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9. Title of the Project 
 

 Theoretical and Computational Investigation of Heat Conduction in Low Dimension Lattice: 
2D and 3D systems 

10. Objectives of the project 
 
The objectives of the project were following:  
 

I. Analytical and numerical investigations of heat conduction in 1d and 2d systems with 



various nonlinear potentials with special emphasis on long range interactions to make 
general conclusions on the role of nonlinearity and long-range interactions on the 
thermal energy propagation. 

II. Numerical investigations of thermal energy transport in 3d nonlinear lattices. Special 
emphasis will be put on the aspect ratio of the lattice to find out its effect on thermal 
conduction. 

III. Investigation on role of the dissipation constant of the thermal bath in the heat 
conduction. Close similarity of dissipation constant dependence of thermally activated 
rate processes and thermal conductivity will be explored further. 

IV. The behavior of the thermal conductance with temperature will be examined closely, 
keeping in mind that recently temperature dependence of thermal conductivity 
individual silicon nanowires has been made. 

V. Effect of noise correlation of the stochastic thermal bath on the thermal conductivity. 
VI. Role of impurities in the lattice on thermal conductivity in the 3d systems will be 

explored numerically. 
 

11. Whether objectives were achieved 
 

Some of the key objectives of the project has been achieved. Particularly we have investigated 
the role of interaction potential, temperature and dissipation constant on the thermal 
conductivity in one-dimensional lattice model. We also have investigated heat conduction in the 
two-dimensional lattice model with nearest neighbor interaction potential of Fermi-Pasta-Ulam 
(FPU) FPU-β potential. Both in the one- and two-dimensional lattice models, we determined 
the scaling laws of thermal conductivity with the size of the system. In the case of one-
dimensional lattice, the thermal conductivity shows a power-law scaling, on the contrary in the 
two-dimensional lattice it shows logarithmic divergence. Therefore, compared to one-
dimensional lattice the divergence of the thermal conductivity with the system size is slower. 
Furthermore, we showed that the scaling coefficient of the power-law divergence in one-
dimensional lattice is temperature dependent. In the low and high temperature regimes the 
scaling coefficients are different. The scaling coefficients are ~0.5 and ~0.33 in the low and 
high temperature regimes, respectively. The details of the work is described below. 
 
We have considered a one-dimensional lattice model with a nearest-neighbor interaction 
potential. The classical Hamiltonian for the model can be represented as  
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Where 𝑥! and 𝑝! are the displacement from equilibrium position and momentum of the i-th 
particle, respectively. The mass and the total number of particles on the chain are given by 𝑚 
and 𝑁, respectively. The nearest-neighbor interaction potential between the particle i  and (i-1) 
is given by 𝑉(𝑥! − 𝑥!&%). As we have not considered any external potential, our lattice model 
becomes a momentum conserving chain. We fixed 𝑚=1 for our calculations throughout. We 
have chosen the asymmetric double well nearest-neighbor interaction potential of the form 
given by 
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where 𝑘", 𝑘' and 𝑘( are three positive constants. This potential belongs to the general class of 
FPU-𝛼𝛽 potential and due to the cubic nonlinearity the potential becomes asymmetric (𝑉(𝑥) ≠
𝑉(−𝑥)). The asymmetric nature of double well potential is determined by the cubic nonlinear 
parameter 𝑘'. In order to study the thermal conduction through the nonlinear chain using 
nonequilibrium simulation method, both the ends of lattice are connected to Langevin heat 
baths having different temperatures. The equation of motion of the i-th particle in the chain is 
given by  
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where the fluctuation (𝜂!) and dissipation (𝛾!) terms are defined as 𝜂 = 𝜂+𝛿!,% + 𝜂-𝛿!,# and 𝛾! =
𝛾(𝛿!,% + 𝛿!,#), respectively. The heat baths are characterized by the fluctuation-dissipation 
relations followed by the two Markovian heat baths, ⟨	𝜂+(𝑡)𝜂+(𝑡.)⟩ = 2𝛾𝑘/𝑇+𝛿(𝑡 − 𝑡.) and 
⟨	𝜂-(𝑡)𝜂-(𝑡.)⟩ = 2𝛾𝑘/𝑇-𝛿(𝑡 − 𝑡.). The 𝛾, 𝑘/, 𝑇+ and 𝑇- are the dissipation constant, Boltzmann 
constant, temperatures of left and right heat baths, respectively. The values of 𝑘/ and 𝛾 were 
chosen to be unity throughout. We varied the left and right bath temperatures 𝑇+ and 𝑇-) to 
investigate the effect of temperature on the divergence behavior of thermal conductivity. In this 
context we defined two relevant quantities: the temperature difference, Δ𝑇 = 𝑇+ − 𝑇- and the 
average temperature, 𝑇 = 0!*0"

"
. 

The instantaneous local heat current between i-th and (i+1)-th particle is defined by  
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Defining the time-averaged local heat current as 𝐽! = lim

4→6
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nonequilibrum stationary state across the lattice after long time, the global heat current in the 
lattice is given by 
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The thermal conductivity is related to the steady state global heat current as 

𝜅 =
𝐽𝑁
Δ𝑇 (6) 

In the thermodynamic limit (large 𝑁), in 1D momentum conserving systems 𝐽 has been 
predicted to scale as 𝐽~𝑁8&%. Thus 𝜅 becomes divergent with a power law scaling relation as 
𝜅~𝑁8, where 𝛼 is the scaling exponent. 

In order to numerically integrate the dynamical equations (3), we used 4-th order Runge-Kutta 
method to achieve higher accuracy. In the interaction potential (2) we fixed 𝑘" = 0.1, 𝑘( = 0.002 
and varied 𝑘' (0.003 or 0.006) in order to explored the effect of asymmetry on the nature of 
divergence in 𝜅. Further to investigate the temperature dependence of divergence we chose 
various combination of 𝑇 and Δ𝑇. We used fixed boundary condition (BC), 𝑥_0 = 𝑥#*% = 0, in 
our calculations. 

In Fig.1a we show the divergence of thermal conductivity for the asymmetric potential (𝑘' =
0.003) with varying average heat bath temperatures keeping the Δ𝑇 fixed. For three different 
values of T the system exhibits power-law divergence of thermal conductivity with 𝛼 ranging 
between 0.31-0.35. These 𝛼 values are similar to the predicted 𝛼 = %

'
 by renormalization group 

theory, mode coupling theory and many numerical simulations. We found similar divergence of 
𝜅 for the same system with higher asymmetry (𝑘' = 0.006) in the interaction potential (Fig.1b). 
One important aspect of these divergence behavior is that the average temperature of the 
system is large. Therefore at the high temperature limit the asymmetric-double well-momentum-
conserving system behaves similar to the symmetric-FPU-𝛼𝛽-momentum-conserving system. 

 



 

Fig.1: Divergence of 𝜅 as a function of chain length, N. Different colored symbols represent 
simulations with different average bath temperatures with fixed temperature difference, (𝑇, Δ𝑇); 
circle: (1.5,1), triangle: (4.5,1), square: (9.5,1) and star: (3.0,4). Solid lines are from power law 
fitting (𝜅~𝑁8). The values of 𝛼 are indicated inside the plots for (a) 𝑘' = 0.003 and (b) 𝑘' =
0.006. 

 
We next investigated the divergence behavior of 𝜅 for a range of average temperature values 
in the intermediate to low 𝑇 limits again by varying the heat bath temperatures. Particularly we 
aimed to determine the nature of divergence in the intermediate and low temperature regimes. 
In Fig.2 we show the divergence of 𝜅 in different average temperatures of the system with 𝑘_3 =
0.003. Fig.2 indicates that the qualitative nature of divergence changes depending on the 
average temperature of the heat bath. The conductivity diverged sharply with 𝛼 = 0.49 at very 
low temperature. With increase of temperature the divergence becomes shallow with 𝛼 = 0.18. 
Further increase of temperature the conductivity appears to saturate with 𝑁 with 𝛼 = 0.07. At 
high temperature 𝜅 shows its usual divergence behavior with 𝛼 = 0.31. The striking feature of 
the temperature dependent thermal conductivity here is that two different types of scaling 
behaviors of 𝜅 at very low (𝛼 = 0.49) and very high (𝛼 = 0.31) temperatures. Repeating 
calculations with higher asymmetry of the potential (𝑘' = 0.006) also resulted similar 
observations as in 𝑘' = 0.003 (Fig.3). Thus our simulation results indicate that the values of 𝛼 
depends on the temperature of the system in asymmetric interaction potential. 
 

 
Fig.2: Divergence of 𝜅 as a function of 𝑁 for 
different average 𝑇 and Δ𝑇;  circle: (1.5,1), 
triangle: (0.3,0.2), square: (0.15,0.1) and 
diamond: (0.075,0.05). The asymmetric 
parameter 𝑘' was 0.003. The 𝛼 values are 
indicated inside the plot. 
 

 
Fig.3: Divergence of 𝜅 with 𝑁 at different 
temperatures with asymmetric parameter 
𝑘' = 0.006.  

 



To determine the temperature dependence of 𝛼, we plotted it as a function of 𝑇 for two different 
values of asymmetric parameter 𝑘' (Fig.4). With increase in 𝑇, 𝛼 decreases sharply and passing 
through a minimum it increases to saturate with 𝛼 = 0.35 at high 𝑇. The weakest divergence of 
𝜅 occurs at the intermediate 𝑇 both for low and high asymmetries of the potential. The 
comparison of 𝛼 vs. 𝑇 for low and high 𝑘' indicates that the divergence behaviors of thermal 
conductivity for different asymmetry values are identical. If the saturation of 𝜅 in this system 
was an asymmetry induced effect then there must have been a shift in 𝛼 vs. 𝑇 plots for the two 
different values of 𝑘'. However the two curves overlap with each other. Further for the same 
reason, expectedly higher asymmetry would have resulted saturation of 𝜅 at lower 𝑁 as 
compared to lower asymmetry. The comparison of 𝜅 vs. 𝑁 profiles for higher and lower 
asymmetry at different 𝑇 (Fig.5) do not indicate any such asymmetry induced early saturation 
of 𝜅. These results and analyses point out that the saturation of 𝜅 may be a finite length effect 
occurs only at intermediate 𝑇. However our results does point out that the nature of divergence 
is indeed temperature dependent. 
 

 
 

Fig.4: Temperature dependence of 𝛼 for 
two different values of asymmetric 
parameters 𝑘'. The sizes of error bars on 𝛼 
are nearly same as the sizes of the 
markers.  

 
 
Fig.5: Comparison of divergence of 𝜅 with 𝑁 
for different values of asymmetric parameter 
𝑘' at various average bath temperatures, 𝑇. 

In order to determine the finite-size effect on 𝛼 we calculated the local divergence coefficient, 
𝛼#, by determining the local slope in 𝜅 vs. 𝑁 line. In Fig.6 we present the 𝛼# as a function of 𝑁 
estimated at various 𝑇 for two different values of asymmetry parameter. At high 𝑇 the well-
known thermodynamic limit of 0.33 is achieved at the shorter length of the chain. On the other 
hand, at very low 𝑇, 𝛼 appeared to settle at 𝛼 ∼ 0.5 value, indicating the different scaling 
behavior of the system depending on the temperature of the system. However at the 
intermediate 𝑇 with increasing 𝑁, 𝛼# decreases below the thermodynamic limit (𝛼 = 0.33, 
dashed line in Fig.6) and passing through a minimum it shows an increasing trend for both the 
values of asymmetry parameters. Similar trend was seen for 𝑇 = 0.15 although without the 
minimum as probably the minimum is located at larger 𝑁. As at these two temperatures the 
local 𝛼 does not settle to a particular value, it may be concluded that the value of 𝛼 at the 
intermediate 𝑇 are not from the thermodynamic limit of the system. 

The presence of two wells separated by a barrier in double well interaction potential makes the 
lattice system somewhat different as compared to usual FPU class of single-well interaction 
potentials. At high 𝑇 regime, due to the increased thermal noise from the heat baths the system 
will be able to transition between the two wells. However, at low 𝑇 regime the system will be 
trapped in one of wells depending on the initial state of the system. In order to assess the 
temperature dependent dynamic nature of the system, we calculated order parameter, 
%

#&%
∑ |〈𝑥!*% − 𝑥!〉|#&%
!$% , at various 𝑇 for two different values of asymmetry parameter 𝑘' (Fig.7a). 

This order parameter essentially reflects the equilibrium average of absolute displacement from 
the adjacent particle. We find that the value of the order parameter saturates to two distinct 
regimes at low and high 𝑇 indicating temperature dependent disparate nature of the system. 
The two different types of divergence exponents of thermal conductivity (𝛼 ∼ 0.5 and 𝛼 ∼ 0.033) 



in the low and high 𝑇 thus correlate with the order parameter of the system. The qualitative 
nature of the order parameter does not depend on the asymmetry parameter 𝑘'. Further we 
plotted the ensemble averaged displacement with the adjacent particle, 〈𝑥!*% − 𝑥!〉, of a chain 
with 𝑁 = 500 at high and low (Fig.7b-c) temperatures and these two plots suggest the 
dichotomous dynamical behavior of the lattice with double well potential. Particularly the 
confinement of the system in the two wells is evident at the low 𝑇. Whereas at high 𝑇 the 
fluctuations are more or less homogeneous. Therefore our estimated temperature dependent 
divergence characteristics of thermal conductivity is due to the distinct qualitative nature of the 
system at low and high 𝑇. 

 

Fig.6: Plot of local divergence coefficient 𝛼# with 𝑁 for different values of asymmetric parameter 
𝑘' and at different average bath temperature, 𝑇. 𝛼# was estimated by calculating the local slope 
of 𝜅 vs. 𝑁 plots given in Fig.2 and Fig.3. The horizontal dashed line represents 𝛼 = 0.33. 

In order to ensure that the contributions from the cubic and quartic terms in the potential are 
not negligible, we calculated ensemble average of second, third and fourth order terms in the 
potential (Fig.8) at different temperatures. Our calculations indicate that the contributions from 
the cubic and the quartic terms are not negligible as compared to the quadratic term. Further 
the values of these terms show a non-monotonous temperature dependence that is in 
consistent with the temperature dependent scaling of thermal conductivity. Based on the used 
values 𝑘", 𝑘' and 𝑘(, the absolute values of the coefficients in the potential (2) were 0.05, 
0.001/0.002 and 0.0005. The progressively decreasing values of these coefficients further 
justifies the truncation of the polynomial beyond fourth order in Taylor expansion. 
 

  

 
 



Fig.7: a) Temperature dependence of the order parameter for a chain with 𝑁 = 500. The 
average displacement from the adjacent particle along the chain at 𝑇 = 2.0 (b) and 𝑇 = 0.07 
(c). 
 

 
 

Fig.8: Absolute average contributions of second, third and fourth order terms in the potential for a chain 
with 𝑁 = 1000 and 𝑘' = 0.003. The values of temperature are indicated at the top of the figure.  
 
Understanding the divergent nature of thermal conductivity in low dimensional systems has been a long-
standing problem. A large number of theoretical and numerical calculations on 1-D momentum 
conserving systems concluded power-law divergence of thermal conductivity with the length of lattice. In 
this study we used nonequilibrium simulation method to show that the divergent nature of 𝜅 in 1-D 
asymmetric lattice depends on the temperature of the heat baths. In the thermodynamic limit, the system 
exhibits 𝛼 ∼ 0.5 and 𝛼 ∼ 0.33 at low and high 𝑇 respectively. Therefore, our calculations point out two 
different scaling behavior of the same system depending on the temperature of the system. We 
emphasize that our finding of temperature dependent divergence of thermal conductivity in asymmetric 
double well interaction potential may as well be obtained in case of symmetric double well potential as 
there is no significant dependence of asymmetry on the divergence behavior. 
 
We investigated the two-dimensional momentum conserving lattice next to determine the scaling law of 
thermal conductivity with the size of the lattice. Here we have used FPU-𝛽 potential to model the nearest-
neighbor interaction between the particles. The form of the potential is 	
𝑉(𝑥) = %
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classical Hamiltonian representing the nonlinear 2-D lattice is given as 
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Where 𝑁3 and 𝑁: are the length of the lattice in the x and y directions. The two sides of the 
lattice are connected to Langevin heat baths with different temperatures, 𝑇+ and 𝑇-. The 
properties of the heat baths are same as in the case of 1-D lattice. Following the similar 
method as in the 1-D lattice the steady state heat flux along the i-th layer in 2-D lattice is 
given as   
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The thermal conductivity in the 2-D lattice is defined as 
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We calculated the local temperature along the 2-D lattice and in Fig.9 we present it for lattice of different 



dimensions. These plots indicate that a temperature gradient is established in the lattice due to the 
nonlinear nearest-neighbor interaction potential.  
 

 
 

Fig.9:  Local temperature profiles in 2-D lattice of different sizes with 𝑇+ = 2 and 𝑇- = 1.  
 

Next, we calculate the thermal conductivity for each lattice using the equations (8) and (9). A plot of 
thermal conductivity with the size of the lattice (Fig.10) indicates that in the macroscopic limit of the large 
lattice size, 2-D nonlinear lattice shows logarithmic divergence of thermal conductivity with the dimension 
of the lattice (𝜅 ∼ 	 ln𝑁!). It is important to note that the divergence does not depend on the length of 
the lattice in the direction in which there is no flow of heat. These results show that the divergence of the 
thermal conductivity with the size of the lattice is slow in the 2-D lattice as compared to the 1-D lattice 
that we shows a power-law divergence.  
 

 

 
Fig.10: The logarithmic divergence of the 𝜅 with the length of the lattice in the x direction (𝑁3) for a fixed 
length of lattice in y direction (𝑁:). The solid line represents the fitted line. The logarithmic divergence 
remains unaltered for different values of 𝑁:. 

 
12. Achievements from the project 

 
Understanding the heat conduction in finite dimensional insulator systems has been a long 
standing and much debated problem for some time. Particularly a major focus has been 
establishing Fourier's law of heat conduction in low dimensional systems. In one dimension it 
has been established that the thermal conductivity diverges with a power law scaling with the 
system size. However, establishing the exact value of the divergence exponent has been 
controversial and varied from one calculation to another. Here we investigated thermal 
conduction in one dimensional lattice model with asymmetric double-well nearest-neighbor 
interaction potential using nonequilibrium simulation method. We showed that in the high and 
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