CHAPTER 4
ERRORS AND STATISTICS

4.1 LIMITATIONS OF ANALYTICAL METHODS

The function of the analyst is to obtain a result as near to the true value as
possible by the correct application of the analytical procedure employed. The
level of confidence that the analyst may enjoy in his results will be very small
unless he has knowledge of the accuracy and precision of the method used as
well as being aware of the sources of error which may be introduced. Quantitative
analysis is not simply a case of taking a sample, carrying out a single
determination and then claiming that the value obtained is irrefutable. It also
requires a sound knowledge of the chemistry involved, of the possibilities of
interferences from other ions, elements and compounds as well as of the statistical
distribution of values. The purpose of this chapter is to explain some of the
terms employed and to outline the statistical procedures which may be applied
to the analytical results.

4.2 CLASSIFICATION OF ERRORS

The errors which affect an experimental result may conveniently be divided into
‘systematic’ and ‘random’ errors.

Systematic (determinate) errors. These are errors which can be avoided, or
whose magnitude can be determined. The most important of them are:

1. Operational and personal errors. These are due to factors for which the
individual analyst is responsible and are not connected with the method or
procedure: they form part of the ‘personal equation’ of an observer. The
errors are mostly physical in nature and occur when sound analytical
technique is not followed. Examples are: mechanical loss of materials in
various steps of an analysis; underwashing or overwashing of precipitates;
ignition of precipitates at incorrect temperatures; insufficient cooling of
crucibles before weighing; allowing hygroscopic materials to absorb moisture
before or during weighing; and use of reagents containing harmful impurities.

Personal errors may arise from the constitutional inability of an individual
to make certain observations accurately. Thus some persons are unable to
judge colour changes sharply in visual titrations, which may result in a slight
overstepping of the end point.

2. Instrumental and reagent errors. These arise from the faulty construction of
balances, the use of uncalibrated or improperly calibrated weights, graduated
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glassware, and other instruments; the attack of reagents upon glassware,
porcelain, etc., resulting in the introduction of foreign materials; volatilisation
of platinum at very high temperatures; and the use of reagents containing
impurities.

3. Errors of method. These originate from incorrect sampling and from
incompleteness of a reaction. In gravimetric analysis errors may arise owing
to appreciable solubility of precipitates, co-precipitation, and post-precipitation,
decomposition, or volatilisation of weighing forms on ignition, and precipitation
of substances other than the intended ones, In titrimetric analysis errors may
occur owing to failure of reactions to proceed to completion, occurrence of
induced and side reactions, reaction of substances other than the constituent
being determined, and a difference between the observed end point and the
stoichiometric equivalence point of a reaction.

4. Additive and proportional errors. The absolute value of an additive error is
independent of the amount of the constituent present in the determination.
Examples of additive errors are loss in weight of a crucible in which a
precipitate is ignited, and errors in weights. The presence of this error is
revealed by taking samples of different weights.

The absolute value of a proportional error depends upon the amount of
the constituent. Thus a proportional error may arise from an impurity in a
standard substance, which leads to an incorrect value for the molarity of a
standard solution. Other proportional errors may not vary linearly with the
amount of the constituent, but will at least exhibit an increase with the
amount of constituent present. One example is the ignition of aluminium
oxide: at 1200 °C the aluminium oxide is anhydrous and virtually non-
hygroscopic; ignition of various weights at an appreciably lower temperature
will show a proportional type of error.

Random (indeterminate) errors. These errors manifest themselves by the slight
variations that occur in successive measurements made by the same observer
with the greatest care under as nearly identical conditions as possible. They are
due to causes over which the analyst has no control, and which, in general, are
so intangible that they are incapable of analysis. If a sufficiently large number
of observations is taken it can be shown that these errors lie on a curve of the
form shown in Fig. 4.1 (Section 4.9). An inspection of this error curve shows:
(a) small errors occur more frequently than large ones; and (b) positive and
negative errors of the same numerical magnitude are equally likely to occur.

4.3 ACCURACY

The accuracy of a determination may be defined as the concordance between
it and the true or most probable value. It follows, therefore, that systematic
errors cause a constant error (either too high or too low) and thus affect the
accuracy of a result. For analytical methods there are two possible ways of
determining the accuracy; the so-called absolute method and the comparative
method.

Absolute method. A synthetic sample containing known amounts of the
constituentsin question is used. Known amounts of a constituent can be obtained
by weighing out pure elements or compounds of known stoichiometric
composition. These substances, primary standards, may be available commercially
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or they may be prepared by the analyst and subjected to rigorous purification
by recrystallisation, etc. The substances must be of known purity. The test of
the accuracy of the method under consideration is carried out by taking varying
amounts of the constituent and proceeding according to specified instructions.
The amount of the constituent must be varied, because the determinate errors
in the procedure may be a function of the amount used. The difference between
the mean of an adequate number of results and the amount of the constituent
actually present, usually expressed as parts per thousand, is a measure of the
accuracy of the method in the absence of foreign substances.

The constituent in question will usually have to be determined in the presence
of other substances, and it will therefore be necessary to know the effect of these
upon the determination. This will require testing the influence of a large number
of elements, each in varying amounts — a major undertaking. The scope of
such tests may be limited by considering the determination of the component
in a specified range of concentration in a material whose composition is more
or less fixed both with respect to the elements which may be present and their
relative amounts. It is desirable, however, to study the effect of as many foreign
elements as feasible. In practice, it is frequently found that separations will be
required before a determination can be made in the presence of varying elements;
the accuracy of the method is likely to be largely controlled by the separations
involved.

Comparative method. Sometimes, as in the analysis of a mineral, it may be
impossible to prepare solid synthetic samples of the desired composition. It is
then necessary to resort to standard samples of the material in question (mineral,
ore, alloy, etc.) in which the content of the constituent sought has been
determined by one or more supposedly ‘accurate’ methods of analysis. This
comparative method, involving secondary standards, is obviously not altogether
satisfactory from the theoretical standpoint, but is nevertheless very useful in
applied analysis. Standard samples can be obtained from various sources (see
Section 4.5).

If several fundamentally different methods of analysis for a given constituent
are available, e.g. gravimetric, titrimetric, spectrophotometric, or spectrographic,
the agreement between at least two methods of essentially different character
can usually be accepted as indicating the absence of an appreciable systematic
error in either (a systematic error is one which can be evaluated experimentally
or theoretically).

4.4 PRECISION

Precision may be defined as the concordance of a series of measurements of the
same quantity. Accuracy expresses the correctness of a measurement, and
precision the ‘reproducibility’ of a measurement (the latter definition will be
modified later). Precision always accompanies accuracy, but a high degree of
precision does not imply accuracy. This may be illustrated by the following
example.

A substance was known to contain 49.10 + 0.02 per cent of a constituent A.
The results obtained by two analysts using the same substance and the same
analytical method were as follows.
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Analyst (1) %A 49.01; 49.25; 49.08; 49.14

Correct value Average value

!
|
"

[X X X ! X | [
49.00 49.10 4920 49.30 49.40

The arithmetic mean is 49.12% and the results range from 49.01% to 49.25%.

Analyst (2) %A 49.40; 49.44; 49.42; 49.42

Correct value Average value
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The arithmetic mean is 49.42% and the results range from 49.40% to 49.44%.

We can summarise the results of the analyses as follows.

(a) The values obtained by Analyst 1 are accurate (very close to the correct
result), but the precision is inferior to the results given by Analyst 2. The
values obtained by Analyst 2 are very precise but are not accurate.

(b) The results of Analyst 1 face on both sides of the mean value and could be
attributed to random errors. It is apparent that there is a constant
(systematic) error present in the results of Analyst 2.

Precision was previously described as the reproducibility of a measurement.
However, the modern analyst makes a distinction between the terms ‘reproducible’
and ‘repeatable’. On further consideration of the above example:

(c} If Analyst 2 had made the determinations on the same day in rapid
succession, then this would be defined as ‘repeatable’ analysis. However, if
the determinations had been made on separate days when laboratory
conditions may vary, this set of results would be defined as ‘reproducible’.

Thus, there is a distinction between a within-run precision (repeatability) and
a between-run precision (reproducibility).
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MINIMISATION OF ERRORS 4.5

4.5 MINIMISATION OF ERRORS

Systematic errors can often be materially reduced by one of the following
methods.

1. Calibration of apparatus and application of corrections. All instruments
(weights, flasks, burettes, pipettes, etc.} should be calibrated, and the
appropriate corrections applied to the original measurements. In some cases
where an error cannot be eliminated, it is possible to apply a correction for
the effect that it produces; thus an impurity in a weighed precipitate may be
determined and its weight deducted.

2. Running a blank determination. This consists in carrying out a separate
determination, the sample being omitted, under exactly the same experimental
conditions as are employed in the actual analysis of the sample. The object
is to find out the effect of the impurities introduced through the reagents and
vessels, or to determine the excess of standard solution necessary to establish
the end-point under the conditions met with in the titration of the unknown
sample. A large blank correction is undesirable, because the exact value then
becomes uncertain and the precision of the analysis is reduced.

3. Running a control determination. This consists in carrying out a determination
under as nearly as possible identical experimental conditions upon a quantity
of a standard substance which contains the same weight of the constituent
as is contained in the unknown sample. The weight of the constituent in the
unknown can then be calculated from the relation:

Result found for standard _ Weight of constituent in standard
Result found for unknown x

where x is the weight of the constituent in the unknown.

In this connection it must be pointed out that standard samples which
have been analysed by a number of skilled analysts are commercially available.
These include certain primary standards (sodium oxalate, potassium
hydrogenphthalate, arsenic(III) oxide, and benzoic acid) and ores, ceramic
materials, irons, steels, steel-making alloys, and non-ferrous alloys.

Many of these are also available as BCS Certified Reference Materials
(CRM) supplied by the Bureau of Analysed Samples Ltd, Newham Hall,
Middlesborough, UK, who also supply EURONORM Certified Reference
Materials (ERCM), the composition of which is specified on the basis of
results obtained by a number of laboratories within the EEC. BCS Reference
Materials are obtainable from the Community Bureau of Reference, Brussels,
Belgium. In the USA similar reference materials are supplied by the National
Bureau of Standards.

4. Use of independent methods of analysis. In some instances the accuracy of a
result may be established by carrying out the analysis in an entirely different
manner. Thus iron may first be determined gravimetrically by precipitation
as iron(IIT} hydroxide after removing the interfering elements, followed by
ignition of the precipitate to iron(IIl} oxide. It may then be determined
titrimetrically by reduction to the iron(II) state, and titration with a standard
solution of an oxidising agent, such as potassium dichromate or cerium(IV)
sulphate. Another example that may be mentioned is the determination of
the strength of a hydrochloric acid solution both by titration with a standard
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solution of a strong base and by precipitation and weighing as silver chloride.
If the results obtained by the two radically different methods are concordant,
it is highly probable that the values are correct within small limits of error.
Running parallel determinations. These serve as a check on the result of a
single determination and indicate only the precision of the analysis. The
values obtained for constituents which are present in not too small an amount
should not vary among themselves by more than three parts per thousand.
If larger variations are shown, the determinations must be repeated until
satisfactory concordance is obtained. Duplicate, and at most triplicate,
determinations should suffice. It must be emphasised that good agreement
between duplicate and triplicate determinations does not justify the conclusion
that the result is correct; a constant error may be present. The agreement
merely shows that the accidental errors, or variations of the determinate
errors, are the same, or nearly the same, in the parallel determinations.
Standard addition. A known amount of the constituent being determined is
added to the sample, which is then analysed for the total amount of constituent
present. The difference between the analytical results for samples with and
without the added constituent gives the recovery of the amount of added
constituent. If the recovery is satisfactory our confidence in the accuracy of
the procedure is enhanced. The method is usually applied to physico-chemical
procedures such as polarography and spectrophotometry.

Internal standards. This procedure is of particular value in spectroscopic and
chromatographic determinations. It involves adding a fixed amount of a
reference material (the internal standard) to a series of known concentrations
of the material to be measured. The ratios of the physical value (absorption
or peak size} of the internal standard and the series of known concentrations
are plotted against the concentration values. This should give a straight line.
Any unknown concentration can then be determined by adding the same
quantity of internal standard and finding where the ratio obtained falls on
the concentration scale.

Amplification methods. In determinations in which a very small amount of
material 1s to be measured this may be beyond the limits of the apparatus
available. In these circumstances if the smali amount of material can be
reacted in such a way that every molecule produces two or more molecules
of some other measurable material, the resultant amplification may then
bring the quantity to be determined within the scope of the apparatus or
method available.

Isotopic dilution. A known amount of the element being determined,
containing a radioactive isotope, is mixed with the sample and the element
is isolated in a pure form (usually as a compound), which is weighed or
otherwise determined. The radioactivity of the isolated material is measured
and compared with that of the added element: the weight of the element in
the sample can then be calculated.

4.6 SIGNIFICANT FIGURES AND COMPUTATIONS

The term ‘digit’ denotes any one of the ten numerals, including the zero. A
significant figure is a digit which denotes the amount of the quantity in the
place in which it stands. The digit zero is a significant figure except when it is
the first figure in a number. Thus in the quantities 1.2680 g and 1.0062 g the
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THE USE OF CALCULATORS AND MICROCOMPUTERS 4.7

zero is significant, but in the quantity 0.0025 kg the zeros are not significant
figures; they serve only to locate the decimal point and can be omitted by proper
choice of units, i.e. 2.5 g. The first two numbers contain five significant figures,
but 0.0025 contains only two significant figures.

Observed quantities should be recorded with one uncertain figure retained.
Thus in most analyses weights are determined to the nearest tenth of a
milligram, e.g. 2.1546 g. This means that the weight is less than 2.1547 g and
more than 2.1545 g. A weight of 2.150 g would signify that it has been determined
to the nearest milligram, and that the weight is nearer to 2.150 g than it is to
either 2.151 g or 2.149 g. The digits of a number which are needed to express
the precision of the measurement from which the number was derived are known
as significant figures.

There are a number of rules for computations with which the student should
be familiar.

1. Retain as many significant figures in a result or in any data as will give only
one uncertain figure. Thus a volume which is known to be between 20.5 mL
and 20.7 mL should be written as 20.6 mL, but not as 20.60 mL, since the
latter would indicate that the value lies between 20.59 mL and 20.61 mL.
Also, if a weight, to the nearest 0.1 mg, is 5.2600 g, it should not be written
as 5.260 g or 5.26 g, since in the latter case an accuracy of a centigram is
indicated and in the former a milligram.

2. In rounding off quantities to the correct number of significant figures, add
one to the last figure retained if the following figure (which has been rejected)
is S or over. Thus the average 0f 0.2628, 0.2623, and 0.2626 15 0.2626 (0.2625,).

3. In addition or subtraction, there should be in each number only as many
significant figures as there are in the least accurately known number. Thus the
addition

168.11 4+ 7.045 4+ 0.6832
should be written
168.11 + 7.05+0.68 = 175.84

The sum or difference of two or more quantities cannot be more precise than
the quantity having the largest uncertainty.

4. In multiplication or division, retain in each factor one more significant figure
than is contained in the factor having the largest uncertainty. The percentage
precision of a product or quotient cannot be greater than the percentage
precision of the least precise factor entering into the calculation. Thus the
multiplication

1.26 x 1.236 x 0.6834 x 24.8652
should be carried out using the values

1.26 x 1.236 x 0.683 x 24.87

and the result expressed to three significant figures.

4.7 THE USE OF CALCULATORS AND MICROCOMPUTERS

The advent of reasonably priced hand-held calculators has replaced the use of
both logarithms and slide-rules for statistical calculations. In addition to the
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normal arithmetic functions, a suitable calculator for statistical work should
enable the user to evaluate the mean and standard deviation (Section 4.8), linear
regression and correlation coefficient (Section 4.16). The results obtained by
the use of the calculator must be carefully scrutinised to ascertain the
number of significant figures to be retained, and should always be checked
against a ‘rough’ arithmetical calculation to ensure there are no gross
computational errors. Microcomputers are used for processing large amounts
of data. Although computer programming is outside the scope of this book it
should be pointed out that standard programs now exist in BASIC, and other
high-level computer languages (see Bibliography, Section 5.7).

The microcomputer may also be interfaced with most types of electronic
equipment used in the laboratory. This facilitates the collection and processing
of the data, which may be stored on floppy or hard discs for later use.

There is a large amount of commercial software available for performing the
statistical calculations described later in this chapter, and for more advanced
statistical tests beyond the scope of this text.

4.8 MEAN AND STANDARD DEVIATION

When a quantity is measured with the greatest exactness of which the instrument,
method, and observer are capable, it is found that the results of successive
determinations differ among themselves to a greater or lesser extent. The average
value is accepted as the most probable. This may not always be the true value.
In some cases the difference may be small, in others it may be large; the reliability
of the result depends upon the magnitude of this difference. It is therefore of
interest to enquire briefly into the factors which affect and control the
trustworthiness of chemical analysis.

The absolute error of a determination is the difference between the observed
or measured value and the true value of the quantity measured. It is a measure
of the accuracy of the measurement.

The relative error is the absolute error divided by the true value; it is usually
expressed in terms of percentage or in parts per thousand. The true or absolute
value of a quantity cannot be established experimentally, so that the observed
result must be compared with the most probable value. With pure substances
the quantity will ultimately depend upon the relative atomic mass of the
constituent elements. Determinations of the relative atomic mass have been
made with the utmost care, and the accuracy obtained usually far exceeds that
attained in ordinary quantitative analysis; the analyst must accordingly accept
their reliability. With natural or industrial products, we must accept provisionally
the results obtained by analysts of repute using carefully tested methods. If
several analysts determine the same constituent in the same sample by different
methods, the most probable value, which is usually the average, can be deduced
from their results. In both cases, the establishment of the most probable value
involves the application of statistical methods and the concept of precision.

In analytical chemistry one of the most common statistical terms employed
is the standard deviation of a population of observations. This is also called
the root mean square deviation as it is the square root of the mean of the sum
of the squares of the differences between the values and the mean of those values
(this is expressed mathematically below) and is of particular value in connection
with the normal distribution.
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MEAN AND STANDARD DEVIATION 4.8

If we consider a series of n observations arranged in ascending order of
magnitude:

X133 XXy 3Xy_15Xy,
the arithmetic mean (often called simply the mean) is given by:

X1+ X3+ X3...+ ... +Xx,_, +X,
n

X =

The spread of the values is measured most efficiently by the standard deviations
defined by:

. \/(xl—Sc)2+(x2—)2)2+...(x,,—)6)2

n—1

In this equation the denominator is (n — 1) rather than n when the number
of values is small.
The equation may also be written as:

Z(x —x)?
n—1
The square of the standard deviation is called the variance. A further measure

of precision, known as the Relative Standard Deviation (R.S.D.), 1s given by:

RS.D. =

=i| »

This measure is often expressed as a percentage, known as the coefficient of
variation (C.V.}):

_sxlOO
X

C.V.

Example 1. Analyses of a sample of iron ore gave the following percentage
values for the iron content: 7.08, 7.21, 7.12, 7.09, 7.16, 7.14, 7.07, 7.14, 7.18, 7.11.
Calculate the mean, standard deviation and coefficient of variation for the values.

Results (x) X—X (x — x)?
7.08 —0.05 0.0025
7.21 0.08 0.0064
7.12 —0.01 0.0001
7.09 —0.04 0.0016
7.16 0.03 0.0009
7.14 0.01 0.0001
7.07 —0.06 0.0036
7.14 0.01 0.0001
7.18 0.05 0.0025
7.11 —0.02 0.0004

¥ x=71.30 T(x — x)? = 00182

Mean x 7.13 per cent
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0.0182

§= [——

9

= ./0.0020

= +0.045 per cent

0.045 x 100
C. V. = — =13 - 0.63 per cent

The mean of several readings (x) will make a more reliable estimate of the
true mean (u) than is given by one observation. The greater the number of

measurements (»), the closer will the sample average approach the true mean.
The standard error of the mean s, is given by:

S. =

X

Bk

In the above example,

and if 100 measurements were made,

= 004 = +0.0045

10

Hence the precision of a measurement may be improved by increasing the
number of measurements.

= 1£0014

wn

585

4.9 DISTRIBUTION OF RANDOM ERRORS

In the previous section {4.8) it has been shown that the spread of a series of
results obtained from a given set of measurements can be ascertained from the
value of the standard deviation. However, this term gives no indication as to
the manner in which the results are distributed.

If a large number of replicate readings, at least 50, are taken of a continuous
variable, e.g. a titrimetric end-point, the results attained will usually be
distributed about the mean in a roughly symmetrical manner. The mathematical
model that best satisfies such a distribution of random errors is called the
Normal (or Gaussian) distribution. This is a bell-shaped curve that is symmetrical
about the mean as shown in Fig. 4.1.

The curve satisfies the equation:

1 —(x—p)?
€ 2
2z

It is important to know that the Greek letters ¢ and u refer to the standard
deviation and mean respectively of a total population, whilst the Roman letters
s and x are used for samples of populations, irrespective of the values of the
population mean and the population standard deviation.

With this type of distribution about 68 per cent of all values will fall within
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Fig. 4.1

one standard deviation on either side of the mean, 95 per cent will fall within
two standard deviations, and 99.7 per cent within three standard deviations.

From the worked example (Example 1 in Section 4.8) for the analysis of an
iron ore sample, the standard deviation is found to be +0.045 per cent. If the
assumption is made that the results are normally distributed, then 68 per cent
(approximately seven out of ten results) will be between +0.045 per cent and
95 per cent will be between +0.090 per cent of the mean value. It follows that
there will be a 5 per cent probability (1 in 20 chance) of a result differing from
the mean by more than +0.090 per cent, and a 1 in 40 chance of the result
being 0.090 per cent higher than the mean.

410 RELIABILITY OF RESULTS

Statistical figures obtained from a set of results are of limited value by themselves.
Analysis of the results can be considered in two main categories: (a) the reliability
of the results; and (b) comparison of the results with the true value or with
other sets of data (Section 4.12).

A most important consideration is to be able to arrive at a sensible decision
as to whether certain results may be rejected. It must be stressed that values
should be rejected only when a suitable statistical test has been applied or when
there is an obvious chemical or instrumental reason that could justify exclusion
of a result. Too frequently, however, there is a strong temptation to remove
what may appear to be a ‘bad’ result without any sound justification. Consider
the following example.

Example 2. The following values were obtained for the determination of
cadmium in a sample of dust: 4.3, 4.1, 4.0, 3.2 ug g~ . Should the last value, 3.2,
be rejected?

The Q test may be applied to solve this problem.

|Questionable value — Nearest value|

Largest value — Smallest value
_132-40] 08

= = = 0727
43-32 11
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If the calculated value of Q exceeds the critical value given in the Q table
(Appendix 14), then the questionable value may be rejected.

In this example Q calculated is 0.727 and Q critical, for a sample size of four,
is 0.831. Hence the result 3.2 ug g ~ ! should be retained. If, however, in the above
example, three additional measurements were made, with the results:

4.3,4.1,40,32,42,39 40ugg !
Then

0 - 3.2-39 07 036
T 43-32 11

The value of Q critical for a sample size of seven is 0.570, so rejection of the
value 3.2 ug g~ ! is justified.
It should be noted that the value Q has no regard to algebraic sign.

4.11 CONFIDENCE INTERVAL

When a small number of observations is made, the value of the standard
deviation s, does not by itself give a measure of how close the sample mean X
might be to the true mean. It is, however, possible to calculate a confidence
interval to estimate the range within which the true mean may be found. The
limits of this confidence interval, known as the confidence limits, are given by
the expression:

Confidence limits of u, for n replicate measurements, 4 = X + —= (1)

where t is a parameter that depends upon the number of degrees of freedom
(v) (Section 4.12) and the confidence level required. A table of the values of ¢
at different confidence levels and degrees of freedom (v) is given in Appendix 12.

Example 3. The mean (x) of four determinations of the copper content of a
sample of an alloy was 8.27 per cent with a standard deviation s = 0.17 per cent.
Calculate the 95% confidence limit for the true value.

From the t-tables, the value of ¢ for the 95 per cent confidence level with
(n— 1), i.e. three degrees of freedom, is 3.18.

Hence from equation (1), the 95 per cent confidence level,

3.18 x 0.17

Nz

= 8.27 £ 0.27 per cent
Thus, there is 95 per cent confidence that the true value of the copper content
of the alloy lies in the range 8.00 to 8.54 per cent.

If the number of determinations in the above example had been 12, then
the reader may wish to confirm that

2.20 x 0.17

J2

= 8.27 1+ 0.11 per cent

95%(C.L.) for u = 827 +

95%(C.L.) for u = 827 %
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Hence, on increasing the number of replicate determinations both the values of
t and s/./n decrease with the result that the confidence interval is smaller. There

is, however, often a limit to the number of replicate analyses that can be sensibly
performed. A method for estimating the optimum number of replicate
determinations is given in Section 4.15.

412 COMPARISON OF RESULTS

The comparison of the values obtained from a set of results with either (a) the
true value or (b) other sets of data makes it possible to determine whether the
analytical procedure has been accurate and/or precise, or if it is superior to
another method.

There are two common methods for comparing results: (a) Student’s t-test
and (b) the variance ratio test ( F-test).

These methods of test require a knowledge of what is known as the number
of degrees of freedom. In statistical terms this is the number of independent
values necessary to determine the statistical quantity. Thus a sample of n values
has n degrees of freedom, whilst the sum Z(x — x)? is considered to have n — 1
degrees of freedom, as for any defined value of x only n — 1 values can be freely
assigned, the nth being automatically defined from the other values.

(a) Student’s r-test. This is a test! used for small samples; its purpose
is to compare the mean from a sample with some standard value and to express
some level of confidence in the significance of the comparison. It is also used
to test the difference between the means of two sets of data x, and x,.

The value of t is obtained from the equation:

,=(L—_f‘)_\/j_ (2)

S

where u is the true value.

It is then related to a set of t-tables (Appendix 12) in which the probability
(P) of the t-value falling within certain limits is expressed, either as a percentage
or as a function of unity, relative to the number of degrees of freedom.

Example 4. t-Test when the true mean i1s known.
If x the mean of the 12 determinations = 8.37, and u the true value = 7.91,
say whether or not this result is significant if the standard deviation is 0.17.
From equation (2)

(837-791)/12 _
0.17 B

From t-tables for eleven degrees of freedom (one less than those used in the
calculation)

for P = 0.10 (10 per cent) 0.05 (5 per cent) 0.01 (1 per cent)
t = 1.80 2.20 3.11

and as the calculated value for 1 is 9.4 the result is highly significant. The t-table
tells us that the probability of obtaining the difference of 0.46 between the
experimental and true result is less than 1 in 100. This implies that some
particular bias exists in the laboratory procedure.

94
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Had the calculated value for t been less than 1.80 then there would have
been no significance in the results and no apparent bias in the laboratory
procedure, as the tables would have indicated a probability of greater than
1 in 10 of obtaining that value. It should be pointed out that these values refer
to what is known as a double-sided, or two-tailed, distribution because it
concerns probabilities of values both less and greater than the mean. In some
calculations an analyst may only be interested in one of these two cases, and
under these conditions the z-test becomes single-tailed so that the probability
from the tables is halved.

(b) F-test. This is used to compare the precisions of two sets of data,?
for example, the results of two different analytical methods or the results from
two different laboratories. It is calculated from the equation:

2
F = (3)
Sgp
N.B. The larger value of s is always used as the numerator so that the value
of F is always greater than unity. The value obtained for F is then checked for
its significance against values in the F-table calculated from an F-distribution
(Appendix 13) corresponding to the numbers of degrees of freedom for the two
sets of data.

Example 5. F-test comparison of precisions.

The standard deviation from one set of 11 determinations was s, =0.210,
and the standard deviation from another 13 determinations was sz = 0.641. Is
there any significant difference between the precision of these two sets of results?

From equation (3)

_(0.641)* 0411 _
T (0.210)2 T 0.044

9.4

for
P =010 005 001
F =228 291 471

The first value (2.28) corresponds to 10 per cent probability, the second value
(2.91)to 5 per cent probability and the third value (4.71) to 1 per cent probability.

Under these conditions there is less than one chance in 100 that these
precisions are similar. To put it another way, the difference between the two
sets of data is highly significant.

Had the value of F turned out to be less than 2.28 then it would have been
possible to say that there was no significant difference between the precisions,
at the 10 per cent level.

413 COMPARISON OF THE MEANS OF TWO SAMPLES

When a new analytical method is being developed it is usual practice to compare
the values of the mean and precision of the new (test) method with those of an
established (reference) procedure.

The value of t when comparing two sample means X, and x, is given by the
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expression:
)?1 - )?2
Sp/1/ny+1/n,

where s, the pooled standard deviation, is calculated from the two sample
standard deviations s, and s,, as follows:

¢ = (ny — 1)si+(n, — 1)s3
P ny+ny,—2

(4)

t =

(5)

It should be stressed that there must not be a significant difference between the
precisions of the methods. Hence the F-test (Section 4.12) 1s applied prior to
using the t-test in equation (5).

Example 6. Comparison of two sets of data.

The following results were obtained in a comparison between a new method
and standard method for the determination of the percentage nickel in a special
steel.

New method Standard method
Mean X, = 7.85 per cent X, = 8.03 per cent
Standard deviation s, = +0.130 per cent s, = +0.095 per cent
Number of samples #n; =5 n, =26

Test at the 5 per cent probability value if the new method mean is significantly
different from the standard reference mean.

The F-test must be applied to establish that there is no significant difference
between the precisions of the two methods.

2 2
_sx(0130)*
F= s3 (0.095)* 187

The F-value (P =35 per cent) from the tables (Appendix 13) for four and five
degrees of freedom respectively for s, and sz = 5.19.

Thus, the calculated value of F (1.87)1s less than the tabulated value; therefore
the methods have comparable precisions (standard deviations) and so the ¢-test
can be used with confidence.

From equation (5) the pooled standard deviation s, is given by:

5— 1) % 0.0169 + (6 — 1) x 0.0090
sz\/( } x 0.0169 +( ) x 0.00 - +0112
9

and from equation (4)
.85 —8. .
,__ 185-803 018 _ 566

T 0112 /1/5+1/6  0.112 x 0.605

At the 5 per cent level, the tabulated value of ¢ for (n, + n, — 2), i.e. nine degrees
of freedom, is 2.26.

Since . uicutared 2-60 > tiapuaea 2-26, there is a significant difference, at the
specified probability, between the mean results of the two methods.
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414 PAIRED ¢-TEST

Another method of validating a new procedure is to compare the results using
samples of varying composition with the values obtained by an accepted method.
The manner of performing this calculation is best illustrated by an example:

Example 7. The t-test using samples of differing composition (the paired t-test).
Two different methods, A and B, were used for the analysis of five different iron
compounds.

Sample 1 2 3 4 5
Method A 17.6 6.8 14.2 20.5 9.7 per cent Fe
Method B 17.9 7.1 13.8 20.3 10.2 per cent Fe

It should be apparent that in this example it would not be correct
to attempt the calculation by the method described previously (Section 4.13).

In this case the differences (d) between each pair of results are calculated
and d, the mean of the difference, is obtained. The standard deviation s, of the
differences is then evaluated. The results are tabulated as follows.

Method A  Method B d d—d (d—d)?
17.6 17.9 +0.3 02 0.04
6.8 7.1 +03 02 0.04
14.2 13.8 —04 0.5 025
20.5 20.3 —02 -03 0.09
9.7 10.2 +0.5 0.4 0.16
Td=05 T(d—d)*=058
S.d=01
0.58
Sy = 5= +0.38

Then t is calculated from the equation
A
tzaﬁzo 0\/3=0.589
S4 0.38

The tabulated value of t is 2.78 (P = 0.05) and since the calculated value is less
than this, there is no significant difference between the methods.

4.15 THE NUMBER OF REPLICATE DETERMINATIONS

To avoid unnecessary time and expenditure, an analyst needs some guide to
the number of repetitive determinations needed to obtain a suitably reliable
result from the determinations performed. The larger the number the greater the
reliability, but at the same time after a certain number of determinations any
improvement in precision and accuracy is very small.

Although rather involved statistical methods exist for establishing the number
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of parallel determinations, a reasonably good assessment can be made by
establishing the variation of the value for the absolute error A obtained for an
increasing number of determinations.

s
A=—

n
The value for ¢ is taken from the 95 per cent confidence limit column of the
t-tables for n — 1 degrees of freedom.

The values for A are used to calculate the reliability interval L from the

equation:

100A
L = —— per cent
z

where z is the approximate percentage level of the unknown being determined.
The number of replicate analyses is assessed from the magnitude of the change
in L with the number of determinations.

Example 8. Ascertain the number of replicate analyses desirable (a) for the
determination of approximately 2 per cent Cl~ in a material if the standard
deviation for determinations is 0.051, (b) for approximately 20 per cent Cl~ if
the standard deviation of determinations is 0.093.

(a) For 2 per cent Cl ™ :

Number of ts 100A Difference (per cent)
determinations A=— L=—
n z
2 12.7 x 0.051 x 0.71 = 0.4599 22.99
3 4.3 x 0.051 x0.58=0.1272 6.36 16.63
4 3.2 x 0.051 x 0.50 =0.0816 4.08 2.28
5 2.8 x 0.051 x 0.45 =0.0642 3.21 0.87
6 2.6 x 0.051 x 0.41 =0.0544 2.72 0.49

(b) For 20 per cent Cl™:

Numbe.r of: ts 100A Difference (per cent)
determinations A=— L=
n 2

2 12,7 x 0.093 x 0.71 = 0.838 4.19

3 4.3 x 0.093 x 0.58 =0.232 1.16 3.03

4 3.2 x 0.093 x 0.50=0.148 0.74 042

5 2.8 x0.093 x 045=0.117 0.59 0.15

6 2.6 x 0.093 x 0.41 =0.099 0.49 0.10

In (a) the reliability interval is greatly improved by carrying out a third
analysis. This is less the case with (b} as the reliability interval is already narrow.
In this second case no substantial improvement is gained by carrying out more
than two analyses.

This subject is dealt with in more detail by Eckschlager,* and Shewell®
has discussed other factors which influence the value of parallel determinations.
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416 CORRELATION AND REGRESSION

When using instrumental methods it is often necessary to carry out a calibration
procedure by using a series of samples (standards} each having a known
concentration of the analyte to be determined. A calibration curve is constructed
by measuring the instrumental signal for each standard and plotting this response
against concentration (See Scctions 17.14 and 17.21). Provided the same
experimental conditions are used for the measurement of the standards and for
the test (unknown) sample, the concentration of the latter may be determined
from the calibration curve by graphical interpolation.

There are two statistical tests that should be applied to a calibration curve:

(a) to ascertain if the graph is linear, or in the form of a curve;
(b) to evaluate the best straight line (or curve) throughout the data points.

Correlation coefficient. In order to establish whether there is a linear relationship

between two variables x, and y, the Pearson’s correlation coefficient r is used.

r= znleylz_lezgjl (6)
\/[nzx1 —(Zx,)°][nZy: — (Zy,)°]

where n is the number of data points.

The value of » must lie between +1 and —1: the nearer it is to + 1, or in
the case of negative correlation to — 1, then the greater the probability that a
definite linear relationship exists between the variables x and y. Values of r that
tend towards zero indicate that x and y are not linearly related (they may be
related in a non-linear fashion).

Although the correlation coefficient r would easily be calculated with the aid
of a modern calculator or computer package, the following example will show
how the value of r can be obtained.

Example 9. Quinine may be determined by measuring the fluorescence intensity
in 1M H,S0, solution (Section 18.4). Standard solutions of quinine gave the
following fluorescence values. Calculate the correlation coefficient r.

Concentration of quinine (x,) 0.00 0.10 020 0.30 0.40 uyg mL~!
Fluorescence intensity (y,) 0.00 5.20 9.90 15.30 19.10 arbitrary units

The terms in equation (6) are found from the following tabulated data.

2 2
Xy 1 X1 Y1 N
0.00 0.00 0.00 0.00 0.00
0.10 5.20 0.01 27.04 0.52
0.20 9.90 0.04 98.01 198
0.30 15.30 0.09 234.09 459
0.40 19.10 0.16 364.81 7.64
Y x, =100 Sy, =495 Y x1=030 Y y}=72395 Yx 1y, =1473
Therefore

(Zx,)? = 1.000; (Zy,)®> =245025; n=>5
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Substituting the above values in equation (6), then
5x 1473 —1.00 x 49.5 2415
\/(5 x 0.30 — 1.000)(5 x 723.95 — 2450.25) \/584.75

Hence, there is a very strong indication that a linear relation exists between
fluorescence intensity and concentration (over the given range of concentration).

It must be noted, however, that a value of r close to either +1 or —1 does
not necessarily confirm that there is a linear relationship between the variables.
It is sound practice first to plot the calibration curve on graph paper and
ascertain by visual inspection if the data points could be described by a straight
line or whether they may fit a smooth curve.

The significance of the value of r is determined from a set of tables
(Appendix 15). Consider the following example using five data (x, y,) points:
From the table the value of r at 5 per cent significance value is 0.878. If the
value of r is greater than 0.878 or less than —0.878 (if there is negative
correlation), then the chance that this value could have occurred from random
data points is less than 5 per cent. The conclusion can, therefore, be drawn that
it is likely that x, and y; are linearly related. With the value of r =0.998,
obtained in the example given above there is confirmation of the statement that
the linear relation between fluorescence intensity and concentration is highly
likely.

= 0.9987

r =

4.17 LINEAR REGRESSION

Once a linear relationship has been shown to have a high probability by the
value of the correlation coefficient (r), then the best straight line through the
data points has to be estimated. This can often be done by visual inspection of
the calibration graph but in many cases it is far better practice to evaluate the
best straight line by linear regression (the method of least squares).

The equation of a straight line is

y=ax+b

where y, the dependent variable, is plotted as a result of changing x, the
independent variable. For example, a calibration curve (Section 21.16) in atomic
absorption spectroscopy would be obtained from the measured values of
absorbance (y-axis) which are determined by using known concentrations of
metal standards (x-axis).

To obtain the regression line ‘y on x’, the slope of the line (a) and the intercept
on the y-axis (b} are given by the following equations.

nEX,y, —Zx,2y, )
nZx? —(Xx,)?

and b =y—ax (8)

where X is the mean of all values of x, and y is the mean of all values of y,.

a =

Example 10. Calculate by the least squares method the equation of the best
straight line for the calibration curve given in the previous example.
From Example 9 the following values have been determined.
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x, = 1.00; Ty, = 49.5; Tx? = 0.30; Zx,y, = 1473, (£x,)? = 1.000;
the number of points (n) = 5

and the values

> 1.
eo2X 100
n 5

and
_ Xy, 495
e

By substituting the values in equations (7) and (8), then

_3x1473-100x49.5 2415

= = = 48,
¢ = (5% 0.30)= (1.00)2 05 83

and

b=99—-(483x0.2) =0.24

So the equation of the straight line is
y = 483x+0.24

If the fluorescence intensity of the test solution containing quinine was found
to be 16.1, then an estimate of the concentration of quinine (x ug mL ™!} in this
unknown could be

16.10 = 48.3x +0.24
_ 15.86
"~ 48.30

The determination of errors in the slope a and the intercept b of the regression
line together with multiple and curvilinear regression is beyond the scope of
this book but references may be found in the Bibliography, page 156.

x = 0.32, ugmL !

418 COMPARISON OF MORE THAN TWO MEANS (ANALYSIS OF VARIANCE)

The comparison of more than two means is a situation that often arises in
analytical chemistry. It may be useful, for example, to compare (a) the mean
results obtained from different spectrophotometers all using the same analytical
sample; (b) the performance of a number of analysts using the same titration
method. In the latter example assume that three analysts, using the same
solutions, each perform four replicate titrations. In this case there are two
possible sources of error: (a) the random error associated with replicate
measurements; and (b) the variation that may arise between the individual
analysts. These variations may be calculated and their effects estimated by a
statistical method known as the Analysis of Variance (ANOVA), where thg
square of the standard deviation, s2, is termed the variance, V. Thus F =2—;
2

i V.
where s} > s3, and may be written as F = 71 where V; > V,.
2

146



COMPARISON OF MORE THAN TWO MEANS (ANALYSIS OF VARIANCE) 4.18

An Analysis of Variance calculation is best illustrated by using specific values
in situation (b) just referred to.

Example 11. Three analysts were each asked to perform four replicate titrations
using the same solutions. The results are given below.

Titre (mL)

Analyst A Analyst B Analyst C

22.53 2248 22,57
22.60 22.40 22.62
22.54 2248 22,61
2262 2243 22.65

To simplify the calculation it is sound practice to subtract a common number,
e.g. 22.50, from each value. The sum of each column is then determined. Note:
this will have no effect on the final values.

Analyst A Analyst B Analyst C

0.03 —0.02 0.07
0.10 —0.10 0.12
0.04 —0.02 0.11
0.12 —0.07 0.15
Sum = 0.29 —-0.21 045

The following steps have to be made in the calculation:
(a) The grand total
T =1029-021+045

= 0.53
(b} The correction factor (C.F.)
T* (0.53)?
CF. = ~N- 1 - 0.0234

where N i1s the total number of results.
(¢) The total sum of squares. This is obtained by squaring each result, summing
the totals of each column and then subtracting the correction factor (C.F.).

Analyst A Analyst B Analyst C

0.0009 0.0004 0.0049
0.0100 0.0100 00144
0.0016 0.0004 0.0121
0.0144 0.0049 0.0225
Sum = 0.0269 0.0157 0.0539
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Total sum of squares = (0.0269 + 0.0157 + 0.0539) — C.F.
= 0.0965 — 0.0234 = 0.0731

(d) The between-treatment (analyst) sum of squares. The sum of the squares of
each individual column is divided by the number of results in each column,
and then the correction factor is subtracted.

Between sum of squares = 1(0.29% +0.21% 4+ 0.45%) — 0.0234
= 0.0593

(e) The within-sample sum of squares. The between sum of squares is subtracted
from the total sum of squares.

0.0731 — 0.0593 = 0.0138
(f) The degrees of freedom (v). These are obtained as follows:

The total number of degrees of freedom v=N—-—1=11
The between-treatment degrees of freedom v=C —1=2
The within-sample degrees of freedom v=(N —1)—(C—-1)=9

where C is the number of columns (in this example, the number of analysts).
(g9) A table of Analysis of Variance (ANOVA table) may now be set up.

Source of variation  Sum of squares df. Mean square
‘Between analysts”  0.0593 2 0.0593/2 =0.0297
‘Within titrations’ 0.0138 9 0.0138/9 =0.00153
Total 0.0731 11

(h)} The F-test is used to compare the two mean squares:

0.0297
22 7 0.00153

From the F-tables (Appendix 13), the value of F at the 1 per cent level for
the given degrees of freedom is 8.02. The calculated result (19.41} is higher
than 8.02; hence there is a significant difference in the results obtained by
the three analysts. Having ascertained in this example there is a significant
difference between the three analysts, the next stage would be to determine
whether the mean result is different from the others, or whether all the
means are significantly different from each other.

= 19.41

The procedure adopted to answer these questions for the example given
above is as follows:

(a) Calculate the titration means for each analyst. The mean titration values
are X (A)=2257mL; Xx(B)=2245mL; and x (C)=22.61 mL.

(b) Calculate the quantity defined as the ‘least significant difference’, which is
given by s./2/n ty4s where s is the square root of the Residual Mean

Square, i.e. the ‘within-titration” Mean Square. Hence s =, /0.00153; n is
the number of results in each column (in this example, 4); t is the 5 per cent
value from the t-tables (Appendix 12), with the same number of degrees of
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freedom as that for the Residual term, i.e. the ‘within-titration’ value. In
this example the number of degrees of freedom is 9, so the least significant
difference is given by

V000153 x \/2/4 x 2.26 = 0.06 mL

If the titration means are arranged in increasing order, then x(B)<
x(A)<x(C), and x(C)— x(B) and x(A) — x(B) are both greater than 0.06,
whereas x (C) — x (A) is less than 0.06. Hence there is no significant difference
between analysts A and C, but the results of analyst B are significantly different
from those of both A and C.

It should be noted that in this example the performance of only one variable,
the three analysts, is investigated and thus this technique is called a one-way
ANOVA. If two variables, e.g. the three analysts with four different titration
methods, were to be studied, this would require the use of a two-way ANOVA.
Details of suitable texts that provide a solution for this type of problem
and methods for multivariate analysis are to be found in the Bibliography,
page 156.

419 THE VALUE OF STATISTICS

Correctly used, statistics is an essential tool for the analyst. The use of statistical
methods can prevent hasty judgements being made on the basis of limited
information. It has only been possible in this chapter to give a brief resumé of
some statistical techniques that may be applied to analytical problems. The
approach, therefore, has been to use specific examples which illustrate the scope
of the subject as applied to the treatment of analytical data. There is a danger
that this approach may overlook some basic concepts of the subject and the
reader is strongly advised to become more fully conversant with these statistical
methods by obtaining a selection of the excellent texts now available.

In addition there is the rapidly developing subject of Chemometrics, which
may be broadly defined as the application of mathematical and statistical
methods to design and/or to optimise measurement procedures, and to provide
chemical information by analysing relevant data. Space does not permit an
inclusion in this book of such topics as experimental design and instrumental
optimisation techniques or more sophisticated subjects as pattern recognition.
There is no doubt however, that a knowledge of the scope of Chemometrics
will be increasingly important for any competent analytical chemist. Details of
some useful texts, both introductory and more advanced, are given in the
Bibliography (Section 5.8). The reader should be aware, however, that some
signal-processing techniques are included in this book, e.g. information will be
found on derivative spectroscopy (Section 17.12) and Fourier transform
methods (Section 19.2).

For References and Bibliography see Sections 5.7 and 5.8.
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CHAPTER &
SAMPLING

5.1 THE BASIS OF SAMPLING

The purpose of analysis is to determine the quality or composition of a material;
and for the analytical results obtained to have any validity or meaning it is
essential that adequate sampling procedures be adopted. Sampling is the process
of extracting from a large quantity of material a small portion which is truly
representative of the composition of the whole material.

Sampling methods fall into three main groups:

those in which all the material is examined;

casual sampling on an ad hoc basis;

methods in which portions of the material are selected based upon statistical
probabilities.

el Mo

Procedure (1}is normally impracticable, as the majority of methods employed
are destructive, and in any case the amount of material to be examined is
frequently excessive. Even for a sample of manageable size the analysis would
be very time-consuming, it would require large quantities of reagents, and would
monopolise instruments for long periods.

Sampling according to (2) is totally unscientific and can lead to decisions
being taken on inadequate information. In this case, as the taking of samples
isentirely casual, any true form of analytical control or supervision is impossible.

For these reasons the only reliable basis for sampling must be a mathematical
one using statistical probabilities. This means that although not every item or
every part of the sample is analysed, the limitations of the selection are carefully
calculated and known in advance. Having calculated the degree of acceptable
risk or margin of variation, the sampling plan is then chosen that will give the
maximum information and control that is compatible with a rapid turnover of
samples. For this reason, in the case of sampling from batches the selection of
individual samples is carried out according to special random tables® which
ensure that personal factors do not influence the choice.

5.2 SAMPLING PROCEDURE

The sampling procedure may involve a number of stages prior to the analysis
of the material. The sampling stages are outlined in Fig. 5.1.

For the most part, bulk materials are non-homogeneous, e.g. minerals,
sediments, and foodstuffs. They may contain particles of different composition
which are not uniformly distributed within the material. In this case, a number
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Bulk material

Increment
\ " /
Gross sample
L
Sub-sample
'
Test or analysis sample
Fig. 5.1

of increments is taken in a random manner from points in the bulk material,
so that each part has an equal chance of being selected. The combination of
these increments then forms the gross sample. The gross sample is often too
large for direct analysis and must be divided further to produce a sub-sample.
The sub-sample may require treatment, for example reduction in particle size
or thorough mixing, before the analytical sample can be obtained. The analytical
sample should retain the same composition of the gross sample.

It must be stressed, however, that the whole object may be the analytical
sample, e.g. a specimen of moon-rock. Ideally this sample would be analysed
by non-destructive methods. Occasionally the bulk material may be homogeneous
(some water samples) and then only one increment may be needed to determine
the properties of the bulk. This increment should be of suitable size to provide
samples for replicate analyses.

5.3 SAMPLING STATISTICS

The errors arising in sampling, particularly in the case of heterogeneous solids,
may be the most important source of uncertainty in the subsequent analysis of
the material. If we represent the standard deviation of the sampling operation
(the sampling error) by sg and the standard deviation of the analytical procedures
(the analytical error) by s,, then the overall standard deviation s (the total
error) is given by

NI (1)

or
ST = A\/I/vs'l_ VA
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where V represents the appropriate variance. The separate evaluation of both
Vs (the sampling variance) and V), (the analytical variance) may be achieved by
using the analysis of variance procedure (See Section 4.18). A comparison can
be made of the between-sample variance — an estimate of the sampling error —
and the within-sample variance — an estimate of the analytical error.

Example 1. If the sampling error is +3 per cent and the analytical error is
+1 per cent, from equation (1) we can see that the total error s is given by

st = +/3%+12 = £3.16 per cent

If, in the above example, the analytical error was +0.2 per cent then the
total error st would be equal to +3.006 per cent. Hence the contribution of
the analytical error to the total error is virtually insignificant. Youden’
has stated that once the analytical uncertainty is reduced to one-third of the
sampling uncertainty, further reduction of the former is not necessary. It is most
important to realise that if the sampling error is large, then a rapid analytical
method with relatively low precision may suffice.

In designing a sampling plan the following points should be considered:®

(a) the number of samples to be taken;

(b) the size of the sample;

(c) should individual samples be analysed or should a sample composed of
two or more increments (composite) be prepared.

If the composition of the bulk material to be sampled is unknown, it is
sensible practice to perform a preliminary investigation by collecting a number
of samples and determining the analyte of interest.

The confidence limits (see Section 4.11)} are given by the relationship

,u=)_citss/\/;1 (2)

where s, is the standard deviation of individual samples, x is the mean of the
analytical results and serves as an estimate of the true mean y, and # is the
number of samples taken.

Example 2. An estimate of the variability of nickel in a consignment of an ore,
based on 16 determinations, was found to be +1.5%. How many samples
should be taken to give (at the 95 per cent confidence level} a sampling error
of less than 0.5 per cent nickel?

The value 0.5 percent is in fact the difference between the sample mean
x and the actual value u. If this value is represented by E, then equation (2)
may be written as

E=ts/n

and, therefore,

tsg\?
n =
E

From the tables (Appendix 12) the value of ¢ for (n — 1), 15 degrees of freedom
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at the 95 per cent confidence level is 2.13.

213 x 1.5
=222 s a
" ( 0.5 )

Hence, from this test it has been shown that at least 41 samples are required
if the specifications given in the above example are to be satisfied.

The other major problem concerned with sampling is that of the sample size.
The size of the sample taken from a heterogeneous material is determined by
the variation in particle size, and the precision needed in the results of the
analysis.

The major source of error in sampling can arise from the taking of increments
from the bulk material. It can be shown from random sampling theory that the
accuracy of the sample is determined by its total size. Hence, the sampling
variance, V, is inversely proportional to the mass of the sample. However, this
statement is not true if the bulk material consists of varying particle sizes; then
the number of increments taken will influence the sampling accuracy. The
sampling variance, V, is inversely proportional to the number of sampling
increments (n):
vt (3)

n
where k is a constant dependent on the size of the increment and variation
within the bulk material.

5.4 SAMPLING AND PHYSICAL STATE

Many of the problems occurring during sampling arise from the physical nature
of the materials to be studied.® Although gases and liquids can, and do, present
difficulties, the greatest problems of adequate sampling undoubtedly arise with
solids.

Gases. Few problems arise over homogeneity of gas mixtures where the storage
vessel is not subjected to temperature or pressure variations. Difficulties may
arise if precautions are not taken to clear valves, taps and connecting lines of
any other gas prior to passage of the sample. Similarly care must be taken that
no gaseous components will react with the sampling and analytical devices.

Liquids. In most cases general stirring or mixing is sufficient to ensure
homogeneity prior to sampling. Where separate phases exist it is necessary to
determine the relative volumes of each phase in order to compare correctly the
composition of one phase with the other. The phases should in any case be
individually sampled as it is not possible to obtain a representative sample of
the combined materials even after vigorously shaking the separate phases
together.

Solids. It is with solids that real difficulties over homogeneity arise. Even
materials that superficially have every appearance of being homogeneous in fact
may have localised concentrations of impurities and vary in composition. The
procedure adopted to obtain as representative a sample as possible will depend
greatly upon the type of solid. This process is of great importance since, if it is
not satisfactorily done, the labour and time spent in making a careful analysis
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of the sample may be completely wasted. If the material is more or less
homogeneous, sampling is comparatively simple. If, however, the material is
bulky and heterogeneous, sampling must be carried out with great care, and
the method will vary somewhat with the nature of the bulk solid.

The underlying principle of the sampling of material in bulk, say of a truckload
of coal or iron ore, is to select a large number of portions in a systematic manner
from different parts of the bulk and then to combine them. This large sample
of the total weight is crushed mechanically, if necessary, and then shovelled into
a conical pile. Every shovelful must fall upon the apex of the cone and the
operator must walk around the cone as he shovels; this ensures a comparatively
even distribution. The top of the cone is then flattened out and divided into
quarters. Opposite quarters of the pile are then removed, mixed to form a smaller
conical pile, and again quartered. This process is repeated, further crushing
being carried out if necessary, until a sample of suitable weight (say, 200-300 g)
is obtained.

If the quantity of material is of the order of 2—3 kg or less, intermixing may
be accomplished by the method known as ‘tabling’. The finely divided material
is spread on the centre of a large sheet of oilcloth or similar material. Each
corner is pulled in succession over its diagonal partner, the lifting being reduced
to a minimum; the particles are thus caused to roll over and over on themselves,
and the lower portions are constantly brought to the top of the mass and
thorough intermixing ensues. The sample may then be rolled to the centre of
the cloth, spread out, and quartered as before. The process is repeated until a
sufficiently small sample is obtained. The final sample for the laboratory, which
is usually between 25 and 200 g in weight, is placed in an air-tight bottle. This
method produces what is known as the ‘average sample’ and any analysis on
it should always be compared with those of a second sample of the same material
obtained by the identical routine.

Mechanical methods also exist for dividing up particulate material into
suitably sized samples. Samples obtained by these means are usually representative
of the bulk material within limits of less than + 1 per cent, and are based upon
the requirements established by the British Standards Institution. Sample
dividers exist with capacities of up to 10L and operate either by means of
a series of rapidly rotating sample jars under the outlet of a loading funnel, or
by a rotary cascade from which the samples are fed into a series of separate
compartments. Sample dividers can lead to a great deal of time-saving in
laboratories dealing with bulk quantities of powders or minerals.

The sampling of metals and alloys may be effected by drilling holes through
a representative ingot at selected points; all the material from the holes is
collected, mixed, and a sample of suitable size used for analysis. Turnings or
scrapings from the outside are not suitable as these frequently possess superficial
impurities from the castings or moulds.

In some instances in which grinding presents problems it is possible to obtain
a suitable homogeneous sample by dissolving a portion of the material in an
appropriate solvent.

Before analysis the representative solid sample is usually dried at 105-110°C,
or at some higher specified temperature if necessary, to constant weight. The
results of the analysis are then reported on the ‘dry’ basis, viz. on a material
dried at a specified temperature. The loss in weight on drying may be determined,
and the results may be reported, if desired on the original ‘moist’ basis; these
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figures will only possess real significance if the material is not appreciably
hygroscopic and no chemical changes, other than the loss of water, take place
on drying.

In a course of systematic quantitative analysis, such as that with which we
are chiefly concerned in the present book, the unknowns supplied for analysis
are usually portions of carefully analysed samples which have been finely ground
until uniform.

It should be borne in mind that although it is possible to generalise on
sampling procedures, all industries have their own established methods for
obtaining a record of the quantity and/or quality of their products. The sampling
procedures for tobacco leaves will obviously differ from those used for bales of
cotton or for coal. But although the types of samples differ considerably the
actual analytical methods used later are of general application.

5.5 CRUSHING AND GRINDING

If the material is hard (e.g. a sample of rock), it is first broken into small pieces
on a hard steel plate with a hardened hammer. The loss of fragments is prevented
by covering the plate with a steel ring, or in some othet manner. The small
lumps may be broken in a ‘percussion’ mortar (also known as a ‘diamond’
mortar) (Fig. 5.2). The mortar and pestle are constructed entirely of hard tool
steel. One or two small pieces are placed in the mortar, and the pestle inserted
into position; the latter is struck lightly with a hammer until the pieces have
been reduced to a coarse powder. The whole of the hard substance may be
treated in this manner. The coarse powder is then ground in an agate mortar
in small quantities at a time. A mortar of mullite is claimed to be superior to
one of agate: mullite is a homogeneous ceramic material that is harder, more
resistant to abrasion, and less porous than agate. A synthetic sapphire mortar
and pestle (composed essentially of a specially prepared form of pure aluminium
oxide) is marketed; it is extremely hard (comparable with tungsten carbide)
and will grind materials not readily reduced in ceramic or metal mortars,
Mechanical (motor-driven) mortars are available commercially.

/

7

Fig. 5.2

5.6 HAZARDS IN SAMPLING

The handling of many materials is fraught with hazards'® and this is no less
so when sampling materials in preparation for chemical analysis. The sampler
must always wear adequate protective clothing and if possible have detailed
prior knowledge of the material being sampled. When dangers from toxicity
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exist the necessary antidotes and treatment procedures should be available and
established before sampling commences.!! In no instances should naked flames
be allowed anywhere near the sampling area.

Apart from the toxic nature of many gases, the additional hazards are those
of excessive release of gas due to pressure changes, spontaneous ignition of
flammable gases and sudden vaporisation of liquefied gases.

With liquids, dangers frequently arise from easily volatilised and readily
flammable liquids. In all cases precautions should be greater than under
normal circumstances due to the unpredictable nature and conditions of taking
samples. The sampler must always be prepared for the unexpected, as can arise,
for example, if a container has built up excess pressure, or if the wrong liquid
has been packed. Toxic and unknown liquids should never be sucked along
tubes or into pipettes by mouth.

Even the sampling of solids must not be casually undertaken, and the operator
should always use a face mask as a protection until it is established that the
powdered material is not hazardous.

It should be borne in mind that sampling of radioactive substances is a
specialist operation at all times and should be carried out only under strictly
controlled conditions within restricted areas. In almost all instances the operator
must be protected against the radioactive emanations from the substance he is
sampling.

Correct sampling of materials is therefore of importance in two main respects;
firstly to obtain a representative portion of the material for analysis, and secondly
to prevent the occurrence of accidents when sampling hazardous materials.
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