0001 0.0010 0.0039 -0.0043

γ44 -0.0070 -0.0058 -0.0039 -0.0304 -0.0262 -0.0254

γ49 0.0017 0.0035 0.0019 0.0052 0.0017 0.0028

γ411 0.0009 -0.0006 -0.0001 -0.0008 0.0067 -0.0160

γ99 -0.0031 -0.0038 -0.0017 -0.0096 0.0010 -0.0107

γ911 -0.0016 -0.0019 0.0001 0.0036 0.0053 -0.0022

γ1111 0.0076 0.0041 0.0050 0.0082 0.0081 -0.0096
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Table C9: Linear inter-state coupling parameter between the α and α′ state (λαα
′
) (in

eV) and corresponding excitation strength 1
2

(
λαα

′

ωi

)2
(given in the parentheses) derived

from the CASSCF-MRCI electronic energy data.

Sym. Mode λαα
′

λαα
′

Ã-C̃ B̃-C̃

a2 ν12 0.0000 (0.0000) 0.0000 (0.0000)

ν13 0.1233 (3.3549) 0.0823 (1.4947)

ν14 0.0404 (3.0715) 0.0481 (4.3540)

X̃-C̃ X̃-Ẽ

b1 ν15 0.2797 (3.5957) 0.0000 (0.0000)

ν16 0.0000 (0.0000) 0.0000 (0.0000)

ν17 0.0000 (0.0000) 0.0000 (0.0000)

ν18 0.0924 (2.7639) 0.1163 (4.3787)

ν19 0.1055 (8.6943) 0.0000 (0.0000)

ν20 0.0354 (1.6478) 0.0631 (5.2355)

X̃-Ã X̃-B̃

b2 ν21 0.1769 (0.3610) 0.2474 (0.7060)

ν22 0.0387 (0.0201) 0.2114 (0.5993)

ν23 0.0000 (0.0000) 0.1052 (0.1647)

ν24 0.0387 (0.0347) 0.1086 (0.2733)

ν25 0.0128 (0.0042) 0.0681 (0.1185)

ν26 0.0126 (0.0058) 0.0000 (0.0000)

ν27 0.0000 (0.0000) 0.0000 (0.0000)

ν28 0.0756 (1.0097) 0.1756 (5.4475)

ν29 0.0128 (0.0595) 0.0297 (0.3204)

ν30 0.0199 (0.1743) 0.0000 (0.0000)

C̃-D̃ D̃-Ẽ

b2 ν21 0.0000 (0.0000) 0.2332 (0.6273)

ν22 0.2328 (0.7267) 0.0000 (0.0000)

ν23 0.0000 (0.0000) 0.0000 (0.0000)

ν24 0.0894 (0.1852) 0.0965 (0.2158)

ν25 0.0000 (0.0000) 0.0289 (0.0213)

ν26 0.0526 (0.1004) 0.0000 (0.0000)

ν27 0.0000 (0.0000) 0.0369 (0.0947)

ν28 0.0000 (0.0000) 0.0639 (0.7213)

ν29 0.0252 (0.2307) 0.0000 (0.0000)

ν30 0.0000 (0.0000) 0.0000 (0.0000)
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Table C10: Same as in Table C9 derived from the EOMIP-CCSD electronic energy
data.

Sym. Mode λαα
′

λαα
′

λαα
′

λαα
′

Ã-C̃ Ã-Ẽ B̃-C̃ B̃-Ẽ

a2 ν12 0.0000 (0.0000) 0.0773 (0.4873) 0.0309 (0.0779) 0.0886 (0.6402)

ν13 0.1047 (2.4191) 0.0690 (1.0506) 0.0589 (0.7656) 0.0587 (0.7604)

ν14 0.0000 (0.0000) 0.0346 (2.2529) 0.0149 (0.4178) 0.0323 (1.9633)

X̃-C̃ X̃-Ẽ Ã-D̃ B̃-D̃

b1 ν15 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

ν16 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

ν17 0.0000 (0.0000) 0.0000 (0.0000) 0.1187 (1.6674) 0.0805 (0.7669)

ν18 0.0954 (2.9463) 0.1074 (3.7342) 0.0000 (0.0000) 0.0519 (0.8270)

ν19 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

ν20 0.0063 (0.0522) 0.0000 (0.0000) 0.0589 (4.5617) 0.0326 (1.3974)

X̃-Ã X̃-B̃ C̃-D̃ D̃-Ẽ

b2 ν21 0.1693 (0.3306) 0.3079 (1.0935) 0.0000 (0.0000) 0.1531 (0.2704)

ν22 0.0412 (0.0228) 0.1514 (0.3074) 0.1562 (0.3272) 0.0000 (0.0000)

ν23 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

ν24 0.0370 (0.0317) 0.0768 (0.1367) 0.0000 (0.0000) 0.0547 (0.0693)

ν25 0.0230 (0.0135) 0.0524 (0.0701) 0.0000 (0.0000) 0.0142 (0.0052)

ν26 0.0097 (0.0034) 0.0220 (0.0176) 0.0499 (0.0903) 0.0000 (0.0000)

ν27 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0179 (0.0223)

ν28 0.0713 (0.8981) 0.1482 (3.8801) 0.0000 (0.0000) 0.0416 (0.3057)

ν29 0.0115 (0.0480) 0.0000 (0.0000) 0.0183 (0.1217) 0.0000 (0.0000)

ν30 0.0250 (0.2752) 0.0407 (0.7293) 0.0000 (0.0000) 0.0082 (0.0296)

Table C11: The number of HO basis functions along the totally symmetric vibrational
modes and the dimension of the secular matrix used in the calculation of the stick
vibrational spectra of the uncoupled electronic states of PFBz+ shown in various figures.

Electronic Vibrational No. of HO basis Dimension Figure(s)

states modes of secular matrix

CASSCF-MRCI

X̃ ν2, ν3, ν4, ν6, 12, 10, 12, 8, 69672960 Fig. 4.3(a)

ν7, ν8, ν9, ν11 6, 6, 14, 12

Ã ν2, ν3, ν4, ν5, 12, 10, 12, 4, 69672960 Fig. 4.3(a)

ν7, ν8, ν9, ν11 6, 6, 14, 12

B̃ ν2, ν3, ν4, ν5, ν6 4, 10, 12, 6, 4, 19906560 Fig. 4.3(a)

ν7, ν8, ν9, ν10, ν11 6, 6, 4, 2, 6

C̃ ν2, ν3, ν4, ν5, ν6 6, 10, 12, 6, 4, 70778880 Fig. 4.3(a)

ν7, ν8, ν9, ν10, ν11 8, 8, 8, 2, 4

D̃ ν2, ν3, ν4, ν5, ν6 10, 8, 10, 8, 6, 117964800 Fig. 4.3(a)

ν7, ν8, ν9, ν10, ν11 12, 2, 8, 4, 4

Ẽ ν2, ν3, ν4, ν5, ν6 10, 4, 8, 4, 6, 58982400 Fig. 4.3(a)

ν7, ν8, ν9, ν10, ν11 6, 4, 10, 8, 4

EOMIP-CCSD

X̃ ν2, ν3, ν4, ν5, ν6, 6, 6, 6, 3, 4, 5971968 Fig. 4.3(b)

ν7, ν8, ν9, ν10, ν11 4, 4, 8, 3, 6

Ã ν2, ν3, ν4, ν5, ν6, 4, 6, 8, 3, 3, 2985984 Fig. 4.3(b)

ν7, ν8, ν9, ν10, ν11 4, 4, 6, 3, 6

B̃ ν2, ν3, ν4, ν5, ν6, 3, 6, 8, 4, 4, 746496 Fig. 4.3(b)

ν7, ν8, ν9, ν10, ν11 4, 3, 3, 3, 3

C̃ ν2, ν3, ν4, ν5, ν6, 3, 8, 6, 3, 3, 746496 Fig. 4.3(b)

ν7, ν8, ν9, ν10, ν11 3, 4, 4, 3, 4

D̃ ν2, ν3, ν4, ν5, ν6, 8, 4, 6, 3, 3, 199065 Fig. 4.3(b)

ν7, ν8, ν9, ν10, ν11 6, 3, 4, 4, 4

Ẽ ν2, ν3, ν4, ν5, ν6, 6, 4, 4, 4, 6, 3981312 Fig. 4.3(b)

ν7, ν8, ν9, ν10, ν11 4, 3, 8, 6, 3
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Table C12: Energy eigenvalue (in cm−1) of the low-lying vibrational levels of the X̃
2A2 and Ã 2B1 electronic states of PFBz+ obtained from the uncoupled state calcu-
lations using the set of parameters derived from the CASSCF-MRCI energy data [cf.,
Table C1]. The assignment of the levels carried out by examining the nodal pattern of
the wave functions are included in the table.

X̃ 2A2 Ã 2B1

Energy Assignment Energy Assignment

0 000 0 000

303 ν11
1
0 285 ν11

1
0

465 ν9
1
0 458 ν9

1
0

578 ν8
1
0 570 ν11

2
0

606 ν11
2
0 572 ν8

1
0

711 ν7
1
0 722 ν7

1
0

768 ν9
1
0+ν11

1
0 743 ν9

1
0+ν11

1
0

881 ν8
1
0+ν11

1
0 857 ν8

1
0+ν11

1
0

930 ν9
2
0 917 ν9

2
0

1014 ν7
1
0+ν11

1
0 1008 ν7

1
0+ν11

1
0

1043 ν8
1
0+ν9

1
0 1028 ν9

1
0+ν11

2
0

1071 ν9
1
0+ν11

2
0 1063 ν6

1
0

1084 ν6
1
0 1142 ν8

1
0+ν11

2
0

1157 ν8
2
0 1145 ν8

2
0

1177 ν7
1
0+ν9

1
0 1181 ν7

1
0+ν9

1
0

1184 ν8
1
0+ν11

1
0 1202 ν9

2
0+ν11

1
0

1233 ν9
2
0+ν11

1
0 1295 ν7

1
0+ν8

1
0

1288 ν7
1
0+ν8

1
0 1348 ν6

1
0+ν11

1
0

1317 ν7
1
0+ν11

2
0 1375 ν9

3
0

1387 ν6
1
0+ν11

1
0 1428 ν4

1
0

1395 ν9
3
0 1445 ν7

2
0

1421 ν4
1
0 1468 ν3

1
0

1460 ν8
2
0+ν11

1
0 1486 ν9

2
0+ν11

2
0

1508 ν8
1
0+ν9

2
0 1489 ν8

1
0+ν9

2
0

1532 ν3
1
0 1522 ν6

1
0+ν9

1
0

1536 ν9
2
0+ν11

2
0 1635 ν6

1
0+ν8

1
0

1549 ν6
1
0+ν9

1
0 1639 ν7

1
0+ν9

2
0

1622 ν8
2
0+ν9

1
0 1677 ν2

1
0

1641 ν7
1
0+ν9

2
0 1712 ν4

1
0+ν11

1
0

1690 ν6
1
0+ν11

2
0 1715 ν8

3
0

1744 ν2
1
0 1731 ν7

2
0+ν11

1
0

1835 ν3
1
0+ν11

1
0 1753 ν3

1
0+ν11

1
0

1997 ν3
1
0+ν9

1
0 1786 ν6

1
0+ν7

1
0

2000 ν7
2
0+ν8

1
0 1868 ν7

1
0+ν8

2
0

2027 ν4
1
0+ν11

2
0 1886 ν4

1
0+ν9

1
0

2047 ν2
1
0+ν11

1
0 1904 ν7

2
0+ν9

1
0

2087 ν8
2
0+ν9

2
0 1962 ν2

1
0+ν11

1
0

2000 ν4
1
0+ν8

1
0
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Table C13: Same as in Table C12, obtained with the set of parameters derived from
the EOMIP-CCSD energy data [cf., Table C3].

X̃ 2A2 Ã 2B1

Energy Assignment Energy Assignment

0 000 0 000

298 ν11
1
0 285 ν11

1
0

355 ν10
1
0 345 ν10

1
0

488 ν9
1
0 460 ν9

1
0

577 ν8
1
0 570 ν11

2
0

597 ν11
2
0 572 ν8

1
0

653 ν10
1
0+ν11

1
0 631 ν10

1
0+ν11

1
0

710 ν10
2
0 690 ν10

2
0

718 ν7
1
0 741 ν7

1
0

786 ν9
1
0+ν11

1
0 745 ν9

1
0+ν11

1
0

876 ν8
1
0+ν11

1
0 805 ν9

1
0+ν10

1
0

895 ν11
3
0 858 ν8

1
0+ν11

1
0

932 ν8
1
0+ν10

1
0 916 ν10

1
0+ν11

2
0

952 ν10
1
0+ν11

2
0 916 ν10

1
0+ν11

2
0

1008 ν10
2
0+ν11

1
0 918 ν9

2
0

1017 ν7
1
0+ν11

1
0 976 ν10

2
0+ν11

1
0

1061 ν9
1
0+ν11

2
0 1026 ν7

1
0+ν11

1
0

1066 ν10
3
0 1029 ν9

1
0+ν11

2
0

1083 ν6
1
0 1032 ν8

1
0+ν9

1
0

1154 ν8
2
0 1035 ν10

3
0

1174 ν8
1
0+ν11

2
0 1066 ν6

1
0

1287 ν5
1
0 1086 ν7

1
0+ν10

1
0

1296 ν7
1
0+ν8

1
0 1141 ν11

4
0

1383 ν6
1
0+ν11

1
0 1143 ν8

1
0+ν11

2
0

1416 ν4
1
0 1150 ν9

1
0+ν10

2
0

1437 ν7
2
0 1200 ν7

1
0+ν9

1
0

1438 ν6
1
0+ν10

1
0 1277 ν5

1
0

1529 ν3
1
0 1313 ν7

1
0+ν8

1
0

1726 ν2
1
0 1351 ν6

1
0+ν11

1
0

1411 ν6
1
0+ν10

1
0

1525 ν6
1
0+ν9

1
0

1563 ν5
1
0+ν11

1
0

1620 ν5
1
0+ν9

1
0

1672 ν2
1
0

Table C14: Same as in Table C12, for the coupled X̃ 2A2-Ã 2B1, states of PFBz+.

X̃2A2 Ã2B1

Energy Assignment Energy Assignment

0 000 0 000

300 ν11
1
0 284 ν11

1
0

333 ν29
1
0 301 ν30

1
0

460 ν9
1
0 460 ν9

1
0

593 ν11
2
0 586 ν11

1
0+ν30

1
0

623 ν29
1
0+ν30

1
0 621 ν11

1
0+ν29

1
0

624 ν11
1
0+ν29

1
0 743 ν9

1
0+ν11

1
0

763 ν9
1
0+ν30

1
0 758 ν9

1
0+ν30

1
0

765 ν9
1
0+ν11

1
0 870 ν28

1
0+ν30

1
0

787 ν9
1
0+ν29

1
0 887 ν11

1
0+ν30

2
0

898 ν11
1
0+ν30

2
0 911 ν9

2
0

918 ν29
1
0+ν30

2
0 928 ν29

1
0+ν30

2
0

930 ν9
2
0 1201 ν9

2
0+ν11

1
0

1375 ν9
3
0

1428 ν4
1
0

1460 ν3
1
0
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Figure C2: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν8, ν9 and ν11 (panels a, b and c, respectively). First and second overtones of ν9
and ν8 (panels d-g, respectively) excited in the Ã 2B1 state (uncoupled) of PFBz+

calculated with the CASSCF-MRCI data. The wavefunctions in panels h-l represent
the combination peaks ν9 + ν11, ν8 + ν11, ν9 + ν11

2
0, ν9

2
0 + ν11 and ν9

2
0 + ν11

2
0. The Qi

in the abscissa represents the dimensionaless normal displacement coordinate of the ith

vibrational mode.
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Figure C3: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν9, ν10 and ν11 (panels a, b and c, respectively) and first and second overtones of

ν10 and ν11 (panels d-g, respectively) excited in the X̃ 2A2 state (uncoupled) of PFBz+

calculated with the EOMIP-CCSD data. The wavefunctions in panels h-l represent the
combination peaks ν8 + ν11, ν9 + ν11, ν10 + ν11, ν10

2
0 + ν11 and ν10 + ν11

2
0. The Qi in

the abscissa represents the dimensionaless normal displacement coordinate of the ith

vibrational mode.
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Figure C4: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν9, ν10 and ν11 (panels a, b and c, respectively) and first overtones of ν9, ν10 and
ν11 (panels d-f, respectively). Second and third overtones of ν10

3
0 and ν11

4
0 (panels g

and h, respectively) excited in the Ã 2B1 state (uncoupled) of PFBz+ calculated with
the EOMIP-CCSD data. The wavefunctions in panels i-l, represents, the combination
peaks ν10 + ν11, ν10 + ν11

2
0, ν10

2
0 + ν11, and ν7 + ν8. The Qi in the abscissa represents

the dimensionaless normal displacement coordinate of the ith vibrational mode.
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Table C15: Same as in Table C13, for the coupled X̃ 2A2-Ã 2B1, states of PFBz+.

X̃2A2 Ã2B1

Energy Assignment Energy Assignment

0 000 0 000

297 ν11
1
0 296 ν11

1
0

462 ν9
1
0 453 ν9

1
0

594 ν11
2
0 592 ν11

1
0+ν30

1
0

611 ν29
1
0+ν30

1
0 613 ν11

1
0+ν29

1
0

644 ν29
2
0 630 ν30

2
0

759 ν9
1
0+ν11

1
0 647 ν29

2
0

932 ν9
2
0 749 ν9

1
0+ν11

1
0

1030 ν9
1
0+ν30

2
0 790 ν9

1
0+ν30

1
0

1055 ν9
1
0+ν11

2
0 798 ν11

1
0+ν28

1
0

1204 ν9
2
0+ν11

1
0 907 ν11

1
0+ν30

2
0

915 ν9
2
0

950 ν29
1
0+ν30

2
0

970 ν29
2
0+ν30

1
0

1032 ν9
1
0+ν11

2
0

1203 ν9
2
0+ν11

1
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1374 ν9
3
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1422 ν4
1
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1473 ν3
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Figure C5: Reduced density plots of the vibronic wave functions of the fundamental
of ν9, ν11 and ν29 (panels a, b and c, respectively) and first overtone of ν9 (panel d)

excited in the X̃ 2A2 state (coupled with the Ã 2B1 state) of PFBz+ calculated with the
CASSCF-MRCI data. The wave function in panels e and f represents the combination
peaks ν9 + ν11 and ν29 + ν30. The Qi in the abscissa represents the dimensionaless
normal displacement coordinate of the ith vibrational mode.
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Figure C6: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν9 and ν11 (panels a and b, respectively) and first and second overtone of ν9 (panels

c-d, respectively) excited in the Ã 2B1 state (coupled with the X̃ 2A2 state) of PFBz+

calculated with the CASSCF-MRCI data. The wave function in panels e and f represent
the combination peaks ν9 + ν11, ν9

2
0 + ν11. The Qi in the abscissa represents the

dimensionaless normal displacement coordinate of the ith vibrational mode.
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Figure C7: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν9 and ν11 (panels a and b, respectively) and overtone of ν9 and ν11 (panels c-d,

respectively) excited in the X̃ 2A2 state (coupled with the Ã 2B1 state) of PFBz+

calculated with the EOMIP-CCSD data. The wave function in panels e and f represent
the combination peaks ν9 + ν11, ν29 + ν30. The Qi in the abscissa represents the
dimensionaless normal displacement coordinate of the ith vibrational mode.
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Figure C8: Reduced density plots of the vibronic wavefunctions of the fundamental
of ν9 and ν11 (panels a and b, respectively) and first and second overtone of ν9 (panels

c-d, respectively) excited in the Ã 2B1 state (coupled with the X̃ 2A2 state) of PFBz+

calculated with the EOMIP-CCSD data. The wave function in panels e and f represent
the combination peaks ν9 + ν11, ν9

2
0 + ν11. The Qi in the abscissa represents the

dimensionaless normal displacement coordinate of the ith vibrational mode.

Table C16: Normal mode combination, sizes of the primitive and single particle func-
tions (SPFs) used in the coupled states dynamics calculations of PFBz+ using MCTDH
suite of programmes. a The primitive basis is the number of Harmonic oscillator DVR
functions for the relevant mode. The primitive basis for each particle is the product of
the one-dimensional bases. b The SPF basis is the number of single-particle functions
used.

CASSCF-MRCI

Electronic states Normal modes Primitive basis a SPF basis b Figure(s)

(ν2, ν3, ν21, ν22) (14, 12, 40, 12) [12, 10, 6]

X̃-Ã-B̃ (ν4, ν23) (12, 8) [8, 8, 6] Fig. 4.9(b)

(ν6, ν24, ν25, ν26) (8, 12, 12, 12) [10, 12, 8]

(ν7, ν9, ν28) (10, 22, 40) [12, 12, 8]

ν11, ν29, ν30) (12, 12, 10) [10, 10, 6]

(ν2, ν3, ν4, ν21, ν22) (12, 8, 12, 14, 28) [6, 6, 8, 6]

B̃-C̃-D̃-Ẽ (ν6, ν24, ν25) (10, 16, 12) [6, 6, 6, 6] Fig. 4.9(b)

(ν7, ν27 (16, 8) [6, 8, 8, 6]

(ν9, ν13, ν28) (12, 12, 12) [8, 6, 6, 6]

(ν11, ν14, ν29) (10, 8, 12) [6, 6, 6, 6]

EOMIP-CCSD

(ν2, ν3, ν21, ν22) (14, 14, 16, 12) [12, 12, 8]

X̃-Ã-B̃ (ν4, ν24) (16, 10) [10, 12, 8] Fig. 4.9(c)

(ν6, ν25, ν26) (10, 10, 10) [10, 12, 12]

(ν7, ν8, ν9, ν28) (10, 10, 22, 26) [10, 8, 8]

(ν11, ν29, ν30) (14, 8, 14) [12, 10, 8]

(ν2, ν3, ν4, ν21, ν22) (10, 10, 10, 8, 8) [6, 8, 8, 6]

B̃-C̃-D̃-Ẽ (ν6, ν24, ν25, ν26) (8, 10, 8, 8) [8, 6, 8, 6] Fig. 4.9(c)

(ν7, ν8, ν12, ν17, ν27 (10, 10, 8, 18, 8) [6, 8, 8, 8]

(ν9, ν10, ν13, ν18, ν28, ν29) (8, 10, 10, 24, 10, 8) [6, 6, 8, 8]

(ν11, ν14, ν20, ν30) (8, 12, 8, 8) [6, 6, 8, 8]





Appendix D

Derivation for energetic minimum

and saddle points of doubly

degenerate electronic states

Steps to arrive at the energetic minimum and saddle points

of doubly degenerate electronic state

The diabatic quadratic E⊗e-JT electronic Hamiltonian of the degenerate electronic state

is given by

∆H =

 ux uxy

uxy uy

 , (D1a)

with

ux/y = E0 +
∑
iεa1

κiQi +
1

2

∑
iεa1

γiQ
2
i ±

∑
iεe

λiQix +
1

2

∑
iεe

γi(Q
2
ix +Q2

iy)±
1

2

∑
iεe

ηi(Q
2
ix −Q2

iy),

(D1b)

and

uxy =
∑
iεe

[λiQiy − 2ηiQixQiy] . (D1c)

Upon diagonalization of Eq. D1a, the adiabatic potential energy surfaces are obtained

V± =
(ux + uy)

2
±

[(
ux − uy

2

)2

+ (uxy)2

]1/2

. (D2a)

167



Appendix D. Derivation for the static energies of the doubly degenerate electronic
states 168

Substitution of Eqs. D1b and D1c into Eq. D2a and add addition of the harmonic

potential of reference state V0 (Eq. 6.6 of the text) yields

V± + V0 = V± = E0 +
∑
iεa1

κiQi +
1

2

∑
iεa1

[
γiQ

2
i + ωiQ

2
i

]
+

1

2

∑
iεe

[
γi(Q

2
ix +Q2

iy) + ωi(Q
2
ix +Q2

iy)
]

±

(∑
iεe

λiQix +
1

2

∑
iεe

ηi
(
Q2
ix −Q2

iy

))2

+
∑
iεe

(λiQiy − 2ηiQixQiy)
2

1/2

.

(D2b)

The minimum of the seam of CIs occurs at the minimum of V+ in the space of symmetric

vibrational modes. Upon minimization of V+ with respect to Qi one obtains Eq. 6.15

(see text). Next the location of the minimum and saddle points of the lower adiabatic

sheet are obtained by setting the first derivative of V− with respect to the symmetric

modes and degenerate modes to zero separately. Upon substitution of the results into V−
one obtains Eqs. 6.13 and 6.14 (see text). Note that absolute value of ηi distinguishes

between minimum and saddle point. Finally the JT stabilization energy (Eq. 6.16) is

obtained by subtracting Eq. 6.13 from Eq. 6.14.

A detailed derivation of the above mentioned critical points are given bellow. The posi-

tion of the minimum with respect to the Qi (i.e., stationary points along the symmetric

modes),

∂V+

∂Qi
=
∑
iεa1

κi +
∑
iεa1

γiQi +
∑
iεa1

ωiQi = 0

⇒
∑
iεa1

[κi + (γi + ωi)Qi] = 0

∴ Qi =
−κi

(γi + ωi)
.

(D2c)

Due to vibronic coupling, the lower adiabatic potential surface V− exhibits minima

at nuclear geometries that differ from the equilibrium geometry of the molecule in its

neutral ground state. Therefore, the adiabatic potential energies [cf., Eq. D2b] along

the a1 symmetry, at CI configuration (i.e., ux = uy and uxy = 0; these lead to the the
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terms under the square root goes to zero)

V± = E0 +
∑
iεa1

κiQi +
1

2

∑
iεa1

γiQ
2
i +

1

2

∑
iεa1

ωiQ
2
i

= E0 +
∑
iεa1

κiQi +
1

2

∑
iεa1

(γi + ωi)Q
2
i

= E0 +
∑
iεa1

κi

(
−κi

γi + ωi

)
+

1

2

∑
iεa1

(γi + ωi)

(
−κi

γi + ωi

)2

= E0 −
∑
iεa1

(
κ2
i

γi + ωi

)
+

1

2

∑
iεa1

(
κ2
i

γi + ωi

)
(D2d)

The minimum of the energy along the a1 symmetric modes is,

V− = E0 − 1

2

∑
iεa1

(
κ2
i

γi + ωi

)
. (D2e)

The position of the stationary points along the degenerate modes (i.e., minimum with

respect to Qix),

∂V±
∂Qix

=
∑
iεe

(γi + ωi)Qix

± 1

2

∑
iεe

2
[
λiQix + 1

2ηi

(
Q2
ix −Q2

iy

)]
(λi + ηiQix) + 2 [λiQiy − 2ηiQixQiy] (−2ηiQiy)√[

λiQix + 1
2ηi

(
Q2
ix −Q2

iy

)]2
+ [λiQiy − 2ηiQixQiy]

2

(D3a)

Let’s say, Qiy = 0.

∂V±
∂Qix

=
∑
iεe

(γi + ωi)Qix ±
∑
iεe

(
λiQix + 1

2ηiQ
2
ix

)
(λi + ηiQix)√(

λiQix + 1
2ηiQ

2
ix

)2 (D3b)

⇒
∑
iεe

[(γi + ωi)Qix ± λi ± ηiQix] (D3c)

⇒
∑
iεe

(γi + ωi ± ηi)Qix ±
∑
iεe

λi = 0 (D3d)

Qix =
∓λi

(γi + ωi ± ηi)
(D3e)
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The adiabatic potential energies along the degenerate (e) modes is (at CI geometry),

V± = E0 ±
∑
iεe

λiQix +
1

2

∑
iεe

γiQ
2
ix ±

1

2
ηiQ

2
ix +

1

2
ωiQ

2
ix

= E0 ±
∑
iεe

λiQix +
1

2

∑
iεe

(γi + ωi ± ηi)Q2
ix.

(D4a)

Substituting Qix in Eq. D4a, the minimum of the energy along the e mode obtained as

V− = E0 −
∑
iεe

λi

(
∓λi

γi + ωi ± ηi

)
+

1

2

∑
iεe

(γi + ωi ± ηi)
(

∓λi
γi + ωi ± ηi

)2

= E0 −
∑
iεe

λ2
i

(γi + ωi ± ηi)
+

1

2

∑
iεe

λ2
i

(γi + ωi ± ηi)

= E0 − 1

2

∑
iεe

λ2
i

(γi + ωi ± ηi)
.

(D4b)

So, finally we will have the following quantities along a1 and e vibrational modes,

Qi = −κi
(γi+ωi)

, Qix = ∓λi
(γi+ωi±ηi) and Qiy = 0.

The original eigenvalue equation along both a1 and e vibrational modes is,

V0
− = E0 +

∑
iεa1

[
κiQi +

1

2
(γi + ωi)Q

2
i

]
+
∑
iεe

[
−λiQix +

1

2
(γi + ωi ± ηi)Q2

ix

]
. (D4c)

Substituting the position of the stationary points along a1 and e modes of Qi and Qix

in Eq. D4c one obtains

V0
− = E0 +

∑
iεa1

[
κi

(
−κi

γi + ωi

)
+

1

2
(γi + ωi)

(
−κi

γi + ωi

)2
]

+
∑
iεe
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−λi

(
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(γi + ωi ± ηi)
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1

2
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] (D4d)

V0
− = E0 +

∑
iεa1

[
− κ2

i

(γi + ωi)
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1

2

κ2
i

(γi + ωi)

]
+
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iεe

[
− λ2

i

(γi + ωi ± ηi)
+

1

2

λ2
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]
(D4e)

V0
− = E0 − 1

2

∑
iεa1

κ2
i

(γi + ωi)
− 1

2

∑
iεe

λ2
i

(γi + ωi ± ηi) (D5a)

From Eq. D5a, we can write the energetic minimum of the JT split lower adiabatic sheet

and saddle points of degenerate electronic state as follows,

Vmin− = E0 − 1

2

∑
iεa1

κ2
i

(γi + ωi)
− 1

2

∑
iεe

λ2
i

(γi + ωi − |ηi|) (D5b)
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Vsp− = E0 − 1
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κ2
i

(γi + ωi)
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λ2
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[15] W. Domcke, D. Yarkony, and H. Köppel, Conical Intersections: Electronic Struc-

ture, Dynamics and Spectroscopy, World Scientific, Singapore, 2004.

[16] E. Teller, J. Phys. Chem. 41, 109 (1937).

[17] G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963).

[18] T. Carrington, Faraday Discuss. Chem. Soc. 53, 27 (1972).

173



Bibliography 174

[19] D. R. Yarkony, Acc. Chem. Res. 31, 511 (1998).

[20] F. Bernardi, M. Olivucci, and M. A. Robb, Chem. Soc. Rev. 25, 321 (1996).

[21] S. Mahapatra, Acc. Chem. Res. 42, 1004 (2009).

[22] I. Prigogine and S. A. Rice, The role of degenerate states in chemistry, volume

150, John Wiley & Sons, 2003.

[23] C. J. Ballhausen and A. E. Hansen, Ann. Rev. Phys. Chem. 23, 15 (1972).

[24] G. Fisher, Vibronic coupling, Academic press, London, 1984.
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