1. A student sets up a reaction to reflux at 300 deg C, at 9 P.M. when the room temperature was 25 deg C, and goes home. She returns at 5 A.M. and finds that the power had failed during the night and the temperature of the reaction had dropped to 80 deg C. Waiting another 1 h without power, the temperature dropped to 50 deg C . Assuming that the room temperature drops $1 / 2$ deg every hour from 9 P.M. to 6 A.M., set up and solve a differential equation to determine the time at which power failed.

Ans:
Newton's law of cooling: $d T / d t=-k\left(T-T_{R}\right)$
The room temperature, $T_{R}=25-0.5 t, t=0$ at 9 P.M. ($t=8$ at 5 A.M, 9 at 6 A.M.) $\frac{d T}{d t}+k T=25 k-0.5 k t$ (inhomogeneous I order equation)
The homogeneous equation $\frac{d T}{d t}+k T=0$ has the general solution, $T=A \exp (-k t)$
Consider a particular solution of the full equation in the form $B t+C$, and obtain by substitution, $B=-0.5$ and $C=25+0.5(1 / k)$, so that its general solution is
$T=A \exp (-k t)-0.5 t+25+0.5(1 / k)$
Find A and k by requiring that $T=80$ at $t=8 ; T=50$ at $t=9$.

$$
\begin{aligned}
& A \exp (-8 k)+0.5(1 / k)+21=80 ; A \exp (-9 k)+0.5(1 / k)+20.5=50 \\
& A \exp (-8 k)+0.5(1 / k)=59 \\
& A \exp (-8 k)+0.5(1 / k)=29.5 \\
& A \exp (-8 k)=59-0.5 / k \\
& A \exp (-9 k)=29.5-0.5 / k \\
& \log A-8 k=\log (59-0.5 / k) \\
& \log A-9 k=\log (29.5-0.5 / k)
\end{aligned}
$$

Solve for A and k
Find t when $T=300 \mathrm{~K}$ for the function $T=A \exp (-k t)-0.5 t+0.5(1 / k)+25)$
2. For the process, $A \xrightarrow{k_{a}} B \xrightarrow{k_{b}} C$
set up and solve an equation to give the amount of B at any time t.
Ans:

$$
\begin{aligned}
& \frac{d A}{d t}=-k_{a} A ; \quad \frac{d B}{d t}=-k_{b} B+k_{a} A \\
& \frac{d B}{d t}+k_{b} B=k_{a} A_{0} \exp \left(-k_{a} t\right)
\end{aligned}
$$

$d B+\left\{k_{b} B-k_{a} A_{0} \exp \left(-k_{a} t\right)\right\} d t=0$

Not an exact differential equation. Verify that it can be made exact by multiplying with $\exp \left(k_{b} t\right)$

The eqn becomes

$$
\begin{aligned}
& e^{k_{b} t} \frac{d B}{d t}+k_{b} B e^{k_{b} t}=k_{a} A_{0} e^{\left(k_{b}-k_{a}\right) t} \\
& \frac{d\left(B e^{k_{b} t}\right)}{d t}=k_{a} A_{0} e^{\left(k_{b}-k_{a}\right) t} \\
& \therefore B=e^{-k_{b} t} k_{a} A_{0} \int e^{\left(k_{b}-k_{a}\right) t}=e^{-k_{b} t}\left\{\frac{k_{a} A_{0}}{k_{b}-k_{a}} e^{\left(k_{b}-k_{a}\right) t}+c\right\}
\end{aligned}
$$

Assign the constant C, by noting $B=0$ at $t=0$. Simplify.
3. Another way of writing Hermite polynomial (different from that shown in the class) is as follows:

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

Use the above equation to write down the first six Hermite polynomials and verify the following general form:

$$
H_{n}(x)=(2 x)^{n}-\frac{n(n-1)(2 x)^{n-2}}{1!}+\frac{n(n-1)(n-2)(n-3)(2 x)^{n-4}}{2!}+\ldots
$$

4. Show by substitution that the function, $e^{-x^{2} / 2} H_{n}(x)$ where, $H_{n}(x)$ denotes Hermite polynomials, satisfies the differential equation $y^{\prime \prime}+\left(1-x^{2}+2 n\right) y=0$. Plot this function for $n=0, n=1$ and $n=2$.
