28. Parallel arrangements of positive feedback loops limit cell-to-cell variability in differentiation
A. Dey and D Barik*
PLoS ONE, 12, e0188623, (2017)
27. Steady state statistical correlations predict bistability in reaction motifs
S. Chakravarty and D Barik*
Molecular BioSystems, 13, 775, (2017)
26. A stochastic model of the yeast cell cycle reveals roles for feedback regulation in limiting cellular variability
D. Barik*, D. A. Ball, J. Peccoud and J. J. Tyson*
Plos Computational Biology 12(12),e1005230 (2016)
25. Landauer's blowtorch effect as a thermodynamic cross process: Brownian cooling
M. Das, D. Das D. Barik and D. S. Ray
Phys. Rev. E. 92, 052102 (2015).
24. T cells translate individual, quantal activation into collective, analog cytokine responses via time-integrated feedbacks
K. E. Tkach, D. Barik, G. Voisinne, N. Malandro, M. M. Hathorn, J. W. Cotari, R. Vogel, T. Merghoub, J. Wolchok,
O. Krichevsky, and G. Altan-Bonnet
eLife, 3:e01944, (2014)
23. Measurement and modeling of transcriptional noise in the cell cycle regulatory network
D. A. Ball, N. R. Adames, N Reischmann, D. Barik, C. T. Franck, J. J. Tyson and J. Peccoud
Cell Cycle, 12:19, 3203 (2013)
22. A model of yeast cell cycle regulation based on multisite phosphorylation
D. Barik, W. T. Baumann, M. R. Paul, B. Novak and J. J. Tyson
Molecular Systems Biology 6: 405 (2010)
21. Bistability by multiple phosphorylation of regulatory protein
O. Kapuy, D. Barik, M. R. D. Sananes, J. J. Tyson and B. Novak
Progress in Biophysics Molecular Biology 100, 47 (2009)
20. Stochastic simulation of enzyme-catalyzed reactions with disparate time scales
D. Barik, M. R. Paul, W. T. Baumann, Y. Cao and J. J. Tyson
Biophysical Journal 95, 3563 (2008).
19. State-dependent diffusion in a periodic potential for a nonequilibrium open system
J. Ray Chaudhuri and D. Barik
Euro. Phys. J. B 63, 117 (2008).
18. Self consistent microscopic theory of frictional ratchet in a nonequilibrium environment
J. Ray Chaudhuri and D. Barik
Ind. J. Phys. 82, 1577 (2008).
17. Anomalous heat conduction in a 2d Frenkel-Kontorova lattice
D. Barik
Euro. Phys. J. B 56, 229 (2007).
16. Directed motion generated by heat bath nonlinearly driven by external noise
J. Ray Chaudhuri, D. Barik and S. K. Banik
J. Phys. A 40, 14715 (2007).
15. Nonequilibrium fluctuation induced escape from a metastable state
J. Ray Chaudhuri, D. Barik and S. K. Banik
Euro. Phys. J B 55, 333 (2007).
14. Heat conduction in 2d harmonic lattices with on-site potential
D. Barik
Europhys. Lett. 75, 42 (2006).
13. Dynamics of a metastable state nonlinearly coupled to a heat bath driven by an external noise
J. Ray Chaudhuri, D. Barik and S. K. Banik
Phys. Rev. E. 74, 061119 (2006).
12. Inhomogeneous quantum diffusion and decay of a meta-stable state
P. K. Ghosh, D. Barik, and D. S. Ray
Phys. Lett. A 360, 35 (2006).
11. Escape rate from a metastable state weakly interacting with heat bath driven by external noise
J. Ray Chaudhuri, D. Barik and S. K. Banik
Phys. Rev. E. 73, 051101 (2006).
10. Quantum equilibrium factor in the decay of a metastable state at low temperature
D. Barik and D. S. Ray
J. Stat. Mech. P06001 (2006).
9. Quantum Kramers turnover: a phase space function approach
D. Barik and D. S. Ray
cond-mat/0411294.
8. Langevin dynamics with dichotomous noise; direct simulation and applications,
D. Barik, P. K. Ghosh and D. S. Ray
J. Stat. Mech. P03010 (2006).
7. Quantum escape kinetics over a fluctuating barrier
P. K. Ghosh, D. Barik, B. C. Bag and D. S. Ray
J. Chem. Phys. 123, 224104 (2005).
6. Noise induced quantum transport
P. K. Ghosh, D. Barik and D. S. Ray
Phys. Rev. E 71, 041107 (2005).
5. Noise induced transition in quantum system
P. K. Ghosh, D. Barik and D. S. Ray
Phys. Lett. A 342, 12 (2005).
4. Quantum state-dependent diffusion and multiplicative noise: a microscopic approach
D. Barik and D. S. Ray
J. Stat. Phys. 120, 339 (2005).
3. Anharmonic quantum contribution to vibrational dephasing
D. Barik and D. S. Ray
J. Chem. Phys. 121, 1681 (2004).
2. Numerical simulation of transmission coefficient using c-number Langevin equation
D. Barik, B. C. Bag, and D. S. Ray
J. Chem. Phys. 119, 12973 (2003).
1. Quantum phase-space function formulation of reactive flux theory
D. Barik, S. K. Banik and D. S. Ray
J. Chem. Phys. 119, 680 (2003).
Book:
Quantum brownian motion in C-numbers: theory and applications.
D. Barik, D. Banerjee and D. S. Roy
Nova Science Publishers, NY (2009).